JP2004347330A - Quantitative analysis method of mineral distribution - Google Patents

Quantitative analysis method of mineral distribution Download PDF

Info

Publication number
JP2004347330A
JP2004347330A JP2003141313A JP2003141313A JP2004347330A JP 2004347330 A JP2004347330 A JP 2004347330A JP 2003141313 A JP2003141313 A JP 2003141313A JP 2003141313 A JP2003141313 A JP 2003141313A JP 2004347330 A JP2004347330 A JP 2004347330A
Authority
JP
Japan
Prior art keywords
mineral
distribution
quantitative analysis
analysis
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003141313A
Other languages
Japanese (ja)
Inventor
Takefumi Sako
武文 佐光
Hidesato Ochi
英里 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003141313A priority Critical patent/JP2004347330A/en
Publication of JP2004347330A publication Critical patent/JP2004347330A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method to division-evaluate mineral distribution conditions while classified into a simple mineral and a compound mineral, to grasp the respective distribution conditions, and to quantitatively evaluate respective elements to be analyzed, in mineral analysis for ores, metal smelting intermediates or the like. <P>SOLUTION: In mineral analysis wherein a sample such as the ore and the metal smelting intermediate is inclusion-treated by a resin to be observed by an optical microscope after polished, wherein each mineral species is identified based on a difference in an optical property thereof, and wherein a quantitative determination value is obtained based on an area ratio, a size and a binding condition of the mineral detected in the every mineral species in visual fields of the plurality of microscopes are classified into the simple mineral and the compound mineral to be recorded and evaluated, and the distribution condition of the every mineral species is analyzed quantitatively, in this analytical method of the present invention for determining mineral distribution quantitatively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鉱石や金属製錬中間物の鉱物分析において、鉱物形態の定量分析に加え、その分布状態をも定量的に分析する方法に関する。
【0002】
【従来の技術】
銅、鉛、亜鉛、ニッケルなどの非鉄金属製錬において、鉱石や金属製錬中間物の試料を光学顕微鏡で観察することにより、鉱物種の同定と元素の定量分析を行う鉱物分析方法が利用されている。前記方法では、光学顕微鏡観察を併用することにより、各鉱物の分布状態に関する情報として、鉱物のサイズ別分布や鉱物同士の結合状況などの情報が得られることも大きな特徴である。
【0003】
たとえば、特開平6−331621号公報に記載されている、光学顕微鏡の観察結果からテレビカメラによる画像処理により鉱物を分析する方法や、特開2000−28604号公報に記載されている、顕微鏡観察による鉱物の形態判定と各鉱物の面積を体積に換算し、定量分析を行う方法が公開されている。
【0004】
特に非鉄金属製錬工程においては、対象となる鉱石中に含まれる金属鉱物が、「そのサイズはどのくらいか」、「どの鉱物と結合しているか」等の情報は、製錬の条件決定に非常に有用である。
【0005】
しかしながら、従来、このような鉱物の分布状態に関する解析は、光学顕微鏡写真から定性的に判断して行われていた。すなわち、顕微鏡写真に対して考察を加えコメントすることが一般的であった。しかし、製錬条件を変えた場合の分布状況の違いを詳細に比較するためには、定量的な評価が必要で、その分布状態の定量的評価を実現する方法の開発が望まれていた。
【0006】
【特許文献1】特開平6−331621号公報
【0007】
【特許文献2】特開2000−28604号公報
【0008】
【発明が解決しようとする課題】
本発明の目的は、鉱石や金属製錬中間物等の試料を樹脂に包埋処理し、研磨後、光学顕微鏡で観察し、その光学的性質の違いから鉱物種を同定し、面積比から定量分析値を得る鉱物分析において、鉱物の分布状態を単体鉱と結合鉱に分割評価し、それぞれの分布状態を把握し、かつ、定量的に各元素を定量評価し分析する方法を提供しようとするものである。
【0009】
【課題を解決するための手段】
前述の目的を達成するために、本発明は、光学顕微鏡写真の観察時に、鉱物分布状態解析表を用いて、鉱物種毎に検出された鉱物のサイズと結合状態を記録し算出することにより、分布状態を定量的に分析するものである。
【0010】
すなわち、鉱石や金属製錬中間物等の試料を樹脂に包埋処理し、研磨後、光学顕微鏡で観察し、その光学的性質の違いから鉱物種を同定し、面積比から定量分析値を得る鉱物分析において、複数の顕微鏡の視野における鉱物種毎に検出された鉱物のサイズと結合状態をそれぞれ記録し、鉱物種毎の分布状態を定量的に解析する鉱物分布の定量分析方法である。
【0011】
この方法は、たとえば、 銅鉱石中に含まれる鉱物を単体鉱と結合鉱にそれぞれ分別評価し、かつ、各鉱物の分析結果から、銅鉱石中に含有される各鉱物種の大きさや鉱物の結合状態等の情報を得、これら成分の定量分析を行う方法に利用でき、銅製錬工程における重要な情報を提供することができる。
【0012】
【0013】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0014】
光学顕微鏡による鉱物分析は、鉱石や金属製錬中間物などの試料を樹脂に包埋処理した後、粗研磨、中間研磨、仕上げ研磨、最終研磨の工程順に行う鉱石試料研磨方法により平滑な研磨面を作製したものを観察して行う。図1に、光学顕微鏡による観察例を示す。色の違いから鉱物種の同定が可能であり、その面積比から鉱物の定量分析を行うことが可能である。
【0015】
本発明では、さらに、鉱物の定量分析に加え鉱物の分布状態を定量的に分析する方法を提供する。鉱物の分布状態の定量的分析方法は、光学顕微鏡で観察する際に、各鉱物のサイズと結合状態を記録し、面積比を求め、それに比重をかけて分布状態毎の鉱物の量を算出することにより行うことができる。なお、このような研磨片の顕微鏡観察においては、各鉱物の体積比は面積比と等しい。
【0016】
以下に分布状態の定量評価手順を説明する。
【0017】
まず、光学顕微鏡観察による各鉱物のサイズと結合状態を記録する。この記録には、表1に示すような記録表を用いると便利である。試料を光学顕微鏡で観察する際に、各鉱物が単独で存在しているか(単体鉱物)、他の鉱物と結合して存在しているか(結合鉱物)を判断し、それぞれの検出された鉱物の数をサイズ別に記録していくこととした。
【0018】
【表1】

