JP2004349872A - Radio relay apparatus - Google Patents

Radio relay apparatus Download PDF

Info

Publication number
JP2004349872A
JP2004349872A JP2003142522A JP2003142522A JP2004349872A JP 2004349872 A JP2004349872 A JP 2004349872A JP 2003142522 A JP2003142522 A JP 2003142522A JP 2003142522 A JP2003142522 A JP 2003142522A JP 2004349872 A JP2004349872 A JP 2004349872A
Authority
JP
Japan
Prior art keywords
frequency channel
channel
radio wave
reception level
wireless communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003142522A
Other languages
Japanese (ja)
Inventor
Kazuyasu Yamane
一泰 山根
Katsuhiko Kimura
克彦 木村
Hideo Tanaka
英夫 田中
Seiji Nagatome
征二 永留
Shinsuke Ueda
真介 植田
Masanori Kurita
昌典 栗田
Kiyotaka Takehara
清隆 竹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003142522A priority Critical patent/JP2004349872A/en
Publication of JP2004349872A publication Critical patent/JP2004349872A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the deterioration of communication quality due to the self interference of a radio signal. <P>SOLUTION: The radio relay apparatus RS comprises a first radio communication unit 1 for radio communications with public base stations CS, a second radio communication unit 2 for radio communications with mobile stations PS, and a controller 3 for controlling the first and second radio communication units 1, 2 for processing relay operations. The controller 3 performs monitoring at an initialization time after power-on to measure the reception level of self interference waves with monitoring radio waves every frequency channel, and if the difference between the reception level and the reception level of radio signals (D-waves) sent from the base station CS is lower or higher than a threshold, decides a relay to be disabled or enabled about its frequency channel, respectively. Thus, e.g., such a radio relay apparatus installing place is selectable that the influence of the self-interference waves is possibly reducible in all the frequency channels, thus suppressing the deterioration of the communication quality due to the self interference of radio signals. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、PHS(Personal Handy phone System)等の無線通信システムに用いる無線中継装置に関するものである。
【0002】
【従来の技術】
現在、PHS(第二世代コードレス電話システム)の基地局と移動局との間における無線通信の方式として、4チャネル多重のTDMA−TDD(Time Division Multi Access−Time Division Duplex)方式が採用されている。上記方式では、5msecの時間長を有する1フレームを1つの基地局における伝送信号の一単位として設定し、さらに1フレームを8等分したものを1スロット(時間長0.625msec)として規定している。そして、1フレーム中の4スロットを基地局から移動局への下りの送信信号に割り当て、残りの4スロットを移動局から基地局への上りの送信信号に割り当てている。つまり、1つの基地局は理論上最大4つの移動局との通信が同時に処理できる。また、1つのスロットには160bitのデータが含まれ、1つの移動局と基地局との間では5msec毎に160bitのデータが半二重で伝送されることになり、単位時間当たりで見れば32kbit/secの通信速度が得られることになる。また、上記TDMA−TDD方式を採用したPHSにおいては、300kHz毎に設定された多数の周波数チャネル(周波数キャリア)が4つのスロット毎に多重化されており、そのうち、基地局から移動局への制御情報を報知したり、呼接続に必要な制御情報を転送するといった目的を持つ制御チャネルCCHには通信事業者毎に特定の周波数チャネルが割り当てられ、それ以外の周波数チャネルがユーザ情報を転送することを目的とした情報チャネルTCHに割り当てられている。
【0003】
ところで、PHSでは1.9GHz帯の無線周波数を利用しており、例えば屋外に設置されている基地局の電波が建物内の移動局に到達し難いため、屋外の基地局と屋内の移動局との間で各々の送信電波を中継する無線中継装置が従来より用いられていた(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開平10−155172号公報(第3頁、第1図)
【0005】
【発明が解決しようとする課題】
近年では、インターネットの普及に伴って高速なパケット通信が行える無線通信システムの需要が高まってきており、上述のPHSを利用したパケット通信においても、通信速度向上のために1つの移動局が互いに異なる複数(最大4つ)の基地局との間で通信することにより、1つの基地局とのみ通信している場合よりも速い通信速度(例えば4つの基地局と通信する場合であれば最大128kbit/secの通信速度)が得られるようになっている。そして、このように従来よりも速い通信速度が得られる無線通信システムに対応した無線中継装置には、基地局と無線通信する無線通信部、並びに移動局と無線通信する無線通信部の2系統の無線通信部が必要である。しかしながら、2系統の無線通信部で同時に送受信を行った場合、送信に用いる周波数チャネルの無線信号が受信に用いる周波数チャネルの無線信号と干渉(自己干渉)して通信品質が低下してしまう虞がある。ここで、実際の無線信号においては、送信に用いる周波数チャネルだけでなく、これ以外の周波数帯域にも自己干渉波が生じる。これに対処するためには各系統の無線通信部におけるアンテナ間のアイソレーションを高めるなどの方法があるが、これだけでは通信品質の低下を抑制できない場合があった。
【0006】
本発明は上記事情に鑑みて為されたものであり、その目的は、無線信号の自己干渉による通信品質の低下が抑制できる無線中継装置を提供することにある。
【0007】
【課題を解決するための手段】
請求項1の発明は、上記目的を達成するために、ネットワークに接続された基地局と移動局との間で所定の周波数チャネルが割り当てられた制御チャネル並びに制御チャネルよりも多くの周波数チャネルが利用可能な情報チャネルを使用してTDMA方式で無線通信を行う無線通信システムに用いられ、前記基地局又は移動局の一方から送信された無線信号を他方に中継する無線中継装置において、前記基地局と無線通信する第1の無線通信手段と、前記移動局と無線通信する第2の無線通信手段と、第1及び第2の無線通信手段を制御して前記中継のための処理を行う制御手段と、前記第1又は第2の無線通信手段の一方から前記情報チャネル用の周波数チャネルを用いてモニタ用電波を送信させるモニタ用電波送信手段と、前記第1又は第2の無線通信手段の他方で前記モニタ用電波の送信中に各周波数チャネル毎の受信電波の受信レベルを計測する受信レベル計測手段と、該受信レベル計測手段の計測結果に基づいて各周波数チャネル毎の前記無線信号の中継の可否を判定する判定手段とを備えたことを特徴とする。
【0008】
この発明によれば、モニタ用電波送信手段により第1又は第2の無線通信手段の一方から情報チャネル用の周波数チャネルを用いてモニタ用電波を送信させ、第1又は第2の無線通信手段の他方がモニタ用電波の送信中に各周波数チャネル毎の受信電波の受信レベル、すなわち、全ての周波数チャネルに対する自己干渉波(妨害波)の受信レベルを受信レベル計測手段で計測し、判定手段がその計測結果に基づいて各周波数チャネル毎の無線信号の中継の可否を判定するため、例えば無線中継装置を設置する際に判定手段による判定結果を考慮して全ての周波数チャネルにおいて自己干渉波の影響ができだけ少なくなるような場所を選択することができ、無線信号の自己干渉による通信品質の低下が抑制できる。
【0009】
請求項2の発明は、請求項1の発明において、前記モニタ用電波送信手段は、前記周波数チャネルのうちで相対的に高い周波数の周波数チャネルを用いた第1のモニタ用電波と、相対的に低い周波数の周波数チャネルを用いた第2のモニタ用電波とを前記第1又は第2の無線通信手段の一方から個別に送信させ、前記受信レベル計測手段は、前記第1のモニタ用電波の送信中に当該第1のモニタ用電波で用いる周波数チャネルよりも低い周波数帯域の周波数チャネルの受信レベルを計測した計測結果と、前記第2のモニタ用電波の送信中に当該第2のモニタ用電波で用いる周波数チャネルよりも高い周波数帯域の周波数チャネルの受信レベルを計測した計測結果とを合わせて前記周波数帯域全体の受信レベル計測結果を取得することを特徴とする。
【0010】
この発明によれば、周波数チャネルを高域側と低域側に分け、高域側に属する周波数チャネルを用いた第1のモニタ用電波の送信中に低域側に属する周波数チャネル毎の受信レベルを計測するとともに、低域側に属する周波数チャネルを用いた第2のモニタ用電波の送信中に高域側に属する周波数チャネル毎の受信レベルを計測し、それらを合わせて全ての周波数チャネルについて自己干渉波の受信レベルを計測することにより、送信に用いる周波数チャネル以外の周波数チャネルの無線信号に対する自己干渉波の受信レベルを計測することができる。
【0011】
請求項3の発明は、請求項1又は2の発明において、前記判定手段は、前記第1の無線通信手段で受信する無線信号の受信レベルと前記受信レベル計測手段の計測結果との差を所定のしきい値と比較し、当該差が前記しきい値を超える前記周波数チャネルのチャネル数が前記周波数チャネルの全チャネル数に占める割合を所定の判定値と比較して当該割合が前記判定値を超えている場合に設置可と判定することを特徴とする。
【0012】
この発明によれば、全ての周波数チャネルにおいて自己干渉波の影響ができだけ少なくなるような適切な場所に設置することができて無線信号の自己干渉による通信品質の低下が抑制できる。
【0013】
請求項4の発明は、請求項1又は2の発明において、前記制御手段は、前記基地局又は移動局からのリンクチャネル確立要求に対して前記判定手段が中継不可と判定した周波数チャネルが割り当てられた場合に前記第1の無線通信手段を制御して別の周波数チャネルの割当を前記基地局に要求することを特徴とする。
【0014】
この発明によれば、中継不可と判定された周波数チャネルでリンクチャネルが確立されるのを避けることができる。
【0015】
請求項5の発明は、請求項4の発明において、前記制御手段は、前記基地局に対して前記周波数チャネルが中継不可である旨の通知とともに別の周波数チャネルの割当を要求することを特徴とする。
【0016】
この発明によれば、再要求を受けた基地局において割り当てたリンクチャネルの受け入れ拒否の理由を把握することができ、例えば、空いている周波数チャネルの中から受け入れ拒否された周波数チャネルからできるだけ離れた周波数チャネルが基地局により割り当てられるといった適切な対処が可能となる。
【0017】
請求項6の発明は、請求項1又は2の発明において、前記制御手段は、前記判定手段が中継不可と判定した前記周波数チャネルを前記第1の無線通信手段により前記基地局に通知することを特徴とする。
【0018】
この発明によれば、基地局が空いている周波数チャネルの中から中継不可として通知された周波数チャネル以外の周波数チャネルを割り当てることができるため、基地局に対してリンクチャネル確立を再要求することがなくなってリンクチャネル確立要求のシーケンスが短縮できる。
【0019】
請求項7の発明は、請求項1又は2の発明において、前記制御手段は、前記判定手段が中継可と判定した周波数チャネルを前記第1の無線通信手段により前記基地局に通知することを特徴とする。
【0020】
