JP2004346990A - Piping apparatus and method for installing piping - Google Patents

Piping apparatus and method for installing piping Download PDF

Info

Publication number
JP2004346990A
JP2004346990A JP2003142921A JP2003142921A JP2004346990A JP 2004346990 A JP2004346990 A JP 2004346990A JP 2003142921 A JP2003142921 A JP 2003142921A JP 2003142921 A JP2003142921 A JP 2003142921A JP 2004346990 A JP2004346990 A JP 2004346990A
Authority
JP
Japan
Prior art keywords
diameter pipe
small
piping
diameter
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003142921A
Other languages
Japanese (ja)
Inventor
Hisao Miyazaki
久男 宮▲崎▼
Yoshitaka Narui
義孝 成井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Systems and Services Corp filed Critical Toshiba Plant Systems and Services Corp
Priority to JP2003142921A priority Critical patent/JP2004346990A/en
Publication of JP2004346990A publication Critical patent/JP2004346990A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Supports For Pipes And Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce stress in small diameter piping, etc., which stress is caused by the difference of the thermal deformation in large diameter piping and small diameter piping. <P>SOLUTION: A piping apparatus comprises the large diameter piping 1 which at least partially moves because of thermal deformation caused by temperature change during an installed time and an operating time, the small diameter piping 3 one end of which is connected to the large diameter piping, and a support 7 for preventing a lateral movement of the small diameter piping. The support is arranged so as to shift within the range smaller than the movement of the jointed portion by preliminarily applying a load to the small diameter piping in the direction of the movement of the jointed portion of the small diameter piping and the large diameter piping due to the thermal deformation. The large diameter piping and the small diameter piping are used, for example, as the piping in a nuclear power plant. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、配管設備および配管設置方法に関し、特に、熱膨張または熱収縮を伴う配管設備とその設置方法に関する。
【0002】
【従来の技術】
種々のプラントで、高温流体または低温流体が流れる大口径配管にこれより小口径の計測用配管などが接続されるものがある。この場合に、大口径配管と小口径配管に温度差ができると熱膨張または熱収縮(以下、これらを合わせて熱変形という)に差が生じる。通常のプラントでは、このような場合に小口径配管に特別の曲り部を設けるなどして、小口径配管のたわみ変形を許容することによって熱変形の差を吸収するような設計とすることが多い。
【0003】
【発明が解決しようとする課題】
ところが、例えば原子力発電プラントでは、地震などによる小口径配管の振れを防止するために、小口径配管の軸方向に比較的短い間隔で複数のサポートを設置する剛設計が採用されている。このため、大口径配管(例えば主蒸気配管)と小口径配管の熱変形の差により、小口径配管および小口径配管サポート部材などに比較的大きな荷重がかかり、これによって配管に生じる応力を許容値以内にするのが困難な場合があった。
【0004】
そこでこの発明は、大口径配管と小口径配管の熱変形の差によって小口径配管および小口径配管サポート部材などにかかる荷重を軽減して配管に生じる応力を緩和するような配管設備および配管設置方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は上記目的に沿ったものであって、請求項1に記載の発明は、設置時と運転時との温度変化に伴う熱変形によって少なくとも部分的に移動する大口径配管と、この大口径配管よりも小口径であって一端が前記大口径配管に接続された小口径配管と、前記小口径配管の少なくとも1箇所でこの小口径配管の横方向の移動を拘束するサポートと、を有する配管設備において、前記サポートが、前記小口径配管と前記大口径配管との接続部の前記熱変形による移動の方向に、あらかじめ前記小口径配管に荷重をかけて、前記接続部の移動量よりも小さい範囲で変位して配置されていること、を特徴とする。
【0006】
また、請求項2に記載の発明は、請求項1に記載の配管設備において、前記大口径配管および小口径配管は原子力発電プラント内配管であること、を特徴とする。
【0007】
また、請求項3に記載の発明は、請求項1または2に記載の配管設備において、前記サポートの変位量は、前記運転時の前記接続部の移動量のほぼ半分であること、を特徴とする。
【0008】
また、請求項4に記載の発明は、設置時と運転時との温度変化に伴う熱変形によって少なくとも部分的に移動する大口径配管に、この大口径配管よりも小口径の小口径配管を接続してこの小口径配管を設置する配管設置方法において、前記大口径配管を設置する大口径配管設置工程と、前記大口径配管設置工程の後に、前記大口径配管と前記小口径配管とを接続し、前記小口径配管を設置する小口径配管設置工程と、前記小口径配管設置工程の後に、前記小口径配管に荷重をかけてこの小口径配管を部分的に変位させた状態で、この小口径配管の少なくとも1箇所でこの小口径配管の横方向の移動を拘束するサポートを設置するサポート設置工程と、を有し、前記サポートの設置位置が、前記小口径配管と前記大口径配管との接続部の前記熱変形による移動の方向に、前記接続部の移動量よりも小さい範囲であらかじめ変位した位置であること、を特徴とする。
【0009】
また、請求項5に記載の発明は、請求項4に記載の配管設置方法において、前記小口径配管設置工程およびサポート設置工程でのそれぞれの目標とする前記小口径配管の位置を表示する表示部をあらかじめ設置する表示部設置工程をさらに有すること、を特徴とする。
【0010】
また、請求項6に記載の発明は、請求項4または5に記載の配管設置方法において、前記大口径配管および小口径配管は原子力発電プラント内配管であること、を特徴とする。
【0011】
【発明の実施の形態】
発明の一つの実施の形態として、図1に示すように、原子力発電プラントの主蒸気配管などの既設の大口径配管1に、例えば計装用の小口径配管3を接続し設置する場合について説明する。この大口径配管1は、高温環境下でのプラント運転時と、常温の設置工事環境下とでは、熱膨張による移動がある。すなわち、図1で、大口径配管1と小口径配管3との接続部5は、常温では符号5の位置にあるが、プラント運転時には符号5aの位置まで、距離sだけ(図1では上方に)移動する。一方、計装用の小口径配管3はプラント運転時でも、大口径配管1と小口径配管3との接続部5に近い部分を除いてあまり高温にならず、熱膨張も少ない。
【0012】
小口径配管3の設置工事にあたり、初めに、小口径配管3を配置し、接続部5で大口径配管1と小口径配管3とを接続する。このとき、小口径配管サポート7はまだ固定しない。この(仮設置の)ときのサポート7の位置に相当する配管方向位置に対応する配管の横方向位置は図1に示すように符号7cの位置である。
【0013】
なお、図1に示す例では、小口径配管3が2箇所で2次元的にほぼ直角に曲がっているが、本発明においては曲り部の数や形状は任意である。また、サポート7は、例えば、小口径配管3の横方向(配管方向に垂直な方向)の移動を拘束し、配管方向には拘束しないものとする。
【0014】
次に、小口径配管3に荷重をかけて一点鎖線3aに示すように弾性変形を起こさせて、その状態でサポート7を固定する。このとき、荷重を掛けない場合のサポートの位置7cからのサポート7の移動方向は、プラント運転時の接続部の符号5の位置から符号5aの位置への移動方向と同じ方向(図1では上方)とし、サポート7の移動量tは、接続部5の移動距離sの半分程度とするのが好ましい。
