JP2004346965A - Flow passage switching apparatus - Google Patents

Flow passage switching apparatus Download PDF

Info

Publication number
JP2004346965A
JP2004346965A JP2003141896A JP2003141896A JP2004346965A JP 2004346965 A JP2004346965 A JP 2004346965A JP 2003141896 A JP2003141896 A JP 2003141896A JP 2003141896 A JP2003141896 A JP 2003141896A JP 2004346965 A JP2004346965 A JP 2004346965A
Authority
JP
Japan
Prior art keywords
valve
flow path
cam
outlet
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003141896A
Other languages
Japanese (ja)
Inventor
Tetsuo Ozeki
哲男 大関
Hiroto Yuasa
裕人 湯浅
Koichi Tokuhisa
浩一 徳久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Chemicals Co Ltd
Original Assignee
Osaka Gas Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Chemicals Co Ltd filed Critical Osaka Gas Chemicals Co Ltd
Priority to JP2003141896A priority Critical patent/JP2004346965A/en
Publication of JP2004346965A publication Critical patent/JP2004346965A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanically-Actuated Valves (AREA)
  • Multiple-Way Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow passage switching apparatus which can reduce its operation resistance in switching a flow passage and can improve its durability while reducing its size. <P>SOLUTION: The flow passage switching apparatus comprises an inlet port and a plurality of outlet ports 3 in a valve chamber 1, a valve seat 4, and a valve body 5 which is located inside the valve chamber 1 in the retractable manner to the valve seat 4 in each of a plurality of the outlet ports 3. Further, the apparatus has an elastic energizing means 8 for elastically energizing each valve body 5 toward each outlet port 3 so as to come into close contact with each valve seat 4, a plurality of cam members 11 which are held in each outlet side flow passage continued to each outlet port 3 so as to rotate and have a cam portion 11A for separating each valve body 5 from each valve seat 4 by coming into contact with each valve body 5 at a set rotational angular position, and a rotation operating means 100 for alternatively rotating a plurality of the cam members 11 to the set rotational angular position such that each valve body 5 alternatively separates from each valve seat 4 against the elastic energizing force of the elastic energizing means 8. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、弁室に1つの流入口と複数の流出口を設け、前記複数の流出口の夫々に、弁座と、弁室内に位置して前記弁座に対して密接及び離間自在な弁体とを設けた流路切り替え装置に関する。
【0002】
【従来の技術】
上記流路切り替え装置は、例えば水道の蛇口に取り付けて、流入口から弁室内に流入させた水道水の流路を浄水部に通流させる浄水用流出口や、水道水をそのまま直流状態もしくはシャワー状態で排出させる原水用流出口に切り替えるのに用いられるが、第1の従来技術では、弁体としてのボールを水流及び自重で各弁座に密接させるとともに、弁室の横壁から弁室内に複数の操作棒を挿入して各弁座上に位置している各ボールを横向きに押圧可能に配置し、複数の操作棒を択一的に操作して各弁体を各弁座から離間させて、その弁体を備えた流出口に流路を切り替えるように構成していた(特許文献1、特許文献2参照)。
【0003】
また、第2の従来技術では、複数の流出口に夫々連なる複数の出口側流路を横切る状態で挿入した1つの操作棒を棒長手軸芯周りに回転自在に配置するとともに、異なる回転角度位置で各弁体に接当して弁座から離間させる複数のカム部を操作棒に備え、この操作棒を回転操作して各流出口の弁座上に密接している各弁体を各カム部で押し上げて弁座から離間させ、流路切り替えを行うように構成していた(特許文献3、特許文献4参照)。なお、この特許文献には、弁体を水流及び自重で弁座に密接させるものと、弁体を圧縮バネで押して弁座に密接させるものが記載されている。
【0004】
【特許文献1】
特公平5−31036号公報(第1−4頁、第1図−第6図)
【特許文献2】
実開平6−41887号公報(第1−7頁、図1−図3)
【特許文献3】
特許第3218856号公報(第1−3頁、図1−図4)
【特許文献4】
特開平9−144913号公報(第1−6頁、図1−図6)
【0005】
【発明が解決しようとする課題】