この発明によれば、基地局が空いている周波数チャネルの中から中継可として通知された周波数チャネルを割り当てることができるため、基地局に対してリンクチャネル確立を再要求することがなくなってリンクチャネル確立要求のシーケンスが短縮できる。
【0021】
請求項8の発明は、請求項1又は2の発明において、前記モニタ用電波送信手段は、所定の時間長を有する1フレームを時分割した複数のスロットのうちから予め決められた固有の数値に基づいて決定する番号に対応した何れか一つのスロットを選択して当該スロットでモニタ用電波を送信することを特徴とする。
【0022】
この発明によれば、無線中継装置に固有の数値に基づいてモニタ用電波を送信するスロットを決定することにより、複数の無線中継装置で同時にモニタ用電波が送信される状況においてもモニタ用電波を送信するスロットが重なり難くなるため、他の無線中継装置が送信したモニタ用電波の影響を避けて自己干渉波の受信レベルが正確に計測できる。
【0023】
請求項9の発明は、上記目的を達成するために、ネットワークに接続された基地局と移動局との間で所定の周波数チャネルが割り当てられた制御チャネル並びに制御チャネルよりも多くの周波数チャネルが利用可能な情報チャネルを使用してTDMA方式で無線通信を行う無線通信システムに用いられ、前記基地局又は移動局の一方から送信された無線信号を他方に中継する無線中継装置において、前記基地局と無線通信する第1の無線通信手段と、前記移動局と無線通信する第2の無線通信手段と、第1及び第2の無線通信手段を制御して前記中継のための処理を行う制御手段と、前記第1又は第2の無線通信手段の一方から前記制御チャネル用の周波数チャネルを用いてモニタ用電波を送信させるモニタ用電波送信手段と、前記第1又は第2の無線通信手段の他方で前記モニタ用電波の送信中に各周波数チャネル毎の受信電波の受信レベルを計測する受信レベル計測手段と、該受信レベル計測手段の計測結果に基づいて各周波数チャネル毎の前記無線信号の中継の可否を判定する判定手段とを備えたことを特徴とする。
【0024】
この発明によれば、モニタ用電波送信手段により第1又は第2の無線通信手段の一方から制御チャネル用の周波数チャネルを用いてモニタ用電波を送信させ、第1又は第2の無線通信手段の他方がモニタ用電波の送信中に各周波数チャネル毎の受信電波の受信レベル、すなわち、全ての周波数チャネルに対する自己干渉波(妨害波)の受信レベルを受信レベル計測手段で計測し、判定手段がその計測結果に基づいて各周波数チャネル毎の無線信号の中継の可否を判定するため、例えば無線中継装置を設置する際に判定手段による判定結果を考慮して全ての周波数チャネルにおいて自己干渉波の影響ができだけ少なくなるような場所を選択することができ、無線信号の自己干渉による通信品質の低下が抑制できる。しかも、制御チャネル用の周波数チャネルを使ってモニタ用電波を送信するから、運用時に移動局に対して常時送信している制御信号をモニタ用電波として代用でき、情報チャネル用の周波数チャネルを使ってモニタ電波を送信する場合に比較して処理が簡素化できる。
【0025】
請求項10の発明は、請求項1又は2又は9の発明において、前記判定手段は、前記基地局又は移動局からリンクチャネル確立の要求を待っている待ち受け時に、前記第1の無線通信手段で受信する無線信号の受信レベルと前記受信レベル計測手段の計測結果との差を所定のしきい値と比較し、当該差が前記しきい値を超える前記周波数チャネルのチャネル数が前記周波数チャネルの全チャネル数に占める割合を所定の判定値と比較して当該割合が前記判定値を超えている場合に中継可と判定することを特徴とする。
【0026】
この発明によれば、無線中継装置の設置後に周囲環境の変化などが原因で無線信号の受信レベルが変動して通信品質が低下していればそのことを知らせることができて使い勝手が向上できる。
【0027】
【発明の実施の形態】
以下、本発明を第二世代コードレス電話システム標準規格(RCR STD−28 4.0版、社団法人電波産業会発行)に準拠した無線通信システムに用いる無線中継装置(中継局)RSに適用した実施形態について説明する。但し、基地局CS及び移動局PSの構成並びに動作と、無線中継装置RSの基本動作については上記標準規格に規定されているように従来周知であるから説明を省略する。
【0028】
図1は本実施形態の無線中継装置RSのブロック図を示し、図2は同じく外観構造を示している。この無線中継装置RSは、図1に示すように公衆の基地局CSと無線通信する第1の無線通信部1と、パケット通信に対応したPHS端末のような移動局PSと無線通信する第2の無線通信部2と、第1及び第2の無線通信部1,2を制御して中継のための処理を行う制御部3と、商用電源から電源供給を受けて上記各部の動作電源を作成する電源部4と、発光ダイオードのような表示素子を具備して後述する判定結果を外部に報知する報知部5とを備える。第1及び第2の無線通信部1,2には基地局CS及び移動局PSとの間でそれぞれ無線信号の送受信を行うためのアンテナ(図示せず)、及びアンテナを通じて通信データの送受信を行うモデム(図示せず)が含まれる。また、制御部3はCPUやメモリ等の周辺回路を具備し、メモリに搭載されたプログラムをCPUで実行することによって、上記中継処理や後述する各種の処理を行うものである。
【0029】
また図2に示すように、無線中継装置RSは合成樹脂製のハウジング10を有し、ハウジング10の長手方向における幅広の両端部にそれぞれ第1及び第2の無線通信部1,2のアンテナが収納され、ハウジング10の長手方向中央部の側面に報知部5が具備する複数個の発光ダイオード5aが露出させてある。
【0030】
ここで、従来技術で説明したように2系統の無線通信部1,2で同時に送受信を行うと送信に用いる周波数チャネルの無線信号だけでなく、当該周波数チャネル以外の周波数チャネルの無線信号にも自己干渉が生じてしまい、送信に用いる周波数チャネルと同一周波数の自己干渉波のみに対処するだけでは通信品質の低下を抑制できないという問題がある。
【0031】
そこで本実施形態の無線中継装置RSでは、電源投入後の初期設定時に、第2の無線通信部2から情報チャネル用の周波数チャネルを用いてモニタ用電波を送信させ、モニタ用電波の送信中に第1の無線通信部1で受信される各周波数チャネル毎の受信電波の受信レベルを計測する処理(自己干渉波のモニタ処理)を行い、そのモニタ処理の結果に基づいて各周波数チャネル毎の無線信号の中継の可否を判定している。ここで、前記標準規格では無線信号に利用する周波数チャネルが1884.650MHz〜1919.450MHzの範囲で300kHz毎に設定され、各周波数チャネルに対して221〜255及び1〜82のキャリア番号が割り当てられているが、送信に用いる周波数チャネル以外の周波数チャネルの無線信号に対する自己干渉波の受信レベルを計測するという点からみれば、モニタ用電波と同一の周波数チャネル及びその近傍の周波数チャネルについては考慮する必要がない。従って、本実施形態においては周波数チャネルを高域側と低域側に分け、高域側に属する周波数チャネルを用いた第1のモニタ用電波の送信中に低域側に属する周波数チャネル毎の受信レベルを計測するとともに、低域側に属する周波数チャネルを用いた第2のモニタ用電波の送信中に高域側に属する周波数チャネル毎の受信レベルを計測し、それらを合わせて全ての周波数チャネルについて自己干渉波の受信レベルを計測するようにしており、以下、図3のフローチャートに基づいて自己干渉波の受信レベルを計測する処理(モニタ処理)について説明する。
【0032】
まず、無線中継装置RSを適当な位置に設置した後に作業者が電源を投入すると、制御部3が初期設定の一つとしてモニタ処理を開始し、受信レベル計測を行う低域側の周波数チャネルの先頭値(キャリア番号)をモニタチャネルのパラメータに設定し(ステップ1)、第1のモニタ用電波を送信するための周波数チャネルを高域側の周波数チャネルの中から決定する(ステップ2)。なお、何れの周波数チャネルを選択するかは予めモニタ処理用のプログラムに初期値として設定してある。
【0033】
そして、制御部3は第2の無線通信部2を制御して決定した周波数チャネルを用いて第1のモニタ用電波を送信し、その送信中にモニタチャネルのパラメータで指定された周波数チャネルにおいて第1の無線通信部1で受信する無線信号の受信レベルを計測し(ステップ3)、第1のモニタ用電波の送信終了後に引き続きモニタチャネルのパラメータで指定された周波数チャネルにおいて第1の無線通信部1で受信する無線信号の受信レベルを計測する(ステップ4)。さらに制御部3は、第1のモニタ用電波の非送信時における受信レベルを所定の有効性判定用しきい値と比較し、非送信時の受信レベルが有効性判定用しきい値以下であれば送信時の受信レベルの計測結果を有効と判定し、非送信時の受信レベルが有効性判定用しきい値よりも大きければ送信時の受信レベルの計測結果を無効と判定し、有効の場合は送信時の受信レベルの計測結果を、無効の場合にはその旨を、それぞれメモリに用意されたモニタ結果テーブルに書き込む(ステップ5)。すなわち、ある周波数チャネルにおいてモニタ用電波が送信されていないときの受信レベルが高ければ自己干渉以外の妨害波が存在していると考えら、そのときには自己干渉波の受信レベルが正確に計測できないと考えられることから、上述のように第1のモニタ用電波の非送信時における受信レベルを有効性判定用しきい値と比較することで、送信時の受信レベルの有効・無効を判定しているものである。それから制御部3は、モニタチャネルのパラメータが低域側の周波数チャネルの最後の値(後尾値)と一致するか否かを判断し(ステップ6)、一致しなければモニタチャネルのパラメータに次の周波数チャネルのキャリア番号を設定し(ステップ7)、低域側の全ての周波数チャネルについて受信レベルの計測結果が得られるまでステップ2〜ステップ5の処理を繰り返す。
【0034】
続いて制御部3は、受信レベル計測を行う高域側の周波数チャネルの先頭値(キャリア番号)をモニタチャネルのパラメータに設定し(ステップ8)、第2のモニタ用電波を送信するための周波数チャネルを低域側の周波数チャネルの中から決定した後(ステップ9)、第2の無線通信部2を制御して決定した周波数チャネルを用いて第2のモニタ用電波を送信し、その送信中にモニタチャネルのパラメータで指定された周波数チャネルにおいて第1の無線通信部1で受信する無線信号の受信レベルを計測する(ステップ10)。さらに制御部3では、第2のモニタ用電波の送信終了後に引き続きモニタチャネルのパラメータで指定された周波数チャネルにおいて第1の無線通信部1で受信する無線信号の受信レベルを計測し(ステップ11)、第2のモニタ用電波の非送信時における受信レベルを所定の有効性判定用しきい値と比較し、非送信時の受信レベルが有効性判定用しきい値以下であれば送信時の受信レベルの計測結果を有効と判定し、非送信時の受信レベルが有効性判定用しきい値よりも大きければ送信時の受信レベルの計測結果を無効と判定し、有効の場合は送信時の受信レベルの計測結果を、無効の場合にはその旨を、それぞれメモリに用意されたモニタ結果のデータテーブルに書き込む(ステップ12)。それから制御部3は、モニタチャネルのパラメータが高域側の周波数チャネルの最後の値(後尾値)と一致するか否かを判断し(ステップ13)、一致しなければモニタチャネルのパラメータに次の周波数チャネルのキャリア番号を設定し(ステップ14)、高域側の全ての周波数チャネルについて受信レベルの計測結果が得られるまでステップ9〜ステップ12の処理を繰り返した後にモニタ処理を終了する。
【0035】
上述のようなモニタ処理によって各周波数チャネル毎に自己干渉波の受信レベルの計測結果が得られたら、制御部3は初期設定時に第1の無線通信部1で受信する基地局CSからの無線信号(D波:Desired Signal)の受信レベルを計測し、このD波の受信レベルとモニタ処理で得られた各周波数チャネルの自己干渉波の受信レベルとの差を所定のしきい値と比較する。図4は基地局CSからのD波(曲線イ)と各周波数チャネルの自己干渉波の受信レベルを結んだ曲線ロとを表しており、制御部3ではD波の受信レベル(曲線イの極大値)と自己干渉波の受信レベルとの差がしきい値(例えば、20dBμV)以下であれば、その周波数チャネルについては中継不可(図4では曲線ロ上に「×」で表示)と判定し、しきい値よりも大きければ、中継可(図4では曲線ロ上に「○」で表示)と判定して、その判定結果をモニタ結果のデータテーブルに登録する。
【0036】
次に、制御部3は上述のようにして得られた各周波数チャネル毎の中継可否の結果に基づいて、図5のフローチャートにしたがって現在の設置場所に無線中継器RSを設置しても良いか否かを判定する処理(設置可否判定処理)を行う。すなわち、制御部3はモニタ結果のデータテーブルを参照して中継可と判定された周波数チャネルのチャネル数をカウントし(ステップ1)、周波数チャネルの全チャネル数に占める上記チャネル数の割合を所定の判定値(例えば、7割)と比較して(ステップ2)、上記割合が判定値以上であれば設置可と判定するとともに(ステップ3)、上記割合が判定値未満であれば設置不可と判定する(ステップ4)。そして、制御部3は報知部5を制御して発光ダイオード5aの点滅等を行うことで設置可又は設置不可の判定結果を報知する。よって、無線中継装置RSを設置する際に上記判定結果を考慮して全ての周波数チャネルにて自己干渉波の影響ができだけ少なくなるような場所を選択して設置すれば、無線信号の自己干渉による通信品質の低下を抑制することができるものである。
【0037】
上述のようなモニタ処理を含む初期設定が終了すると、無線中継装置RSは中継可能な基地局CSに対する待ち受け状態となるが、この待ち受け中に移動局PSからリンクチャネル確立要求が送信された場合の無線中継装置RSの動作を説明する。
【0038】
図6はリンクチャネル確立のシーケンスを示しており、移動局PSから送信されたリンクチャネル確立要求は無線中継装置RSによって待ち受け先の基地局CSに中継され、このリンクチャネル確立要求に対して基地局CSから送信されたリンクチャネル割当(スロット及び周波数チャネル)が無線中継装置RSで受信される。このとき無線中継装置RSの制御部3では、図7のフローチャートにしたがって基地局CSから割り当てられた周波数チャネルの受け入れ可否を判断する。すなわち、制御部3ではモニタ結果のデータテーブルを参照して基地局CSから割り当てられた周波数チャネルの中継可否を調べ(ステップ1)、割り当てられた周波数チャネルが中継不可であれば基地局CSに対してリンクチャネル確立を再要求(リトライ)し(ステップ2)、割り当てられた周波数チャネルが中継可であれば受け入れ可と判定して基地局CSとの間で情報チャネルTCHを起動するとともに(ステップ3)、受け入れ可と判定したリンクチャネル割当を移動局PSに中継して情報チャネルTCHを起動する(図6参照)。