【0015】
上記のように設置された配管設備で、プラント運転時には、大口径配管1の熱膨張によって、接続部5が符号5aの位置に移動する。このとき、小口径配管3は、接続部5aとサポート7に拘束されて、破線3bに示すように弾性変形する。この状態で、サポート7固定前の自由状態に比べて、小口径配管3の接続部5は距離sだけ上方に移動しており、一方サポート7の位置は自由状態に比べて距離tだけ上方に移動している。したがって、小口径配管3の両端での弾性変形量は(s−t)となる。
【0016】
この実施の形態によれば、従来のようにサポート7の設置時に荷重を掛けない方法(上記実施の形態の説明でt=0とすることに相当する)に比べて、小口径配管3の両端での弾性変形量がtだけ低減することになる。ただし、この実施の形態では、小口径配管3の設置工事のとき(常温時)に荷重を掛けるので、常温時と高温時を合わせて考慮したときの配管に係る応力を最小にするように設計するのが望ましい。その意味で、距離tは距離sの半分程度が妥当である。なお、この実施の形態における常温時と高温時の小口径配管3に係る荷重は互いに逆向きになり、その結果として生じる応力も互いに逆向きになる。
【0017】
次に、図1および図2を参照して、本実施の形態における配管設置の際に使用される表示板10について説明する。表示板10は、小口径配管3を設置する前にサポート7の位置に固定しておく。表示板10には、図2に示すように、表示板10上に配置される小口径配管3の二つの目標位置を表示しておく。すなわち、一つは、サポートを固定する前の小口径配管3を初めに仮設置するべき位置に表示する仮設置線12であり、もう一つは、最終的にサポートを固定するときの小口径配管3aの位置を表示する固定線14である。
【0018】
このような表示板10があらかじめ固定されていると、仮設置のときには、小口径配管3aが仮設置線12と一致するようにし、また、サポート7を固定するときには、小口径配管3aが固定線14と一致するようにすればよいので、作業性がよい。
【0019】
以上、原子力発電プラントの主蒸気配管を例にとって説明したが、本発明は、これに限定されるものではなく、熱膨張・熱収縮を伴う配管に広く適用可能である。また、サポートは1箇所に限定されるものではなく、複数箇所であってもよい。また、小口径配管が2次元的に配置され、同一面内で変形することを例にとって説明したが、3次元的な変形を伴うものでもよい。
【0020】
【発明の効果】
以上説明したように、本発明によれば、大口径配管と小口径配管の熱変形の差によって小口径配管および小口径配管サポート部材などにかかる荷重を軽減することができ、それにより、配管などに生じる応力を緩和することができる。
【図面の簡単な説明】
【図1】本発明にかかる配管設備の実施の形態の模式的平面図。
【図2】図1における表示板の表示内容の例を示す拡大平面図。
【符号の説明】
1…大口径配管、3…小口径配管(常温、仮設置時)、3a…小口径配管(常温、サポート固定時)、3b…小口径配管(高温時)、3c…小口径配管(従来技術、高温時)、5…接続部(常温時)、5a…接続部(高温時)、7…サポート、7c…サポート(従来技術)、10…表示板、12…仮設置線、14…固定線。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a piping system and a piping installation method, and more particularly to a piping system with thermal expansion or thermal contraction and a method of installing the same.
[0002]
[Prior art]
2. Description of the Related Art In various plants, a large-diameter pipe through which a high-temperature fluid or a low-temperature fluid flows is connected to a smaller-diameter measurement pipe or the like. In this case, if there is a temperature difference between the large-diameter pipe and the small-diameter pipe, a difference occurs in thermal expansion or thermal contraction (hereinafter, these are collectively referred to as thermal deformation). In a typical plant, in such a case, a design is often made such that a special bent portion is provided in the small-diameter pipe to allow a bending deformation of the small-diameter pipe to absorb a difference in thermal deformation. .
[0003]
[Problems to be solved by the invention]
However, for example, in a nuclear power plant, a rigid design is adopted in which a plurality of supports are installed at relatively short intervals in the axial direction of the small-diameter pipe in order to prevent deflection of the small-diameter pipe due to an earthquake or the like. For this reason, a relatively large load is applied to the small-diameter pipe and the small-diameter pipe support member due to a difference in thermal deformation between the large-diameter pipe (for example, main steam pipe) and the small-diameter pipe. Sometimes it was difficult to do so.
[0004]
Accordingly, the present invention provides a piping facility and a piping installation method that reduce the load applied to a small-diameter pipe and a small-diameter pipe support member due to a difference in thermal deformation between a large-diameter pipe and a small-diameter pipe, thereby reducing stress generated in the pipe. The purpose is to provide.
[0005]
[Means for Solving the Problems]
The present invention has been made in accordance with the above object, and an invention according to claim 1 is a large-diameter pipe that moves at least partially due to thermal deformation accompanying a temperature change between installation and operation, and a large-diameter pipe. A pipe having a smaller diameter than the pipe and having one end connected to the large diameter pipe, and a support for restraining the lateral movement of the small diameter pipe at at least one position of the small diameter pipe. In the equipment, the support applies a load to the small-diameter pipe in advance in the direction of movement due to the thermal deformation of the connection section between the small-diameter pipe and the large-diameter pipe, and is smaller than the movement amount of the connection section. It is characterized by being displaced within a range.
[0006]
According to a second aspect of the present invention, in the piping facility according to the first aspect, the large-diameter pipe and the small-diameter pipe are pipes in a nuclear power plant.
[0007]