上記第1の従来技術では、水道水の静圧が高圧状態で加わっている弁室内に操作棒を挿入しているため、操作棒と弁室横壁との摺動箇所をシールするシール部を高圧に耐える構造にする必要があり、その結果、操作棒を押し引き操作するときの上記シール部の摺動抵抗が大きくなって、流路の切り替え操作に大きな力を要するとともに、操作棒の押し引き操作の繰り返しによってシール部が磨耗し、耐久性が低下するという問題があった。又、弁体を弁座に対して側方に押圧してずらすので、その操作により、弁座が偏磨耗し、シール性低下の原因ともなっていた。
【0006】一方、第2の従来技術では、操作棒が出口側流路に配置されているため、流れ状態での比較的低い圧力の動圧が操作棒の各出口側流路に対するシール部に加わるが、高圧の水道水の静圧がそのまま加わる不利はない。しかし、操作棒が複数の出口側流路を横切って配置されているので、隣接する出口側流路間での漏れを相互にシールするためのシール材として、摺動抵抗の大きいO−リング等を使用する必要があり、さらに、上記シール部は切り替え流路数に応じて複数箇所(例えば3つの出口側流路に切り替える場合は3箇所)設けられるので、流路の切替操作時に複数箇所全てのシール部の摺動抵抗が負荷となる。加えて、操作棒が基端側で受けた回転力を棒のねじり剛性を利用して先端側に伝達する構造であるため、操作棒の上記摺動抵抗に対するねじり強度(曲げ強度)を高くする必要から操作棒の直径が太くなり重量が重くなるとともに、上記シール部の外径も大きくなり、一層摺動抵抗が大きくなっていた。そして、上記各理由のために摺動抵抗が過大になり、シール部の耐久性が低下するおそれがあった。その結果、全体構造が大型化する不利があるとともに、流路切り替え操作時の操作抵抗を小さくし耐久性を向上させることが困難であった。
【0007】
本発明は、上記実情に鑑みてなされたものであり、その目的は、小型化しながら、流路切り替え時の操作抵抗を小さくし、耐久性を向上させることが可能となる流路切り替え装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を実現するための本発明に係る流路切り替え装置の第1の特徴構成は、請求項1に記載したように、前記各弁体を前記各弁座に密接するように前記各流出口側へ向けて弾性付勢する弾性付勢手段と、前記各流出口に連なる各出口側流路内に回転自在に保持され、且つ、設定回転角度位置において前記各弁体に接当して前記各弁体を前記各弁座から離間させるカム部を備えた複数のカム部材と、前記弾性付勢手段の弾性付勢力に抗して前記各弁体が択一的に前記各弁座から離間するように、前記複数のカム部材を択一的に前記設定回転角度位置に回転させる回転操作手段が設けられている点にある。
【0009】
すなわち、各流出口に連なる各出口側流路内に回転自在に保持された複数のカム部材のいずれかを回転操作手段によって択一的に設定回転角度位置に回転させると、その設定回転角度位置に回転した択一のカム部材が各弁体に接当し、各弁体を弾性付勢手段の弾性付勢力に抗して弁座から離間させるので、この弁体及び弁座を設けた流出口と1つの流入口とが連通するように流路が切り替えられる。
【0010】
上記流路の切り替え操作において、各カム部材は互いに分離した各出口側流路内に個別に保持されているので、隣接する出口側流路間で漏れが発生するおそれは全くなく、上記各カム部材の各出口側流路に対するシール部のシール性はそれほど高くする必要はないため、シール材として、各出口側流路内から外部への一方向の漏れをシールする断面U字型パッキン等の摺動抵抗の小さいシール材を使用することができる。また、上記カム部材はねじり剛性を利用して回転力を伝達する構造ではあるが、少数でかつ摺動抵抗が小のU字型パッキン等が負荷になるので、第2の従来技術で述べたカム部材よりも小径に形成して小型軽量化しても、所望のねじり強度を確保することができ、同時に、シール部の外径が小さくなる点からも摺動抵抗が小さくなる。その結果、各カム部材のシール部における摺動抵抗を小さくすることができるとともに、各カム部材の回転操作の繰り返しによるシール部の磨耗も少なくして耐久性を向上させることができ、しかも、各出口側流路が各カム部材の保持部を兼用しているので、専用の保持部を設ける必要もなく、全体構造が小型に構成できる。
従って、小型化しながら、流路切り替え時の操作抵抗を小さくし、耐久性を向上させることが可能となる流路切り替え装置を提供することができる。
【0011】
同第2の特徴構成は、請求項2に記載したように、第1の特徴構成において、前記回転操作手段が、1つの回転操作具と、この回転操作具を異なる回転操作角度の夫々に操作したときに前記複数のカム部材の夫々が択一的に前記設定回転角度位置に回転するように、前記回転操作具の回転力を前記複数のカム部材に伝達する伝達機構とで構成されている点にある。
すなわち、上記1つの回転操作具を異なる回転操作角度位置の夫々に操作すると、その回転操作具の回転力が伝達機構によって複数のカム部材に伝達され、複数のカム部材の夫々が順次即ち択一的に前記設定回転角度位置に回転する。
従って、1つの回転操作具の操作によって目的の流出口への流路切り替え操作を簡単に行うことができ、流路切り替え装置の好適な実施形態が提供される。
【0012】
第3の特徴構成は、請求項3に記載したように、第2の特徴構成において、前記複数のカム部材の回転軸が平行状態で隣接配置され、前記回転操作具が前記複数のカム部材の回転軸のいずれかに付設され、前記伝達機構が、前記回転操作具を付設したカム部材の回転軸と他のカム部材の回転軸を螺合結合するギア機構で構成されている点にある。
すなわち、前記1つの回転操作具を回転操作すると、その回転操作具を付設したカム部材の回転軸が回転すると同時に、平行状態で隣接配置された他のカム部材の回転軸が上記回転操作具を付設したカム部材の回転軸とギア機構によって螺合結合して回転し、複数のカム部材が択一的に前記設定回転角度位置に回転される。
従って、複数のカム部材を平行状態で隣接配置し且つ各カム部材をギア機構によって螺合結合する簡素な構成でありながら、1つの回転操作具の操作によって流路切り替え操作を良好に行うことができ、流路切り替え装置の好適な実施形態が提供される。
【0013】
同第4の特徴構成は、請求項4に記載したように、第1から第3の特徴構成のいずれかにおいて、前記弾性付勢手段が、板状周縁部と、前記板状周縁部から内方側に連設され且つ先端側で前記各弁体に接当して前記各弁座に押し付ける複数の板状バネ部とを有する板バネ体で構成されている点にある。 すなわち、板バネ体の板状周縁部から内方側に連設された複数の板状バネ部が夫々先端側で各弁体に接当して各弁座を各弁座に密接するように押し付ける。
従って、板状周縁部の内方側に複数の板状バネ部を例えば板材からの打ち抜き加工によって一体形成した板バネ体によって弾性付勢手段を構成するので、各弁体別にバネ等の弾性付勢手段を設けるものに比べ部品点数が少なくなり、装置組み立ての手間が少なくなるとともに、各板状バネ部が板状周縁部の内方側に位置して安定した状態で各弁体を弾性付勢することが可能となる流路切り替え装置の好適な実施形態が提供される。
【0014】
同第5の特徴構成は、請求項5に記載したように、第1から第4の特徴構成のいずれかにおいて、前記流入口が原水の流入口であり、前記複数の流出口が、前記原水を浄化部に通流させる浄化用流出口と、前記原水をそのまま外部へ排出させる原水用流出口とで構成されている点にある。 すなわち、流入口から流入させた原水を浄化するときは、複数の流出口のうちの浄化用流出口に流路を切り替え、原水を浄化せずにそのまま外部に排出するときは、複数の流出口のうちの原水用流出口に流路を切り替える。