【0039】
而して、移動局PSからのリンクチャネル確立要求に対して基地局CSがモニタ処理にて中継不可と判定された周波数チャネルを割り当てた場合に、制御部3が受け入れを拒否して別の周波数チャネルの割当を基地局CSに再要求することにより、中継不可と判定された周波数チャネルでリンクチャネルが確立されるのを避けることができて自己干渉による通信品質の低下を確実に防ぐことができる。なお、無線中継装置RSから基地局CSに対してリンクチャネル確立を再要求する際に、図8のフローチャートに示すように再要求する理由、つまり割り当てられた周波数チャネルが中継不可である旨のメッセージを基地局CSに送信するするようにすることが望ましく、再要求を受けた基地局CSにおいて割り当てたリンクチャネルの受け入れ拒否の理由を把握することができ、例えば、空いている周波数チャネルの中から受け入れ拒否された周波数チャネルからできるだけ離れた周波数チャネルが基地局CSにより割り当てられるといった適切な対処が可能となる。
【0040】
また、基地局CSへリンクチャネル確立要求を中継する際に、図9のフローチャートにしたがい制御部3がモニタ結果のデータテーブルを参照して中継不可と判定した周波数チャネルのチャネル番号(キャリア番号)をリンクチャネル確立要求の付加情報として基地局CSに通知すれば、基地局CSでは空いている周波数チャネルの中から付加情報として通知されたチャネル番号以外の周波数チャネルを割り当てるため、上述のように無線中継装置RSから基地局CSに対してリンクチャネル確立を再要求することがなくなってリンクチャネル確立要求のシーケンスが短縮できるという利点がある。なお、図10のフローチャートに示すように付加情報として中継不可のチャネル番号の代わりに中継可のチャネル番号を通知すれば、基地局CSでは空いている周波数チャネルの中から付加情報として通知されたチャネル番号の周波数チャネルを割り当てればよく、同様に無線中継装置RSから基地局CSに対してリンクチャネル確立を再要求することがなくなってリンクチャネル確立要求のシーケンスが短縮できる。
【0041】
ところで、複数の無線中継装置RSを設置するような状況で同じ基地局CSに対して複数の無線中継装置RSが同一のスロットで同時にモニタ用電波を送信した場合には、他の無線中継装置RSのモニタ用電波が干渉して自己干渉波の受信レベルが正確に計測できなくなると考えられる。したがって、このような状況を回避するためにはモニタ用電波を送信するスロットを個々の無線中継装置RSでできるだけ重ならないようにする必要がある。したがって、無線中継装置RSの制御部3では、モニタ処理を行う際に4つの送信用のスロットのうちから予め決められた固有の数値(例えば、無線中継装置RSに固有の製造番号など)に基づいて1〜4の何れかの番号を決定し、その番号に対応した何れか一つのスロットを選択して当該スロットでモニタ用電波を送信することが望ましい。以下、図11のフローチャートを参照して制御部3がモニタ用電波を送信するスロットを決定する処理について説明する。
【0042】
制御部3は、下りの空きスロットのうちで最も若いスロット番号(1,2,3,4)と自己の製造番号(例えば、製造番号が数字とアルファベットの組み合わせであれば数字の部分のみ)との和を4で除した余り(0,1,2,3)に1を加える演算を行い、この演算で求められた数値(1,2,3,4)をスロット番号の候補とする(ステップ1)。さらに制御部3では、スロット番号の候補が基地局CSの制御チャネルCCHのスロットに重複しているかを確認し(ステップ2)、重複していなければその候補のスロット番号をモニタ用電波の送信用のスロットとし(ステップ3)、重複していればその候補の数値をインクリメントした値(但し、候補の数値が4の場合には1)を送信用のスロットのスロット番号とする(ステップ4)。
【0043】
而して、製造番号のように無線中継装置RSに固有の数値に基づいてモニタ用電波を送信するスロットを決定することにより、複数の無線中継装置RSでモニタ用電波を送信するスロットが重なり難くなって自己干渉波の受信レベルが正確に計測できるようになる。
【0044】
ところで本実施形態では、電源投入後の初期設定時に制御部3が上述のモニタ処理を行うようにしているが、待ち受け時にも図5のフローチャートにしたがった設置可否判定の処理を制御部3で常時あるいは定期的に行い、設置不可と判定したら報知部5で報知するようにすれば、無線中継装置RSの設置後に周囲環境の変化などが原因で無線信号の受信レベルが変動して通信品質が低下しているか否かを知らせることができて使い勝手が向上できる。
【0045】
また、本実施形態では情報チャネルTCH用の周波数チャネルを用いて第1及び第2のモニタ用電波を送信しているが、制御チャネルCCH用の周波数チャネルを用いてモニタ用電波を送信することも可能である。すなわち、制御チャネルCCHに用いることができる周波数チャネルは、上記標準規格によって特定の周波数チャネルに決められており、情報チャネルTCHと共用されるされることがないため、制御チャネルCCH用の周波数チャネルを使ってモニタ用電波を送信すれば、運用時に移動局PSに対して常時送信している制御信号をモニタ用電波として代用でき、情報チャネルTCH用の周波数チャネルを使ってモニタ電波を送信する場合に比較して処理が簡素化できる。
【0046】
【発明の効果】
請求項1の発明では、モニタ用電波送信手段により第1又は第2の無線通信手段の一方から情報チャネル用の周波数チャネルを用いてモニタ用電波を送信させ、第1又は第2の無線通信手段の他方がモニタ用電波の送信中に各周波数チャネル毎の受信電波の受信レベル、すなわち、全ての周波数チャネルに対する自己干渉波(妨害波)の受信レベルを受信レベル計測手段で計測し、判定手段がその計測結果に基づいて各周波数チャネル毎の無線信号の中継の可否を判定するため、例えば無線中継装置を設置する際に判定手段による判定結果を考慮して全ての周波数チャネルにおいて自己干渉波の影響ができだけ少なくなるような場所を選択することができ、無線信号の自己干渉による通信品質の低下が抑制できる。
【0047】
請求項2の発明では、周波数チャネルを高域側と低域側に分け、高域側に属する周波数チャネルを用いた第1のモニタ用電波の送信中に低域側に属する周波数チャネル毎の受信レベルを計測するとともに、低域側に属する周波数チャネルを用いた第2のモニタ用電波の送信中に高域側に属する周波数チャネル毎の受信レベルを計測し、それらを合わせて全ての周波数チャネルについて自己干渉波の受信レベルを計測することにより、送信に用いる周波数チャネル以外の周波数チャネルの無線信号に対する自己干渉波の受信レベルを計測することができる。
【0048】
請求項3の発明では、全ての周波数チャネルにおいて自己干渉波の影響ができだけ少なくなるような適切な場所に設置することができて無線信号の自己干渉による通信品質の低下が抑制できる。
【0049】
請求項4の発明では、中継不可と判定された周波数チャネルでリンクチャネルが確立されるのを避けることができる。
【0050】
請求項5の発明では、再要求を受けた基地局において割り当てたリンクチャネルの受け入れ拒否の理由を把握することができ、例えば、空いている周波数チャネルの中から受け入れ拒否された周波数チャネルからできるだけ離れた周波数チャネルが基地局により割り当てられるといった適切な対処が可能となる。
【0051】
請求項6の発明では、基地局が空いている周波数チャネルの中から中継不可として通知された周波数チャネル以外の周波数チャネルを割り当てることができるため、基地局に対してリンクチャネル確立を再要求することがなくなってリンクチャネル確立要求のシーケンスが短縮できる。
【0052】
請求項7の発明では、基地局が空いている周波数チャネルの中から中継可として通知された周波数チャネルを割り当てることができるため、基地局に対してリンクチャネル確立を再要求することがなくなってリンクチャネル確立要求のシーケンスが短縮できる。
【0053】
請求項8の発明では、無線中継装置に固有の数値に基づいてモニタ用電波を送信するスロットを決定することにより、複数の無線中継装置で同時にモニタ用電波が送信される状況においてもモニタ用電波を送信するスロットが重なり難くなるため、他の無線中継装置が送信したモニタ用電波の影響を避けて自己干渉波の受信レベルが正確に計測できる。
【0054】
請求項9の発明では、モニタ用電波送信手段により第1又は第2の無線通信手段の一方から制御チャネル用の周波数チャネルを用いてモニタ用電波を送信させ、第1又は第2の無線通信手段の他方がモニタ用電波の送信中に各周波数チャネル毎の受信電波の受信レベル、すなわち、全ての周波数チャネルに対する自己干渉波(妨害波)の受信レベルを受信レベル計測手段で計測し、判定手段がその計測結果に基づいて各周波数チャネル毎の無線信号の中継の可否を判定するため、例えば無線中継装置を設置する際に判定手段による判定結果を考慮して全ての周波数チャネルにおいて自己干渉波の影響ができだけ少なくなるような場所を選択することができ、無線信号の自己干渉による通信品質の低下が抑制できる。しかも、制御チャネル用の周波数チャネルを使ってモニタ用電波を送信するから、運用時に移動局に対して常時送信している制御信号をモニタ用電波として代用でき、情報チャネル用の周波数チャネルを使ってモニタ電波を送信する場合に比較して処理が簡素化できる。
【0055】
請求項10の発明では、無線中継装置の設置後に周囲環境の変化などが原因で無線信号の受信レベルが変動して通信品質が低下していればそのことを知らせることができて使い勝手が向上できる。
【図面の簡単な説明】
【図1】本発明の実施形態を示すブロック図である。
【図2】同上の外観斜視図である。
【図3】同上におけるモニタ処理を説明するためのフローチャートである。
【図4】同上の動作説明図である。
【図5】同上における設置可否判定処理を説明するためのフローチャートである。
【図6】同上におけるリンクチャネル確立のシーケンス図である。
【図7】同上におけるリンクチャネル確立要求時の動作を説明するフローチャートである。
【図8】同上におけるリンクチャネル確立要求時の他の動作を説明するフローチャートである。
【図9】同上におけるリンクチャネル確立要求時のさらに他の動作を説明するフローチャートである。
【図10】同上におけるリンクチャネル確立要求時の別の動作を説明するフローチャートである。
【図11】同上におけるモニタ用電波を送信するスロット決定の処理を説明するためのフローチャートである。
【符号の説明】
RS 無線中継装置
1 第1の無線通信部
2 第2の無線通信部
3 制御部
5 報知部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wireless relay device used for a wireless communication system such as a PHS (Personal Handy phone System).
[0002]
[Prior art]
Currently, a 4-channel multiplexed TDMA-TDD (Time Division Multiple Access-Time Division Duplex) system is used as a wireless communication system between a base station and a mobile station of a PHS (second generation cordless telephone system). . In the above method, one frame having a time length of 5 msec is set as one unit of a transmission signal in one base station, and one frame is equally divided into eight to define one slot (time length of 0.625 msec). I have. Then, four slots in one frame are allocated to downlink transmission signals from the base station to the mobile station, and the remaining four slots are allocated to uplink transmission signals from the mobile station to the base station. That is, one base station can simultaneously process communication with up to four mobile stations in theory. One slot includes 160-bit data, and one mobile station and a base station transmit half-duplex 160-bit data every 5 msec, which is 32 kbits per unit time. / Sec is obtained. In the PHS adopting the TDMA-TDD system, a large number of frequency channels (frequency carriers) set for every 300 kHz are multiplexed for every four slots, of which control from the base station to the mobile station is performed. A specific frequency channel is allocated for each communication carrier to the control channel CCH for the purpose of broadcasting information and transferring control information necessary for call connection, and the other frequency channels transfer user information. Is assigned to the information channel TCH for the purpose of.
