JP2004349833A - 量子匿名送信装置、量子匿名受信装置、量子状態配布装置、量子匿名通信方法、及びプログラム - Google Patents

量子匿名送信装置、量子匿名受信装置、量子状態配布装置、量子匿名通信方法、及びプログラム Download PDF

Info

Publication number
JP2004349833A
JP2004349833A JP2003142186A JP2003142186A JP2004349833A JP 2004349833 A JP2004349833 A JP 2004349833A JP 2003142186 A JP2003142186 A JP 2003142186A JP 2003142186 A JP2003142186 A JP 2003142186A JP 2004349833 A JP2004349833 A JP 2004349833A
Authority
JP
Japan
Prior art keywords
quantum
qubit
quantum state
state
anonymous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003142186A
Other languages
English (en)
Inventor
Hiromi Tokunaga
裕己 徳永
Kotaro Suzuki
幸太郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003142186A priority Critical patent/JP2004349833A/ja
Publication of JP2004349833A publication Critical patent/JP2004349833A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】匿名通信の匿名性を向上させる。
【解決手段】まず、複数の第1の量子ビット101、102と複数の第2の量子ビット103、104とを特定の組み合わせでエンタングルド状態とした特定量子状態をこのエンタングルド状態にある量子ビットの組み合わせを相違させつつ複数重ね合わせた量子状態(重ね合わせ量子状態)と、所定ビット以上が観測されることにより、この重ね合わせ量子状態を所定の量子状態に収縮させる複数の補助量子ビットの量子状態とからなる初期量子状態を、複数の送信装置20、30及び受信装置40、50に配布する。そして、送信装置20、30において補助量子ビット105、106をそれぞれ観測し、初期量子状態が量子状態A或いは量子状態Bに収縮させた後に、この収縮後の量子状態を利用した量子テレポーテーションによって、送信装置20、30から受信装置40、50に情報を送る。
【選択図】 図12