従って、例えば原水である水道水を浄化するか、あるいは浄化せずそのまま使用するような選択を行う場合に用いることができる流路切り替え装置の好適な実施形態が提供される。
【0015】
【発明の実施の形態】
本発明に係る流路切り替え装置の発明の実施の形態について、図1に示すように、水道の蛇口Jに取り付けて浄水部20への流路切り替えを行う場合を例にして、以下、図面に基づいて説明する。
【0016】
図1〜図6に示すように、本発明の流路切り替え装置は、弁室1に1つの流入口2と複数の流出口3を設け、複数の流出口3の夫々に、弁座4と、弁室1内に位置して前記弁座4に対して密接及び離間自在な弁体としての金属(SUS)製ボール5を設けている。弁座4は各流出口3に相当する位置に円形開口を有するゴムパッキンで構成されている。なお、図3は図2のA−A位置での縦断面図、図4は図2のB−B位置での縦断面図、図5(イ)及び図6(イ)は図2のC−C位置での縦断面図、図2は図3のD−D位置での平面断面図を夫々示す。
【0017】
流入口2は、原水(水道水)の流入口であって弁室1の上部に設けられ、流入口2の縁部に水栓取り付け用の環状パッキン2Aが設けられている。そして、先端外周部にネジが形成された水道の蛇口Jの端部をパッキン2Bでシールしながら、水栓取り付けリング7を被せた状態のアダプタ7Aを蛇口Jにネジ止めした後、このアダプタ7Aを上記流入口2の環状パッキン2Aに押し当てながら、水栓取り付けリング7をケーシング6に螺合させて締め付けて、流入口2を水道の蛇口Jに接続している。
【0018】
一方、複数の流出口3は、水道水を浄化部20に通流させる浄化用流出口3Aと、水道水をそのまま外部へ排出させる原水用流出口3B,3Cとで構成され、この原水用流出口3B,3Cには、直流排出口21に連通した直流用流出口3Bと、多数の小孔を備えたシャワー排出口22に連通したシャワー用流出口3Cの2つが設けられている。なお、上記浄化部20については詳述しないが、水道水を浄化する円筒状の濾過カートリッジ20Aを内蔵して、流路切り替え装置の横側に配置されている。
【0019】
前記各ボール5を各弁座4に密接するように各流出口3側へ弾性付勢する弾性付勢手段としての板バネ体8が設けられている。図7にも示すように、板バネ体8は、円環状の板状周縁部8Dと、その板状周縁部8Dから内方側に連設され且つ先端側で各ボール5に接当して各弁座4に押し付ける複数の板状バネ部8A,8B,8Cとを有し、上記板状周縁部8Dを弁室1の内壁(ケーシング6)の受け部に下向きに接当するように設置することによって、各板状バネ部8A,8B,8Cが各ボール5を下向きに押して水平姿勢の各弁座4に対して正面方向から密接させている。なお、各板状バネ部8A,8B,8Cのボール5との接当箇所は、ボール5を安定に押圧するために球面状に形成されている。従って、水圧が低い場合でも良好に閉弁状態を維持できる。また、弁室1の下部には、各ボール5の可動範囲を規制するための複数の柱状仕切り体10が立設されている。
【0020】
前記各流出口3に連なる各出口側流路9内に回転自在に保持され、且つ、設定回転角度位置において前記各ボール5に接当して各弁座4から離間させるカム部11Aを備えた複数のカム部材としての複数のカムロッド11が設けられている。具体的には、上記各出口側流路9は各流出口3から下方側に連なり、その各出口側流路9から横向きに分かれた枝流路9Aに、上記カム部11Aを先端部側面に形成した各カムロッド11が横向き姿勢で保持されている。ここで、各カムロッド11が回転されてカム部11Aが上に位置する回転角度位置が前記設定回転角度位置に対応し、この設定回転角度位置でボール5がカム部11Aによって上方に押し上げられて弁座4から離間する。従って、各ボール5は弁座4の正面方向に沿って密接及び離間するので、弁座4のゴムパッキンのシール箇所の劣化(圧縮ひずみ)が均一となり、長期のシール維持性能が高くなる。
【0021】
各カムロッド11は、大部分を小径の棒体に形成するとともに、前記枝流路9Aの内壁と微小間隙を隔てる状態で断面が円形の前支持部11Bと後支持部11Cを設け、幅広に形成された後支持部11Cの周部に断面U字型の環状パッキン12を配置している。ここで、断面U字型のパッキン12は圧力がかかっていないときの摺動抵抗が小さい特徴があり、出口側流路9の内部から外部への流体の漏れをシールする状態にシール方向を設定している。
【0022】
前記板バネ8の弾性付勢力に抗して前記各ボール5が各弁座4から離間するように、複数のカムロッド11を択一的に前記設定回転角度位置に回転させる回転操作手段100が設けられている。そして、この回転操作手段100は、1つの回転操作具15と、この回転操作具15を異なる回転操作角度の夫々に操作したときに前記複数のカムロッド11の夫々が択一的に前記設定回転角度位置に回転するように、上記回転操作具15の回転力を前記複数のカムロッド11に伝達する伝達機構200とで構成されている。
【0023】
複数のカムロッド11の回転軸11Eが平行状態で隣接配置され、前記回転操作具15が複数のカムロッド11の回転軸11Eのいずれかに付設され、前記伝達機構200が、前記回転操作具15を付設したカムロッド11の回転軸11Eと他のカムロッド11の回転軸11Eとを螺合結合するギア機構11Dで構成されている。具体的には、回転操作具15はハンドル式に構成されて、3つ並んだカムロッド11のうちの真中のカムロッド11の後端部に上記回転操作具15の基端部が取り付けられ、ギア機構11Dが各カムロッド11の後端部と前記後支持部11Cとの間のカムロッド外周部に形成した歯車で構成されている。なお、上記回転操作具15を3つのカムロッド11のうち、真中のカムロッド11ではなく左右いずれかのカムロッド11に付設してもよい。
【0024】
上記回転操作具15を回転操作範囲の中央位置(垂直方向に向いた位置)にすると(図5参照)、真中のカムロッド11のカム部11Aが上向き状態となり、直流用流出口3Bのボール5を弁座4から押し上げて離間させ、直流排出口21から水道水が排出される。上記回転操作具15を上記中央位置から左側に45度回転させると(図6参照)、右側のカムロッド11のカム部15Aが上向き状態となり、浄化用流出口3Aのボール5を弁座4から押し上げて離間させ、浄化部20へ通流させる。逆に、右側に45度回転させると、左側のカムロッド11のカム部15Aが上向き状態となり、シャワー用流出口3Cのボール5を弁座4から押し上げて離間させ、シャワー排出口22から水道水が排出される。
【0025】
上記のように回転操作具15を回転操作して流路切替を行うときに、開弁位置と閉弁位置の間で反対方向に回転する2つのカムロッド11のシール材(断面U字型のパッキン12)の摺動抵抗が操作負荷となるが、開弁位置から閉弁位置に回転するカムロッド11(真中の流入口3Bに対応する)のU字型パッキン12の摺動抵抗は小さくなり、閉弁位置から開弁位置に移動するカムロッド11(右側の流入口3Aに対応する)のU字型パッキン12の摺動抵抗だけが実質的な負荷となる。そのため、本発明においては、第2の従来技術の項で述べたカム部付きの操作棒を回転して流路切替操作を行う場合に、操作棒をシールする3つのO−リング等の全ての摺動抵抗が操作負荷となるのに比べて、操作負荷を小さくすることができる。
【0026】
なお、図示しないが、別の操作具の形態として、上記回転操作具15の中央位置(直流流出位置)を水平方向に向いた位置として、この水平位置から回転操作具15を上側又は下側に45度回転させて流路切り替えを行う構成でもよい。
【0027】