[0003]
By the way, PHS uses a 1.9 GHz band radio frequency. For example, radio waves of a base station installed outdoors are difficult to reach a mobile station in a building. In the past, a wireless relay device that relays each transmission radio wave has been used (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-10-155172 (page 3, FIG. 1)
[0005]
[Problems to be solved by the invention]
In recent years, with the spread of the Internet, a demand for a wireless communication system capable of performing high-speed packet communication has been increasing. In the above-described packet communication using PHS, one mobile station is different from each other in order to improve communication speed. By communicating with a plurality of (up to four) base stations, a communication speed higher than that when only one base station is communicated (for example, up to 128 kbits / sec when communicating with four base stations) sec communication speed). The wireless relay device corresponding to the wireless communication system capable of obtaining a communication speed higher than that of the related art includes a wireless communication unit that wirelessly communicates with the base station and a wireless communication unit that wirelessly communicates with the mobile station. A wireless communication unit is required. However, when transmission / reception is performed simultaneously by two systems of wireless communication units, there is a possibility that the radio signal of the frequency channel used for transmission interferes with the radio signal of the frequency channel used for reception (self-interference) and communication quality is degraded. is there. Here, in an actual radio signal, a self-interference wave occurs not only in a frequency channel used for transmission but also in other frequency bands. To cope with this, there is a method of increasing the isolation between antennas in the wireless communication units of the respective systems, but there is a case where reduction of the communication quality cannot be suppressed only by this method.
[0006]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a wireless relay device capable of suppressing a decrease in communication quality due to self-interference of wireless signals.
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, in order to achieve the above object, a control channel to which a predetermined frequency channel is allocated between a base station and a mobile station connected to a network and more frequency channels than the control channel are used. Used in a wireless communication system that performs wireless communication in a TDMA system using a possible information channel, a wireless relay device that relays a wireless signal transmitted from one of the base station or the mobile station to the other, wherein the base station and the mobile station First wireless communication means for performing wireless communication, second wireless communication means for performing wireless communication with the mobile station, and control means for controlling the first and second wireless communication means to perform the relaying process; Monitoring radio wave transmitting means for transmitting a monitoring radio wave from one of the first or second wireless communication means using the frequency channel for the information channel; Receiving level measuring means for measuring the reception level of the received radio wave for each frequency channel during transmission of the monitoring radio wave on the other of the wireless communication means, and for each frequency channel based on the measurement result of the received level measuring means. Determining means for determining whether or not the wireless signal can be relayed.
[0008]
According to the present invention, the monitor radio wave transmitting means causes the monitor radio wave to be transmitted from one of the first and second wireless communication means using the frequency channel for the information channel, and the first or second wireless communication means transmits the monitor radio wave. The other side measures the reception level of the reception radio wave for each frequency channel during the transmission of the monitoring radio wave, that is, the reception level of the self-interference wave (interference wave) for all the frequency channels by the reception level measurement means, and the determination means performs the measurement. In order to determine whether or not to relay a radio signal for each frequency channel based on the measurement result, for example, when installing a wireless relay device, the influence of self-interference waves is considered in all frequency channels in consideration of the determination result by the determination unit. It is possible to select a place where the number is as small as possible, and it is possible to suppress a decrease in communication quality due to self-interference of wireless signals.
[0009]
According to a second aspect of the present invention, in the first aspect of the present invention, the monitor radio wave transmitting unit is configured to relatively control a first monitor radio wave using a frequency channel having a relatively high frequency among the frequency channels. A second monitoring radio wave using a low frequency channel is transmitted separately from one of the first and second wireless communication means, and the reception level measuring means transmits the first monitoring radio wave; During the transmission of the second monitoring radio wave, a measurement result obtained by measuring the reception level of a frequency channel in a frequency band lower than the frequency channel used in the first monitoring radio wave is used. Acquiring a reception level measurement result of the entire frequency band in combination with a measurement result of measuring a reception level of a frequency channel in a frequency band higher than a frequency channel to be used. That.