According to a third aspect of the present invention, in the plumbing equipment according to the first or second aspect, a displacement amount of the support is substantially half of a movement amount of the connection part during the operation. I do.
[0008]
Further, the invention according to claim 4 connects a small-diameter pipe smaller in diameter than the large-diameter pipe to a large-diameter pipe that moves at least partially due to thermal deformation caused by a temperature change between the time of installation and the time of operation. In the pipe installation method for installing the small-diameter pipe, the large-diameter pipe installation step of installing the large-diameter pipe, and after the large-diameter pipe installation step, connect the large-diameter pipe and the small-diameter pipe. After the small-diameter pipe installation step of installing the small-diameter pipe, and after the small-diameter pipe installation step, a load is applied to the small-diameter pipe, and the small-diameter pipe is partially displaced, A support installation step of installing a support for restraining the lateral movement of the small-diameter pipe in at least one place of the pipe, wherein the installation position of the support is a connection between the small-diameter pipe and the large-diameter pipe. Part of the heat In the direction of movement by the form that is previously displaced position range smaller than the movement amount of the connecting portion, and wherein.
[0009]
According to a fifth aspect of the present invention, in the piping installation method according to the fourth aspect, a display unit that displays a target position of the small-diameter pipe in each of the small-diameter pipe installation step and the support installation step. And a display section installation step of previously installing the display section.
[0010]
The invention according to claim 6 is the piping installation method according to claim 4 or 5, wherein the large-diameter pipe and the small-diameter pipe are pipes in a nuclear power plant.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
As an embodiment of the present invention, as shown in FIG. 1, a case will be described in which, for example, a small-diameter pipe 3 for instrumentation is connected to an existing large-diameter pipe 1 such as a main steam pipe of a nuclear power plant. . The large-diameter pipe 1 moves due to thermal expansion between a plant operation under a high-temperature environment and an installation construction environment at normal temperature. That is, in FIG. 1, the connection portion 5 between the large-diameter pipe 1 and the small-diameter pipe 3 is located at the position indicated by the reference numeral 5 at normal temperature, but is up to the position indicated by the reference numeral 5a during the plant operation by the distance s (in FIG. )Moving. On the other hand, even when the plant is in operation, the small-diameter piping 3 for instrumentation does not become very hot except for a portion near the connection portion 5 between the large-diameter piping 1 and the small-diameter piping 3 and has little thermal expansion.
[0012]
In the installation work of the small-diameter pipe 3, first, the small-diameter pipe 3 is arranged, and the large-diameter pipe 1 and the small-diameter pipe 3 are connected by the connecting portion 5. At this time, the small diameter pipe support 7 is not fixed yet. The horizontal position of the pipe corresponding to the pipe direction position corresponding to the position of the support 7 at this time (temporary installation) is a position indicated by reference numeral 7c as shown in FIG.
[0013]
In the example shown in FIG. 1, the small-diameter pipe 3 is two-dimensionally bent substantially at a right angle in two places, but the number and shape of the bent portion are arbitrary in the present invention. The support 7 restricts the movement of the small-diameter pipe 3 in the lateral direction (the direction perpendicular to the pipe direction), for example, and does not restrict the movement in the pipe direction.
[0014]
Next, a load is applied to the small-diameter pipe 3 to cause elastic deformation as shown by a dashed line 3a, and the support 7 is fixed in that state. At this time, the direction of movement of the support 7 from the position 7c of the support when no load is applied is the same as the direction of movement from the position of reference numeral 5 to the position of reference numeral 5a of the connection part during plant operation (upward in FIG. 1). ), And the moving amount t of the support 7 is preferably set to be about half of the moving distance s of the connecting portion 5.