Figure 2004347330
【0019】
表1に示した例は、銅鉱石の評価を実施する場合の例であり、含銅鉱物として、輝銅鉱(Cc)、斑銅鉱(Bor)、黄銅鉱(Cp)、その他鉱物として、黄鉄鉱(Py)、閃亜鉛鉱(Sp)と、脈石成分(G)を選択評価する場合の例である。
【0020】
結合鉱物の場合は、結合の相手鉱物が何かにも着目して、表1の上部右側に記録する。さらに、2つの鉱物の組み合わせで、それぞれの鉱物のサイズがわかるよう表下部に記録すると、より詳細な解析を行うことができる。なお、観察倍率と観察視野数は、解析に必要な鉱物サイズと鉱物の存在濃度や精度によって異なる。例えば、数十%程度の濃度の鉱物を%単位まで評価する場合は、10μm程度のサイズまで解析し、500倍前後の倍率で10〜100視野を、さらに詳細に0.1%単位程度の濃度まで解析する場合は2000視野程度を観察することが必要である。
【0021】
次に、記録表により求めた各鉱物のサイズ別の数を表2に示す定量分析値算出表に転記し、面積比に換算するためのファクターと各鉱物の比重を乗じることで、重量比を求める。この重量比の合計に対する各鉱物サイズ別の重量比の割合が、各鉱物種の定量分析値(wt%)となる。表3は、表2の結果から、各鉱物毎に単体鉱物と結合鉱物に分け、サイズ別の定量分析値をまとめた結果一覧表である。
【0022】
【表2】
Figure 2004347330
【0023】
【表3】
Figure 2004347330
【0024】
この方法によれば、単に鉱物の定量分析結果だけでなく、鉱物のサイズ別および各鉱物種が単体で存在しているか、あるいは、結合鉱として存在しているか等の存在状態別の定量分析結果が得られる。ここで、各鉱物種毎の含有元素の分析値を評価することにより、各元素の定量分析値を得ることができる。
【0025】
上記説明においては、定量分析評価手順を明瞭にするため、表作成による手順を説明したが、あらかじめソフトをインストールしたパソコン等にデータを入力することにより、より簡便に上記結果を得ることが可能であることは当然のことである。
【0026】
【実施例】
以下に、本発明の実施例を示す。
【0027】
上記により説明した方法により、銅精鉱試料をサイズ別、および単体鉱物と結合鉱物の状態別に定量分析した結果を表4に示す。この結果から、輝銅鉱、斑銅鉱、黄銅鉱などの含銅鉱物はほとんどが単体鉱物として存在していること、不純物は主に黄鉄鉱と脈石であり、黄鉄鉱は、黄銅鉱の一部が結合鉱として存在している以外は、ほとんどが単体鉱物として存在しており、脈石は単体鉱物よりも、含銅鉱物以外の鉱物と結合鉱物を多く含有していることがわかった。この知見は製錬条件の最適化に大いに役立つものである。
【0028】
【表4】
Figure 2004347330
【0029】
さらに、この方法による分析の信頼性を調べるために、表4の各鉱物の定量分析結果を各元素の濃度に算出し直し、ICP発光分析を用いた化学分析による値と比較することを試みた。
【0030】
その結果、表5に示すように、両者の値はよく一致しており、本発明の方法が定量分析方法としても信頼性が高いことが立証できた。
【0031】
【表5】
Figure 2004347330
【0032】
【発明の効果】
本発明により、鉱石や金属製錬中間物の鉱物分析において、鉱物形態の定量分析結果に加え、鉱物のサイズ別および存在状態別の分布状態を定量的に評価することが可能となった。
【図面の簡単な説明】
【図1】本発明で用いる光学顕微鏡による鉱物観察の例[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for quantitatively analyzing the distribution state of minerals in ore and metal smelting intermediates, in addition to the quantitative analysis of the mineral form.
[0002]
[Prior art]
In the smelting of non-ferrous metals such as copper, lead, zinc and nickel, mineral analysis methods are used to identify mineral species and quantitatively analyze elements by observing ore and metal smelting intermediate samples with an optical microscope. ing. Another feature of the above method is that information such as the distribution of minerals by size and the state of connection between minerals can be obtained as information on the distribution state of each mineral by using optical microscope observation.
[0003]
For example, a method for analyzing minerals by image processing with a television camera from observation results of an optical microscope described in JP-A-6-331621, or a method for analyzing minerals by microscopic observation described in JP-A-2000-28604. A method has been disclosed for determining the morphology of minerals and converting the area of each mineral into a volume for quantitative analysis.
[0004]
In particular, in the nonferrous metal smelting process, information such as “how big and small” and which minerals are contained in the target ore is very important for determining smelting conditions. Useful for
[0005]
However, conventionally, such an analysis on the distribution state of minerals has been performed qualitatively from optical micrographs. That is, it was common to consider and comment on a micrograph. However, in order to compare in detail the differences in the distribution situation when the smelting conditions are changed, quantitative evaluation is required, and the development of a method for realizing the quantitative evaluation of the distribution state has been desired.
[0006]
[Patent Document 1] Japanese Patent Application Laid-Open No. 6-331621
[Patent Document 2] Japanese Patent Application Laid-Open No. 2000-28604
[Problems to be solved by the invention]
The object of the present invention is to embed ore or metal smelting intermediate in a resin, embed it in a resin, polish it, observe it with an optical microscope, identify the mineral species from the difference in its optical properties, and quantify it from the area ratio. In mineral analysis to obtain analytical values, we will try to provide a method to divide and evaluate the distribution state of minerals into simple ore and combined ore, grasp the distribution state of each, and quantitatively evaluate and analyze each element quantitatively Things.
