JP2004347476A - Measuring instrument for diffusion amount of chemical substance - Google Patents

Measuring instrument for diffusion amount of chemical substance Download PDF

Info

Publication number
JP2004347476A
JP2004347476A JP2003145326A JP2003145326A JP2004347476A JP 2004347476 A JP2004347476 A JP 2004347476A JP 2003145326 A JP2003145326 A JP 2003145326A JP 2003145326 A JP2003145326 A JP 2003145326A JP 2004347476 A JP2004347476 A JP 2004347476A
Authority
JP
Japan
Prior art keywords
chemical substance
air
cell
measuring
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003145326A
Other languages
Japanese (ja)
Inventor
Shinichiro Miki
慎一郎 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003145326A priority Critical patent/JP2004347476A/en
Publication of JP2004347476A publication Critical patent/JP2004347476A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring instrument for the diffusion amount of a chemical substance capable of highly precisely measuring the diffusion amount of the chemical substance diffused from respective parts in a room such as a building material, furniture and the like under a condition near to an actual environment. <P>SOLUTION: The measuring instrument for measuring the diffusion amount of the chemical substance diffused from respective parts in a room is composed of at least a cell having an opening part brought into contact with a region to be measured, an air supply pipe for supplying air to the cell and an air discharge pipe equipped with an exhaust means for discharging the chemical substance diffused into the cell from the region to be measured. The air supply pipe has a supplied air changeover means capable of changing over a clean air supply pipe and an environmental air supply pipe, and a chemical substance collecting means for measuring the amount of the chemical substance in clean air and environmental air. The air discharge pipe has an exhaust air changeover means capable of changing over a ventilation discharge pipe for performing the ventilation in the cell and a measuring discharge pipe equipped with the chemical substance collecting means for measuring the amount of the chemical substance diffused into the cell from the region to be measured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この出願の発明は、建材や家具等の各部位から放散される化学物質の量を測定するための装置に関するものである。さらに詳しくは、この出願の発明は、建材や家具等の室内各部位から放散される揮発性有機化合物等の化学物質の量を実環境に合致した条件で、精度高く測定するための化学物質放散量測定装置に関するものである。
【0002】
【従来の技術】
従来より内装材や建具等の建材には、意匠性や耐久性を高めるために塗料、接着剤、充填材等が多く使用されている。
【0003】
一方、シックハウス症候群などのアレルギー症状が大きな社会問題となっており、化学物質による環境や人体への悪影響に対する関心が高まっている。日本では、平成11年に「特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律」(Pollutant Release and Transfer Register:PRTR制度)が制定され、事業者の化学物質の使用量を制限する動向が活発になっている。
【0004】
また、シックハウス症候群の原因への対策として、建材、家具等から放散される揮発性有機化合物(VOC)等の化学物質の量や、その主要放散源を特定することが重要と考えられている。
【0005】
そこで、室内各部位からの化学物質放散量を測定するための化学物質放散量測定装置が提案されている。具体的には、P. Wolkoffらによって開発されたFLEC(Field and Laboratory Emission Cell:非特許文献1)や田辺らによって開発されたADSEC(Advanced Diffusive Sampling Emission Cell:特許文献1、非特許文献2)等が挙げられる。
【0006】
しかし、これまでに提案されている化学物質放散量測定装置では、実環境における真の化学物質放散量を測定できないという問題があった。
【0007】
例えば、FLECでは、化学物質の放散速度を測定するセル内を換気するために、空気清浄機等により清浄された空気を供給しているが、実際の室内空気は一定濃度の化学物質を含有しているため、測定結果に誤差が生じる。つまり、実際の室内における建材や家具は、一定濃度の化学物質を含む空気に曝されており、表面には化学物質が吸着して吸着平衡の状態を維持しているが、化学物質放散量測定装置のセル内に清浄空気が供給されると、空気と測定対象部位との界面に大きな濃度勾配が生じ、吸着平衡が崩れて測定対象部位の表面に吸着していた化学物質が脱離し、セル内に放散されるのである。そのため、実環境において測定対象部位から本来放散する化学物質に加えて、吸着平衡が崩れたことにより表面から脱離した化学物質がセル内に放散され、化学物質放散量として測定されることとなる。したがって、得られた化学物質放散量の測定値は、実環境における測定対象部位の化学物質放散量よりも大きな値となってしまうのである。
【0008】
一方、ADSECは換気システムを有さず、セル内に化学物質を吸着して捕集する拡散サンプラーを設置するものであるが、拡散サンプラーがセル内空気の化学物質を吸着してセル内空気を清浄化するため、同様に測定対象部位の吸着平衡が崩れることになる。