[0015]
In the piping equipment installed as described above, the connection part 5 moves to the position indicated by the reference numeral 5a due to thermal expansion of the large-diameter pipe 1 during plant operation. At this time, the small diameter pipe 3 is restrained by the connecting portion 5a and the support 7, and elastically deforms as shown by a broken line 3b. In this state, the connecting portion 5 of the small-diameter pipe 3 has moved upward by the distance s as compared to the free state before the support 7 is fixed, while the position of the support 7 has moved upward by the distance t compared to the free state. I'm moving. Therefore, the amount of elastic deformation at both ends of the small-diameter pipe 3 is (s−t).
[0016]
According to this embodiment, both ends of the small-diameter pipe 3 are different from a conventional method in which a load is not applied when the support 7 is installed (corresponding to setting t = 0 in the description of the above embodiment). The amount of elastic deformation at is reduced by t. However, in this embodiment, since the load is applied during the installation work of the small-diameter pipe 3 (at normal temperature), the design is to minimize the stress on the pipe when the normal temperature and the high temperature are considered together. It is desirable to do. In that sense, it is appropriate that the distance t is about half of the distance s. In this embodiment, the loads on the small-diameter pipe 3 at normal temperature and high temperature are opposite to each other, and the resulting stresses are also opposite to each other.
[0017]
Next, with reference to FIG. 1 and FIG. 2, a description will be given of a display plate 10 used when installing piping in the present embodiment. The display plate 10 is fixed at the position of the support 7 before installing the small-diameter pipe 3. As shown in FIG. 2, two target positions of the small-diameter pipe 3 arranged on the display plate 10 are displayed on the display plate 10. That is, one is a provisional installation line 12 which is displayed at a position where the small-diameter pipe 3 before fixing the support should be provisionally installed first, and the other is a small-diameter line when the support is finally fixed. This is a fixed line 14 indicating the position of the pipe 3a.
[0018]
When such a display plate 10 is fixed in advance, the small-diameter pipe 3a is aligned with the temporary installation line 12 during temporary installation, and the small-diameter pipe 3a is fixed when the support 7 is fixed. Since it suffices to make the value coincide with 14, the workability is good.
[0019]
As described above, the main steam pipe of the nuclear power plant has been described as an example, but the present invention is not limited to this, and can be widely applied to pipes involving thermal expansion and contraction. Further, the support is not limited to one place, but may be plural places. In addition, although the small-diameter pipe is arranged two-dimensionally and deformed in the same plane as an example, the pipe may be accompanied by three-dimensional deformation.
[0020]
【The invention's effect】
As described above, according to the present invention, it is possible to reduce the load applied to the small-diameter pipe and the small-diameter pipe support member due to the difference in thermal deformation between the large-diameter pipe and the small-diameter pipe, and thereby, the pipe and the like can be reduced. Can be alleviated.
[Brief description of the drawings]
FIG. 1 is a schematic plan view of an embodiment of a piping facility according to the present invention.
FIG. 2 is an enlarged plan view showing an example of display contents of a display panel in FIG.
[Explanation of symbols]
1 large-diameter piping, 3 small-diameter piping (normal temperature, temporary installation), 3a small-diameter piping (normal temperature, fixed support), 3b small-diameter piping (high temperature), 3c small-diameter piping (conventional technology) , High temperature), 5 ... connection part (at normal temperature), 5a ... connection part (at high temperature), 7 ... support, 7c ... support (prior art), 10 ... display board, 12 ... temporary installation wire, 14 ... fixed wire .