[0009]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention uses a mineral distribution state analysis table at the time of observation of an optical microscope photograph, by recording and calculating the size and binding state of the mineral detected for each mineral type, The distribution state is analyzed quantitatively.
[0010]
In other words, a sample such as an ore or a metal smelting intermediate is embedded in resin, polished, observed with an optical microscope, the mineral species is identified from the difference in its optical properties, and a quantitative analysis value is obtained from the area ratio. This is a mineral distribution quantitative analysis method in which in mineral analysis, the size and bonding state of each mineral detected for each mineral species in a plurality of microscope fields are recorded, and the distribution state of each mineral species is quantitatively analyzed.
[0011]
This method, for example, separates and evaluates minerals contained in copper ore into simple ore and binder ore, and analyzes the results of each mineral to determine the size of each mineral species contained in copper ore and the binding of minerals. It can be used in a method for obtaining information on the state and the like and performing quantitative analysis of these components, and can provide important information in the copper smelting process.
[0012]
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0014]
Mineral analysis using an optical microscope is based on a method of embedding ore or metal smelting intermediate in a resin, followed by rough polishing, intermediate polishing, finish polishing, and final polishing. Observation of what was made is performed. FIG. 1 shows an example of observation using an optical microscope. Mineral species can be identified from the difference in color, and quantitative analysis of the mineral can be performed from the area ratio.
[0015]
The present invention further provides a method for quantitatively analyzing the mineral distribution state in addition to the quantitative analysis of the mineral. Quantitative analysis method of mineral distribution state, when observing with an optical microscope, record the size and bonding state of each mineral, calculate the area ratio, calculate the amount of minerals for each distribution state by multiplying by the specific gravity It can be done by doing. In addition, in the microscopic observation of such a polished piece, the volume ratio of each mineral is equal to the area ratio.
[0016]
The procedure for quantitative evaluation of the distribution state will be described below.
[0017]
First, the size and bonding state of each mineral are recorded by optical microscope observation. It is convenient to use a record table as shown in Table 1 for this record. When observing a sample with an optical microscope, it is determined whether each mineral is present alone (simple mineral) or is present in combination with other minerals (bonded mineral). We decided to record the numbers by size.
[0018]
[Table 1]
Figure 2004347330
[0019]
The example shown in Table 1 is an example in which copper ore is evaluated. As the copper-containing mineral, chalcopyrite (Cc), porphyrite (Bor), chalcopyrite (Cp), and other minerals such as pyrite ( This is an example in the case of selectively evaluating Py), sphalerite (Sp), and gangue component (G).
[0020]