[0010]
According to the present invention, a frequency channel is divided into a high band side and a low band side, and the reception level of each frequency channel belonging to the low band side during transmission of the first monitoring radio wave using the frequency channel belonging to the high band side. And the reception level of each frequency channel belonging to the high frequency side is measured during transmission of the second monitoring radio wave using the frequency channel belonging to the low frequency side. By measuring the reception level of the interference wave, it is possible to measure the reception level of the self-interference wave with respect to a radio signal of a frequency channel other than the frequency channel used for transmission.
[0011]
In a third aspect based on the first or second aspect, the determining means determines a difference between a reception level of a wireless signal received by the first wireless communication means and a measurement result of the reception level measuring means. And comparing the ratio of the number of the frequency channels whose total number exceeds the threshold to the total number of the frequency channels to a predetermined determination value, and the ratio determines the determination value. It is characterized that it is determined that installation is possible when the number exceeds the limit.
[0012]
ADVANTAGE OF THE INVENTION According to this invention, it can install in the suitable place where the influence of a self-interference wave becomes as small as possible in all the frequency channels, and can suppress the fall of communication quality by self-interference of a radio signal.
[0013]
According to a fourth aspect of the present invention, in the first or second aspect of the invention, the control unit is assigned a frequency channel determined to be unrelayable by the determination unit in response to a link channel establishment request from the base station or the mobile station. In this case, the first wireless communication unit is controlled to request the base station to allocate another frequency channel.
[0014]
ADVANTAGE OF THE INVENTION According to this invention, it can avoid that a link channel is established by the frequency channel determined as relay impossible.
[0015]
According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the control unit requests the base station to allocate another frequency channel together with a notification that the frequency channel cannot be relayed. I do.
[0016]
According to the present invention, it is possible to grasp the reason for rejection of the allocated link channel in the re-requested base station, for example, as far as possible from a frequency channel rejected from available frequency channels Appropriate measures can be taken such that the frequency channel is allocated by the base station.
[0017]
According to a sixth aspect of the present invention, in the first or second aspect of the invention, the control unit notifies the base station of the frequency channel determined to be unrelayable by the determination unit by the first wireless communication unit. Features.
[0018]
According to the present invention, since the base station can allocate a frequency channel other than the frequency channel notified as relay unavailable from the vacant frequency channels, it is possible to re-request the base station to establish a link channel. As a result, the sequence of the link channel establishment request can be shortened.
[0019]
According to a seventh aspect of the present invention, in the first or second aspect, the control means notifies the base station of the frequency channel determined to be relayable by the determination means by the first wireless communication means. And
[0020]
According to the present invention, since the base station can allocate a frequency channel notified as relayable from available frequency channels, the base station does not need to re-establish a link channel with the link channel. The sequence of the establishment request can be shortened.
[0021]
According to an eighth aspect of the present invention, in the first or second aspect of the present invention, the monitor radio wave transmitting means converts the one frame having a predetermined time length into a predetermined unique numerical value from a plurality of time-divided slots. One of the slots corresponding to the number determined based on the selected slot is selected, and the monitoring radio wave is transmitted in the selected slot.
[0022]
According to the present invention, by determining the slot for transmitting the monitoring radio wave based on the numerical value unique to the wireless relay device, the monitoring radio wave is transmitted even in a situation where the monitoring radio wave is transmitted simultaneously by a plurality of wireless relay devices. Since the slots to be transmitted hardly overlap, the reception level of the self-interference wave can be accurately measured while avoiding the influence of the monitoring radio wave transmitted by another wireless relay device.
[0023]
According to a ninth aspect of the present invention, in order to achieve the above object, a control channel to which a predetermined frequency channel is allocated between a base station and a mobile station connected to a network and more frequency channels than the control channel are used. Used in a wireless communication system that performs wireless communication in a TDMA system using a possible information channel, a wireless relay device that relays a wireless signal transmitted from one of the base station or the mobile station to the other, wherein the base station and the mobile station First wireless communication means for performing wireless communication, second wireless communication means for performing wireless communication with the mobile station, and control means for controlling the first and second wireless communication means to perform the relaying process; Monitoring radio wave transmitting means for transmitting a monitoring radio wave from one of the first or second wireless communication means using the control channel frequency channel; and Receiving level measuring means for measuring the reception level of the received radio wave for each frequency channel during transmission of the monitoring radio wave on the other of the wireless communication means, and for each frequency channel based on the measurement result of the received level measuring means. Determining means for determining whether or not the wireless signal can be relayed.
[0024]
According to this invention, the monitoring radio wave is transmitted from one of the first and second radio communication units using the frequency channel for the control channel by the monitoring radio wave transmission unit, and the first or second radio communication unit is transmitted. The other side measures the reception level of the reception radio wave for each frequency channel during the transmission of the monitoring radio wave, that is, the reception level of the self-interference wave (interference wave) for all the frequency channels by the reception level measurement means, In order to determine whether or not to relay a radio signal for each frequency channel based on the measurement result, for example, when installing a wireless relay device, the influence of self-interference waves is considered in all frequency channels in consideration of the determination result by the determination unit. It is possible to select a place where the number is as small as possible, and it is possible to suppress a decrease in communication quality due to self-interference of wireless signals. Moreover, since the monitoring radio wave is transmitted using the control channel frequency channel, the control signal constantly transmitted to the mobile station during operation can be used as the monitoring radio wave, and the information channel frequency channel can be used. The processing can be simplified as compared with the case of transmitting monitor radio waves.
[0025]
According to a tenth aspect of the present invention, in the first or second or ninth aspect of the present invention, the determination unit is configured to execute the first wireless communication unit in a standby state waiting for a request for establishing a link channel from the base station or the mobile station. The difference between the reception level of the radio signal to be received and the measurement result of the reception level measurement means is compared with a predetermined threshold value, and the number of the frequency channels whose difference exceeds the threshold value is equal to the total number of the frequency channels. The ratio to the number of channels is compared with a predetermined determination value, and if the ratio exceeds the determination value, relaying is determined to be possible.
[0026]
According to the present invention, if the reception level of a radio signal fluctuates due to a change in the surrounding environment or the like after the installation of the wireless relay device and the communication quality is degraded, it is possible to be notified of the fact and the usability can be improved.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which the present invention is applied to a wireless relay device (relay station) RS used in a wireless communication system conforming to the second generation cordless telephone system standard (RCR STD-28 4.0 version, published by The Radio Industries and Businesses Association) The form will be described. However, the configuration and operation of the base station CS and the mobile station PS and the basic operation of the radio relay device RS are well-known in the past as specified in the above-mentioned standard, and therefore description thereof is omitted.
[0028]
FIG. 1 shows a block diagram of a wireless relay device RS of the present embodiment, and FIG. 2 also shows an external structure. The wireless relay device RS includes a first wireless communication unit 1 that wirelessly communicates with a public base station CS as shown in FIG. 1 and a second wireless communication unit 1 that wirelessly communicates with a mobile station PS such as a PHS terminal that supports packet communication. Wireless communication unit 2, a control unit 3 that controls the first and second wireless communication units 1 and 2 to perform relay processing, and receives power supply from a commercial power supply to create an operation power supply for each unit. And a notifying unit 5 including a display element such as a light emitting diode and notifying a determination result to be described later to the outside. The first and second wireless communication units 1 and 2 each transmit and receive communication data via an antenna (not shown) for transmitting and receiving a radio signal to and from the base station CS and the mobile station PS. A modem (not shown) is included. Further, the control unit 3 includes a peripheral circuit such as a CPU and a memory, and executes the above-described relay processing and various processing described later by executing a program mounted on the memory by the CPU.
[0029]
As shown in FIG. 2, the wireless relay device RS has a housing 10 made of synthetic resin, and the antennas of the first and second wireless communication units 1 and 2 are respectively provided at both ends of the housing 10 in the longitudinal direction. A plurality of light emitting diodes 5a included in the notification unit 5 are exposed on the side surface of the housing 10 in the central portion in the longitudinal direction of the housing 10.
[0030]
Here, as described in the related art, if transmission and reception are performed simultaneously by the two systems of wireless communication units 1 and 2, not only the wireless signal of the frequency channel used for transmission but also the wireless signal of the frequency channel other than the frequency channel is transmitted. Interference occurs, and there is a problem that deterioration of communication quality cannot be suppressed only by dealing with self-interference waves having the same frequency as the frequency channel used for transmission.
[0031]
Therefore, in the wireless relay device RS of the present embodiment, at the time of initial setting after the power is turned on, the second radio communication unit 2 transmits a monitoring radio wave using the information channel frequency channel, and during the transmission of the monitoring radio wave, A process of measuring a reception level of a received radio wave for each frequency channel received by the first radio communication unit 1 (monitoring process of a self-interference wave) is performed, and based on a result of the monitoring process, a radio for each frequency channel is measured. It is determined whether the signal can be relayed. Here, in the standard, a frequency channel used for a radio signal is set every 300 kHz within a range of 1884.650 MHz to 1919.450 MHz, and carrier numbers 221 to 255 and 1 to 82 are assigned to each frequency channel. However, from the viewpoint of measuring the reception level of the self-interference wave with respect to the radio signal of the frequency channel other than the frequency channel used for transmission, the same frequency channel as the monitoring radio wave and the frequency channels near the same are considered. No need. Therefore, in the present embodiment, the frequency channels are divided into the high band side and the low band side, and the reception of each frequency channel belonging to the low band side during the transmission of the first monitoring radio wave using the frequency channel belonging to the high band side. In addition to measuring the level, while transmitting the second monitoring radio wave using the frequency channel belonging to the low frequency side, the reception level of each frequency channel belonging to the high frequency side is measured, and these are combined for all frequency channels. The reception level of the self-interference wave is measured. Hereinafter, the process of monitoring the reception level of the self-interference wave (monitor process) will be described with reference to the flowchart of FIG.
[0032]
First, when the operator turns on the power after installing the wireless relay device RS at an appropriate position, the control unit 3 starts monitoring processing as one of the initial settings, and sets the low-frequency channel for the reception level measurement. The head value (carrier number) is set as a parameter of the monitor channel (step 1), and the frequency channel for transmitting the first monitor radio wave is determined from the higher frequency channels (step 2). Which frequency channel is to be selected is set in advance in the monitor processing program as an initial value.