上記のようにプラスマイナス45度(合計で90度の回転範囲)と比較的小さな回転角度操作で流路切り替えが可能になるので、操作距離が短くなり操作が容易となる。なお、上記回転操作具15については、上記のようにプラスマイナス45度の範囲で回転操作する構成の他に、45度回転ごとにエンドレスで順次流路切り替えを行うものや、45度刻みで360度の範囲で回転操作する等種々変形できる。また、1つの流路から次の流路に切り替えるときの必要回転操作角度も、45度以外の角度に設定することができる。
【0028】
〔別実施の形態〕
上記実施形態では、弁体5をボールで構成したが、ボール以外の各種形状の弁体を用いることができる。
【0029】
上記実施形態では、弾性付勢手段8として、板状周縁部8Dの内方側に複数の板バネ部8A,8B,8Cを一体形成した板バネ体8で構成したが、これ以外に、各弁体5に対応させた複数の板バネやコイルスプリング等のバネ類や、硬質ゴム等の弾性材料等で構成してよい。
【0030】
上記実施形態では、カム部材11をロッド形状に形成したが、これ以外の各種形状のカム部材を用いることができる。
【0031】
上記実施形態では、回転操作手段100を、1つの回転操作具15及び伝達機構200(具体的にはギア機構11D)で構成したが、これ以外の各種回転操作手段を用いることができる。
【0032】
上記実施形態では、本発明の流路切り替え装置を、水道水を原水として浄化部(浄水器)への流路切り替えを行う場合に適用したが、これ以外の流体を対象として流路切り替えを行う用途に使用することができる。
【図面の簡単な説明】
【図1】流路切り替え装置と浄水器の外観を示す側面図と底面図
【図2】本発明の流路切り替え装置を示す平面断面図
【図3】同流路切り替え装置の正面縦断面図
【図4】同流路切り替え装置の正面縦断面図
【図5】同流路切り替え装置の側面縦断面図と切り替え操作の説明図
【図6】同流路切り替え装置の側面縦断面図と切り替え操作の説明図
【図7】弾性付勢手段の具体構造を示す平面図と斜視図
【符号の説明】
1 弁室
2 流入口
3 流出口
3A 浄化用流出口
3B,3C 原水用流出口
4 弁座
5 弁体
8 弾性付勢手段(板バネ体)
8A,8B,8C 板状バネ部
8D 板状周縁部
9 出口側流路
11 カム部材
11A カム部
11D ギア機構
11E 回転軸
15 回転操作具
20 浄化部
100 回転操作手段
200 伝達機構
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides one inlet and a plurality of outlets in a valve chamber, each of the plurality of outlets having a valve seat, and a valve located in the valve chamber and capable of being closely attached to and separated from the valve seat. The present invention relates to a flow path switching device provided with a body.
[0002]
[Prior art]
The above-mentioned flow path switching device is attached to, for example, a faucet of a tap, and an outlet for purifying water for flowing the flow path of tap water from the inflow port into the valve chamber to the water purification section, or a direct current state or shower of tap water as it is. In the first conventional technique, a ball as a valve body is brought into close contact with each valve seat by a water flow and its own weight, and a plurality of balls are inserted into the valve chamber from the lateral wall of the valve chamber. The operation rods are inserted and each ball located on each valve seat is disposed so as to be able to be pressed laterally, and the plurality of operation rods are selectively operated to separate each valve body from each valve seat. Then, the flow path is switched to an outlet provided with the valve body (see Patent Documents 1 and 2).
[0003]
In the second prior art, one operating rod inserted in a state of crossing a plurality of outlet side flow paths respectively connected to a plurality of outlets is rotatably arranged around a rod longitudinal axis center, and different rotation angle positions are provided. The operation rod is provided with a plurality of cam portions which come into contact with each valve element and separate from the valve seat, and the operation rod is operated to rotate each valve element which is in close contact with the valve seat at each outlet. In such a configuration, the channel is pushed up and separated from the valve seat to switch the flow path (see Patent Documents 3 and 4). In this patent document, there are described one in which a valve body is brought into close contact with a valve seat by water flow and its own weight, and another in which a valve body is pushed by a compression spring to come into close contact with a valve seat.