【0009】
したがって、実環境に近い条件下で化学物質放散量を測定できる化学物質放散量測定装置は知られていなかったのが実情である。
【0010】
【非特許文献1】
P. Wolkoff et al. ”Field and Laboratory Emission Cell: FLEC” IAQ Healthy Buildings, 1991, 160−165
【非特許文献2】
田辺ら「建材から発生するアルデヒド類のパッシブ測定法(ADSEC)の開発」,日本建築学会学術講演梗概集,Vol.2,No.1,719−722,2000
【特許文献1】
特開2002−122521号公報
【0011】
【発明が解決しようとする課題】
そこで、この出願の発明は、以上のとおりの事情に鑑みてなされたものであり、従来技術の問題点を解消し、建材や家具など室内等の各部位から放散される化学物質の放散量を、実環境に近い条件下で、精度高く測定できる化学物質放散量測定装置を提供することを課題としている。
【0012】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、まず第1には、少なくとも、測定対象部位に当接される開口部を有するセルと、該セルへ空気を供給するための空気供給管と、測定対象部位から該セル内に放散された化学物質をセル内から排出するための排気手段を具備した空気排出管とからなる、室内の各部位から放散される化学物質量を測定するための装置であって、前記空気供給管は、清浄空気供給管と環境空気供給管との切り換えが可能な供給空気切り換え手段と、清浄空気および環境空気中の化学物質量を測定するための化学物質捕集手段を有し、前記空気排出管は、セル内の換気を行うための換気用排出管と測定対象部位からセル内に放散された化学物質量を測定するための化学物質捕集手段を具備する測定用排出管との切り換えが可能な排出空気切り換え手段を有することを特徴とする化学物質放散量測定装置を提供する。
【0013】
また、この出願の発明は、第2には、該セルが、測定対象部位の表面を加熱、保温するための加熱手段と、該表面の温度を計測するための温度計測手段を有する前記の化学物質放散量測定装置を提供する。
【0014】
【発明の実施の形態】
この出願の発明の化学物質放散量測定装置は、シックハウス症候群の原因と考えられる各種の揮発性有機化学物質の建材や家具からの放散量を測定するためのものであり、その一例として図1に示されるものが挙げられる。
【0015】
この出願の発明の化学物質放散量測定装置(1)は、少なくとも、測定対象部位(9)に当接される開口部(21)を有するセル(2)と、該セル(2)へ空気を供給するための空気供給管(3)と、測定対象部位(9)から該セル内に放散された化学物質をセル(2)内から排出するための排気手段(5)を具備した空気排出管(4)とからなるものであるが、とくに
▲1▼ 空気供給管(3)が、環境空気供給管(31)と清浄空気供給管(32)を有し、これらがバルブ(34a、34a’、34b、34b’)等の供給空気切り換え手段(34)により切り換え可能となっており、環境空気と清浄空気について、それぞれ化学物質量を測定するための化学物質捕集手段(35)(35a、35b)を有する点、および
▲2▼ 空気排出管(4)が、セル内の換気を行うための換気用排出管(41)と測定対象部位(9)からセル(2)内に放散された化学物質量を測定するための化学物質捕集手段(45)を具備する測定用排出管(42)を有し、これらがバルブ(44a、44b、44b’)等の排出空気切り換え手段(44)により切り換え可能となっている点
を特徴とするものである。
【0016】
このような化学物質放散量測定装置(1)において、セル(2)の材質はとくに限定されないが、測定対象部位(9)からの化学物質放散量を正確に測定するためには、密閉性が高く、揮発性有機化合物等の化学物質を放散しないものが望ましい。具体的には、ステンレスやガラスが例示される。また、セル(2)の大きさや形状についてもとくに限定されない。測定対象部位(9)の大きさ等に応じて適宜変更でき、例えば住宅の室内において特定部位からの化学物質放散量を測定する場合には携帯に適した大きさとし、また建材や家具等の製造現場において製品からの化学物質放散量を測定する場合にはある程度大きなものとしてもよい。また、セル(2)は、前記のとおり、開口部(21)を有しており、この開口部(21)を測定対象部位(9)に当接して測定対象部位(9)から放散される化学物質を捕捉するものであることから、測定対象部位(9)と開口部(21)の密着性を高め、セル(2)内の気密を保つためにパッキング(22)を有するものとすることが好ましい。このようなパッキング(22)は、セル(2)に一体化されるものであってもよいし、別個に設置するものであってもよいが、いずれの場合にも交換可能であることが好ましい。また、パッキング(22)の材質は、セル(2)と同様に、化学物質を放散しないものが好ましく、例えばフッ素ゴム、フッ素樹脂、シリコーンゴム等が挙げられる。
【0017】
さらに、この出願の発明の化学物質放散量測定装置(1)において、空気供給管(3)や空気排出管(4)、供給空気切り換え手段(34)や排出空気切り換え手段(44)、あるいは排気手段(5)などの材質についても、密閉性が保たれ、化学物質を放散しないものであればよく、とくに限定されない。
【0018】
この出願の発明の化学物質放散量測定装置(1)において、清浄空気は、清浄空気供給管(32)に具備された清浄空気供給手段(6)によって供給される。このような清浄空気供給手段(6)としては、フィルター、活性炭、吸着剤、吸収剤等を備えた空気清浄機や、クリーンエアや乾燥空気を充填したボンベが適用できる。また、化学物質捕集手段(35)については、各種の化学物質分析装置に直結させてもよいが、好ましくは、市販の捕集管を使用する。このような捕集管を用いた場合には、捕集管に捕集された化学物質を適当な溶媒で溶出し、その成分や濃度をガスクロマトグラフィー等の分析装置により測定することができる。このような捕集管は、測定対象となる化学物質に応じて適宜選択できる。例えば、シックハウス症候群の主な原因物質と考えられるホルムアルデヒド、アセトアルデヒド等の測定には、2,4−ジニトロフェニルヒドラジン(DNPH)含浸シリカ捕集管が、ベンゼン、トルエン、パラジクロロベンゼン等の芳香族系揮発性有機化合物の測定には、活性炭充填捕集管が適用できる。
【0019】
以上のとおりのこの出願の発明の化学物質放散量測定装置(1)は、さらに、セル(2)の開口部(21)に当接される測定対象部位(9)の表面を任意の温度に加熱、保温するための加熱手段(81)および測定対象部位(9)の表面温度を計測するための温度計測手段(82)を有していてもよい。このような加熱手段(81)を用いることにより、測定対象部位(9)の表面が気温の上昇等により高温となった場合の化学物質放散量を測定することが可能となる。
【0020】
次に、この出願の発明の化学物質放散量測定装置(1)を用いて測定対象部位(9)からの化学物質の放散量を測定する方法について説明する。
【0021】
〔1〕 まず、測定対象部位(9)にパッキング(22)を介してセル(2)の開口部(21)を当接する。次いで、環境空気供給管(31)のバルブ(34a、34a’)と、換気用排出管(41)のバルブ(44a)を「開」とし、その他のバルブ(34b、34b’、44b、44b’)を「閉」として排気手段(5)を稼働させる。これにより、環境空気供給管(31)を通じて環境空気がセル(2)に供給され、換気用排出管(41)を通じて排気される。このとき、環境空気は、化学物質捕集手段(35a)を通るため、空気中に含まれる化学物質量を予め測定しておくことが可能となる。
【0022】
なお、ここで「環境空気」とは、測定対象部位(9)が置かれている環境の空気を意味する。例えば、住居の室内に置かれた家具からの化学物質放散量を測定する場合には、この環境空気は室内空気を意味する。
【0023】