Claims (6)

設置時と運転時との温度変化に伴う熱変形によって少なくとも部分的に移動する大口径配管と、この大口径配管よりも小口径であって一端が前記大口径配管に接続された小口径配管と、前記小口径配管の少なくとも1箇所でこの小口径配管の横方向の移動を拘束するサポートと、を有する配管設備において、
前記サポートが、前記小口径配管と前記大口径配管との接続部の前記熱変形による移動の方向に、あらかじめ前記小口径配管に荷重をかけて、前記接続部の移動量よりも小さい範囲で変位して配置されていること、
を特徴とする配管設備。
A large-diameter pipe that moves at least partially due to thermal deformation due to a temperature change between installation and operation, and a small-diameter pipe that has a smaller diameter than the large-diameter pipe and one end is connected to the large-diameter pipe. A support that restrains lateral movement of the small-diameter pipe at at least one location of the small-diameter pipe,
The support applies a load to the small-diameter pipe in advance in a direction of movement due to the thermal deformation of the connection section between the small-diameter pipe and the large-diameter pipe, and is displaced within a range smaller than the movement amount of the connection section. That they are located
Piping equipment.
請求項1に記載の配管設備において、前記大口径配管および小口径配管は原子力発電プラント内配管であること、を特徴とする配管設備。The piping facility according to claim 1, wherein the large-diameter pipe and the small-diameter pipe are pipes in a nuclear power plant. 請求項1または2に記載の配管設備において、前記サポートの変位量は、前記運転時の前記接続部の移動量のほぼ半分であること、を特徴とする配管設備。3. The piping facility according to claim 1, wherein an amount of displacement of the support is substantially half of a moving amount of the connecting part during the operation. 4. 設置時と運転時との温度変化に伴う熱変形によって少なくとも部分的に移動する大口径配管に、この大口径配管よりも小口径の小口径配管を接続してこの小口径配管を設置する配管設置方法において、
前記大口径配管を設置する大口径配管設置工程と、
前記大口径配管設置工程の後に、前記大口径配管と前記小口径配管とを接続し、前記小口径配管を設置する小口径配管設置工程と、
前記小口径配管設置工程の後に、前記小口径配管に荷重をかけてこの小口径配管を部分的に変位させた状態で、この小口径配管の少なくとも1箇所でこの小口径配管の横方向の移動を拘束するサポートを設置するサポート設置工程と、
を有し、
前記サポートの設置位置が、前記小口径配管と前記大口径配管との接続部の前記熱変形による移動の方向に、前記接続部の移動量よりも小さい範囲であらかじめ変位した位置であること、
を特徴とする配管設置方法。
A pipe installation that connects a small-diameter pipe smaller in diameter than this large-diameter pipe to a large-diameter pipe that moves at least partially due to thermal deformation due to temperature changes between installation and operation, and installs this small-diameter pipe In the method,
A large-diameter pipe installation step of installing the large-diameter pipe,
After the large-diameter pipe installation step, connecting the large-diameter pipe and the small-diameter pipe, a small-diameter pipe installation step of installing the small-diameter pipe,
After the step of installing the small-diameter pipe, in a state where the small-diameter pipe is partially displaced by applying a load to the small-diameter pipe, the lateral movement of the small-diameter pipe is performed at least at one position of the small-diameter pipe. A support installation process of installing a support that restrains the
Has,
The installation position of the support is a position displaced in advance in a direction smaller than the amount of movement of the connection portion in the direction of movement due to the thermal deformation of the connection portion between the small-diameter pipe and the large-diameter pipe,
A piping installation method characterized by the above-mentioned.
請求項4に記載の配管設置方法において、前記小口径配管設置工程およびサポート設置工程でのそれぞれの目標とする前記小口径配管の位置を表示する表示部をあらかじめ設置する表示部設置工程をさらに有すること、を特徴とする配管設置方法。The pipe installation method according to claim 4, further comprising a display section installation step of previously installing a display section for displaying a position of the target small diameter pipe in the small diameter pipe installation step and the support installation step. A piping installation method characterized by the above-mentioned. 請求項4または5に記載の配管設置方法において、前記大口径配管および小口径配管は原子力発電プラント内配管であること、を特徴とする配管設置方法。6. The piping installation method according to claim 4, wherein the large-diameter piping and the small-diameter piping are piping in a nuclear power plant.
JP2003142921A 2003-05-21 2003-05-21 Piping apparatus and method for installing piping Withdrawn JP2004346990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003142921A JP2004346990A (en) 2003-05-21 2003-05-21 Piping apparatus and method for installing piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003142921A JP2004346990A (en) 2003-05-21 2003-05-21 Piping apparatus and method for installing piping