Description

【0001】
【発明の属する技術分野】
この発明は、匿名通信を行う装置、方法及びそれらの機能をコンピュータ上で実現させるプログラムに関し、特に、量子テレポーテーションを用いて匿名通信を行う量子匿名送信装置、量子匿名受信装置、量子状態配布装置、量子匿名通信方法、及びプログラムに関する。
【0002】
【従来の技術】
従来より、物理的な構成によらず、送信者の匿名性を維持しつつ、インターネット等の公衆通信網を介して情報送信を行う手段(匿名通信手段)として、MIX−NETと呼ばれる電気通信システムが提唱されている(例えば、非特許文献1参照)。
以下に、このMIX−NETを用いた匿名通信方法の一例について説明する。
【0003】
このMIX−NETでは、L個のサーバ装置(センター)U、…、Uを直列につないだネットワークを介し、多重暗号化によって匿名通信を行う。RSA関数を用いてこのMIX−NETを実現する場合、まず、各サーバ装置U、…、Uは、十分大きな素数p、qに対し、N=p・q及びe・d=1(mod LCM(p−1、q−1))を満たす(d、p、q)(e、N)を、それぞれ復号鍵(秘密鍵)、暗号化鍵(公開鍵)として設定する。
【0004】
情報の送信を行う情報送信端末は、この各暗号化鍵(e、N)を用いて送信すべき平文mを多重暗号化する。ここでの暗号化は、mと乱数rとをビット結合したm|rを生成し、暗号文M=(m|reimod Nとする演算E(m、r)を、各サーバ装置U、…、Uの分だけ繰り返すことにより行われ、これにより、各サーバ装置U、…、Uの各暗号化鍵(e、N)を用いて多重暗号化された暗号文M=E(E(…E(m、r)、…、r)、r)が生成されることとなる。生成された暗号文Mは、サーバ装置Uに送付され、サーバ装置Uは、送信された暗号文Mを一旦保持する。
【0005】
サーバ装置Uは、同様な手順により、その他複数の複数の情報送信端末からの暗号文Mを受け付け、所定数以上の暗号文Mが集まった時点で、これらの暗号文Mを、それぞれ復号鍵(d、p、q)で復号し、各暗号文Mについて、E(…E(m、r)、…、r)及びrを取得する。その後、サーバ装置Uは、複数の情報送信端末から送信された複数の暗号文Mに対応する各E(…E(m、r)、…、r)間の順序をランダムに置換することにより、各暗号文Mと、各E(…E(m、r)、…、r)との対応関係を撹乱させ、それらの各E(…E(m、r)、…、r)を、各r及び置換の順序を秘密に保った状態で、サーバ装置Uに送付する。ここで、この各r及び置換の順序が秘密に保たれることにより、サーバ装置Uに送付された各E(…E(m、r)、…、r)が、サーバ装置Uへ入力されたどの暗号文Mを復号したものであるかを判定できないようにすることができる。以下、サーバ装置U、…、Uも同様の処理を繰り返し、最終的に、サーバ装置Uが、平文mを取得することになる。
【0006】
【非特許文献1】
Chaum,D、”Untraceable Electronic Mail、Return Address、and Digital Pseudonyms”、Communications of the ACM、Vol.24,No.2,pp84−88、1981
【0007】
【発明が解決しようとする課題】
しかし、MIX−NETでは、匿名性が十分確保できない場合があるという問題点がある。
つまり、MIX−NETは、複数のセンターを利用し、全てのセンターが同時に不正を行わないという過程のもとで利用者の匿名性(プライバシー)が保障される。従って、このMIX−NETを構成する全てのセンターが同時に不正を行った場合、利用者の匿名性が失われてしまうことになる。
【0008】
また、MIX−NETの場合、通信する情報の秘匿は計算量的な仮定に依存している。従って、将来、量子コンピュータが実現化された場合、通信する情報の秘匿(暗号)が破られ、利用者の匿名性が失われてしまうこともありえる。
さらに、MIX−NETの場合、1つ目のセンターには利用者からの通信路が直接接続されているため、暗号が破られ、1つ目のセンターから利用者への通信路が特定されれば、情報の匿名性は失われてしまう。
【0009】
この発明はこのような点に鑑みてなされたものであり、匿名通信の匿名性を十分確保することが可能な量子匿名送信装置を提供することである。
また、この発明の他の目的は、匿名通信の匿名性を十分確保することが可能な量子匿名受信装置を提供することである。
さらに、この発明の他の目的は、匿名通信の匿名性を十分確保することが可能な量子状態配布装置を提供することである。
【0010】
また、この発明の他の目的は、匿名通信の匿名性を十分確保することが可能な量子匿名通信方法を提供することである。
さらに、この発明の他の目的は、匿名通信の匿名性を十分確保することが可能な機能をコンピュータに実行させるためのプログラムを提供することである。
【0011】
【課題を解決するための手段】
この発明では上記課題を解決するために、まず、量子状態配布装置において、複数の第1の量子ビットと複数の第2の量子ビットとを特定の組み合わせでエンタングルド状態とした特定量子状態を、このエンタングルド状態にある量子ビットの組み合わせを相違させつつ、複数重ね合わせた量子状態(以下「重ね合わせ量子状態」という。)と、所定ビット以上が観測されることにより、重ね合わせ量子状態を、所定の特定量子状態に収縮させる複数の補助量子ビットの量子状態(以下「補助量子状態」という。)と、からなる初期量子状態を生成する。そして、この初期量子状態を構成する第1の量子ビットと補助量子ビットとを、複数の量子匿名送信装置に分散して出力し、この初期量子状態を構成する第2の量子ビットを複数の量子匿名受信装置に分散して出力する。
【0012】
そして、量子匿名送信装置において、送信内容を特定する送信内容情報の入力を受け付け、量子状態配布装置から出力された第1の量子ビットと補助量子ビットとの入力を受け付け、この入力された補助量子ビットを観測する。その後、入力された送信内容情報を特定する量子状態を生成し、入力された第1の量子ビットと、量子状態が生成された第3の量子ビットとを観測する。さらに、この観測結果を用い、観測によって量子状態が収縮する第2の量子ビットの量子状態を、送信内容情報を特定する量子状態に変換するための回復方法情報を生成し、この回復方法情報を量子匿名受信装置に出力する。
【0013】
一方、量子匿名受信装置では、まず、量子状態配布装置から出力された第2の量子ビットの入力を受け付け、量子匿名送信装置から出力された回復方法情報の入力を受け付ける。そして、この入力された回復方法情報を用い、入力された第2の量子ビットの量子状態を変換する。
ここで、量子匿名送信装置が観測できる補助量子ビットは、初期量子状態を構成する全補助量子ビットの一部のみであり、この量子匿名送信装置の補助量子ビットの観測のみでは、重ね合わせ量子状態を所定の特定量子状態に収縮させることはできない。つまり、複数の量子匿名送信装置がそれぞれに配布された補助量子ビットを観測してはじめて重ね合わせ量子状態を所定の特定量子状態に収縮させることができる。そのため、各量子匿名送信装置は、それぞれが観測した補助量子ビットの観測結果のみからは、重ね合わせ量子状態がどの特定量子状態に収縮したのかを知ることは不可能である。従って、各量子匿名送信装置では、この量子匿名送信装置に配布された第1の量子ビットが、どの量子匿名受信装置に配布された第2の量子ビットとエンタングルド状態にあるのかを知ることはできない。これは量子匿名受信装置側からみても同様である。
【0014】
従って、量子匿名受信装置に入力された第2の量子ビットの量子状態を、量子匿名送信装置から送信された回復方法情報を用いて変換したとしても、その変換結果が、どの量子匿名送信装置の送信内容情報を特定する量子状態に該当するのかを知ることはできない。これにより、量子匿名送信装置は、自己の送信内容情報がどの量子匿名受信装置に伝達されたかを知ることはできず、同様に、量子匿名受信装置は、伝達された送信内容情報がどの量子匿名送信装置のものかを知ることができない。これにより、匿名通信の匿名性を十分確保することが可能となる。
【0015】
【発明の実施の形態】
以下、この発明の実施の形態を図面を参照して説明する。
第1の実施の形態:
この形態は、2つの量子匿名送信装置と2つの量子匿名受信装置との間で匿名通信を行うものである。
図1は、この形態における量子匿名通信システム1の全体構成を例示した概念図であり、図2の(a)は、量子化を行うことが可能なハードウェア(例えば、量子コンピュータ等)に所定のプログラムを実行させることによって構成される配布装置10(量子状態配布装置に相当)の機能構成を例示したブロック図であり、図2の(b)は、公知のコンピュータに所定のプログラムを実行させることによって構成される制御装置80の機能構成を例示したブロック図である。また、図3は、量子化や測定等を行うことが可能なハードウェア(例えば、量子コンピュータ等)に所定のプログラムを実行させることによって構成される送信装置20(量子匿名送信装置に相当)の機能構成を、図4は送信装置30(量子匿名送信装置に相当)の機能構成を、図5は、受信装置40(量子匿名受信装置に相当)の機能構成を、図6は受信装置50(量子匿名受信装置に相当)の機能構成を、それぞれ例示したブロック図である。また、図7は、配布装置10の処理を説明するためのフローチャートであり、図8は、制御装置80の処理を説明するためのフローチャートである。さらに、図9の(a)及び図10は、送信装置20の処理を説明するためのフローチャートであり、図9の(b)及び図11は、受信装置40の処理を説明するためのフローチャートである。さらに、図12は、配布された量子ビットの量子状態(初期量子状態)を説明するための概念図であり、図13は、収縮した特定量子状態を説明するための概念図である。また、図14の(a)(b)は、エンタングルド状態にある量子状態を説明するための概念図であり、図15の(a)(b)は量子テレポーテーションを説明するための概念図である。以下、これらの図を用いて、この形態における量子匿名通信システム1の構成及び処理について説明を行っていく。なお、配布装置10、送信装置20、30、受信装置40、50及び制御装置80の制御は、それぞれ制御部14、29、39、46、56、88によって行われる。
【0016】
〔システム構成〕
図1に例示するように、この例の量子匿名通信システム1は、量子テレポーテーションを用いた匿名通信を可能にする配布装置10、量子テレポーテーションを用いた匿名通信を行う送信装置20、30、受信装置40、50及び量子匿名通信システム1全体を制御する制御装置80によって構成されている。また、この例の配布装置10は、量子通信路61〜64及び古典通信路70を通じ、送信装置20、30及び受信装置40、50と通信可能なように構成され、制御装置80は古典通信路70を通じ、配布装置10、送信装置20、30、及び受信装置40、50と通信可能なように構成されている。
【0017】
〔初期量子状態配布処理〕
まず、配布装置10の量子状態生成部11(初期量子状態生成手段に相当)において、複数の第1の量子ビットと複数の第2の量子ビットと(この例の場合、第1の量子ビットの数及び第2の量子ビットの数は、それぞれ2個ずつ)を、特定の組み合わせでエンタングルド状態とした特定量子状態を、このエンタングルド状態にある量子ビットの組み合わせを相違させつつ、複数重ね合わせた量子状態(以下「重ね合わせ量子状態」という。)と、所定ビット以上が観測されることにより、重ね合わせ量子状態を、所定の特定量子状態に収縮させる複数の補助量子ビットの量子状態(以下「補助量子状態」という。)と、からなる初期量子状態(|Φ>)を複数(m+1個)同じ状態で生成する(ステップS1)。ここで、「エンタングルド状態」とは、いわゆる「絡み合い」ともよばれる状態であり、これらの各粒子の量子状態が相互に関連し合う状態をいう。すなわち、このエンタングルド状態にある複数の粒子は、途中で観測を受ける等の作用を受けない限り、各粒子ごとのテンソル積では表せない状態にある。また、このエンタングルド状態は、例えば、複数個の粒子を一度の操作で同時に発生させることによって生成できる。なお、図12〜図15において実線で結ばれた量子ビットは、相互にこのエンタングルド状態にあることを示している。
【0018】
量子状態生成部11で生成された初期量子状態(|Φ>)は、量子通信部12に送られ、量子通信部12は、この初期量子状態(|Φ>)を構成する第1の量子ビット(S,S)と補助量子ビット(T,T)とを、複数の送信装置20、30に分散して出力(送信)し、この初期量子状態(|Φ>)を構成する第2の量子ビット(R,R)を複数の受信装置40、50に分散して出力(送信)する(ステップS2)。この例の場合、m+1個の第1の量子ビット(S)と補助量子ビット(T)が量子通信路61を通じて送信装置20に送信され、m+1個の第1の量子ビット(S)と補助量子ビット(T)が量子通信路62を通じて送信装置30に送信される。また、m+1個の第2の量子ビット(R)が、量子通信路64を通じて受信装置40に送信され、m+1個の第2の量子ビット(R)が、量子通信路63を通じて受信装置50に送信される。
【0019】