〔II〕 次に、環境空気供給管(31)の化学物質捕集手段(35a)をはずし、同様に環境空気供給管(31)のバルブ(34a、34a’)と、換気用排出管(41)のバルブ(44a)を「開」とし、その他のバルブ(34b、34b’、44b、44b’)を「閉」として排気手段(5)を稼働させる。これにより、セル(2)内が環境空気で換気されるため、測定毎の開始条件を一定にするとともに、セル(2)内の雰囲気を測定対象部位(9)が存在する環境(室内など)と同等のものにすることが可能となる。
【0024】
〔III〕 さらに、環境空気供給管(31)のバルブ(34a、34a’)と測定用排出管(42)のバルブ(44b、44b’)を「開」とし、換気用排出管(41)のバルブ(44a)およびその他のバルブ(34b、34b’)を「閉」として、排気手段(5)を稼働させる。これにより、環境空気がセル(2)内に供給され、同時に測定対象部位(9)から放散された化学物質を測定用排出管(42)に設置された化学物質捕集手段(45a)により測定することができる。
【0025】
以上のとおりの操作により、環境空気を供給した際の測定対象部位(9)からの化学物質の放散量を測定することができる。つまり、化学物質捕集手段(45aおよび35a)により捕集された化学物質の量を各種の分析方法により定量し、その差を測定対象部位(9)の面積と測定時間(工程〔III〕の所要時間)で割ることにより、単位時間単位面積当たりの化学物質放散量を算出できるのである。
【0026】
この出願の発明の化学物質放散量測定装置(1)では、さらに、清浄空気を供給した場合の化学物質の放散量をも測定できる。すなわち、
〔IV〕 清浄空気供給手段(6)と化学物質捕集手段(35b)を有する清浄空気供給管(32)のバルブ(34b、34b’)および換気用排出管(41)のバルブ(44a)を「開」とし、それ以外のバルブ(34a、34a’、44b、44b’)を「閉」として、排気手段(5)を稼働させる。これにより、セル(2)内が清浄空気で置換されるとともに、化学物質捕集手段(35b)により清浄空気中の化学物質量を測定できる。
【0027】
〔V〕 そして、工程(III)で使用した化学物質捕集手段(45a)を交換した後、清浄空気供給管(32)のバルブ(34b、34b’)および測定用排出管(42)のバルブ(44b、44b’)を「開」とし、換気用排出管(41)のバルブ(44a)およびその他のバルブ(34a、34a’)を「閉」として、排気手段(5)を稼働させることにより、清浄空気がセル(2)内に供給され、同時に測定対象部位(9)から放散された化学物質を測定用排出管(42)に設置された化学物質捕集手段(45b)により測定することができる。
【0028】
そして、前記と同様に、化学物質捕集手段(45bおよび35b)により捕集された化学物質の量を各種の分析方法により定量し、その差を測定対象部位(9)の面積と測定時間(工程〔V〕の所要時間)で割ることにより、清浄空気を供給した際の、測定対象部位(9)からの単位時間単位面積当たりの化学物質放散量を算出できるのである。
【0029】
以上のとおりの化学物質放散量の測定方法を、より簡便に行うためには、工程〔II〕において環境空気供給管(31)の化学物質捕集手段(35a)をはずす操作や工程〔V〕において化学物質捕集手段(45)を交換する操作を省略することが望ましい。したがって、例えば、図2に示されるように、この出願の発明の化学物質放散量測定装置(1)において、環境空気供給管(31)に化学物質捕集手段(35a)を有さない経路(311)と有する経路(312)を設け、バルブ(34a、34a’、34c)の開閉のみにより切り換え可能としたり、測定用排出管(42)を環境空気用(421)と清浄空気用(422)に分岐させ、バルブ(44a’、44a’’、44b、44b’)の開閉のみにより切り換え可能としてもよい。
【0030】
あるいは、この出願の発明の化学物質放散量測定装置(1)の構成をより簡略化することも可能である。すなわち、図3に示されるとおり、空気供給管(3)に接続した化学物質捕集手段(35a)を取り外し可能とし、かつ清浄空気供給手段(6)として代用するのである。これにより、空気供給管(3)を1本の配管から構成されるものとし、環境空気の供給、環境空気中の化学物質の捕集、清浄空気の供給をこの1本の配管で行うことが可能となる。また、空気排出管(4)の化学物質捕集手段(45a、45b)を取り外し可能とすることにより、空気排出管(4)を1本の配管から構成されるものとすれば、環境空気によるセル(2)内の置換、環境空気を供給した際に測定対象部位(9)から放散される化学物質量の測定、清浄空気を供給した際に測定対象部位(9)から放散される化学物質量の測定をこの1本の配管を用いて行うことが可能となる。ただし、化学物質放散量測定装置(1)の構成をこのように簡略化するためには、清浄空気供給手段(6)として代用する化学物質捕集手段(35a)が極めて高い化学物質捕集能を有し、環境空気中の化学物質をほぼ100%捕集、除去できるものとする必要がある。
【0031】
次に、以上のとおりのこの出願の発明の化学物質放散量測定装置(1)を用いて、測定対象部位(9)の化学物質放散量を算出する方法について説明する。なお、以下の式(1)および(2)は、前記の図1〜3に例示されるこの出願の発明の化学物質放散量測定装置(1)のいずれを用いた場合にも適用できるものである。化学物質捕集手段(35、45)を交換可能とした場合(図1、図3)、および化学物質捕集手段(35、45)を複数設け、バルブ(34a、34a’、34c、44a’、44a’’、44b、44b’)の操作により切り換え可能とした場合(図2)のいずれにおいても、環境空気中の化学物質は符号(35a)、清浄空気中の化学物質は符号(35b)、環境空気を供給した際に測定対象部位(9)から放散される化学物質は符号(45a)、清浄空気を供給した際に測定対象部位(9)から放散される化学物質は符号(45b)で表される化学物質捕集手段により捕集されたものとする。また、以下の式において、添字Eは環境空気、添字Pは清浄空気、添字iは供給空気、添字oは排出空気を表す。
【0032】
〔環境空気を供給した際の測定対象部位からの単位時間単位面積当たりの化学物質放散量M(μg/mh)〕
={mEo−mEi}/A/t ・・・(1)
ただし、
Eo:化学物質測定手段(45a)によって捕集された化学物質mの量(μg)
Ei:化学物質測定手段(35a)によって捕集された化学物質mの量(μg)
A:セル内の測定対象部位の面積(cm
t:化学物質放散量測定装置の運転時間(h)
〔清浄空気を供給した際の測定対象部位からの単位時間単位面積当たりの化学物質放散量M(μg/mh)〕
={mPo−mPi}/A/t ・・・(2)
Po:化学物質測定手段(45b)によって捕集された化学物質mの量(μg)
Pi:化学物質測定手段(35b)によって捕集された化学物質mの量(μg)
A:セル内の測定対象部位の面積(cm
t:化学物質放散量測定装置の運転時間(h)
以上の式により算出される測定対象部位(9)からの化学物質放散量では、式(1)によって算出されるMが実環境における測定対象部位(9)からの真の化学物質放散量を表す。後述の実施例からも明らかなように、式(2)によって算出されるMは、Mの値と一致せず、より大きな値となる。
【0033】
したがって、この出願の発明の化学物質放散量測定装置(1)により、従来の化学物質放散量測定装置では得られなかった実環境における真の化学物質放散量を精度高く測定することが可能となる。
【0034】
以下、実施例を示し、この出願の発明の実施の形態についてさらに詳しく説明する。もちろん、この出願の発明は以下の例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。
【0035】
【実施例】
<実施例1>
室内ホルムアルデヒド濃度が73μg/mである住宅の居室(施工後約3年)において、床(Fc1フローリング床材)と壁(石膏ボード基材上にオレフィンシート製壁紙をホルムアルデヒド非含有接着剤にて貼付)のホルムアルデヒド放散量を図1に示した構成を有する化学物質放散量測定装置を用いて行った。
【0036】
セルの容積は0.0004 m、測定対象部位のセル内における表面積は0.02 m、本装置運転時の時間あたりの空気流量は0.02 m/h、各測定手順における本装置の運転時間を2時間とした。また、環境温度は23℃であった。
【0037】