In the case of a bonded mineral, the focus is on what the partner mineral is, and it is recorded on the upper right side of Table 1. Furthermore, if a combination of two minerals is recorded in the lower part of the table so that the size of each mineral can be understood, more detailed analysis can be performed. Note that the observation magnification and the number of observation fields differ depending on the mineral size, the mineral concentration, and the accuracy required for the analysis. For example, when evaluating a mineral having a concentration of about several tens of percent down to the unit of%, it is analyzed to a size of about 10 μm, and a 10 to 100 field of view at a magnification of about 500 times, and more specifically, a concentration of about 0.1% unit. When analyzing up to 2000, it is necessary to observe about 2,000 visual fields.
[0021]
Next, the number of each mineral by size obtained from the record table was transcribed to the quantitative analysis value calculation table shown in Table 2, and the weight ratio was calculated by multiplying the factor for conversion into the area ratio by the specific gravity of each mineral. Ask. The ratio of the weight ratio for each mineral size to the total of the weight ratios is the quantitative analysis value (wt%) of each mineral species. Table 3 is a list of results obtained by dividing the results of Table 2 into simple minerals and binding minerals for each mineral and summarizing quantitative analysis values by size.
[0022]
[Table 2]
Figure 2004347330
[0023]
[Table 3]
Figure 2004347330
[0024]
According to this method, not only the results of the quantitative analysis of the minerals but also the results of the quantitative analysis based on the size of the minerals and the state of existence such as whether each mineral species exists alone or as a binder ore. Is obtained. Here, a quantitative analysis value of each element can be obtained by evaluating the analysis value of the contained element for each mineral type.
[0025]
In the above description, in order to clarify the quantitative analysis evaluation procedure, the procedure based on table creation has been described. However, by inputting data into a personal computer or the like in which software has been installed in advance, the above result can be obtained more easily. Some things are natural.
[0026]
【Example】
Hereinafter, examples of the present invention will be described.
[0027]
Table 4 shows the results of quantitative analysis of the copper concentrate sample by size and by the state of the simple mineral and the bound mineral by the method described above. The results show that most copper-bearing minerals such as chalcopyrite, chalcopyrite, and chalcopyrite exist as elemental minerals, and the impurities are mainly pyrite and gangue, and the pyrite is partially combined with chalcopyrite. Except for the ore, most exist as elemental minerals, indicating that the gangue contains more minerals other than copper-containing minerals and binding minerals than the elemental minerals. This finding is of great use in optimizing smelting conditions.
[0028]
[Table 4]
Figure 2004347330
[0029]
Furthermore, in order to examine the reliability of the analysis by this method, the quantitative analysis results of each mineral in Table 4 were recalculated to the concentrations of the respective elements, and an attempt was made to compare the results with the values obtained by chemical analysis using ICP emission analysis. .
[0030]
As a result, as shown in Table 5, the two values agreed well, and it was proved that the method of the present invention was highly reliable as a quantitative analysis method.
[0031]
[Table 5]
Figure 2004347330
[0032]
【The invention's effect】
Advantageous Effects of Invention According to the present invention, in mineral analysis of ore and metal smelting intermediates, it has become possible to quantitatively evaluate the distribution of minerals by size and existence state, in addition to the results of quantitative analysis of mineral morphology.
[Brief description of the drawings]
FIG. 1 is an example of mineral observation with an optical microscope used in the present invention.