図12は、このように送信装置20、30、受信装置40、50に分散された量子ビットの量子状態を例示している。図12に例示するように、この例の第1の量子ビット(S)101と補助量子ビット(T)105は、送信装置20に、第1の量子ビット(S)102と補助量子ビット(T)106は、送信装置30に、それぞれ配布され、第2の量子ビット(R)は受信装置40に、第2の量子ビット(R)は、受信装置50にそれぞれ配布される。ここで、この配布された量子ビットは、量子ビット101と量子ビット103とがエンタングルド状態にあり、なおかつ量子ビット102と量子ビット104とがエンタングルド状態にある量子状態Aと、量子ビット101と量子ビット104とがエンタングルド状態にあり、なおかつ量子ビット102と量子ビット103とがエンタングルド状態にある量子状態Bとが重ねあわされた量子状態(重ね合わせ量子状態)にある。そして、この重ね合わせ量子状態は、補助量子ビット(T)105が送信装置20で観測され、なおかつ補助量子ビット(T)106が送信装置30で観測された時点で、量子状態A又は量子状態B(特定量子状態)に等確率で収縮する。しかし、この特定量子状態がA、Bいずれの量子状態となるかは不確定である。
【0020】
このような重ね合わせ量子状態(|Φ>)を式で表すと、|Φ>=(1/4)(|0(S1)(S2)(R1)(R2)>+|0(S1)(S2)(R1)(R2)>+|1(S1)(S2)(R1)(R2)>+|1(S1)(S2)(R1)(R2)>)(|0(T1)(T2)>+|1(T1)(T2)>)+(1/4)(|0(S1)(S2)(R1)(R2)>+|0(S1)(S2)(R1)(R2)>+|1(S1)(S2)(R1)(R2)>+|1(S1)(S2)(R1)(R2)>)(|0(T1)(T2)>+|1(T1)(T2)>)となる。ここで、上付き添え字(S1)は量子ビット(S)101に、上付き添え字(S2)は量子ビット(S)102に、上付き添え字(R1)は量子ビット(R)103に、上付き添え字(R2)は量子ビット(R)104に、上付き添え字(T1)は補助量子ビット(T)105に、上付き添え字(T2)は補助量子ビット(T)106に、それぞれ対応する添え字である。
【0021】
なお、図12では1組の初期量子状態(|Φ>)のみを例示したが、実際は配布された複数(この例では、m+1組)の初期量子状態(|Φ>)が同様な量子状態にあるものとする。
また、この量子状態(|Φ>)を一般化した式で表すと、
【数2】
Figure 2004349833
となる。
【0022】
なお、ここでは、kを量子匿名送信装置或いは量子匿名受信装置の数とし、上付き添え字(S)を、j番目(jは1以上k以下の自然数)の量子匿名送信装置に出力する第1の量子ビットに対応する添え字とし、上付き添え字(R)を、j番目の量子匿名受信装置に出力する第2の量子ビットに対応する添え字とし、上付き添え字(T)を、j番目の量子匿名送信装置に出力する補助量子ビットに対応する添え字とし、Fを置換情報の全体集合とし、σを、j番目の量子匿名送信装置に出力する補助量子ビットが観測されることによって特定される置換情報を意味し、Uσを、この置換情報が所定数以上特定されることにより置換方法が特定されるユニタリ変換としている。
【0023】
〔初期量子状態検証処理〕
このように初期量子状態(|Φ>)が配布されると、例えば次に、初期量子状態検証処理が行われる。なお、初期量子状態検証処理とは、初期量子状態(|Φ>)の配布者や第三者の不正を回避するため、匿名通信に使用する初期量子状態(|Φ>)の検証を行う処理であるが、この処理を行わずに、直接以下の匿名通信処理を開始することとしてもよい。この場合、上述の初期量子状態配布処理において配布される初期量子状態(|Φ>)は1つのみでよい。
【0024】
以下、この初期量子状態検証処理について説明を行う。
まず、送信装置20に送信された複数(この例ではm+1個)の第1の量子ビット(S)と補助量子ビット(T)は、送信装置20の量子通信部23において受信され(入力を受け付けられ)(ステップS30)、量子メモリ24aに送られた後、そこで量子状態が記憶される。次に、観測部24は、この量子メモリ24aに量子状態が記憶された第1の量子ビット(S)と補助量子ビット(T)から所定数以上(この例ではm個)の第1の量子ビット(S)と補助量子ビット(T)を選択し(例えばランダムに)、この選択した第1の量子ビット(S)と補助量子ビット(T)を量子メモリ24aから抽出してローカルに観測する(ステップS31)。
【0025】
これらの観測結果(V’)は、検証部29(ビット検証手段に相当)に送られ、そこで検証に用いる検証情報(VS)とされる。なお、この観測は、例えば、検証部29が、他の送信装置30及び受信装置40、50と古典通信路70を通じた通信を行うことによって制御される。そして、さらに他の送信装置30及び受信装置40、50による観測結果が統合されることによって、この第1の量子ビット(S)と補助量子ビット(T)の量子状態の正当性が検証される。なお、この検証は、例えば、Walgate et al., Local Distinguishability of Multipartite Orthogonal States, Physical Review Letters, Vol.85,pp.4972−4975(2000)等に記載された方法を用いるものとする(以下同様)。
【0026】
この検証情報(VS)は、古典通信部25に送られ、そこから古典通信路70を通じて制御装置80に送信(出力)される(ステップS32)。なお、ここで検証情報(VS)が送信される通信路は、例えば認証付通信路であるものとする(以下同様)。
同様に、送信装置30に送信された複数(この例ではm+1個)の第1の量子ビット(S)と補助量子ビット(T)は、送信装置30の量子通信部33において受信され(入力を受け付けられ)、量子メモリ34aに送られた後、そこで量子状態が記憶される。次に、観測部34は、この量子メモリ34aに量子状態が記憶された第1の量子ビット(S)と補助量子ビット(T)から所定数以上(この例ではm個)の第1の量子ビット(S)と補助量子ビット(T)を選択し(例えばランダムに)、この選択した第1の量子ビット(S)と補助量子ビット(T)を量子メモリ34aから抽出してローカルに観測する。
【0027】
これらの観測結果(V’)は検証部39(ビット検証手段に相当)に送られ、そこで検証に用いる検証情報(VS)とされる。なお、この観測は、例えば、検証部39が、他の送信装置20及び受信装置40、50と古典通信路70を通じた通信を行うことによって制御される。そして、さらに他の送信装置20及び受信装置40、50による観測結果が統合されることによって、この第1の量子ビット(S)と補助量子ビット(T)の量子状態の正当性が検証される。この検証情報(VS)は、古典通信部35に送られ、そこから古典通信路70を通じて制御装置80に送信(出力)される。
【0028】
一方、受信装置40に送信された複数(この例ではm+1個)の第2の量子ビット(R)は、受信装置40の量子通信部41において受信され(入力を受け付けられ)(ステップS33)、量子メモリ48に送られた後、そこで量子状態が記憶される。次に、観測部42は、この量子メモリ48に量子状態が記憶された第2の量子ビット(R)から所定数以上(この例ではm個)の第2の量子ビット(R)を選択し(例えばランダムに)、この選択した第2の量子ビット(R)を量子メモリ48から抽出してローカルに観測する(ステップS34)。
【0029】
これらの観測結果(V)は検証部47(ビット検証手段に相当)に送られ、そこで検証に用いる検証情報(VR)とされる。なお、この観測は、例えば、検証部47が、他の受信装置50及び送信装置20、30と古典通信路70を通じた通信を行うことによって制御される。そして、さらに他の受信装置50及び送信装置20、30による観測結果が統合されることによって、この第2の量子ビット(R)の量子状態の正当性が検証される。この検証情報(VR)は、古典通信部43に送られ、そこから古典通信路70を通じて制御装置80に送信(出力)される(ステップS35)。
【0030】
同様に、受信装置50に送信された複数(この例ではm+1個)の第2の量子ビット(R)は、受信装置50の量子通信部51において受信され(入力を受け付けられ)、量子メモリ58に送られた後、そこで量子状態が記憶される。次に、観測部52は、この量子メモリ58に量子状態が記憶された第2の量子ビット(R)から所定数以上(この例ではm個)の第2の量子ビット(R)を選択し(例えばランダムに)、この選択した第2の量子ビット(R)を量子メモリ58から抽出してローカルに観測する。これらの観測結果(V)は検証部57(ビット検証手段に相当)に送られ、そこで検証に用いる検証情報(VR)とされる。なお、この観測は、例えば、検証部57が、他の受信装置40及び送信装置20、30と古典通信路70を通じた通信を行うことによって制御される。そして、さらに他の受信装置40及び送信装置20、30による観測結果が統合されることによって、この第2の量子ビット(R)の量子状態の正当性が検証される。この検証情報(VR)は、古典通信部53に送られ、そこから古典通信路70を通じて制御装置80に送信(出力)される。
【0031】
以上のように送信された検証情報(VS,VS,VR,VR)は、制御装置80の古典通信部83によって入力が受け付けられ(受信され)(ステップS10)、さらに制御部88に送られる。
制御部88は、この検証情報(VS,VS,VR,VR)を統合して検証し、第1の量子ビット(S,S)、第2の量子ビット(R,R)及び補助量子ビット(T,T)の検証結果が合格であるか否かを判断する(ステップS11)。ここで、検証結果が合格でなかった場合には、制御部88は、NG情報を古典通信部83に送り、そこから古典通信路70を通じて、このNG情報を配布装置10、送信装置20、30、受信装置40、50に送信して(ステップS12)処理を終了する。このNG情報は、配布装置10、送信装置20、30、受信装置40、50の古典通信部13、25、35、43、53において受信され、それぞれ制御部14、28、38、46、56に送られ、これらの制御部14、28、38、46、56は、配布装置10、送信装置20、30、受信装置40、50を初期状態にリセットする。
【0032】
一方、検証結果が合格であった場合には、制御部88は合格情報(D’)を古典通信部83に送り、そこから古典通信路70を通じ、この合格情報(D’)を送信装置20、30に送信する(ステップS13)。合格情報(D’)が送信された送信装置20、30は、この合格情報(D’)を古典通信部25、35において受信してそれぞれの制御部28、38に送る。そして、この合格情報(D’)を受け取った制御部28、38は、それぞれ送信装置20、30を制御し、以下の匿名通信処理を開始させる。
【0033】
〔匿名通信処理〕
匿名通信を行う場合、まず、送信装置20の入力部21(送信内容情報入力手段に相当)において送信内容(メッセージ)を特定する送信内容情報(M)の入力を受け付け、この送信内容情報(M)を記憶部22に送って記憶させる(ステップS41)。同様に、送信装置30の入力部31(送信内容情報入力手段に相当)において送信内容を特定する送信内容情報(M)の入力を受け付け、この送信内容情報(M)を記憶部32に送って記憶させる。
【0034】
また、送信装置20の観測部24(補助量子ビット観測手段に相当)は、上記の初期量子状態検証処理に用いられなかった(この例では1個の)補助量子ビット(T)105を量子メモリ24aから抽出し、{|0>,|1>}の基底で観測する(ステップS42)。補助量子ビット(T)105の観測後、観測部24は、この補助量子ビット(T)105の観測が終了した旨の情報(以下「補助量子ビット観測済み情報(TM)」という。)を古典通信部25(補助量子ビット観測済み情報出力手段に相当)に送り、そこから古典通信路70を通じて、この補助量子ビット観測済み情報(TM)を制御装置80に送信(出力)する(ステップS43)。
【0035】
同様に、送信装置30の観測部34(補助量子ビット観測手段に相当)は、上記の初期量子状態検証処理に用いられなかった(この例では1個の)補助量子ビット(T)106を量子メモリ34aから抽出し、{|0>,|1>}の基底で観測する。補助量子ビット(T)106の観測後、観測部34は、この補助量子ビット(T)106の観測が終了した旨の情報(以下「補助量子ビット観測済み情報(TM)」という。)を古典通信部35(補助量子ビット観測済み情報出力手段に相当)に送り、そこから古典通信路70を通じて、この補助量子ビット観測済み情報(TM)を制御装置80に送信(出力)する。
【0036】
このように制御装置80に送信された補助量子ビット観測済み情報(TM,TM)は、制御装置80の古典通信部83において受信され、さらに第1記憶部84に送られ、そこで記憶される(ステップS14)。
制御装置80の補助量子ビット観測判断部85は、この第1記憶部84に記憶された補助量子ビット観測済み情報(TM,TM)を検証し、全ての送信装置20、30が補助量子ビットを観測済みであるか、すなわち、全ての送信装置20、30に対応する補助量子ビット観測済み情報(TM,TM)が第1記憶部84に記憶されているか否かを判断する(ステップS15)。ここで、全ての送信装置20、30が補助量子ビットを観測済みであると判断されなかった場合、ステップS14の処理に戻り、全ての送信装置20、30が補助量子ビットを観測済みであると判断された場合、補助量子ビット観測判断部85は、量子状態が収縮した旨を示す量子状態決定情報(D)を古典通信部83に送り、古典通信部83は、この量子状態決定情報(D)を、古典通信路70を通じて全ての送信装置20、30に送信する(ステップS16)。送信された量子状態決定情報(D)は、送信装置20の古典通信部25及び送信装置30の古典通信部35において受信され(ステップS44)、それぞれ符号化部26、36に送られる。
【0037】