Publications (1)

Publication Number Publication Date
JP2004346990A true JP2004346990A (en) 2004-12-09

Family

ID=33530843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142921A Withdrawn JP2004346990A (en) 2003-05-21 2003-05-21 Piping apparatus and method for installing piping

Country Status (1)

Country Link
JP (1) JP2004346990A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5599931B1 (en) * 2013-12-25 2014-10-01 東京瓦斯株式会社 Stretchable absorption structure, pipe line, and pipe construction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5599931B1 (en) * 2013-12-25 2014-10-01 東京瓦斯株式会社 Stretchable absorption structure, pipe line, and pipe construction method

Similar Documents

Publication Publication Date Title
GB2490086A (en) A fibre optic device for monitoring the surface of a vessel
CN102563257A (en) Piping system
KR20110114534A (en) Hybrid method of erecting a cold box using prefabricated and field erected components
Strejček et al. Behaviour of column web component of steel beam-to-column joints at elevated temperatures
JP3572528B2 (en) Space environment test equipment
JP2004346990A (en) Piping apparatus and method for installing piping
CN204694358U (en) Cage critical wall temperature monitoring thermocouple support
JP4524332B1 (en) Piping structure design support system
JP2011064288A (en) Piping restricted support
JP2004271534A (en) Space environment testing device
CN110402314B (en) Metal structure for supporting fluid conduit and industrial equipment having the same
Ključanin et al. The cantilever beams analysis by the means of the first-order shear deformation and the Euler-Bernoulli theory
KR101226006B1 (en) Support structural body of pipe
Kim et al. Limit state assessment for bending deformation of multi-ply bellows systems
Badgujar et al. Progress and present status of ITER cryoline system
JP2021162159A (en) Pipe installation method and pipe installation structure
KR20200101085A (en) Gaspipe expansion joint
JP2005048849A (en) Pipe restraining instrument and pipe restraining method
JP5347873B2 (en) Hot air branch structure of a hot blast furnace
JP2004348461A (en) Piping installation design method
JP5599931B1 (en) Stretchable absorption structure, pipe line, and pipe construction method
Kim et al. KSTAR thermal shield
CN209673348U (en) Pipeline test tool
JP2001153280A (en) Pipe laying method in base isolation building and base isolation joint structure
WO2024084705A1 (en) Device module and plant

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801