Claims (2)

鉱石や金属製錬中間物等の試料を樹脂に包埋処理し、研磨後、光学顕微鏡で観察し、その光学的性質の違いから鉱物種を同定し、面積比から定量分析値を得る鉱物分析において、鉱物種毎に検出された鉱物のサイズと結合状態を記録し、鉱物種毎の分布状態を定量的に解析する鉱物分布の定量分析方法。Mineral analysis in which samples such as ores and metal smelting intermediates are embedded in resin, polished, observed with an optical microscope, mineral species are identified based on their optical properties, and quantitative analysis values are obtained from the area ratio. , A method for quantitatively analyzing the mineral distribution by recording the size and binding state of the mineral detected for each mineral type and quantitatively analyzing the distribution state for each mineral type. 銅鉱石中に含まれる鉱物を単体鉱と結合鉱にそれぞれ分別評価し、かつ、各鉱物の分析結果から、銅鉱石中に含有される成分の定量分析を行うことを特徴とする請求項1記載の鉱物分布の定量分析方法。The mineral contained in the copper ore is classified and evaluated as a single ore and a binder ore, and a quantitative analysis of a component contained in the copper ore is performed based on an analysis result of each mineral. Method for the quantitative analysis of mineral distribution in lime.
JP2003141313A 2003-05-20 2003-05-20 Quantitative analysis method of mineral distribution Pending JP2004347330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003141313A JP2004347330A (en) 2003-05-20 2003-05-20 Quantitative analysis method of mineral distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003141313A JP2004347330A (en) 2003-05-20 2003-05-20 Quantitative analysis method of mineral distribution