ここで、前述のように(図12)、第1の量子ビット(S,S)101、102は、第2の量子ビット(R,R)103、104とエンタングルメント状態にあり、補助量子ビット(T,T)105、106は、それぞれ、観測されることによって、この第1の量子ビット(S,S)のエンタングルメント状態の収縮に必要な条件の一部のみを成立させる。すなわち、補助量子ビット(T,T)105、106の両方が観測されることにより、この第1の量子ビット(S,S)101、102及び第2の量子ビット(R,R)103、104の量子状態は、量子状態A或いは量子状態Bに収縮する。従って、この量子状態決定情報(D)が送信装置20、30に送信された時点では、既に、第1の量子ビット(S,S)101、102及び第2の量子ビット(R,R)103、104の量子状態は、量子状態A或いは量子状態Bとなっている。もちろん、どちらの量子状態にあるかは、送信装置20、30、受信装置40、50等の何れも知ることはできない。
【0038】
量子状態決定情報(D)を受け取った送信装置20の符号化部26は、記憶部22に格納されている送信内容情報(M)を構成するメッセージビット(M’)(1量子ビットに相当するビット)を抽出し、このメッセージビット(M’)(送信内容情報を構成)を特定する量子状態を生成(符号化)する(ステップS45)。この量子状態となった第3の量子ビット(Q)は、観測部24に送られ、観測部24は、量子メモリ24aから上記の初期量子状態検証処理に用いられなかった(この例では1個の)第1の量子ビット(S)を抽出する。次に、観測部24(量子ビット観測手段に相当)は、この第1の量子ビット(S)(量子通信部23において入力された第1の量子ビットに相当)と、符号化部26によって量子状態が生成された第3の量子ビット(Q)とを{(1/√2)(|00>+|11>),(1/√2)(|00>−|11>),(1/√2)(|01>+|10>),(1/√2)(|01>−|10>)}の基底で観測(ベル測定)する(ステップS46)。なお、ここで、量子ビット観測手段に相当する観測部24は、所定数以上(この例では全て)の量子匿名送信装置20、30から上記補助量子ビット観測済み情報(TM,TM)が出力された後に、第1の量子ビット(S)と第3の量子ビット(Q)とを観測することになる。
【0039】
この観測結果(V)は、回復方法情報生成部27に送られ、回復方法情報生成部27は、この観測結果(V)と、符号化部26から抽出した第3の量子ビット(Q)の量子状態を特定する情報Q’を用い、観測によって量子状態が収縮する第2の量子ビットの量子状態を、符号化部26によって生成された量子状態に変換するための回復方法情報(DE)を生成し(ステップS47)、古典通信部25へ送る。古典通信部25(回復方法情報出力手段に相当)は、受け取った回復方法情報(DE)を、古典通信路70を通じ、制御装置80に送信(出力)する(ステップS48)。
【0040】
同様に、量子状態決定情報(D)を受け取った送信装置30の符号化部36は、記憶部32に格納されている送信内容情報(M)を構成するメッセージビット(M’)(1量子ビットに相当するビット)を抽出し、このメッセージビット(M’)(送信内容情報を構成)を特定する量子状態を生成(符号化)する。この量子状態となった第3の量子ビット(Q)は、観測部34に送られ、観測部34は、量子メモリ34aから上記の初期量子状態検証処理に用いられなかった(この例では1個の)第1の量子ビット(S)を抽出する。次に、観測部34(量子ビット観測手段に相当)は、この第1の量子ビット(S)(量子通信部33において入力された第1の量子ビットに相当)と、符号化部36によって量子状態が生成された第3の量子ビット(Q)とを{(1/√2)(|00>+|11>),(1/√2)(|00>−|11>),(1/√2)(|01>+|10>),(1/√2)(|01>−|10>)}の基底で観測(ベル測定)する。なお、ここで、量子ビット観測手段に相当する観測部34は、所定数以上(この例では全て)の量子匿名送信装置20、30から上記補助量子ビット観測済み情報(TM,TM)が出力された後に、第1の量子ビット(S)と第3の量子ビット(Q)とを観測することになる。
【0041】
この観測結果(V)は、回復方法情報生成部37に送られ、回復方法情報生成部37は、この観測結果(V)と、符号化部36から抽出した第3の量子ビット(Q)の量子状態を特定する情報Q’を用い、観測によって量子状態が収縮する第2の量子ビットの量子状態を、符号化部36によって生成された量子状態に変換するための回復方法情報(DE)を生成し、古典通信部35へ送る。古典通信部35(回復方法情報出力手段に相当)は、受け取った回復方法情報(DE)を、古典通信路70を通じ、制御装置80に送信(出力)する。
【0042】
ここで、上述のように生成される回復方法情報を概念的に説明する。
なお、この説明では、補助量子ビット(T,T)105、106の観測(ステップS42)によって、図12に例示した量子状態Aに収縮したものとする(送信者・受信者はこの収縮状態を知らない)。この場合、図13に例示するように、第1の量子ビット(S)101が第2の量子ビット(R)103とエンタングルド状態にあり、第1の量子ビット(S)102が第2の量子ビット(R)104とエンタングルド状態にあり、第3の量子ビット(Q)111と第1の量子ビット(S)101が送信装置20によって観測され、第3の量子ビット(Q)112と第1の量子ビット(S)101が送信装置30によって観測されることになる。
【0043】
図14の(a)は、この第1の量子ビット(S)101、第2の量子ビット(R)103及び第3の量子ビット(Q)111の量子状態を示している。この図に示すように、第3の量子ビット(Q)111の量子状態は、α|0>+β|1>と表すことができ、エンタングルド状態にある第1の量子ビット(S)101と第2の量子ビット(R)103の量子状態は(1/√2)(|00>+|11>)と表される。
【0044】
また、この図14の(a)に示した量子状態は、図14の(b)に示した量子状態C,D,E,Fの重ね合わせの状態とみることもできる。すなわち、第1の量子ビット(S)101と第3の量子ビット(Q)111とが|00>+|11>(量子状態C)、|00>−|11>(量子状態D)、|01>+|10>(量子状態E)、|01>−|10>(量子状態F)のエンタングルド状態にあり、第2の量子ビット(R)103がα|0>+β|1>(量子状態C)、α|0>−β|1>(量子状態D)、β|0>+α|1>(量子状態E)、β|0>−α|1>(量子状態F)の量子状態にある重ね合わせである。そして、この重ね合わせの量子状態C,D,E,Fは、第1の量子ビット(S)101と第3の量子ビット(Q)111とが観測された瞬間に、この量子状態C,D,E,Fの何れかの状態に収縮する。
【0045】
ここで、この観測を行った送信装置20は、その観測結果より、どの量子状態に収縮したかを知ることができる。従って、この送信装置20は、第2の量子ビット(R)103の量子状態を知ることができる。例えば、ステップS46の処理において第1の量子ビット(S)101と第3の量子ビット(Q)111とが観測され、この量子状態が量子状態Fに収縮した場合、この量子状態は図15の(b)のようになり、第2の量子ビット(R)103の量子状態はβ|0>−α|1>となっていることが分かる(ただし、送信装置20は、この第2の量子ビットが量子ビット103なのか量子ビット104なのかを知ることはできない。)。また、送信装置20は、第3の量子ビット(Q)111の量子状態(α|0>+β|1>)を知っている(図15(a))。従って、この送信装置20では、第2の量子ビット(R)103の量子状態にどのような変換を加えれば第3の量子ビット(Q)111の量子状態となるかを知ることができる。回復方法情報生成部27は、このような変換方法を特定する情報を回復方法情報として生成する。
【0046】
なお、この回復方法情報は、例えば、
【数3】
Figure 2004349833
とした場合における、
I,σ,σ,σσのいずれかのユニタリ変換を特定する情報であり、受信装置40、50のユニタリ変換部44、54は、この回復方法情報によって特定されるユニタリ変換を、それぞれ第2の量子ビット103、104に施し、第3の量子ビット(Q)111を復元する(後述)。図15の(b)の例では、σσによるユニタリ変換を特定する情報が回復方法情報として送信装置20から出力されることになる。なお、図15の(b)のように、ユニタリ変換を特定する情報を、古典通信路を通じて通信相手に送り、通信相手が有する量子ビットを、送信内容を示す量子状態に変換して情報を伝達する手法を「量子テレポーテーション」といい、その技術的背景を示す文献としては「C.H.Bennett, G.Brassard, C.Crepeau, R.Jozsa, A. Peres and W.Wooters. Teleporting an unknown state via dual classical and EPR channels. Phys. Rev Lett., 70:1895−1899, 1993.」等がある。
【0047】
以上のように制御装置80に送信装置20から出力された回復方法情報(DE)、及び送信装置30から出力された回復方法情報(DE)は、古典通信路70を通じて制御装置80に送られる。制御装置80は、古典通信部83において、これらの回復方法情報(DE,DE)を受信し、第2記憶部86に送って、そこに記憶させる(ステップS17)。
次に、回復方法情報検証部87は、第2記憶部86に記憶されている回復方法情報(DE,DE)を検証し、それらが全て一致するか否かを判断する(ステップS18)。
【0048】
ここで、これらの回復方法情報(DE,DE)が全て一致していなかった場合(少なくとも一部が異なっていた場合)、この回復方法情報検証部87は、不一致情報(NG)を古典通信部83に送り、この古典通信部83は、古典通信路70を通じて、この不一致情報(NG)を、配布装置10、送信装置20、30、受信装置40、50に送る(ステップS20)。この不一致情報(NG)を古典通信部13で受信した配布装置10は、この不一致情報(NG)を制御部14に送り、制御部14は、処理を初めからやり直すように指示する。また、この不一致情報(NG)を古典通信部25、35で受信した送信装置20、30は、この不一致情報(NG)を、それぞれ制御部28、38に送り、制御部28、38は、処理を初めからやり直すように指示する。なお、このやり直し処理においては、メッセージ(M,M)の再入力、再記憶は行わず、送信が完了していないメッセージビット(M’,M’)の送信処理の続きを行うものとする。一方、この不一致情報(NG)を古典通信部43、53で受信した受信装置40、50は、この不一致情報(NG)を、それぞれ制御部46、56に送り、制御部46、56は、処理を初めからやり直すように指示する(ステップS51)。
【0049】
一方、回復方法情報(DE,DE)が全て一致していた場合、この回復方法情報検証部87は、回復方法情報が全て一致した旨の情報(以下、「回復方法情報(DE)」という。)を古典通信部83に送り、古典通信部83は、この回復方法情報(DE)を、古典通信路70を通じて受信装置40、50に送信する(ステップS19)。
受信装置40に送信された回復方法情報(DE)は、古典通信部43において受信され、ユニタリ変換部44に送られる(ステップS52)。なお、不一致情報(NG)も回復方法情報(DE)も受信していない場合、受信装置40は待機状態にある(ステップS51、S52)。この回復方法情報(DE)を受け取ったユニタリ変換部44は、量子メモリ48から、上述の初期量子状態検証処理に用いられなかった(この例では1個の)第2の量子ビット(R)を抽出し、古典通信部43から送られた回復方法情報(DE)を用い、抽出した第2の量子ビット(R)の量子状態を変換する。この例では、回復方法情報(DE)によって特定されるユニタリ変換を、抽出した第2の量子ビット(R)に施す(ステップS53)。この変換結果は出力部45に送られ、出力部45は、この変換結果を観測して出力する(ステップS54)。
【0050】
同様に、受信装置50に送信された回復方法情報(DE)は、古典通信部53において受信され、ユニタリ変換部54に送られる。この回復方法情報(DE)を受け取ったユニタリ変換部54は、量子メモリ58から、上述の初期量子状態検証処理に用いられなかった(この例では1個の)第2の量子ビット(R)を抽出し、古典通信部53から送られた回復方法情報(DE)を用い、抽出した第2の量子ビット(R)の量子状態を変換する。この例では、回復方法情報(DE)によって特定されるユニタリ変換を、抽出した第2の量子ビット(R)に施す。この変換結果は出力部55に送られ、出力部55は、この変換結果を観測して出力する。
【0051】
そして、送信装置20、30の記憶部22、32に記憶されているメッセージM,Mを構成するメッセージビットM’,M’がn量子ビットであった場合、以上の処理をn回繰り返し、これにより、全てのメッセージM,Mの伝送を終了する。
〔ハードウェア構成〕
最後に、この形態の構成を実現するためのハードウェア構成について例示する。
【0052】