[0004]
[Patent Document 1]
Japanese Patent Publication No. 5-31036 (pages 1-4, Fig. 1-Fig. 6)
[Patent Document 2]
Japanese Utility Model Laid-Open No. 6-41887 (pages 1-7, FIGS. 1-3)
[Patent Document 3]
Japanese Patent No. 3218856 (pages 1-3, FIGS. 1-4)
[Patent Document 4]
JP-A-9-144913 (Pages 1-6, FIGS. 1-6)
[0005]
[Problems to be solved by the invention]
In the first prior art, since the operation rod is inserted into the valve chamber to which the static pressure of the tap water is applied in a high pressure state, the sealing portion that seals a sliding portion between the operation rod and the side wall of the valve chamber has a high pressure. As a result, when the operation rod is pushed and pulled, the sliding resistance of the seal portion becomes large, and a large force is required for the switching operation of the flow path, and the operation rod is pushed and pulled. There has been a problem that the seal portion is worn by repeated operations, and the durability is reduced. Further, since the valve body is pressed and shifted to the side with respect to the valve seat, the operation causes uneven wear of the valve seat, which causes a reduction in sealing performance.
On the other hand, in the second prior art, since the operating rod is disposed in the outlet side flow path, a relatively low dynamic pressure in the flow state is applied to the seal portion for each outlet side flow path of the operating rod. There is no disadvantage that the static pressure of high-pressure tap water is added as it is. However, since the operating rod is disposed across the plurality of outlet-side flow paths, an O-ring or the like having a large sliding resistance is used as a sealing material for mutually sealing leakage between adjacent outlet-side flow paths. In addition, since the seal portion is provided at a plurality of places (for example, three places when switching to three outlet side flow paths) according to the number of switching flow paths, all of the plurality of places are provided at the time of the flow path switching operation. The sliding resistance of the seal portion becomes a load. In addition, since the rotational force received by the operation rod on the base end side is transmitted to the distal end side using the torsional rigidity of the rod, the torsional strength (bending strength) of the operation rod with respect to the sliding resistance is increased. Because of the necessity, the diameter of the operation rod is increased and the weight is increased, and the outer diameter of the seal portion is increased, so that the sliding resistance is further increased. And, for each of the above reasons, the sliding resistance becomes excessive, and there is a possibility that the durability of the seal portion is reduced. As a result, there is a disadvantage that the entire structure is enlarged, and it is difficult to reduce the operation resistance at the time of the flow path switching operation and to improve the durability.
[0007]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a flow path switching device capable of reducing operation resistance at the time of flow path switching and improving durability while reducing the size. Is to do.
[0008]
[Means for Solving the Problems]
According to a first characteristic configuration of the flow path switching device according to the present invention for achieving the above object, as described in claim 1, each of the outlets is arranged such that each of the valve elements is in close contact with each of the valve seats. Elastic urging means for elastically urging toward the side, rotatably held in each outlet-side flow path connected to each of the outlets, and abutting on each of the valve bodies at a set rotation angle position, A plurality of cam members having a cam portion for separating each valve body from each valve seat; and each valve body alternatively separating from each valve seat against the elastic urging force of the elastic urging means. The rotation operating means for selectively rotating the plurality of cam members to the set rotation angle position is provided.
[0009]
That is, when one of the plurality of cam members rotatably held in each outlet-side flow path connected to each outlet is selectively rotated to the set rotation angle position by the rotation operation means, the set rotation angle position is set. The alternately rotated cam member contacts each valve body and separates each valve body from the valve seat against the elastic urging force of the elastic urging means. The flow path is switched so that the outlet communicates with the one inlet.
[0010]
In the above switching operation of the flow paths, since each cam member is individually held in each of the outlet side flow paths separated from each other, there is no possibility that leakage occurs between adjacent outlet side flow paths, Since the sealing property of the seal portion to each outlet side flow path of the member does not need to be so high, as a sealing material, such as a U-shaped packing having a cross section that seals one-way leakage from the inside of each outlet side flow path to the outside. A sealing material having small sliding resistance can be used. Although the cam member has a structure for transmitting torque using torsional rigidity, the U-shaped packing or the like having a small number of sliding resistances and a small load becomes a load. Even if the cam member is formed to have a smaller diameter than the cam member, the desired torsional strength can be secured, and at the same time, the sliding resistance is reduced because the outer diameter of the seal portion is reduced. As a result, the sliding resistance of the seal portion of each cam member can be reduced, and the wear of the seal portion due to repetition of the rotation operation of each cam member can be reduced, and the durability can be improved. Since the outlet side flow path also serves as a holding section for each cam member, there is no need to provide a dedicated holding section, and the overall structure can be made small.
Therefore, it is possible to provide a flow path switching device capable of reducing the operational resistance at the time of switching the flow path and improving the durability while reducing the size.
[0011]
According to a second feature configuration, as set forth in claim 2, in the first feature configuration, the rotation operation means operates one rotation operation tool and each of the rotation operation tools at different rotation operation angles. And a transmission mechanism for transmitting the rotational force of the rotary operating tool to the plurality of cam members so that each of the plurality of cam members selectively rotates to the set rotation angle position when the rotation is performed. On the point.
That is, when the one rotary operation tool is operated at each of the different rotational operation angle positions, the rotational force of the rotary operation tool is transmitted to the plurality of cam members by the transmission mechanism, and each of the plurality of cam members is sequentially or selectively selected. It rotates to the set rotation angle position.
Therefore, the operation of switching the flow path to the target outlet can be easily performed by operating one rotary operation tool, and a preferred embodiment of the flow path switching device is provided.