化学物質捕集手段(35a、35b、45a、45b)としては、DNPHサンプラー(商品名:Sep−Pak XpoSure, Waters社製)を用いた。運転後に各DNPHサンプラーにアセトニトリルを滴下し、DNPH誘導体化されたホルムアルデヒドを溶出させ、高速液体クロマトグラフ((株)島津製作所製)にてホルムアルデヒド−DNPH誘導体の定量を行い、捕集されたホルムアルデヒド量を定量した。
<実施例2>
化学物質放散量測定装置の構成を図3(a)に示したものとした以外は、実施例1と同様の方法により、ホルムアルデヒド量を定量した。
<実施例3>
化学物質放散量測定装置の構成を図3(b)に示したものとし、測定対象部位の表面温度を30℃に加温して実施例1と同様の方法により各部位のホルムアルデヒド量を定量した。
【0038】
実施例1〜3において各化学物質捕集手段(35a、35b、45a、45b)によって捕集されたホルムアルデヒド量、および前記の式(1)、(2)により算出された、室内空気供給時のホルムアルデヒド放散量と清浄空気供給時のホルムアルデヒド放散量を表1に示した。
【0039】
【表1】

Figure 2004347476
実施例1〜3のいずれにおいても、床からのホルムアルデヒド放散量は、清浄空気供給時と室内空気供給時で大きな差が見られなかった。一方、壁からのホルムアルデヒド放散量は、室内空気供給時の値が清浄空気供給時の値よりも小さかった。
【0040】
これより、ホルムアルデヒドを含む室内空気に長期間曝されたことにより、壁表面に多量のホルムアルデヒドが吸着していたことが示唆された。清浄空気を供給した場合には、壁表面におけるホルムアルデヒドの吸着平衡が崩れ、ホルムアルデヒドが脱離したためにホルムアルデヒド放散量が大きくなったと考えられる。一方、室内空気を供給した場合には、吸着平衡が崩れず、壁自体が放散するホルムアルデヒド量を正確に測定できた。
【0041】
さらに、測定対象部位の表面温度が高い場合(実施例3)には、ホルムアルデヒドの放散量が増大することが確認された。これより、夏期や暖房器具使用時における各部位からの化学物質放散量が予測できた。
【0042】
【発明の効果】
以上詳しく説明したとおり、この出願の発明により、内装材や家具等の各部位から放散される化学物質の放散量を実環境に即した条件で正確に測定できる化学物質放散量測定装置が提供される。
【図面の簡単な説明】
【図1】この出願の発明の化学物質放散量測定装置の一例を示した概略模式図である。
【図2】この出願の発明の化学物質放散量測定装置の別の一例を示した概略模式図である。
【図3】この出願の発明の化学物質放散量測定装置のさらに別の一例を示した概略模式図である。
【符号の説明】
1 化学物質放散量測定装置
2 セル
21 開口部
22 パッキング
3 空気供給管
31 環境空気供給管
311 化学物質捕集手段を有さない経路
312 化学物質捕集手段を有する経路
32 清浄空気供給管
34 供給空気切り換え手段
34a バルブ
34a’ バルブ
34b バルブ
34b’ バルブ
34c バルブ
35 化学物質捕集手段
35a 化学物質捕集手段
35b 化学物質捕集手段
4 空気排出管
41 換気用排出管
42 測定用排出管
421 環境空気用
422 清浄空気用
44 排出空気切り換え手段
44a バルブ
44a’ バルブ
44a’’ バルブ
44b バルブ
44b’ バルブ
45 化学物質捕集手段
45a 化学物質捕集手段
45b 化学物質捕集手段
5 排気手段
6 清浄空気供給手段
7 流量計
81 加熱手段
82 温度計測手段
9 測定対象部位[0001]
TECHNICAL FIELD OF THE INVENTION
The invention of this application relates to an apparatus for measuring an amount of a chemical substance emitted from each part such as a building material and furniture. More specifically, the invention of this application is a chemical substance emission for accurately measuring the amount of volatile organic compounds and other chemical substances emitted from various parts of a room, such as building materials and furniture, under conditions that match the actual environment. It relates to a quantity measuring device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, paints, adhesives, fillers, and the like have been frequently used for building materials such as interior materials and fittings in order to enhance designability and durability.
[0003]
On the other hand, allergic symptoms such as sick house syndrome have become a major social problem, and interest in adverse effects on the environment and the human body by chemical substances has been increasing. In Japan, the “Pollutant Release and Transfer Register (PRTR) system” was enacted in 1999, enacting the “Pollutant Release and Transfer Register (PRTR) system”. There is a growing trend to limit the amount.
[0004]
In addition, it is considered important to identify the amounts of chemical substances such as volatile organic compounds (VOC) emitted from building materials, furniture, and the like, and the main emission sources thereof, as measures against the cause of sick house syndrome.
[0005]
Therefore, a chemical substance emission amount measuring device for measuring the amount of chemical substance emission from each part of the room has been proposed. Specifically, P.S. FLEC (Field and Laboratory Emission Cell: Non-Patent Document 1) developed by Wolkoff et al. And ADSEC (Advanced Diffusive Sampling Emission Cell: Non-Patent Document 1) developed by Tanabe et al.
[0006]
However, the chemical substance emission amount measuring device proposed so far has a problem that the true chemical substance emission amount in the real environment cannot be measured.