まず、量子メモリ24a、34a、48、58等の量子状態を保存するメモリとしては、例えば、量子ドット内の電子準位、核スピン、あるいは超伝導体内部の電荷(クーパー対)量をキュービットとして用いてデータを保存する装置等を用いることができる(A.Barenco, D.Deutsch, and A.Ekert, Phys. Rev. Lett.74,4083(1995)、松枝秀明 電子情報通信学会誌 A Vol.J81−A No.12(1998)1978、T.H.Oosterkamp et.al., Nature 395,873(1998)、D.Loss and D.P. DiVincenzo, Phys. Rev. A57(1998) 120. T.Oshima, quant−ph/0002004、B.E.Kane, A silicon−based nuclear spin quantum computer, Nature, 393, 133(1998)、 HYPERLINK ”http://www.snf.unsw.edu.au/” http://www.snf.unsw.edu.au/、Y.Nakamura, Yu. A. Pashkin and J.S.Tsai, Nature 398(1999)768)。また、量子状態生成部11、符号化部26、36としては、例えば、原子や非線形媒質の物理過程(光のパラメトリック下方変換等)を用いて直接エンタングルド状態を生成する装置を用いることができ(M.Q.Scully, B.−G. Englert, and C. J. Bednar, Phys. Rev. Lett. 83, 4433(1999))、また、ユニタリ変換部44、54としては、例えば、光子の偏光を量子ビットに用いた場合には、偏光に位相シフタを施す装置を用いることができ、量子ドット等を量子ビットとして用いた場合には、電場や磁場の操作を行う装置を用いることができる。また、観測部24、34、42、52としては、例えば、ビームスプリッタ、位相シフタ、光子検出器を組み合わせた装置を用いることができる。
【0053】
以上説明したように、この形態の例では、まず、量子状態配布装置10の量子状態生成部11において、複数の第1の量子ビット(S,S)と複数の第2の量子ビット(R,R)とを特定の組み合わせでエンタングルド状態とした特定量子状態を、このエンタングルド状態にある量子ビットの組み合わせを相違させつつ、複数重ね合わせた量子状態(以下「重ね合わせ量子状態」という。)と、所定ビット以上が観測されることにより、重ね合わせ量子状態を、所定の特定量子状態に収縮させる複数の補助量子ビット(T,T)の量子状態(以下「補助量子状態」という。)と、からなる初期量子状態を生成する。次に、量子通信部12において、この初期量子状態を構成する第1の量子ビット(S,S)と補助量子ビット(T,T)とを、複数の送信装置20、30に分散して出力し、この初期量子状態を構成する第2の量子ビット(R,R)を複数の受信装置40、50に分散して出力する。
【0054】
次に、送信装置20、30の入力部21、31において、送信内容を特定する送信内容情報の入力を受け付け、量子通信部23、33において上述の第1の量子ビット(S又はS)と補助量子ビット(T又はT)との入力を受け、観測部24、34において、それぞれこれらの入力された補助量子ビット(T又はT)を観測する。
その後、符号合化部26、36において、送信内容情報を特定する量子状態を生成し、観測部24、34において、第1の量子ビット(S又はS)と、符号化部26、36において量子状態が生成された第3の量子ビット(Q又はQ)とを観測する。そして、この観測結果を用い、回復方法情報生成部27、37において、この観測によって量子状態が収縮する第2の量子ビット(R又はR)の量子状態を、第3の量子ビット(Q又はQ)の量子状態に変換するための回復方法情報を生成し、古典通信部25、35において、この回復方法情報を出力する。
【0055】
一方、受信装置40、50では、量子通信部41、51において、第2の量子ビット(R又はR)の入力を受け、古典通信部43、53において、回復方法情報(DE)の入力を受け付ける。そして、この回復方法情報(DE)を用い、量子通信部41、51で入力された第2の量子ビット(R又はR)の量子状態を変換する。
ここで、送信装置20が観測できる補助量子ビットは、初期量子状態を構成する全補助量子ビットの一部(T)のみであり、この送信装置20の補助量子ビットの観測のみでは、重ね合わせ量子状態(図12)を所定の特定量子状態(図12における量子状態A或いは量子状態B)に収縮させることはできない。同様に、送信装置30が観測できる補助量子ビットは、初期量子状態を構成する全補助量子ビットの一部(T)のみであり、この送信装置30の補助量子ビットの観測のみでは、重ね合わせ量子状態(図12)を所定の特定量子状態(図12における量子状態A或いは量子状態B)に収縮させることはできない。つまり、送信装置20、30それぞれに配布された補助量子ビット全て(T及びT)を観測してはじめて重ね合わせ量子状態(図12)を所定の特定量子状態図12における量子状態A或いは量子状態B)に収縮させることができる。
【0056】
そのため、各送信装置20、30は、それぞれが観測した補助量子ビット(T又はT)の観測結果のみからは、重ね合わせ量子状態がどの特定量子状態に収縮したのかを知ることは不可能である。従って、各送信装置20、30では、この送信装置20、30に配布された第1の量子ビット(S又はS)が、どの受信装置40、50に配布された第2の量子ビット(R又はR)とエンタングルド状態にあるのかを知ることはできない。これは受信装置40、50側からみても同様である。
【0057】
従って、受信装置40、50に入力された第2の量子ビット(R又はR)の量子状態を、送信装置20、30から送信された回復方法情報を用いて変換したとしても、その変換結果が、どの送信装置20、30の送信内容情報を特定する量子状態に該当するのかを知ることはできない。これにより、送信装置20、30は、自己の送信内容情報がどの受信装置40、50に伝達されたかを知ることはできず、同様に、受信装置40、50は、伝達された送信内容情報がどの送信装置20、30のものかを知ることができない。これにより、匿名通信の匿名性を十分確保することが可能となる。
【0058】
また、この例における送信装置20、30の制御部28、38は、古典通信部25、35において出力された回復方法情報が、他の送信装置から出力された回復方法情報と一致しなかった場合に、処理のやり直しを指示することとした。これにより、回復方法情報の違いによって送信者が特定される事態を防止することが可能となる。
さらに、この例では、送信装置20、30の古典通信部25、35において、観測部24、34で補助量子ビット(T又はT)が観測された場合、補助量子ビット(T又はT)の観測が終了した旨の情報(補助量子ビット観測済み情報)を出力し、観測部24、34は、所定数以上(この形態では全て)の送信装置20、30から補助量子ビット観測済み情報が出力された後に、第1の量子ビット(S又はS)と第3の量子ビット(Q又はQ)とを観測することとした。これにより、初期量子状態の収縮に必要な補助量子ビット(T,T)が観測され、初期量子状態が量子状態A又は量子状態B(図12)の何れかに決定された後に、第1の量子ビット(S又はS)と第3の量子ビット(Q又はQ)とを観測することが可能となり、この形態の匿名通信が実質的に実現可能となる。
【0059】
また、この例では、配布装置10の量子状態生成部11において初期量子状態を複数(この例ではm+1個)生成し、量子通信部12において、これらの生成された複数の初期量子状態を出力することとした。また、送信装置20、30の量子通信部23、33において、複数組(この例ではm+1組)の第1の量子ビット(Q又はQ)及び補助量子ビット(T又はT)の入力受け付け、検証部29、39において、この入力された第1の量子ビット及び補助量子ビットから選択した所定数以上(この例ではm個)の第1の量子ビット及び補助量子ビットの正当性の検証を制御することとした。同様に、受信装置40、50の量子通信部41、51において、複数組(この例ではm+1組)の第2の量子ビット(R又はR)の入力受け付け、検証部47、57において、この入力された第2の量子ビットから選択した所定数以上(この例ではm個)の第2の量子ビットの正当性の検証を制御することとした。そのため、この送信装置20、30及び受信装置40、50から出力された検証情報を用いることにより、配布装置10から配布された量子状態の正当性を検証することができ、さらに、この検証に用いられなかった量子ビットを用いて匿名通信を行うことにより、この形態における匿名通信に対する初期量子状態の配布者や第三者による不正を防止することが可能となる。
【0060】
なお、この発明は上述の実施の形態に限定されるものではない。例えば、このステップS15での判断を、全ての送信装置が補助量子ビットを観測済みであるか否かではなく、所定数以上の送信装置が補助量子ビットを観測済みであるか否かの判断とすることとしてもよい。
また、この形態では制御装置80が匿名通信システム1の全体を制御することとしたが、この制御装置80の機能を複数の装置に分散することとしてもよく、それらの機能の少なくとも一部を配布装置10、送信装置20、30、受信装置40、50の何れかに分散することとしてもよい。
【0061】
第2の実施の形態:
次に、この形態における第2の実施の形態について説明する。この形態は、第1の実施の形態を一般化した形態であり、複数の量子匿名送信装置と複数の量子匿名受信装置との間で匿名通信を行うものである。なお、以下では、第1の実施の形態と相違する点を中心に説明を行い、第1の実施の形態と共通する事項(例えば、各装置の処理機能、ハードウェア構成等)については説明を省略する。
【0062】
図16は、この形態における量子匿名通信システム200の全体構成を例示した概念図である。以下、この図を用いて、この形態の説明を行っていく。
〔システム構成〕
図16に例示するように、この例の量子匿名通信システム200は、量子テレポーテーションを用いた匿名通信を可能にする配布装置210、量子テレポーテーションを用いた匿名通信を行う複数の送信装置220〜240、受信装置250〜270及び量子匿名通信システム200全体を制御する制御装置300によって構成されている。また、この例の配布装置210は、量子通信路281〜286及び古典通信路290を通じ、送信装置220〜240及び受信装置250〜270と通信可能なように構成され、制御装置300は古典通信路290を通じ、配布装置210、送信装置220〜240、及び受信装置250〜270と通信可能なように構成されている。
【0063】
〔初期量子状態配布処理〕
第1の実施の形態と同様、まず、配布装置210において、複数の第1の量子ビットと複数の第2の量子ビットと(この例の場合、第1の量子ビットの数及び第2の量子ビットの数は、それぞれk個ずつ)を、特定の組み合わせでエンタングルド状態とした特定量子状態を、このエンタングルド状態にある量子ビットの組み合わせを相違させつつ、複数重ね合わせた量子状態(以下「重ね合わせ量子状態」という。)と、所定ビット以上が観測されることにより、重ね合わせ量子状態を、所定の特定量子状態に収縮させる複数の補助量子ビットの量子状態(以下「補助量子状態」という。)と、からなる初期量子状態(|Φ>)を複数(m+1個)同じ状態で生成する。
【0064】
次に、配布装置210は、量子通信路281〜283を通じ、この生成した初期量子状態(|Φ>)を構成する第1の量子ビット(S,S,…,S)と補助量子ビット(T,T,…,T)とを、複数の送信装置220〜240に分散して出力(送信)し、この初期量子状態(|Φ>)を構成する第2の量子ビット(R,R,…,R)を、量子通信路284〜286を通じ、複数の受信装置250〜270に分散して出力(送信)する。この例の場合、m+1個の第1の量子ビット(S)と補助量子ビット(T)が量子通信路281を通じて送信装置220に送信され、m+1個の第1の量子ビット(S)と補助量子ビット(T)が量子通信路282を通じて送信装置230に送信され、・・・(他省略)、m+1個の第1の量子ビット(S)と補助量子ビット(T)が量子通信路283を通じて送信装置240に送信される。また、m+1個の第2の量子ビット(R)が、量子通信路286を通じて受信装置250に送信され、m+1個の第2の量子ビット(R)が、量子通信路285を通じて受信装置260に送信され、・・・(他省略)、m+1個の第2の量子ビット(R)が、量子通信路284を通じて受信装置270に送信される。なお、以上のように配布された初期量子状態(|Φ>)を式で表すと上述した(1)のようになる。
【0065】
〔初期量子状態検証処理〕
このように初期量子状態(|Φ>)が配布されると、例えば次に、初期量子状態検証処理が行われる。
以下、この初期量子状態検証処理について説明を行う。
まず、送信装置220〜240は、送信された複数(この例ではm+1個)の第1の量子ビット(S,S,…,S)と補助量子ビット(T,T,…,T)から、例えばランダムに選択した複数(この例ではm個)の第1の量子ビット(S,S,…,S)と補助量子ビット(T,T,…,T)をローカルに観測し、第1の実施の形態と同様に(以下同様)、検証情報(VS,…,VS)を、古典通信路290を通じて制御装置300に送信(出力)する。
【0066】
同様に、受信装置250〜270は、送信された複数(この例ではm+1個)の第2の量子ビット(R,R,…,R)から、例えばランダムに選択した複数(この例ではm個)の第2の量子ビット(R,R,…,R)をローカルに観測し、検証情報(VR,…,VR)を、古典通信路290を通じて制御装置300に送信(出力)する。
制御装置300は、送られた検証情報(VS,…,VS,VR,…,VR)を基に、第1の量子ビット(S,S,…,S)、補助量子ビット(T,T,…,T)及び第2の量子ビット(R,R,…,R)が合格か否かを判断する。ここで、検証結果が合格でなかった場合、制御装置300は、古典通信路290を通じ、NG情報を配布装置210、送信装置220〜240、受信装置250〜270に送信して処理を終了する。このNG情報を受け取った配布装置210、送信装置220〜240、受信装置250〜270は、それぞれの処理を初期状態にリセットする。
【0067】