[0033]
Then, the control unit 3 transmits the first monitor radio wave using the frequency channel determined by controlling the second wireless communication unit 2, and during the transmission, transmits the first monitor radio wave in the frequency channel specified by the monitor channel parameter. The reception level of the radio signal received by the first radio communication unit 1 is measured (step 3), and after the transmission of the first monitor radio wave is completed, the first radio communication unit continues on the frequency channel specified by the monitor channel parameter. The reception level of the radio signal received in step 1 is measured (step 4). Further, the control unit 3 compares the reception level of the first monitoring radio wave when it is not transmitted with a predetermined validity determination threshold value, and determines that the reception level when it is not transmitted is equal to or less than the validity determination threshold value. If the reception level measurement result at the time of transmission is determined to be valid, the reception level measurement result at the time of transmission is determined to be invalid if the reception level at the time of non-transmission is greater than the validity determination threshold, and if valid Writes the measurement result of the reception level at the time of transmission, and if invalid, to the monitor result table prepared in the memory (step 5). In other words, if the reception level when the monitoring radio wave is not transmitted in a certain frequency channel is high, it is considered that an interference wave other than self-interference exists, and at that time, the reception level of the self-interference wave cannot be measured accurately. Because it is conceivable, the validity / invalidity of the reception level at the time of transmission is determined by comparing the reception level at the time of non-transmission of the first monitoring radio wave with the validity determination threshold value as described above. Things. Then, the control unit 3 determines whether or not the parameter of the monitor channel matches the last value (tail value) of the lower frequency channel (step 6). The carrier number of the frequency channel is set (Step 7), and the processing of Steps 2 to 5 is repeated until the measurement result of the reception level is obtained for all the frequency channels on the low frequency side.
[0034]
Subsequently, the control unit 3 sets the head value (carrier number) of the higher frequency channel for measuring the reception level in the parameter of the monitor channel (step 8), and sets the frequency for transmitting the second monitor radio wave. After the channel is determined from the lower frequency channels (step 9), the second monitoring radio wave is transmitted using the determined frequency channel by controlling the second wireless communication unit 2, and during the transmission, First, the reception level of the wireless signal received by the first wireless communication unit 1 in the frequency channel specified by the parameter of the monitor channel is measured (step 10). Further, the control unit 3 measures the reception level of the wireless signal received by the first wireless communication unit 1 on the frequency channel specified by the monitor channel parameter after the transmission of the second monitoring radio wave is completed (step 11). And comparing the reception level of the second monitor radio wave at the time of non-transmission with a predetermined validity determination threshold value, and if the reception level at the time of non-transmission is equal to or less than the validity determination threshold value, The level measurement result is determined to be valid, and if the reception level during non-transmission is greater than the validity determination threshold, the reception level measurement result during transmission is determined to be invalid, and if valid, reception during transmission is determined. The level measurement result is written into the monitor result data table prepared in the memory when the level measurement result is invalid (step 12). Then, the control unit 3 determines whether or not the parameter of the monitor channel matches the last value (tail value) of the frequency band on the high frequency side (step 13). The carrier number of the frequency channel is set (step 14), and the process of steps 9 to 12 is repeated until the reception level measurement result is obtained for all the frequency channels on the high frequency side, and then the monitoring process is completed.
[0035]
When the measurement result of the reception level of the self-interference wave is obtained for each frequency channel by the monitoring process as described above, the control unit 3 transmits the radio signal from the base station CS received by the first radio communication unit 1 at the time of the initial setting. The reception level of (D-wave: Desired Signal) is measured, and the difference between the reception level of this D-wave and the reception level of the self-interference wave of each frequency channel obtained by the monitoring process is compared with a predetermined threshold. FIG. 4 shows a curve B connecting the D wave (curve A) from the base station CS and the reception level of the self-interference wave of each frequency channel. The control unit 3 controls the reception level of the D wave (maximum of the curve A). Value) and the reception level of the self-interference wave are equal to or smaller than a threshold value (for example, 20 dBμV), it is determined that relaying is impossible for the frequency channel (in FIG. 4, indicated by “x” on the curve B). If it is larger than the threshold value, it is determined that relaying is possible (in FIG. 4, indicated by “○” on the curve B), and the determination result is registered in the data table of the monitoring result.
[0036]
Next, the control unit 3 may install the wireless repeater RS at the current installation location according to the flowchart of FIG. 5 based on the result of the relay availability for each frequency channel obtained as described above. A process for determining whether or not the installation is possible (installation availability determination process) is performed. That is, the control unit 3 refers to the data table of the monitoring result, counts the number of frequency channels determined to be relayable (step 1), and determines the ratio of the number of channels to the total number of frequency channels to a predetermined value. Compared with a determination value (for example, 70%) (Step 2), if the above ratio is equal to or more than the determination value, it is determined that installation is possible (Step 3), and if the above ratio is less than the determination value, it is determined that installation is not possible. (Step 4). Then, the control unit 3 controls the notifying unit 5 to blink the light emitting diode 5a or the like, thereby notifying the determination result that the installation is possible or not. Therefore, when the radio relay apparatus RS is installed and selected and installed in such a manner that the influence of the self-interference wave is reduced as much as possible in all the frequency channels in consideration of the above determination result, the self-interference of the radio signal is reduced. Therefore, it is possible to suppress a decrease in communication quality due to the communication.
[0037]
When the initial setting including the monitoring process described above is completed, the wireless relay device RS enters a standby state for the base station CS capable of relaying, and when the link channel establishment request is transmitted from the mobile station PS during the standby. The operation of the wireless relay device RS will be described.
[0038]
FIG. 6 shows a link channel establishment sequence. The link channel establishment request transmitted from the mobile station PS is relayed by the radio relay device RS to the standby base station CS, and the base station CS responds to the link channel establishment request. The link channel assignment (slot and frequency channel) transmitted from the CS is received by the wireless relay device RS. At this time, the control unit 3 of the radio relay device RS determines whether to accept the frequency channel allocated from the base station CS according to the flowchart of FIG. That is, the control unit 3 refers to the data table of the monitoring result to check whether or not the frequency channel assigned by the base station CS can be relayed (step 1). Re-request (retry) the establishment of a link channel (step 2), if the allocated frequency channel is relayable, determine that it is acceptable, activate the information channel TCH with the base station CS (step 3) ), Relay the link channel assignment determined to be acceptable to the mobile station PS and activate the information channel TCH (see FIG. 6).
[0039]
Thus, when the base station CS assigns a frequency channel determined to be unrelayable in the monitoring process to the link channel establishment request from the mobile station PS, the control unit 3 rejects the reception and sets another frequency. By re-requesting the channel assignment to the base station CS, it is possible to prevent a link channel from being established on a frequency channel determined to be unrelayable, and to reliably prevent a decrease in communication quality due to self-interference. . When the wireless relay device RS re-requests the establishment of a link channel from the base station CS, the reason for re-requesting the link channel as shown in the flowchart of FIG. 8, that is, a message indicating that the allocated frequency channel is not relayable. Is transmitted to the base station CS, and the reason for rejection of the allocated link channel in the re-requested base station CS can be grasped. For example, from among the available frequency channels, Appropriate measures can be taken such that a frequency channel as far as possible from the rejected frequency channel is allocated by the base station CS.
[0040]
Further, when relaying the link channel establishment request to the base station CS, the control unit 3 refers to the data table of the monitoring result and determines the channel number (carrier number) of the frequency channel determined to be unrelayable according to the flowchart of FIG. If the base station CS is notified of the additional information of the link channel establishment request to the base station CS, the base station CS allocates a frequency channel other than the channel number notified as the additional information among the vacant frequency channels. There is an advantage that the sequence of the link channel establishment request can be shortened since the device RS does not request the base station CS to re-establish the link channel. As shown in the flowchart of FIG. 10, if the relayable channel number is notified instead of the non-relayable channel number as the additional information, the base station CS selects the channel notified as the additional information from the vacant frequency channels. It is sufficient to assign the frequency channel of the number, and similarly, there is no need to re-request the link channel establishment from the radio relay apparatus RS to the base station CS, and the sequence of the link channel establishment request can be shortened.
[0041]
By the way, when a plurality of wireless relay devices RS transmit monitoring radio waves simultaneously in the same slot to the same base station CS in a situation where a plurality of wireless relay devices RS are installed, another wireless relay device RS It is considered that the reception level of the self-interference wave cannot be accurately measured due to the interference of the monitor radio wave. Therefore, in order to avoid such a situation, it is necessary that the slots for transmitting the monitoring radio waves do not overlap as much as possible in the individual wireless relay devices RS. Therefore, the control unit 3 of the wireless relay device RS performs a monitoring process based on a predetermined unique numeric value (for example, a serial number unique to the wireless relay device RS) out of the four transmission slots. It is desirable that any one of the numbers 1 to 4 be determined, a slot corresponding to the number is selected, and the monitoring radio wave is transmitted in the slot. Hereinafter, the process in which the control unit 3 determines the slot for transmitting the monitoring radio wave will be described with reference to the flowchart of FIG.
[0042]
The control unit 3 determines the smallest slot number (1, 2, 3, 4) among the downlink free slots and its own serial number (for example, if the serial number is a combination of numbers and alphabets, only the numeric part). Is calculated by adding 1 to the remainder (0, 1, 2, 3) obtained by dividing the sum of by 4 and the numerical value (1, 2, 3, 4) obtained by this calculation is used as a slot number candidate (step 1). Further, the control unit 3 checks whether or not the slot number candidate overlaps with the slot of the control channel CCH of the base station CS (step 2). (Step 3), and if they overlap, a value obtained by incrementing the numerical value of the candidate (1 if the numerical value of the candidate is 4) is set as the slot number of the transmission slot (Step 4).
[0043]
Thus, by determining the slot for transmitting the monitoring radio wave based on the numerical value unique to the wireless relay device RS, such as the serial number, the slots for transmitting the monitoring radio wave in the plurality of wireless relay devices RS are unlikely to overlap. As a result, the reception level of the self-interference wave can be accurately measured.
[0044]
By the way, in the present embodiment, the control unit 3 performs the above-described monitoring processing at the time of the initial setting after the power is turned on, but the control unit 3 always performs the process of determining whether or not the installation is possible according to the flowchart of FIG. Alternatively, if it is determined that the installation is not possible and the notification unit 5 notifies the user that the installation is impossible, the reception level of the wireless signal fluctuates due to a change in the surrounding environment after the installation of the wireless relay device RS, and the communication quality deteriorates. The user can be notified of whether or not they are performing, and the usability can be improved.