[0007]
For example, FLEC supplies air that has been purified by an air purifier or the like in order to ventilate the inside of a cell that measures the emission rate of chemical substances, but actual indoor air contains a certain concentration of chemical substances. Error occurs in the measurement result. In other words, building materials and furniture in an actual room are exposed to air containing a certain concentration of chemical substances, and the chemical substances are adsorbed on the surface to maintain the state of adsorption equilibrium. When clean air is supplied into the cell of the device, a large concentration gradient occurs at the interface between the air and the measurement target site, the adsorption equilibrium is broken, and the chemical substances adsorbed on the surface of the measurement target site are desorbed, and the cell is desorbed. It is dissipated inside. Therefore, in addition to the chemical substance originally radiated from the measurement target site in the real environment, the chemical substance desorbed from the surface due to the collapse of the adsorption equilibrium is radiated into the cell and measured as the amount of chemical substance radiated . Therefore, the measured value of the obtained chemical substance emission amount becomes a value larger than the chemical substance emission amount of the measurement target portion in the real environment.
[0008]
On the other hand, ADSEC does not have a ventilation system and installs a diffusion sampler in the cell to adsorb and collect chemicals, but the diffusion sampler adsorbs chemicals in the air in the cell and removes air in the cell. Since the cleaning is performed, the adsorption equilibrium of the measurement target site is similarly broken.
[0009]
Therefore, a chemical substance emission amount measuring device capable of measuring a chemical substance emission amount under a condition close to a real environment has not been known.
[0010]
[Non-patent document 1]
P. See Wolkoff et al. "Field and Laboratory Emission Cell: FLEC" IAQ Health Buildings, 1991, 160-165.
[Non-patent document 2]
Tanabe et al., "Development of Passive Measurement Method for Aldehydes Emitted from Building Materials (ADSEC)," Proc. Of the Architectural Institute of Japan, Vol. 2, No. 1,719-722,2000
[Patent Document 1]
JP 2002-122521 A
[Problems to be solved by the invention]
Therefore, the invention of this application has been made in view of the circumstances described above, and solves the problems of the prior art to reduce the amount of chemical substances radiated from various parts such as indoors such as building materials and furniture. It is another object of the present invention to provide a chemical substance emission amount measuring device capable of measuring with high accuracy under conditions close to a real environment.
[0012]
[Means for Solving the Problems]
The invention of this application solves the above-mentioned problems. First, at least, a cell having an opening abutting on a measurement target portion, and an air supply pipe for supplying air to the cell And an air exhaust pipe provided with an exhaust means for exhausting the chemical substance diffused into the cell from the measurement target part from the cell, for measuring the amount of the chemical substance diffused from each part in the room. The air supply pipe is a supply air switching means capable of switching between a clean air supply pipe and an environmental air supply pipe, and a chemical substance for measuring the amount of chemical substances in the clean air and the environmental air. The air exhaust pipe has a ventilation exhaust pipe for ventilating the inside of the cell and a chemical substance collecting means for measuring an amount of a chemical substance diffused into the cell from a measurement target site. With the discharge pipe for measurement Rikae provide chemical emission rate measuring apparatus characterized by having an exhaust air switching means capable.
[0013]
Secondly, the invention of this application is characterized in that the cell has a heating means for heating and keeping the surface of the measurement target site and a temperature measuring means for measuring the temperature of the surface. Provided is a device for measuring a substance emission amount.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The chemical substance emission amount measuring device of the invention of this application is for measuring the emission amount of various volatile organic chemical substances, which are considered to be a cause of sick house syndrome, from building materials and furniture. What is shown is mentioned.
[0015]
The chemical substance emission measuring device (1) according to the invention of this application includes at least a cell (2) having an opening (21) abutting on a measurement target part (9), and air to the cell (2). An air exhaust pipe provided with an air supply pipe (3) for supplying and an exhaust means (5) for exhausting a chemical substance diffused into the cell from a site to be measured (9) from the cell (2). (1) The air supply pipe (3) has an environmental air supply pipe (31) and a clean air supply pipe (32), which are valves (34a, 34a '). , 34b, 34b ') and the like, and can be switched by means of supply air switching means (34), and chemical substance collecting means (35), (35a, 35a, 35b), and (2) an air exhaust pipe ( 4) a ventilation pipe (41) for ventilating the inside of the cell and a chemical substance collecting means () for measuring the amount of the chemical substance diffused into the cell (2) from the measurement target site (9). 45), characterized in that they have a discharge pipe for measurement (42) provided with a discharge air switching means (44) such as a valve (44a, 44b, 44b '). is there.
[0016]
In such a chemical substance emission amount measuring device (1), the material of the cell (2) is not particularly limited, but in order to accurately measure the amount of chemical substance emission from the measurement target site (9), the hermeticity is required. Those which are high and do not emit chemical substances such as volatile organic compounds are desirable. Specifically, stainless steel and glass are exemplified. The size and shape of the cell (2) are not particularly limited. It can be changed as appropriate according to the size of the measurement target part (9). For example, when measuring the amount of emission of a chemical substance from a specific part in a room in a house, the size should be suitable for carrying, and manufacturing of building materials and furniture. When measuring the amount of emission of a chemical substance from a product at a site, it may be large to some extent. The cell (2) has the opening (21) as described above, and the opening (21) comes into contact with the measurement target site (9) and is radiated from the measurement target site (9). Because it captures chemical substances, it should have a packing (22) to increase the adhesion between the measurement target site (9) and the opening (21) and to keep the cell (2) airtight. Is preferred. Such a packing (22) may be integrated with the cell (2) or may be separately installed, but is preferably replaceable in any case. . The material of the packing (22) is preferably a material which does not emit a chemical substance, like the cell (2), and examples thereof include fluororubber, fluororesin, and silicone rubber.
[0017]
Further, in the chemical substance emission measuring device (1) of the present invention, the air supply pipe (3), the air discharge pipe (4), the supply air switching means (34), the exhaust air switching means (44), or the exhaust gas The material such as the means (5) is not particularly limited as long as the airtightness is maintained and the chemical substance is not diffused.
[0018]
In the chemical substance emission amount measuring device (1) of the present invention, clean air is supplied by clean air supply means (6) provided in a clean air supply pipe (32). As such a clean air supply means (6), an air purifier equipped with a filter, activated carbon, an adsorbent, an absorbent, or the like, or a cylinder filled with clean air or dry air can be used. In addition, the chemical substance collecting means (35) may be directly connected to various chemical substance analyzers, but preferably, a commercially available collecting tube is used. When such a collection tube is used, the chemical substance collected in the collection tube is eluted with an appropriate solvent, and its components and concentrations can be measured by an analyzer such as gas chromatography. Such a collection tube can be appropriately selected according to the chemical substance to be measured. For example, for the measurement of formaldehyde, acetaldehyde, etc., which are considered to be the main causative substances of sick house syndrome, 2,4-dinitrophenylhydrazine (DNPH) impregnated silica collection tubes use aromatic volatiles such as benzene, toluene, and paradichlorobenzene. For the measurement of a volatile organic compound, an activated carbon-filled collection tube can be used.