Publications (1)

Publication Number Publication Date
JP2004347330A true JP2004347330A (en) 2004-12-09

Family

ID=33529697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003141313A Pending JP2004347330A (en) 2003-05-20 2003-05-20 Quantitative analysis method of mineral distribution

Country Status (1)

Country Link
JP (1) JP2004347330A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017194A (en) * 2014-07-07 2016-02-01 住友金属鉱山株式会社 Data processing apparatus, data-processing program, data processing method, processing condition determining method, and output data structure of mineral analysis result
JP2016017816A (en) * 2014-07-07 2016-02-01 住友金属鉱山株式会社 Data processing device, data processing program, data processing method, processing condition determining method, and output data structure of mineral analysis result
JP2016050920A (en) * 2014-09-02 2016-04-11 住友金属鉱山株式会社 Resin embedding sample and method of producing the same
JP2016050919A (en) * 2014-09-02 2016-04-11 住友金属鉱山株式会社 Sample preparation method
JP2017062223A (en) * 2015-09-24 2017-03-30 住友金属鉱山株式会社 Resin-embedded sample and method for making the same
JP2018031779A (en) * 2016-08-23 2018-03-01 住友金属鉱山株式会社 Sample preparation method and sample analysis method
JP2019131863A (en) * 2018-01-31 2019-08-08 Jx金属株式会社 Slag analyzing method
CN111537513A (en) * 2020-05-28 2020-08-14 矿冶科技集团有限公司 Statistical method of ore structure and application thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017194A (en) * 2014-07-07 2016-02-01 住友金属鉱山株式会社 Data processing apparatus, data-processing program, data processing method, processing condition determining method, and output data structure of mineral analysis result
JP2016017816A (en) * 2014-07-07 2016-02-01 住友金属鉱山株式会社 Data processing device, data processing program, data processing method, processing condition determining method, and output data structure of mineral analysis result
JP2016050920A (en) * 2014-09-02 2016-04-11 住友金属鉱山株式会社 Resin embedding sample and method of producing the same
JP2016050919A (en) * 2014-09-02 2016-04-11 住友金属鉱山株式会社 Sample preparation method
JP2017062223A (en) * 2015-09-24 2017-03-30 住友金属鉱山株式会社 Resin-embedded sample and method for making the same
JP2018031779A (en) * 2016-08-23 2018-03-01 住友金属鉱山株式会社 Sample preparation method and sample analysis method
JP2019131863A (en) * 2018-01-31 2019-08-08 Jx金属株式会社 Slag analyzing method
CN111537513A (en) * 2020-05-28 2020-08-14 矿冶科技集团有限公司 Statistical method of ore structure and application thereof

Similar Documents

Publication Publication Date Title
Scott et al. Metallography in archaeology and art
Smichowski et al. Metal fractionation of atmospheric aerosols via sequential chemical extraction: a review
EP1474772A2 (en) Methods and algorithms for cell enumeration in a low-cost cytometer
JP2004347330A (en) Quantitative analysis method of mineral distribution
JP2015040724A (en) Mineral analyzing apparatus, and mineral analyzing method
Dussubieux et al. La–ICP–ms, SEM–eds and EPMA analysis of eastern north american copper‐based artefacts: impact of corrosion and heterogeneity on the reliability of the la–icp–ms compositional results
Bottaini et al. Non-destructive characterization of archeological Cu-based artifacts from the early metallurgy of southern Portugal
Sodaei et al. A study of Sasanian silver coins employing the XRF technique
Cho et al. The efficient workflow to decrease the manual microscopic examination of urine sediment using on-screen review of images
Alekhin et al. Optical-electronic system for express analysis of mineral raw materials dressability by color sorting method
Lemos et al. Geochemistry and mineralogy of auriferous tailings deposits and their potential for reuse in Nova Lima Region, Brazil
US20130272599A1 (en) Method For Automatic Quantification Of Dendrite Arm Spacing In Dendritic Microstructures
JP6361871B2 (en) Data processing apparatus, data processing program, data processing method, and processing condition determination method
JP2020190881A (en) Data processing device, data processing program, substrate group similarity determining method, substrate group evaluating system and substrate group evaluating method
CN102494987A (en) Automatic category rating method for microscopic particles in nodular cast iron
CN103968769B (en) For the automatic method for quantifying dendritic arm spacing in dendrite microstructure
JP6379756B2 (en) Data processing apparatus, data processing program, data processing method, and processing condition determination method
CN110095464B (en) Fine quantitative analysis method for complex-composition sinter ore phases
Dimov et al. Applications of microbeam analytical techniques in gold deportment studies and characterization of losses during the gold recovery process
Kashani et al. Arsenical Copper Production in the Late-Chalcolithic Period, Central Plateau, Iran, Case Study: Copper-based Artefacts in Meymanatabad
Lastra et al. Automated gold search and applications in process mineralogy
Boivin et al. Counting a pot of gold: A till golden standard (AuGC-1)
Çakaj et al. Fibula and snake bracelet from Albania. A case study by OM, SEM/EDS and XRF
Lyman et al. Use of the scanning electron microscope to determine the sampling constant and liberation factor for fine minerals
Woytek et al. Imitations of Roman Republican Denarii: New Metallurgical Data