一方、検証結果が合格であった場合、制御装置300は、古典通信路70を通じ、合格情報(D’)を送信装置220〜240に送信する。そして、この合格情報(D’)を受け取った送信装置220〜240は、以下の匿名通信処理を開始させる。
【0068】
〔匿名通信処理〕
匿名通信を行う場合、まず、送信装置220〜240において、それぞれ、送信内容(メッセージ)を特定する送信内容情報の入力を受け付け、この送信内容情報を記憶する。
また、各送信装置220〜240は、上記の初期量子状態検証処理に用いられなかった(この例では1個の)補助量子ビット(T,T,…,T)を抽出し、{|π>}(ただしπ∈F)の基底で観測する。補助量子ビット(T,T,…,T)の観測後、各送信装置220〜240は、それぞれ、前述の補助量子ビット観測済み情報(TM,TM,…,TM)を、古典通信路290を通じて制御装置300に送信(出力)する。
【0069】
このように制御装置300に送信された補助量子ビット観測済み情報(TM,TM,…,TM)は、制御装置300において受信され、記憶される。そして、制御装置300は、この補助量子ビット観測済み情報(TM,TM,…,TM)を検証し、全ての送信装置220〜240が補助量子ビット(T,T,…,T)を観測済みであるか、すなわち、全ての送信装置220〜240に対応する補助量子ビット観測済み情報(TM,TM,…,TM)が制御装置300に記憶されているか否かを判断する。ここで、全ての送信装置220〜240が補助量子ビット(T,T,…,T)を観測済みであると判断された場合、制御装置300は、量子状態が収縮した旨を示す量子状態決定情報(D)を、古典通信路290を通じて全ての送信装置220〜240に送信する。
【0070】
量子状態決定情報(D)を受け取った各送信装置220〜240は、前述したメッセージビットを特定する量子状態を生成(符号化)する。この量子状態となった第3の量子ビットは、上記の初期量子状態検証処理に用いられなかった(この例では1個の)第1の量子ビット(S,S,…,S)と共に観測(ベル測定)され、各送信装置220〜240は、この観測結果を用い、第1の実施の形態の場合と同様に回復方法情報(DE,DE,…,DE)を生成する。
このように各送信装置220〜240で生成された各回復方法情報(DE,DE,…,DE)は、古典通信路290を通じて制御装置300に送られ、制御装置300において記憶される。制御装置300は、記憶した各回復方法情報(DE,DE,…,DE)を検証し、それらが全て一致するか否かを判断する。
【0071】
ここで、これらの回復方法情報(DE,DE,…,DE)が全て一致していなかった場合(少なくとも一部が異なっていた場合)、制御装置300は、古典通信路290を通じ、不一致情報(NG)を、配布装置210、送信装置220〜240、受信装置250〜270に送る。この不一致情報(NG)を受信した配布装置210、送信装置220〜240、受信装置250〜270は、処理を初期化する。なお、この初期化においては、メッセージの再入力、再記憶は行わず、送信が完了していないメッセージビットの送信処理の続きを行うものとする。
【0072】
一方、回復方法情報(DE,DE,…,DE)が全て一致していた場合、制御装置300は、回復方法情報(DE)を、古典通信路290を通じて、受信装置250〜270に送信する。
この回復方法情報(DE)を受け取った各受信装置250〜270は、上述の初期量子状態検証処理に用いられなかった(この例では1個の)第2の量子ビット(R,R,…,R)を抽出し、受け取った回復方法情報(DE)を用い、この第2の量子ビット(R,R,…,R)の量子状態を変換する。
【0073】
そして、送信装置220〜240に記憶されているメッセージを構成するメッセージビット分だけ以上の処理をn回繰り返し、これにより、全てのメッセージの伝送を終了する。
以上説明したように、この形態の例では、まず、配布装置210において、複数の第1の量子ビット(S,S,…,S)と複数の第2の量子ビット(R,R,…,R)とを、特定の組み合わせでエンタングルド状態とした特定量子状態を、このエンタングルド状態にある量子ビットの組み合わせを相違させつつ、複数重ね合わせた量子状態(重ね合わせ量子状態)と、所定ビット以上が観測されることにより、重ね合わせ量子状態を、所定の特定量子状態に収縮させる複数の補助量子ビット(T,T,…,T)の量子状態(補助量子状態)と、からなる初期量子状態を生成し、 この初期量子状態を構成する第1の量子ビット(S,S,…,S)と補助量子ビット(T,T,…,T)とを、複数の送信装置220〜240に分散して出力し、この初期量子状態を構成する第2の量子ビット(R,R,…,R)を複数の受信装置250〜270に分散して出力する。
【0074】
次に、各送信装置220〜240において、送信内容を特定する送信内容情報の入力を受け付け、第1の量子ビット(S,S,…,S)と補助量子ビット(T,T,…,T)との入力を受け付け、入力された補助量子ビット(T,T,…,T)を観測する。そして、入力された送信内容情報を特定する量子状態を生成し、この量子状態が生成された第3の量子ビットと第1の量子ビット(S,S,…,S)とを観測する。その後、この観測結果を用い、この観測によって量子状態が収縮する第2の量子ビット(R,R,…,R)の量子状態を、第3の量子ビットの量子状態に変換するための回復方法情報を生成し、出力する。
【0075】
一方、受信装置250〜270では、第2の量子ビット(R,R,…,R)の入力を受け付け、回復方法情報の入力を受け付ける。そして、この回復方法情報を用い、第2の量子ビット(R,R,…,R)の量子状態を変換する。
ここで、第1の実施の形態と同様、各送信装置220〜240は、それぞれが観測した補助量子ビットの観測結果のみからは、初期量子状態の重ね合わせ量子状態が、どの特定量子状態に収縮したのかを知ることは不可能である。従って、各送信装置220〜240では、この送信装置220〜240に配布された第1の量子ビットが、どの受信装置250〜270に配布された第2の量子ビットとエンタングルド状態にあるのかを知ることはできない。これは受信装置250〜270側からみても同様である。
【0076】
従って、受信装置250〜270に入力された第2の量子ビットの量子状態を、送信装置220〜240から送信された回復方法情報を用いて変換したとしても、その変換結果が、どの送信装置220〜240の送信内容情報を特定する量子状態に該当するのかを知ることはできない。これにより、送信装置220〜240は、自己の送信内容情報がどの受信装置250〜270に伝達されたかを知ることはできず、同様に、受信装置250〜270は、伝達された送信内容情報がどの送信装置220〜240のものかを知ることができない。これにより、匿名通信の匿名性を十分確保することが可能となる。
【0077】
また、送信装置220〜240及び受信装置250〜270の数を増やし、それらに第1の量子ビット(S,S,…,S)、補助量子ビット(T,T,…,T)、及び第2の量子ビット(R,R,…,R)を配布してこの形態の匿名通信を行うことにより、初期量子状態の収縮時、どの第1の量子ビット(S,S,…,S)とどの第2の量子ビット(R,R,…,R)とがエンタングルド状態にあるのかの判断がより困難になり、匿名通信の安全性をより向上させることができる。
【0078】
さらに、第1の実施の形態の例が奏するその他の技術的効果を奏することは、この形態についても同様である。
なお、この発明は上述の実施の形態に限定されるものではない。例えば、この形態では制御装置300が匿名通信システム200の全体を制御することとしたが、この制御装置300の機能を複数の装置に分散することとしてもよく、それらの機能の少なくとも一部を配布装置210、送信装置220〜250、受信装置250〜270の何れかに分散することとしてもよい。
【0079】
また、上述のように、第1の実施の形態及び第2の実施の形態における処理機能は、コンピュータによって実現することができる。この場合、配布装置、送信装置、受信装置、制御装置の少なくとも一部が有すべき機能の処理内容はプログラムによって記述され、このプログラムをコンピュータで実行することにより、処理機能をコンピュータ上で実現することができる。
なお、この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよいが、具体的には、例えば、磁気記録装置として、ハードディスク装置、フレキシブルディスク、磁気テープ等を、光ディスクとして、DVD(Digital Versatile Disc)、DVD−RAM(Random Access Memory)、CD−ROM(Compact Disc Read Only Memory)、CD−R(Recordable)/RW(ReWritable)等を、光磁気記録媒体として、MO(Magneto−Optical disc)等を、半導体メモリとしてEPROM(Erasable and Programmable ROM)等を用いることができる。
【0080】
また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD−ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。
このようなプログラムを実行するコンピュータは、例えば、まず、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、一旦、自己の記憶装置に格納する。そして、処理実行時、このコンピュータは、自己の記録媒体に格納されたプログラムを読み取り、読み取ったプログラムに従った処理を実行する。また、このプログラムの別の実行形態として、コンピュータが可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することしてもよく、さらに、コンピュータにサーバコンピュータからプログラムが転送されるたびに、逐次、受け取ったプログラムに従った処理を実行することとしてもよい。
【0081】
【発明の効果】
以上説明したようにこの発明では、まず、量子状態配布装置において、重ね合わせ量子状態と補助量子状態とからなる初期量子状態を生成し、この初期量子状態を構成する第1の量子ビットと補助量子ビットとを、複数の量子匿名送信装置に分散して出力し、この初期量子状態を構成する第2の量子ビットを複数の量子匿名受信装置に分散して出力する。
【0082】
そして、量子匿名送信装置において、送信内容を特定する送信内容情報の入力を受け付け、量子状態配布装置から出力された第1の量子ビットと補助量子ビットとの入力を受け付け、この入力された補助量子ビットを観測する。その後、入力された送信内容情報を特定する量子状態を生成し、入力された第1の量子ビットと、量子状態が生成された第3の量子ビットとを観測する。さらに、この観測結果を用い、観測によって量子状態が収縮する第2の量子ビットの量子状態を、送信内容情報を特定する量子状態に変換するための回復方法情報を生成し、この回復方法情報を量子匿名受信装置に出力する。
【0083】
一方、量子匿名受信装置では、まず、量子状態配布装置から出力された第2の量子ビットの入力を受け付け、量子匿名送信装置から出力された回復方法情報の入力を受け付ける。そして、この入力された回復方法情報を用い、入力された第2の量子ビットの量子状態を変換する。
ここで、各量子匿名送信装置は、それぞれが観測した補助量子ビットの観測結果のみからは、重ね合わせ量子状態がどの特定量子状態に収縮したのかを知ることは不可能である。従って、各量子匿名送信装置では、この量子匿名送信装置に配布された第1の量子ビットが、どの量子匿名受信装置に配布された第2の量子ビットとエンタングルド状態にあるのかを知ることはできない。これは量子匿名受信装置側からみても同様である。
【0084】
従って、量子匿名受信装置に入力された第2の量子ビットの量子状態を、量子匿名送信装置から送信された回復方法情報を用いて変換したとしても、その変換結果が、どの量子匿名送信装置の送信内容情報を特定する量子状態に該当するのかを知ることはできない。これにより、量子匿名送信装置は、自己の送信内容情報がどの量子匿名受信装置に伝達されたかを知ることはできず、同様に、量子匿名受信装置は、伝達された送信内容情報がどの量子匿名送信装置のものかを知ることができない。これにより、匿名通信の匿名性を十分確保することが可能となる。
【図面の簡単な説明】
【図1】量子匿名通信システムの全体構成を例示した概念図。
【図2】(a)は、配布装置の機能構成を例示したブロック図、(b)は、制御装置80の機能構成を例示したブロック図。
【図3】送信装置の機能構成を例示したブロック図。
【図4】送信装置の機能構成を例示したブロック図。
【図5】受信装置の機能構成を例示したブロック図。
【図6】受信装置の機能構成を例示したブロック図。
【図7】配布装置の処理を説明するためのフローチャート。
【図8】制御装置の処理を説明するためのフローチャート。
【図9】(a)は、送信装置の処理を説明するためのフローチャート、(b)は、受信装置の処理を説明するためのフローチャート。
【図10】送信装置の処理を説明するためのフローチャート。
【図11】受信装置の処理を説明するためのフローチャート。
【図12】配布された量子ビットの量子状態を説明するための概念図。
【図13】収縮した特定量子状態を説明するための概念図。
【図14】(a)(b)は、エンタングルド状態にある量子状態を説明するための概念図。
【図15】(a)(b)は量子テレポーテーションを説明するための概念図。
【図16】量子匿名通信システムの全体構成を例示した概念図。
【符号の説明】
1、200 量子通信システム
10、210 配布装置
20、30、220〜240 送信装置
40、50、250〜270 受信装置
80、300 制御装置