[0019]
As described above, the chemical substance emission amount measuring apparatus (1) of the invention of this application further sets the surface of the measurement target portion (9) in contact with the opening (21) of the cell (2) to an arbitrary temperature. The apparatus may include a heating unit (81) for heating and keeping the temperature, and a temperature measuring unit (82) for measuring the surface temperature of the measurement target portion (9). By using such a heating means (81), it becomes possible to measure the amount of chemical substance emission when the surface of the measurement target portion (9) becomes high temperature due to a rise in air temperature or the like.
[0020]
Next, a method of measuring the amount of emission of a chemical substance from the measurement target site (9) using the chemical substance emission amount measurement apparatus (1) of the present invention will be described.
[0021]
[1] First, the opening (21) of the cell (2) is brought into contact with the measurement target site (9) via the packing (22). Next, the valves (34a, 34a ') of the environmental air supply pipe (31) and the valve (44a) of the ventilation exhaust pipe (41) are opened, and the other valves (34b, 34b', 44b, 44b '). ) Is set to “closed” to operate the exhaust means (5). Thereby, the environmental air is supplied to the cell (2) through the environmental air supply pipe (31), and is exhausted through the ventilation exhaust pipe (41). At this time, since the environmental air passes through the chemical substance collecting means (35a), the amount of the chemical substance contained in the air can be measured in advance.
[0022]
Here, “environmental air” means air in the environment where the measurement target portion (9) is located. For example, when measuring the amount of emission of chemical substances from furniture placed in a room of a dwelling, this ambient air means indoor air.
[0023]
[II] Next, the chemical substance collecting means (35a) of the environmental air supply pipe (31) is removed, and similarly, the valves (34a, 34a ') of the environmental air supply pipe (31) and the ventilation discharge pipe (41) are removed. The valve (44a) is opened and the other valves (34b, 34b ', 44b, 44b') are closed to operate the exhaust means (5). Thereby, since the inside of the cell (2) is ventilated with the environmental air, the start condition for each measurement is made constant, and the atmosphere in the cell (2) is changed to the environment (room or the like) where the measurement target portion (9) exists. It is possible to make it equivalent to
[0024]
[III] Further, the valves (34a, 34a ') of the environmental air supply pipe (31) and the valves (44b, 44b') of the measurement discharge pipe (42) are opened, and the ventilation discharge pipe (41) is opened. The valve (44a) and the other valves (34b, 34b ') are closed, and the exhaust means (5) is operated. Thereby, the environmental air is supplied into the cell (2), and at the same time, the chemical substance radiated from the measurement target part (9) is measured by the chemical substance collecting means (45a) provided in the measurement discharge pipe (42). can do.
[0025]
By the operation as described above, the amount of emission of the chemical substance from the measurement target site (9) when the environmental air is supplied can be measured. That is, the amount of the chemical substance collected by the chemical substance collecting means (45a and 35a) is quantified by various analysis methods, and the difference is determined by the area of the measurement target site (9) and the measurement time (step [III]). By dividing by the required time, it is possible to calculate the chemical substance emission amount per unit area per unit time.
[0026]
The chemical substance emission amount measuring device (1) of the present invention can further measure the emission amount of the chemical substance when clean air is supplied. That is,
[IV] The valves (34b, 34b ') of the clean air supply pipe (32) having the clean air supply means (6) and the chemical substance collecting means (35b) and the valve (44a) of the exhaust pipe (41) for ventilation are provided. The valve is opened and the other valves (34a, 34a ', 44b, 44b') are closed, and the exhaust means (5) is operated. As a result, the inside of the cell (2) is replaced with clean air, and the amount of chemical substances in the clean air can be measured by the chemical substance collecting means (35b).
[0027]
[V] Then, after replacing the chemical substance collecting means (45a) used in the step (III), the valves (34b, 34b ') of the clean air supply pipe (32) and the valves of the measurement discharge pipe (42) are exchanged. (44b, 44b ') is opened, the valve (44a) of the ventilation exhaust pipe (41) and other valves (34a, 34a') are closed, and the exhaust means (5) is operated. And measuring the chemical substance supplied with the clean air into the cell (2) and simultaneously radiated from the measurement target part (9) by the chemical substance collecting means (45b) provided in the measurement discharge pipe (42). Can be.
[0028]
Then, in the same manner as described above, the amount of the chemical substance collected by the chemical substance collecting means (45b and 35b) is quantified by various analysis methods, and the difference is determined by the area of the measurement target site (9) and the measurement time ( By dividing by the time required for the process [V]), it is possible to calculate the chemical substance emission amount per unit time and unit area from the measurement target site (9) when the clean air is supplied.
[0029]
In order to more easily carry out the method for measuring the amount of emitted chemical substances as described above, in step [II], the operation of removing the chemical substance collecting means (35a) of the environmental air supply pipe (31) or the step [V] It is desirable to omit the operation of replacing the chemical substance collecting means (45) in the above. Therefore, for example, as shown in FIG. 2, in the chemical substance emission measuring device (1) of the invention of this application, the environmental air supply pipe (31) does not have the chemical substance collecting means (35a) in the path ( 311) and a path (312), which can be switched only by opening and closing the valves (34a, 34a ', 34c), and the exhaust pipe for measurement (42) for ambient air (421) and for clean air (422). And may be switched only by opening and closing the valves (44a ′, 44a ″, 44b, 44b ′).
[0030]
Alternatively, the configuration of the chemical substance emission amount measuring device (1) of the invention of this application can be further simplified. That is, as shown in FIG. 3, the chemical substance collecting means (35a) connected to the air supply pipe (3) is made removable and used as a clean air supply means (6). Thereby, the air supply pipe (3) is constituted by one pipe, and supply of environmental air, collection of chemical substances in the environmental air, and supply of clean air can be performed by this one pipe. It becomes possible. Further, by making the chemical substance collecting means (45a, 45b) of the air discharge pipe (4) detachable, if the air discharge pipe (4) is constituted by one pipe, the air discharge pipe (4) can be made of environmental air. Replacement in the cell (2), measurement of the amount of the chemical substance radiated from the measurement target part (9) when the environmental air is supplied, and chemical substance radiated from the measurement target part (9) when the clean air is supplied The measurement of the amount can be performed using this one pipe. However, in order to simplify the structure of the chemical substance emission amount measuring device (1) in this way, the chemical substance collecting means (35a) used as the clean air supply means (6) requires an extremely high chemical substance collecting capacity. It is necessary to be able to collect and remove almost 100% of chemical substances in environmental air.