[0045]
In the present embodiment, the first and second monitoring radio waves are transmitted using the information channel TCH frequency channel. However, the monitoring radio waves may be transmitted using the control channel CCH frequency channel. It is possible. That is, the frequency channel that can be used for the control channel CCH is determined as a specific frequency channel according to the above standard, and is not shared with the information channel TCH. If the monitor radio wave is transmitted using the control signal, the control signal constantly transmitted to the mobile station PS during operation can be substituted for the monitor radio wave, and when the monitor radio wave is transmitted using the frequency channel for the information channel TCH. The processing can be simplified in comparison.
[0046]
【The invention's effect】
According to the first aspect of the present invention, the monitor radio wave is transmitted from one of the first and second radio communication units using the frequency channel for the information channel by the monitor radio wave transmission unit, and the first or second radio communication unit is transmitted. The other one measures the reception level of the reception radio wave for each frequency channel during the transmission of the monitoring radio wave, that is, the reception level of the self-interference wave (interference wave) for all the frequency channels by the reception level measurement means. In order to determine whether or not to relay a wireless signal for each frequency channel based on the measurement result, for example, when installing a wireless relay device, the influence of self-interference waves on all frequency channels is considered in consideration of the determination result by the determination unit. Can be selected so as to reduce the communication quality as much as possible, and a decrease in communication quality due to self-interference of wireless signals can be suppressed.
[0047]
According to the second aspect of the present invention, the frequency channels are divided into a high frequency side and a low frequency side, and the reception of each frequency channel belonging to the low frequency side during the transmission of the first monitoring radio wave using the frequency channel belonging to the high frequency side. In addition to measuring the level, while transmitting the second monitoring radio wave using the frequency channel belonging to the low frequency side, the reception level of each frequency channel belonging to the high frequency side is measured, and these are combined for all frequency channels. By measuring the reception level of the self-interference wave, it is possible to measure the reception level of the self-interference wave for a radio signal of a frequency channel other than the frequency channel used for transmission.
[0048]
According to the third aspect of the present invention, it is possible to install the apparatus in an appropriate place where the influence of the self-interference wave is reduced as much as possible in all the frequency channels, and it is possible to suppress a decrease in communication quality due to the self-interference of the radio signal.
[0049]
According to the fourth aspect of the present invention, it is possible to prevent a link channel from being established on a frequency channel determined to be unrelayable.
[0050]
According to the invention of claim 5, it is possible to grasp the reason for rejection of the allocated link channel in the re-requested base station. Appropriate measures can be taken such that the allocated frequency channel is allocated by the base station.
[0051]
According to the invention of claim 6, since the base station can allocate a frequency channel other than the frequency channel notified as unrelayable among the vacant frequency channels, it is necessary to re-request the base station to establish a link channel. And the sequence of the link channel establishment request can be shortened.
[0052]
According to the invention of claim 7, since the base station can allocate a frequency channel notified as relayable among the vacant frequency channels, the base station does not request the base station to establish a link channel again, and the link is not required. The sequence of the channel establishment request can be shortened.
[0053]
In the invention according to claim 8, the slot for transmitting the monitoring radio wave is determined based on the numerical value unique to the wireless relay device, so that the monitoring radio wave is transmitted even in a situation where the monitoring radio waves are transmitted simultaneously by a plurality of wireless relay devices. Therefore, the reception level of the self-interference wave can be accurately measured while avoiding the influence of the monitoring radio wave transmitted by another wireless relay device.
[0054]
According to the ninth aspect of the present invention, the monitor radio wave is transmitted from one of the first and second radio communication units using the control channel frequency channel, and the first or second radio communication unit is transmitted. The other one measures the reception level of the reception radio wave for each frequency channel during the transmission of the monitoring radio wave, that is, the reception level of the self-interference wave (interference wave) for all the frequency channels by the reception level measurement means. In order to determine whether or not to relay a wireless signal for each frequency channel based on the measurement result, for example, when installing a wireless relay device, the influence of self-interference waves on all frequency channels is considered in consideration of the determination result by the determination unit. Can be selected so as to reduce the communication quality as much as possible, and a decrease in communication quality due to self-interference of wireless signals can be suppressed. Moreover, since the monitoring radio wave is transmitted using the control channel frequency channel, the control signal constantly transmitted to the mobile station during operation can be used as the monitoring radio wave, and the information channel frequency channel can be used. The processing can be simplified as compared with the case of transmitting monitor radio waves.
[0055]
According to the tenth aspect of the present invention, if the reception level of the radio signal fluctuates due to a change in the surrounding environment after the radio relay apparatus is installed and the communication quality is degraded, it is possible to be notified of the fact and the usability can be improved. .
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of the present invention.
FIG. 2 is an external perspective view of the same.
FIG. 3 is a flowchart for explaining a monitoring process in the embodiment.
FIG. 4 is an operation explanatory diagram of the above.
FIG. 5 is a flowchart for explaining an installation availability determination process in the above.
FIG. 6 is a sequence diagram for establishing a link channel in the above.
FIG. 7 is a flowchart illustrating an operation at the time of a link channel establishment request in the above.
FIG. 8 is a flowchart illustrating another operation when a link channel establishment request is made in the above.
FIG. 9 is a flowchart illustrating still another operation at the time of a link channel establishment request in the above.
FIG. 10 is a flowchart illustrating another operation when a link channel establishment request is made in the above.
FIG. 11 is a flowchart illustrating a process of determining a slot for transmitting a monitoring radio wave in the above energy management system;
[Explanation of symbols]
RS wireless relay device
1 first wireless communication unit
2 Second wireless communication unit
3 control part
5 Notification section

Claims (10)

ネットワークに接続された基地局と移動局との間で所定の周波数チャネルが割り当てられた制御チャネル並びに制御チャネルよりも多くの周波数チャネルが利用可能な情報チャネルを使用してTDMA方式で無線通信を行う無線通信システムに用いられ、前記基地局又は移動局の一方から送信された無線信号を他方に中継する無線中継装置において、前記基地局と無線通信する第1の無線通信手段と、前記移動局と無線通信する第2の無線通信手段と、第1及び第2の無線通信手段を制御して前記中継のための処理を行う制御手段と、前記第1又は第2の無線通信手段の一方から前記情報チャネル用の周波数チャネルを用いてモニタ用電波を送信させるモニタ用電波送信手段と、前記第1又は第2の無線通信手段の他方で前記モニタ用電波の送信中に各周波数チャネル毎の受信電波の受信レベルを計測する受信レベル計測手段と、該受信レベル計測手段の計測結果に基づいて各周波数チャネル毎の前記無線信号の中継の可否を判定する判定手段とを備えたことを特徴とする無線中継装置。Wireless communication is performed by a TDMA method between a base station and a mobile station connected to a network using a control channel to which a predetermined frequency channel is assigned and an information channel in which more frequency channels are available than the control channel. Used in a wireless communication system, in a wireless relay device that relays a wireless signal transmitted from one of the base station or the mobile station to the other, a first wireless communication means wirelessly communicating with the base station, and the mobile station A second wireless communication means for performing wireless communication, a control means for controlling the first and second wireless communication means to perform the process for relaying, and A monitor radio wave transmitting unit for transmitting a monitor radio wave using a frequency channel for an information channel, and the monitor radio wave transmitting unit using the other of the first and second wireless communication units. Reception level measurement means for measuring the reception level of the reception radio wave for each frequency channel during transmission, and determination means for determining whether or not to relay the radio signal for each frequency channel based on the measurement result of the reception level measurement means A wireless relay device comprising: 前記モニタ用電波送信手段は、前記周波数チャネルのうちで相対的に高い周波数の周波数チャネルを用いた第1のモニタ用電波と、相対的に低い周波数の周波数チャネルを用いた第2のモニタ用電波とを前記第1又は第2の無線通信手段の一方から個別に送信させ、前記受信レベル計測手段は、前記第1のモニタ用電波の送信中に当該第1のモニタ用電波で用いる周波数チャネルよりも低い周波数帯域の周波数チャネルの受信レベルを計測した計測結果と、前記第2のモニタ用電波の送信中に当該第2のモニタ用電波で用いる周波数チャネルよりも高い周波数帯域の周波数チャネルの受信レベルを計測した計測結果とを合わせて前記周波数帯域全体の受信レベル計測結果を取得することを特徴とする請求項1記載の無線中継装置。The monitor radio wave transmitting means includes a first monitor radio wave using a relatively high frequency channel among the frequency channels, and a second monitor radio wave using a relatively low frequency channel. Are transmitted individually from one of the first and second wireless communication means, and the reception level measuring means transmits a frequency channel used for the first monitor radio wave during transmission of the first monitor radio wave. And the measurement result of measuring the reception level of the frequency channel in the lower frequency band, and the reception level of the frequency channel in the higher frequency band than the frequency channel used in the second monitoring radio wave during transmission of the second monitoring radio wave. 2. The wireless relay device according to claim 1, wherein a reception level measurement result of the entire frequency band is acquired in combination with a measurement result obtained by measuring the reception level. 