Claims (13)

  1. 量子テレポーテーションを用いて匿名通信を行う量子匿名送信装置において、
    送信内容を特定する送信内容情報の入力を受け付ける送信内容情報入力手段と、
    エンタングルメント状態にある第1の量子ビットと、観測されることによって、上記第1の量子ビットのエンタングルメント状態の収縮に必要な条件の一部のみを成立させる補助量子ビットと、の入力を受け付ける量子状態入力手段と、
    上記量子状態入力手段において入力された上記補助量子ビットを観測する補助量子ビット観測手段と、
    上記送信内容情報入力手段において入力された上記送信内容情報を特定する量子状態を生成する符号化手段と、
    上記量子状態入力手段において入力された上記第1の量子ビットと、上記符号化手段によって量子状態が生成された第3の量子ビットと、を観測する量子ビット観測手段と、
    上記量子ビット観測手段による観測結果を用い、上記量子ビット観測手段における観測によって量子状態が収縮する第2の量子ビットの量子状態を、上記符号化手段によって生成された量子状態に変換するための回復方法情報を生成する回復方法情報生成手段と、
    上記回復方法情報生成手段において生成された上記回復方法情報を出力する回復方法情報出力手段と、
    を有することを特徴とする量子匿名送信装置。
  2. 上記回復方法情報出力手段において出力された上記回復方法情報が、他の量子匿名送信装置から出力された回復方法情報と一致しなかった場合に、処理のやり直しを指示する制御手段を、
    さらに有することを特徴とする請求項1記載の量子匿名送信装置。
  3. 上記補助量子ビット観測手段において上記補助量子ビットが観測された場合、上記補助量子ビットの観測が終了した旨の情報(以下「補助量子ビット観測済み情報」という。)を出力する補助量子ビット観測済み情報出力手段を、さらに有し、
    上記量子ビット観測手段は、
    所定数以上の量子匿名送信装置から上記補助量子ビット観測済み情報が出力された後に、上記第1の量子ビットと上記第3の量子ビットとを観測する手段であること、
    を特徴とする請求項1又は2の何れかに記載の量子匿名送信装置。
  4. 複数組の上記第1の量子ビット及び上記補助量子ビットの入力を受け付ける上記量子状態入力手段と、
    上記量子状態入力手段において入力された上記第1の量子ビット及び上記補助量子ビットから選択した、所定数以上の上記第1の量子ビット及び上記補助量子ビットの正当性の検証を制御するビット検証手段と、
    を有することを特徴とする請求項1から3の何れかに記載の量子匿名送信装置。
  5. 量子テレポーテーションを用いて匿名通信を行う量子匿名受信装置において、
    エンタングルメント状態にある第2の量子ビットの入力を受け付ける量子状態入力手段と、
    回復方法情報の入力を受け付ける回復方法情報入力手段と、
    上記回復方法情報入力手段において入力された上記回復方法情報を用い、上記量子状態入力手段において入力された上記第2の量子ビットの量子状態を変換する量子状態変換手段と、
    を有することを特徴とする量子匿名受信装置。
  6. 複数の上記第2の量子ビットの入力を受け付ける上記量子状態入力手段と、
    上記量子状態入力手段において入力された上記第2の量子ビットから選択した、所定数以上の上記第2の量子ビットの正当性の検証を制御するビット検証手段と、
    をさらに有することを特徴とする請求項5記載の量子匿名受信装置。
  7. 量子テレポーテーションを用いた匿名通信を可能にする量子状態配布装置において、
    複数の第1の量子ビットと複数の第2の量子ビットとを特定の組み合わせでエンタングルド状態とした特定量子状態を、このエンタングルド状態にある量子ビットの組み合わせを相違させつつ、複数重ね合わせた量子状態(以下「重ね合わせ量子状態」という。)と、所定ビット以上が観測されることにより、上記重ね合わせ量子状態を、所定の特定量子状態に収縮させる複数の補助量子ビットの量子状態(以下「補助量子状態」という。)と、からなる初期量子状態を生成する初期量子状態生成手段と、
    上記初期量子状態生成手段において生成された上記初期量子状態を構成する上記第1の量子ビットと上記補助量子ビットとを、複数の量子匿名送信装置に分散して出力し、この初期量子状態を構成する上記第2の量子ビットを複数の量子匿名受信装置に分散して出力する初期量子状態出力手段と、
    を有することを特徴とする量子状態配布装置。
  8. 上記初期量子状態生成手段は、
    上記初期量子状態を複数生成する手段であり、
    上記初期量子状態出力手段は、
    上記初期量子状態生成手段において生成された複数の上記初期量子状態を出力する手段であること、
    を特徴とする請求項7記載の量子状態配布装置。
  9. 上記初期量子状態は、
    kを上記量子匿名送信装置或いは上記量子匿名受信装置の数とし、上付き添え字(S)を、j番目(jは1以上k以下の自然数)の上記量子匿名送信装置に出力する上記第1の量子ビットに対応する添え字とし、上付き添え字(R)を、j番目の上記量子匿名受信装置に出力する上記第2の量子ビットに対応する添え字とし、上付き添え字(T)を、j番目の上記量子匿名送信装置に出力する上記補助量子ビットに対応する添え字とし、Fを置換情報の全体集合とし、σを、上記j番目の上記量子匿名送信装置に出力する上記補助量子ビットが観測されることによって特定される置換情報を意味し、Uσを、この置換情報が所定数以上特定されることにより置換方法が特定されるユニタリ変換とした場合における、
    Figure 2004349833
    であること、
    を特徴とする請求項7或いは8の何れかに記載の量子状態配布装置。
  10. 量子テレポーテーションを用いた量子匿名通信方法において、
    量子状態配布装置において行われる、
    複数の第1の量子ビットと複数の第2の量子ビットとを特定の組み合わせでエンタングルド状態とした特定量子状態を、このエンタングルド状態にある量子ビットの組み合わせを相違させつつ、複数重ね合わせた量子状態(以下「重ね合わせ量子状態」という。)と、所定ビット以上が観測されることにより、上記重ね合わせ量子状態を、所定の特定量子状態に収縮させる複数の補助量子ビットの量子状態(以下「補助量子状態」という。)と、からなる初期量子状態を生成する初期量子状態生成ステップと、
    上記初期量子状態生成ステップにおいて生成された上記初期量子状態を構成する上記第1の量子ビットと上記補助量子ビットとを、複数の量子匿名送信装置に分散して出力し、この初期量子状態を構成する上記第2の量子ビットを複数の量子匿名受信装置に分散して出力する初期量子状態出力ステップと、
    上記量子匿名送信装置において行われる、
    送信内容を特定する送信内容情報の入力を受け付ける送信内容情報入力ステップと、
    上記第1の量子ビットと上記補助量子ビットとの入力を受け付ける量子状態入力ステップと、
    上記量子状態入力ステップにおいて入力された上記補助量子ビットを観測する補助量子ビット観測ステップと、
    上記送信内容情報入力ステップにおいて入力された上記送信内容情報を特定する量子状態を生成する符号化ステップと、
    上記量子状態入力ステップにおいて入力された上記第1の量子ビットと、上記符号化ステップによって量子状態が生成された第3の量子ビットと、を観測する量子ビット観測ステップと、
    上記量子ビット観測ステップによる観測結果を用い、上記量子ビット観測ステップにおける観測によって量子状態が収縮する上記第2の量子ビットの量子状態を、上記符号化ステップによって生成された量子状態に変換するための回復方法情報を生成する回復方法情報生成ステップと、
    上記回復方法情報生成ステップにおいて生成された上記回復方法情報を出力する回復方法情報出力ステップと、
    上記量子匿名受信装置において行われる、
    上記第2の量子ビットの入力を受け付ける量子状態入力ステップと、
    上記回復方法情報の入力を受け付ける回復方法情報入力ステップと、
    上記回復方法情報入力ステップにおいて入力された上記回復方法情報を用い、上記量子状態入力ステップにおいて入力された上記第2の量子ビットの量子状態を変換する量子状態変換ステップと、
    を有することを特徴とする量子匿名通信方法。
  11. 請求項1から4の何れかに記載された量子匿名送信装置としてコンピュータを機能させるためのプログラム。
  12. 請求項5或いは6の何れかに記載された量子匿名受信装置としてコンピュータを機能させるためのプログラム。
  13. 請求項7から9の何れかに記載された量子状態配布装置としてコンピュータを機能させるためのプログラム。
JP2003142186A 2003-05-20 2003-05-20 量子匿名送信装置、量子匿名受信装置、量子状態配布装置、量子匿名通信方法、及びプログラム Pending JP2004349833A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003142186A JP2004349833A (ja) 2003-05-20 2003-05-20 量子匿名送信装置、量子匿名受信装置、量子状態配布装置、量子匿名通信方法、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003142186A JP2004349833A (ja) 2003-05-20 2003-05-20 量子匿名送信装置、量子匿名受信装置、量子状態配布装置、量子匿名通信方法、及びプログラム