[0012]
According to a third feature configuration, as described in claim 3, in the second feature configuration, the rotation axes of the plurality of cam members are arranged adjacent to each other in a parallel state, and the rotation operating tool is provided on the plurality of cam members. The present invention is characterized in that the transmission mechanism is provided on one of the rotation shafts, and the transmission mechanism is constituted by a gear mechanism that screw-connects a rotation shaft of a cam member provided with the rotation operation tool to a rotation shaft of another cam member.
That is, when the one rotary operating tool is rotated, the rotary shaft of the cam member provided with the rotary operating tool rotates, and at the same time, the rotary shafts of the other cam members arranged adjacent to each other in a parallel state cooperate with the rotary operating tool. The rotating shaft of the attached cam member and the gear mechanism are screwed and rotated, and the plurality of cam members are selectively rotated to the set rotation angle position.
Therefore, while a plurality of cam members are arranged adjacent to each other in a parallel state and each cam member is screwed and connected by a gear mechanism, the flow path switching operation can be favorably performed by operating one rotary operation tool. A preferred embodiment of the flow switching device is provided.
[0013]
According to a fourth feature of the present invention, as set forth in claim 4, in any one of the first to third features, the elastic urging means includes a plate-shaped peripheral portion and an inner portion extending from the plate-shaped peripheral portion. And a plurality of plate-shaped spring portions that are connected to one side and are in contact with the respective valve bodies on the distal end side and press against the respective valve seats. That is, a plurality of plate-shaped spring portions continuously provided inward from the plate-shaped peripheral portion of the plate-shaped spring member are in contact with the respective valve elements on the distal end side so that the respective valve seats are in close contact with the respective valve seats. Press.
Therefore, the elastic urging means is constituted by a plate spring body in which a plurality of plate spring portions are integrally formed by, for example, punching from a plate material on the inner side of the plate peripheral edge portion. The number of parts is reduced as compared with the one provided with biasing means, the labor for assembling the device is reduced, and each valve body is elastically attached in a stable state with each plate-shaped spring part located inside the plate-shaped peripheral edge. A preferred embodiment of a flow switching device capable of energizing is provided.
[0014]
The fifth characteristic configuration is, as described in claim 5, in any one of the first to fourth characteristic configurations, wherein the inflow port is an inflow port of raw water, and the plurality of outflow ports are the inflow of raw water. And a raw water outlet for discharging the raw water to the outside as it is. That is, when purifying raw water flowing in from the inlet, the flow path is switched to a purifying outlet among the plurality of outlets, and when the raw water is directly discharged to the outside without purification, the plurality of outlets are used. The flow path to the raw water outlet.
Accordingly, there is provided a preferred embodiment of a flow path switching device that can be used, for example, when purifying tap water, which is raw water, or selecting to use tap water without purification.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The embodiment of the invention of the flow path switching device according to the present invention, as shown in FIG. It will be described based on the following.
[0016]
As shown in FIGS. 1 to 6, the flow path switching device of the present invention is provided with one inlet 2 and a plurality of outlets 3 in a valve chamber 1, and each of the plurality of outlets 3 has a valve seat 4. A metal (SUS) ball 5 is provided in the valve chamber 1 as a valve body which is capable of being closely attached to and separated from the valve seat 4. The valve seat 4 is formed of a rubber packing having a circular opening at a position corresponding to each outlet 3. 3 is a longitudinal sectional view at the position AA in FIG. 2, FIG. 4 is a longitudinal sectional view at the position BB in FIG. 2, and FIGS. 5 (a) and 6 (a) are C in FIG. FIG. 2 is a vertical cross-sectional view taken along a line D-D in FIG. 3, and FIG.
[0017]
The inflow port 2 is an inflow port of raw water (tap water) and is provided above the valve chamber 1, and an annular packing 2 </ b> A for attaching a faucet is provided at an edge of the inflow port 2. Then, while sealing the end of the tap faucet J having a thread formed on the outer peripheral end with the packing 2B, the adapter 7A covered with the faucet attachment ring 7 is screwed to the faucet J. The water faucet attachment ring 7 is screwed into the casing 6 while being pressed against the annular packing 2A of the inflow port 2, and the inflow port 2 is connected to the water tap J.
[0018]
On the other hand, the plurality of outlets 3 are composed of a purification outlet 3A for flowing tap water to the purification section 20 and raw water outlets 3B and 3C for discharging tap water as it is to the outside. The outlets 3B and 3C are provided with a DC outlet 3B communicating with the DC outlet 21 and a shower outlet 3C communicating with a shower outlet 22 having a number of small holes. Although the purifying section 20 is not described in detail, it has a built-in cylindrical filter cartridge 20A for purifying tap water and is disposed on the side of the flow path switching device.
[0019]
A leaf spring body 8 is provided as elastic urging means for elastically urging each ball 5 toward each outlet 3 so as to be in close contact with each valve seat 4. As shown in FIG. 7, the leaf spring body 8 is provided with an annular plate-shaped peripheral portion 8D, and is connected inward from the plate-shaped peripheral portion 8D and abuts against each ball 5 at the distal end. It has a plurality of plate-like spring portions 8A, 8B, and 8C pressed against each valve seat 4, and the plate-like peripheral edge portion 8D is installed so as to abut against a receiving portion of the inner wall (casing 6) of the valve chamber 1 downward. By doing so, each plate-like spring portion 8A, 8B, 8C pushes each ball 5 downward to make close contact with each valve seat 4 in a horizontal posture from the front. The contact portions of the plate-like spring portions 8A, 8B, 8C with the ball 5 are formed in a spherical shape in order to press the ball 5 stably. Therefore, even when the water pressure is low, the valve closed state can be maintained satisfactorily. In the lower part of the valve chamber 1, a plurality of columnar partitions 10 for regulating the movable range of each ball 5 are provided upright.