前記判定手段は、前記第1の無線通信手段で受信する無線信号の受信レベルと前記受信レベル計測手段の計測結果との差を所定のしきい値と比較し、当該差が前記しきい値を超える前記周波数チャネルのチャネル数が前記周波数チャネルの全チャネル数に占める割合を所定の判定値と比較して当該割合が前記判定値を超えている場合に設置可と判定することを特徴とする請求項1又は2記載の無線中継装置。The determination unit compares a difference between a reception level of a wireless signal received by the first wireless communication unit and a measurement result of the reception level measurement unit with a predetermined threshold, and the difference determines the threshold. A ratio of the number of the frequency channels exceeding the total number of the frequency channels to the total number of the frequency channels is compared with a predetermined determination value, and if the ratio exceeds the determination value, it is determined that the installation is possible. Item 3. The wireless relay device according to item 1 or 2. 前記制御手段は、前記基地局又は移動局からのリンクチャネル確立要求に対して前記判定手段が中継不可と判定した周波数チャネルが割り当てられた場合に前記第1の無線通信手段を制御して別の周波数チャネルの割当を前記基地局に要求することを特徴とする請求項1又は2記載の無線中継装置。The control unit controls the first wireless communication unit when a frequency channel determined to be unrelayable by the determination unit is assigned to a link channel establishment request from the base station or the mobile station and performs another control. 3. The wireless relay device according to claim 1, wherein the wireless relay device requests the base station to allocate a frequency channel. 前記制御手段は、前記基地局に対して前記周波数チャネルが中継不可である旨の通知とともに別の周波数チャネルの割当を要求することを特徴とする請求項4記載の無線中継装置。5. The radio relay apparatus according to claim 4, wherein the control unit requests the base station to allocate another frequency channel together with a notification that the frequency channel cannot be relayed. 前記制御手段は、前記判定手段が中継不可と判定した前記周波数チャネルを前記第1の無線通信手段により前記基地局に通知することを特徴とする請求項1又は2記載の無線中継装置。The wireless relay device according to claim 1, wherein the control unit notifies the base station of the frequency channel determined to be unrelayable by the determination unit by the first wireless communication unit. 前記制御手段は、前記判定手段が中継可と判定した周波数チャネルを前記第1の無線通信手段により前記基地局に通知することを特徴とする請求項1又は2記載の無線中継装置。The wireless relay device according to claim 1, wherein the control unit notifies the base station of the frequency channel determined to be relayable by the determination unit by the first wireless communication unit. 前記モニタ用電波送信手段は、所定の時間長を有する1フレームを時分割した複数のスロットのうちから予め決められた固有の数値に基づいて決定する番号に対応した何れか一つのスロットを選択して当該スロットでモニタ用電波を送信することを特徴とする請求項1又は2記載の無線中継装置。The monitoring radio wave transmitting means selects any one slot corresponding to a number determined based on a predetermined unique numerical value from a plurality of slots obtained by time-dividing one frame having a predetermined time length. 3. The wireless relay device according to claim 1, wherein the monitoring radio wave is transmitted in the slot. ネットワークに接続された基地局と移動局との間で所定の周波数チャネルが割り当てられた制御チャネル並びに制御チャネルよりも多くの周波数チャネルが利用可能な情報チャネルを使用してTDMA方式で無線通信を行う無線通信システムに用いられ、前記基地局又は移動局の一方から送信された無線信号を他方に中継する無線中継装置において、前記基地局と無線通信する第1の無線通信手段と、前記移動局と無線通信する第2の無線通信手段と、第1及び第2の無線通信手段を制御して前記中継のための処理を行う制御手段と、前記第1又は第2の無線通信手段の一方から前記制御チャネル用の周波数チャネルを用いてモニタ用電波を送信させるモニタ用電波送信手段と、前記第1又は第2の無線通信手段の他方で前記モニタ用電波の送信中に各周波数チャネル毎の受信電波の受信レベルを計測する受信レベル計測手段と、該受信レベル計測手段の計測結果に基づいて各周波数チャネル毎の前記無線信号の中継の可否を判定する判定手段とを備えたことを特徴とする無線中継装置。Wireless communication is performed by a TDMA method between a base station and a mobile station connected to a network using a control channel to which a predetermined frequency channel is assigned and an information channel in which more frequency channels are available than the control channel. Used in a wireless communication system, in a wireless relay device that relays a wireless signal transmitted from one of the base station or the mobile station to the other, a first wireless communication means wirelessly communicating with the base station, and the mobile station A second wireless communication means for performing wireless communication, a control means for controlling the first and second wireless communication means to perform the process for relaying, and A monitoring radio wave transmitting unit for transmitting a monitoring radio wave using a frequency channel for a control channel, and the other of the first or second wireless communication unit transmits the monitoring radio wave. Reception level measurement means for measuring the reception level of the reception radio wave for each frequency channel during transmission, and determination means for determining whether or not to relay the radio signal for each frequency channel based on the measurement result of the reception level measurement means A wireless relay device comprising: 前記判定手段は、前記基地局又は移動局からリンクチャネル確立の要求を待っている待ち受け時に、前記第1の無線通信手段で受信する無線信号の受信レベルと前記受信レベル計測手段の計測結果との差を所定のしきい値と比較し、当該差が前記しきい値を超える前記周波数チャネルのチャネル数が前記周波数チャネルの全チャネル数に占める割合を所定の判定値と比較して当該割合が前記判定値を超えている場合に中継可と判定することを特徴とする請求項1又は2又は9記載の無線中継装置。The determination unit determines a reception level of a wireless signal received by the first wireless communication unit and a measurement result of the reception level measurement unit during a standby state in which a request for establishing a link channel is received from the base station or the mobile station. Comparing the difference with a predetermined threshold value, comparing the ratio of the number of channels of the frequency channels in which the difference exceeds the threshold value to the total number of frequency channels to a predetermined determination value, and comparing the ratio with the predetermined determination value. The wireless relay device according to claim 1, wherein it is determined that relay is possible when the determination value is exceeded.
JP2003142522A 2003-05-20 2003-05-20 Radio relay apparatus Withdrawn JP2004349872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003142522A JP2004349872A (en) 2003-05-20 2003-05-20 Radio relay apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003142522A JP2004349872A (en) 2003-05-20 2003-05-20 Radio relay apparatus

Publications (1)

Publication Number Publication Date
JP2004349872A true JP2004349872A (en) 2004-12-09

Family

ID=33530583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142522A Withdrawn JP2004349872A (en) 2003-05-20 2003-05-20 Radio relay apparatus

Country Status (1)

Country Link
JP (1) JP2004349872A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098408A (en) * 2008-10-15 2010-04-30 Japan Radio Co Ltd Relay device
WO2010110453A1 (en) * 2009-03-26 2010-09-30 京セラ株式会社 Wireless relay station and wireless relay method
JP2011510570A (en) * 2008-01-16 2011-03-31 クゥアルコム・インコーポレイテッド Wireless communication information relay
JP2012508527A (en) * 2008-11-10 2012-04-05 クゥアルコム・インコーポレイテッド Power headroom sensitive scheduling
KR101357923B1 (en) 2008-10-23 2014-02-03 에릭슨 엘지 주식회사 Apparatus and method for cancellating self-interference and relay system for the same
KR101407572B1 (en) * 2006-10-27 2014-06-30 한국전자통신연구원 Method for reporting a channel quality information in wireless communication system
CN104052512A (en) * 2013-03-12 2014-09-17 华为技术有限公司 Radio-frequency interference cancellation method and system
US10615886B2 (en) 2018-08-21 2020-04-07 At&T Intellectual Property I, L.P. Method and apparatus for mitigating radio interference

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101407572B1 (en) * 2006-10-27 2014-06-30 한국전자통신연구원 Method for reporting a channel quality information in wireless communication system
US8781392B2 (en) 2008-01-16 2014-07-15 Qualcomm Incorporated Wireless communication information relay
JP2011510570A (en) * 2008-01-16 2011-03-31 クゥアルコム・インコーポレイテッド Wireless communication information relay
JP2010098408A (en) * 2008-10-15 2010-04-30 Japan Radio Co Ltd Relay device
KR101357923B1 (en) 2008-10-23 2014-02-03 에릭슨 엘지 주식회사 Apparatus and method for cancellating self-interference and relay system for the same
JP2012508527A (en) * 2008-11-10 2012-04-05 クゥアルコム・インコーポレイテッド Power headroom sensitive scheduling
KR101341031B1 (en) 2008-11-10 2013-12-12 퀄컴 인코포레이티드 Power headroom-sensitive scheduling
US8606289B2 (en) 2008-11-10 2013-12-10 Qualcomm Incorporated Power headroom-sensitive scheduling
CN102362446A (en) * 2009-03-26 2012-02-22 京瓷株式会社 Wireless relay station and wireless relay method
WO2010110453A1 (en) * 2009-03-26 2010-09-30 京セラ株式会社 Wireless relay station and wireless relay method
CN102362446B (en) * 2009-03-26 2014-09-17 京瓷株式会社 Wireless relay station and wireless relay method
US8855041B2 (en) 2009-03-26 2014-10-07 Kyocera Corporation Radio relay station and radio relay method
CN104052512A (en) * 2013-03-12 2014-09-17 华为技术有限公司 Radio-frequency interference cancellation method and system
CN104052512B (en) * 2013-03-12 2016-08-03 华为技术有限公司 The method and system that a kind of Radio frequency interference offsets
US10615886B2 (en) 2018-08-21 2020-04-07 At&T Intellectual Property I, L.P. Method and apparatus for mitigating radio interference
US11190281B2 (en) 2018-08-21 2021-11-30 At&T Intellectual Property I, L.P. Method and apparatus for mitigating radio interference

Similar Documents

Publication Publication Date Title
CN108781455B (en) Method and system for multi-user full duplex link adaptation
US8155032B2 (en) Adaptive scheduling for half-duplex wireless terminals
JP5827194B2 (en) Network device and transmission power control method
EP2264912B1 (en) Method and system for suppression of interferences between cells
KR100961746B1 (en) Apparatus and method for resource allocation in multi-hop relay wireless communication system
KR101160593B1 (en) A method and apparatus for supporting p2p communication in tdd cdma communication systems
CN103765943A (en) Activation of supplementary transmission unit
KR100956756B1 (en) Apparatus and method for frequency reuse to avoid interference between relay station and mobile station in multi-hop relay system
JP5373899B2 (en) Wireless communication system, wireless base station, and wireless communication method
JP2005513933A5 (en)
CA2364860A1 (en) Communication channel structure and method
WO2004098207A2 (en) Radio relay device
JPWO2008146469A1 (en) Mobile communication system, radio communication relay station apparatus and relay transmission method
JP2009253450A (en) Wireless communication device and wireless communication method in communication system
JP2004349872A (en) Radio relay apparatus
JP5244975B2 (en) Wireless communication system, wireless base station, and wireless communication method
EP2681866B1 (en) Pilot signal assignment
JP5430390B2 (en) Radio base station and frequency band selection method for radio base station
KR20100091326A (en) Apparatus and method for uplink resource allocating in wireless communication system
US9414395B2 (en) Method and apparatus for allocating resources for communication between base stations in an in-band communication system
WO2004086802A1 (en) Radio base station system, channel assignment method, and channel assignment program
CN108365907B (en) Method and device for eliminating interference
JP2004349875A (en) Radio relay method and radio relay apparatus
JP2012175677A (en) Radio base station and communication method for radio base station
KR102040864B1 (en) Method for Controlling LBT on LTE-LAA and Nobe-B thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801