Publications (1)

Publication Number Publication Date
JP2004349833A true JP2004349833A (ja) 2004-12-09

Family

ID=33530346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142186A Pending JP2004349833A (ja) 2003-05-20 2003-05-20 量子匿名送信装置、量子匿名受信装置、量子状態配布装置、量子匿名通信方法、及びプログラム

Country Status (1)

Country Link
JP (1) JP2004349833A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203559A (ja) * 2005-01-20 2006-08-03 Mitsubishi Electric Corp 量子暗号通信システム及び方法
US8189779B2 (en) 2007-05-23 2012-05-29 Japan Science And Technology Agency Quantum program concealing device and quantum program concealing method
WO2014065497A1 (ko) * 2012-10-23 2014-05-01 에스케이텔레콤 주식회사 양자키 분배 프로토콜에서 비트 오류 수정을 위한 치환 방법
JP2016519547A (ja) * 2013-05-23 2016-06-30 キュービテック,インコーポレイテッド 安全な有線通信およびワイヤレス通信のための量子暗号化技術を使用する非破損性公開鍵

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203559A (ja) * 2005-01-20 2006-08-03 Mitsubishi Electric Corp 量子暗号通信システム及び方法
JP4684663B2 (ja) * 2005-01-20 2011-05-18 三菱電機株式会社 量子暗号通信システム及び方法
US8189779B2 (en) 2007-05-23 2012-05-29 Japan Science And Technology Agency Quantum program concealing device and quantum program concealing method
WO2014065497A1 (ko) * 2012-10-23 2014-05-01 에스케이텔레콤 주식회사 양자키 분배 프로토콜에서 비트 오류 수정을 위한 치환 방법
KR101479112B1 (ko) 2012-10-23 2015-01-07 에스케이 텔레콤주식회사 양자키 분배 프로토콜에서 비트 오류 수정을 위한 치환 방법
US10103881B2 (en) 2012-10-23 2018-10-16 Sk Telecom Co., Ltd. Permutation method for correcting bit error in quantum key distribution protocol
JP2016519547A (ja) * 2013-05-23 2016-06-30 キュービテック,インコーポレイテッド 安全な有線通信およびワイヤレス通信のための量子暗号化技術を使用する非破損性公開鍵

Similar Documents

Publication Publication Date Title
Vazirani et al. Fully device independent quantum key distribution
Dulek et al. Quantum homomorphic encryption for polynomial-sized circuits
Ciampi et al. Combining private set-intersection with secure two-party computation
Naseri et al. A scheme for secure quantum communication network with authentication using GHZ-like states and cluster states controlled teleportation
Ben-Or et al. The universal composable security of quantum key distribution
Peng et al. Joint remote state preparation of arbitrary two-particle states via GHZ-type states
Ghiu Asymmetric quantum telecloning of d-level systems and broadcasting of entanglement to different locations using the “many-to-many” communication protocol
JP6363032B2 (ja) 鍵付替え方向制御システムおよび鍵付替え方向制御方法
Frederiksen et al. On the complexity of additively homomorphic UC commitments
Zapatero et al. Advances in device-independent quantum key distribution
Bartusek et al. On the round complexity of secure quantum computation
Meslouhi et al. Cryptanalysis on authenticated semi-quantum key distribution protocol using Bell states
Vazirani et al. The magazine archive includes every article published in Communications of the ACM for over the past 50 years.
Lu et al. Threshold quantum secret sharing based on single qubit
Wang et al. Joint remote preparation of a class of four-qubit cluster-like states with tripartite entanglements and positive operator-valued measurements
Bich et al. Deterministic joint remote preparation of an arbitrary qubit via Einstein-Podolsky-Rosen pairs
Das et al. Measurement device–independent quantum secure direct communication with user authentication
Panda et al. Quantum direct communication protocol using recurrence in k-cycle quantum walks
Holz et al. Linear-complexity private function evaluation is practical
Bich et al. Hierarchically controlling quantum teleportations
Broadbent Popescu-Rohrlich correlations imply efficient instantaneous nonlocal quantum computation
JP2004349833A (ja) 量子匿名送信装置、量子匿名受信装置、量子状態配布装置、量子匿名通信方法、及びプログラム
Agarwal et al. A new framework for quantum oblivious transfer
Nilesh Simple proof of security of the multiparty prepare and measure QKD
Lütkenhaus et al. Erasable bit commitment from temporary quantum trust