[0020]
A cam portion 11A rotatably held in each outlet-side flow path 9 connected to each of the outlets 3 and abutting on each of the balls 5 at a set rotation angle position to be separated from each of the valve seats 4 is provided. A plurality of cam rods 11 are provided as a plurality of cam members. Specifically, each of the outlet-side flow paths 9 is connected downward from each of the outlets 3, and the cam portion 11 </ b> A is attached to a branch flow path 9 </ b> A laterally divided from each of the outlet-side flow paths 9. Each formed cam rod 11 is held in a horizontal posture. Here, the rotation angle position where each cam rod 11 is rotated and the cam portion 11A is positioned above corresponds to the set rotation angle position. At this set rotation angle position, the ball 5 is pushed upward by the cam portion 11A and the valve is opened. Move away from seat 4. Therefore, since each ball 5 is closely and spaced apart along the front direction of the valve seat 4, the deterioration (compression strain) of the sealing portion of the rubber packing of the valve seat 4 becomes uniform, and the long-term sealing maintenance performance is enhanced.
[0021]
Most of the cam rods 11 are formed in a small-diameter rod body, and are provided with a front support portion 11B and a rear support portion 11C each having a circular cross section in a state of separating a minute gap from the inner wall of the branch flow passage 9A to form a wide portion. An annular packing 12 having a U-shaped cross section is arranged around the periphery of the rear support portion 11C. Here, the packing 12 having a U-shaped cross section has a feature that the sliding resistance is small when no pressure is applied, and the sealing direction is set so as to seal the leakage of the fluid from the inside of the outlet side flow path 9 to the outside. are doing.
[0022]
Rotation operating means 100 for selectively rotating a plurality of cam rods 11 to the set rotation angle position is provided so that each of the balls 5 is separated from each of the valve seats 4 against the elastic biasing force of the leaf spring 8. Have been. The rotation operation means 100 is configured such that when one rotation operation tool 15 and each of the plurality of cam rods 11 are operated at different rotation operation angles, each of the plurality of cam rods 11 is alternatively set to the set rotation angle. And a transmission mechanism 200 that transmits the rotational force of the rotary operation tool 15 to the plurality of cam rods 11 so as to rotate to the position.
[0023]
The rotation shafts 11E of the plurality of cam rods 11 are arranged adjacent to each other in a parallel state, the rotary operation tool 15 is attached to one of the rotation shafts 11E of the plurality of cam rods 11, and the transmission mechanism 200 is provided with the rotation operation tool 15. And a gear mechanism 11D that screw-connects the rotating shaft 11E of the cam rod 11 and the rotating shaft 11E of the other cam rod 11 to each other. Specifically, the rotary operation tool 15 is configured as a handle type, and the base end of the rotary operation tool 15 is attached to the rear end of the middle cam rod 11 among the three cam rods 11 arranged side by side, and a gear mechanism is provided. 11D is constituted by a gear formed on the outer peripheral portion of the cam rod between the rear end of each cam rod 11 and the rear support portion 11C. Note that the rotary operation tool 15 may be attached to one of the right and left cam rods 11 instead of the middle cam rod 11 among the three cam rods 11.
[0024]
When the rotary operation tool 15 is set at the center position (the position facing the vertical direction) of the rotary operation range (see FIG. 5), the cam portion 11A of the center cam rod 11 is turned upward, and the ball 5 of the DC outlet 3B is moved. Tap water is lifted up from the valve seat 4 and separated therefrom, and tap water is discharged from the DC outlet 21. When the rotary operation tool 15 is rotated 45 degrees to the left from the center position (see FIG. 6), the cam portion 15A of the right cam rod 11 is turned upward, and the ball 5 of the purification outlet 3A is pushed up from the valve seat 4. To make it flow away to the purification unit 20. Conversely, when rotated 45 degrees to the right, the cam portion 15A of the left cam rod 11 is turned upward, the ball 5 of the shower outlet 3C is pushed up from the valve seat 4 to be separated, and tap water is discharged from the shower outlet 22. Is discharged.
[0025]
When switching the flow path by rotating the rotary operation tool 15 as described above, the sealing material (the packing having a U-shaped cross section) of the two cam rods 11 rotating in the opposite directions between the valve opening position and the valve closing position. Although the sliding resistance of 12) becomes an operation load, the sliding resistance of the U-shaped packing 12 of the cam rod 11 (corresponding to the middle inflow port 3B) that rotates from the valve opening position to the valve closing position becomes small, and the cam rod 11 closes. Only the sliding resistance of the U-shaped packing 12 of the cam rod 11 (corresponding to the right inlet 3A) that moves from the valve position to the valve opening position becomes a substantial load. Therefore, in the present invention, when the operation rod with the cam portion described in the second related art section is rotated to perform the flow path switching operation, all of the three O-rings and the like that seal the operation rod are used. The operation load can be reduced as compared with the case where the sliding resistance becomes the operation load.
[0026]
Although not shown, as another operation tool, the center position (DC outflow position) of the rotation operation tool 15 is set to a position facing the horizontal direction, and the rotation operation tool 15 is moved upward or downward from this horizontal position. A configuration in which the flow path is switched by rotating by 45 degrees may be used.
[0027]
As described above, the flow path can be switched by a relatively small rotation angle operation of plus or minus 45 degrees (a total rotation range of 90 degrees), so that the operation distance is short and the operation is easy. In addition to the above-described configuration in which the rotary operation tool 15 is rotated in the range of plus or minus 45 degrees, the rotary operation tool 15 performs endless sequential flow switching at every 45-degree rotation or 360 degrees in 45-degree increments. Various modifications can be made, such as rotation operation in the range of degrees. Also, the required rotation operation angle when switching from one flow path to the next flow path can be set to an angle other than 45 degrees.
[0028]
[Another embodiment]
In the above embodiment, the valve element 5 is formed of a ball, but valve elements of various shapes other than the ball can be used.