[0031]
Next, a method of calculating the chemical substance emission amount of the measurement target site (9) using the chemical substance emission amount measurement apparatus (1) of the present invention as described above will be described. The following equations (1) and (2) are applicable to any of the chemical substance emission measuring apparatuses (1) of the present invention illustrated in FIGS. is there. When the chemical substance collecting means (35, 45) is replaceable (FIGS. 1, 3), a plurality of chemical substance collecting means (35, 45) are provided, and the valves (34a, 34a ', 34c, 44a') are provided. , 44a ″, 44b, 44b ′) (FIG. 2), the chemical substance in the ambient air is denoted by reference numeral (35a), and the chemical substance in the clean air is denoted by reference numeral (35b). The chemical substance radiated from the measurement target part (9) when the environmental air is supplied is denoted by reference numeral (45a), and the chemical substance radiated from the measurement target part (9) when the clean air is supplied is denoted by the reference numeral (45b). Is collected by the chemical substance collecting means represented by. In the following formula, the suffix E represents environmental air, the suffix P represents clean air, the suffix i represents supply air, and the suffix o represents exhaust air.
[0032]
[Chemical substance emission amount M E (μg / m 2 h) per unit time per unit area from measurement target site when environmental air is supplied]
M E = {m Eo −m Ei } / A / t (1)
However,
m Eo : amount (μg) of the chemical substance m collected by the chemical substance measuring means (45a)
m Ei : amount (μg) of the chemical substance m collected by the chemical substance measuring means (35a)
A: Area (cm 2 ) of measurement target site in cell
t: Operating time (h) of the chemical substance emission measurement device
[Chemical substance emission amount M C (μg / m 2 h) per unit time per unit area from measurement target site when clean air is supplied]
M P = {m Po -m Pi } / A / t ··· (2)
m Po : amount (μg) of the chemical substance m collected by the chemical substance measuring means (45b)
m Pi : amount (μg) of the chemical substance m collected by the chemical substance measuring means (35b)
A: Area (cm 2 ) of measurement target site in cell
t: Operating time (h) of the chemical substance emission measurement device
In the above chemical emission rate from the measurement target site (9) calculated by the equation, the true chemical emission rate from the measurement target site (9) M E to be calculated in a real environment by equation (1) Represent. As is clear from the examples described below, M P calculated by the equation (2) does not match the value of M E, the larger value.
[0033]
Therefore, the chemical substance emission amount measuring device (1) of the invention of this application makes it possible to accurately measure the true chemical substance emission amount in the real environment, which cannot be obtained by the conventional chemical substance emission amount measuring device. .
[0034]
Hereinafter, examples will be shown, and embodiments of the invention of this application will be described in more detail. Of course, the invention of this application is not limited to the following examples, and it goes without saying that various aspects are possible in details.
[0035]
【Example】
<Example 1>
In a living room of a house with an indoor formaldehyde concentration of 73 μg / m 3 (about 3 years after construction), a floor (Fc1 flooring material) and a wall (an olefin sheet wallpaper on a gypsum board substrate with a formaldehyde-free adhesive) The amount of formaldehyde emission (attached) was measured using a chemical emission measurement device having the configuration shown in FIG.
[0036]
The volume of the cell is 0.0004 m 3 , the surface area of the measurement target part in the cell is 0.02 m 2 , the air flow rate per hour during operation of the apparatus is 0.02 m 3 / h, and the apparatus is used in each measurement procedure. The operation time was 2 hours. The ambient temperature was 23 ° C.
[0037]
As the chemical substance collecting means (35a, 35b, 45a, 45b), a DNPH sampler (trade name: Sep-Pak XpoSure, manufactured by Waters) was used. After the operation, acetonitrile was dropped into each DNPH sampler to elute the formaldehyde derivatized with DNPH, and a high-performance liquid chromatograph (manufactured by Shimadzu Corporation) was used to determine formaldehyde-DNPH derivative, and the amount of formaldehyde collected was determined. Was quantified.
<Example 2>
The amount of formaldehyde was quantified by the same method as in Example 1 except that the configuration of the chemical substance emission measuring device was as shown in FIG.
<Example 3>
The configuration of the chemical substance emission measuring device is shown in FIG. 3 (b), the surface temperature of the measurement target site is heated to 30 ° C., and the amount of formaldehyde at each site is quantified in the same manner as in Example 1. .
[0038]
In Examples 1 to 3, the amount of formaldehyde collected by each of the chemical substance collecting means (35a, 35b, 45a, 45b) and the amount of formaldehyde calculated by the above formulas (1) and (2) when supplying indoor air were calculated. Table 1 shows the amount of formaldehyde emission and the amount of formaldehyde emission when supplying clean air.
[0039]
[Table 1]
Figure 2004347476
In any of Examples 1 to 3, no significant difference was observed in the amount of formaldehyde emitted from the floor when supplying clean air and when supplying indoor air. On the other hand, the value of formaldehyde emission from the wall was smaller when supplying indoor air than when supplying clean air.
[0040]
This suggests that a large amount of formaldehyde was adsorbed on the wall surface after long-term exposure to indoor air containing formaldehyde. It is considered that when clean air was supplied, the equilibrium of formaldehyde adsorption on the wall surface was disrupted, and formaldehyde was desorbed, resulting in an increase in formaldehyde emission. On the other hand, when room air was supplied, the adsorption equilibrium was not destroyed, and the amount of formaldehyde emitted from the wall itself could be accurately measured.
[0041]
Furthermore, when the surface temperature of the measurement target site was high (Example 3), it was confirmed that the amount of formaldehyde emission increased. From this, it was possible to predict the amount of chemical substances emitted from each part during the summer and when using heating appliances.
[0042]
【The invention's effect】
As described in detail above, according to the invention of this application, there is provided a chemical substance emission amount measurement device capable of accurately measuring the amount of chemical substance emitted from various parts such as interior materials and furniture under conditions suitable for a real environment. You.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a chemical substance emission amount measuring device of the present invention.
FIG. 2 is a schematic diagram showing another example of the chemical substance emission amount measuring device of the invention of this application.
FIG. 3 is a schematic diagram showing still another example of the chemical substance emission amount measuring device according to the invention of this application.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Chemical substance emission measuring device 2 Cell 21 Opening 22 Packing 3 Air supply pipe 31 Environmental air supply pipe 311 Path without chemical substance collection means 312 Path with chemical substance collection means 32 Clean air supply pipe 34 Supply Air switching means 34a Valve 34a 'Valve 34b Valve 34b' Valve 34c Valve 35 Chemical substance collecting means 35a Chemical substance collecting means 35b Chemical substance collecting means 4 Air exhaust pipe 41 Ventilation exhaust pipe 42 Measurement exhaust pipe 421 Environmental air 422 for clean air 44 exhaust air switching means 44a valve 44a 'valve 44a''valve 44b valve 44b' valve 45 chemical substance collecting means 45a chemical substance collecting means 45b chemical substance collecting means 5 exhaust means 6 clean air supply means 7 Flow meter 81 Heating means 82 Temperature measuring means 9 Measurement target site

Claims (2)

少なくとも、測定対象部位に当接される開口部を有するセルと、該セルへ空気を供給するための空気供給管と、測定対象部位から該セル内に放散された化学物質をセル内から排出するための排気手段を具備した空気排出管とからなる、室内の各部位から放散される化学物質量を測定するための装置であって、前記空気供給管は、清浄空気供給管と環境空気供給管との切り換えが可能な供給空気切り換え手段と、清浄空気および環境空気中の化学物質量を測定するための化学物質捕集手段を有し、前記空気排出管は、セル内の換気を行うための換気用排出管と測定対象部位からセル内に放散された化学物質量を測定するための化学物質捕集手段を具備する測定用排出管との切り換えが可能な排出空気切り換え手段を有することを特徴とする化学物質放散量測定装置。At least a cell having an opening abutting on the measurement target site, an air supply pipe for supplying air to the cell, and discharging the chemical substance diffused into the cell from the measurement target site from inside the cell. For measuring the amount of chemical substances emitted from each part of the room, the air supply pipe comprising a clean air supply pipe and an environmental air supply pipe. Supply air switching means capable of switching between, and a chemical substance collecting means for measuring the amount of chemical substances in clean air and environmental air, wherein the air exhaust pipe is provided for ventilating the inside of the cell. It is characterized by having exhaust air switching means capable of switching between a ventilation exhaust pipe and a measurement exhaust pipe having a chemical substance collecting means for measuring the amount of chemical substance emitted into the cell from the measurement target site. Chemistry Quality emission rate measurement device. 該セルは、測定対象部位の表面を加熱、保温するための加熱手段と、該表面の温度を計測するための温度計測手段を有する請求項1の化学物質放散量測定装置。2. The chemical substance emission amount measuring device according to claim 1, wherein the cell has a heating unit for heating and keeping the surface of the measurement target site and a temperature measuring unit for measuring the temperature of the surface.
JP2003145326A 2003-05-22 2003-05-22 Measuring instrument for diffusion amount of chemical substance Pending JP2004347476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003145326A JP2004347476A (en) 2003-05-22 2003-05-22 Measuring instrument for diffusion amount of chemical substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003145326A JP2004347476A (en) 2003-05-22 2003-05-22 Measuring instrument for diffusion amount of chemical substance

Publications (1)

Publication Number Publication Date
JP2004347476A true JP2004347476A (en) 2004-12-09

Family

ID=33532541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003145326A Pending JP2004347476A (en) 2003-05-22 2003-05-22 Measuring instrument for diffusion amount of chemical substance

Country Status (1)

Country Link
JP (1) JP2004347476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110068487A (en) * 2012-08-06 2019-07-30 株式会社堀场制作所 Exhaustion dilution device and PM measuring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110068487A (en) * 2012-08-06 2019-07-30 株式会社堀场制作所 Exhaustion dilution device and PM measuring system

Similar Documents

Publication Publication Date Title
Markowicz et al. Influence of relative humidity on VOC concentrations in indoor air
Jørgensen et al. Chamber testing of adsorption of volatile organic compounds (VOCs) on material surfaces
Clausen et al. The influence of humidity on the emission of di-(2-ethylhexyl) phthalate (DEHP) from vinyl flooring in the emission cell “FLEC”
Won et al. Validation of the surface sink model for sorptive interactions between VOCs and indoor materials
Seo et al. Performance test for evaluating the reduction of VOCs in rooms and evaluating the lifetime of sorptive building materials
Li et al. Tube-type passive sampling of cyclic volatile methyl siloxanes (cVMSs) and benzene series simultaneously in indoor air: uptake rate determination and field application
JP2002122521A (en) Diffusion detector for volatile organic compound or the like from building and construction material
WO2009055511A1 (en) Method and apparatus for gas filter testing
Aoki et al. Generation of sub-micron particles and secondary pollutants from building materials by ozone reaction
JP2005055336A (en) Indoor chemical material measuring apparatus
JP2004347476A (en) Measuring instrument for diffusion amount of chemical substance
Kataoka et al. Indoor air monitoring of volatile organic compounds and evaluation of their emission from various building materials and common products by gas chromatography-mass spectrometry
JP4476850B2 (en) Method for measuring pollutant emissions
Roulet et al. Effect of chemical composition on VOC transfer through rotating heat exchangers
CN104931639B (en) The device and method of SVOC emission characteristics parameter in a kind of quick mensuration material
JP4476849B2 (en) Method for measuring pollutant emissions
JP2017181244A (en) Method for predicting life of chemical filter for removing siloxane compound gas
KR100755952B1 (en) Method for manufacturing 2,4-dnph coating silica or silica gel used in a cartridge for concentrating carbonyl compound in quality of air and cartridge having 2,4-dnph coating silica or silica gel
Luo et al. Determining diffusion and partition coefficients of VOCs in cement using one FLEC
JP2005274477A (en) Method of measuring chemical substance decomposition ability of photocatalyst, and measuring instrument therefor
CN212341122U (en) Half open type dynamic box system for measuring plant BVOCs emission in outfield
JP2019128199A (en) Air purification system and inspection equipment
JP2001159592A (en) Heat generated gas evaluating device
JP2007010363A (en) Method for measuring ventilation amount in indoor space
Kim et al. Influence of sorption area ratio and test method on formaldehyde reduction performance for sorptive building materials