[0029]
In the above embodiment, the elastic urging means 8 is constituted by the leaf spring body 8 in which the plurality of leaf spring portions 8A, 8B, 8C are integrally formed on the inner side of the plate-shaped peripheral edge portion 8D. A plurality of springs such as a plurality of leaf springs and coil springs corresponding to the valve body 5, or an elastic material such as hard rubber may be used.
[0030]
In the above embodiment, the cam member 11 is formed in a rod shape, but cam members of various other shapes can be used.
[0031]
In the above-described embodiment, the rotation operation means 100 is constituted by one rotation operation tool 15 and the transmission mechanism 200 (specifically, the gear mechanism 11D), but other various rotation operation means can be used.
[0032]
In the above embodiment, the flow path switching device of the present invention is applied to the case where the flow path is switched to the purification unit (water purifier) using tap water as raw water, but the flow path switching is performed for other fluids. Can be used for applications.
[Brief description of the drawings]
FIG. 1 is a side view and a bottom view showing the appearance of a flow path switching device and a water purifier. FIG. 2 is a plan sectional view showing a flow switching device of the present invention. FIG. FIG. 4 is a front vertical cross-sectional view of the flow switching device. FIG. 5 is a side vertical cross-sectional view of the flow switching device and an explanatory view of a switching operation. FIG. FIG. 7 is a plan view and a perspective view showing the specific structure of the elastic urging means.
DESCRIPTION OF SYMBOLS 1 Valve room 2 Inlet 3 Outlet 3A Outlet for purification 3B, 3C Outlet for raw water 4 Valve seat 5 Valve 8 Elastic biasing means (leaf spring)
8A, 8B, 8C Plate-shaped spring portion 8D Plate-shaped peripheral portion 9 Outlet-side flow path 11 Cam member 11A Cam portion 11D Gear mechanism 11E Rotary shaft 15 Rotary operating tool 20 Purification unit 100 Rotary operating means 200 Transmission mechanism

Claims (5)

弁室に1つの流入口と複数の流出口を設け、前記複数の流出口の夫々に、弁座と、弁室内に位置して前記弁座に対して密接及び離間自在な弁体とを設けた流路切り替え装置であって、
前記各弁体を前記各弁座に密接するように前記各流出口側へ向けて弾性付勢する弾性付勢手段と、
前記各流出口に連なる各出口側流路内に回転自在に保持され、且つ、設定回転角度位置において前記各弁体に接当して前記各弁体を前記各弁座から離間させるカム部を備えた複数のカム部材と、
前記弾性付勢手段の弾性付勢力に抗して前記各弁体が択一的に前記各弁座から離間するように、前記複数のカム部材を択一的に前記設定回転角度位置に回転させる回転操作手段が設けられている流路切り替え装置。
A valve chamber is provided with one inlet and a plurality of outlets, and each of the plurality of outlets is provided with a valve seat, and a valve body located in the valve chamber and capable of being closely separated from and separated from the valve seat. Channel switching device,
Elastic urging means for elastically urging the respective valve elements toward the respective outlets so as to be in close contact with the respective valve seats;
A cam portion rotatably held in each outlet-side flow path connected to each of the outlets, and abutting against each of the valve bodies at a set rotation angle position to separate each of the valve bodies from each of the valve seats. A plurality of cam members provided,
The plurality of cam members are selectively rotated to the set rotation angle position so that the respective valve elements are selectively separated from the respective valve seats against the elastic urging force of the elastic urging means. A flow path switching device provided with a rotation operation means.
前記回転操作手段が、1つの回転操作具と、この回転操作具を異なる回転操作角度の夫々に操作したときに前記複数のカム部材の夫々が択一的に前記設定回転角度位置に回転するように、前記回転操作具の回転力を前記複数のカム部材に伝達する伝達機構とで構成されている請求項1記載の流路切り替え装置。When the rotation operation means operates one rotation operation tool and each rotation operation tool at a different rotation operation angle, each of the plurality of cam members is selectively rotated to the set rotation angle position. 2. The flow path switching device according to claim 1, further comprising: a transmission mechanism that transmits a rotational force of the rotary operation tool to the plurality of cam members. 前記複数のカム部材の回転軸が平行状態で隣接配置され、前記回転操作具が前記複数のカム部材の回転軸のいずれかに付設され、前記伝達機構が、前記回転操作具を付設したカム部材の回転軸と他のカム部材の回転軸を螺合結合するギア機構で構成されている請求項2記載の流路切り替え装置。A cam member in which the rotation axes of the plurality of cam members are arranged adjacent to each other in a parallel state, the rotation operating tool is attached to one of the rotation shafts of the plurality of cam members, and the transmission mechanism is provided with the rotation operation tool. 3. The flow path switching device according to claim 2, comprising a gear mechanism that screw-connects the rotation shaft of the first cam member and the rotation shaft of another cam member. 前記弾性付勢手段が、板状周縁部と、前記板状周縁部から内方側に連設され且つ先端側で前記各弁体に接当して前記各弁座に押し付ける複数の板状バネ部とを有する板バネ体で構成されている請求項1〜3のいずれかに記載の流路切り替え装置。The elastic urging means includes a plate-shaped peripheral portion, and a plurality of plate-shaped springs which are provided continuously from the plate-shaped peripheral portion to an inner side and which abut on the valve bodies at the distal end and press against the valve seats. The flow path switching device according to any one of claims 1 to 3, wherein the flow path switching device is configured by a leaf spring body having a portion. 前記流入口が原水の流入口であり、前記複数の流出口が、前記原水を浄化部に通流させる浄化用流出口と、前記原水をそのまま外部へ排出させる原水用流出口とで構成されている請求項1〜4のいずれかに記載の流路切り替え装置。The inlet is an inlet for raw water, and the plurality of outlets are constituted by an outlet for purification for allowing the raw water to flow to a purification unit, and an outlet for raw water for discharging the raw water as it is to the outside. The flow path switching device according to claim 1.
JP2003141896A 2003-05-20 2003-05-20 Flow passage switching apparatus Pending JP2004346965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003141896A JP2004346965A (en) 2003-05-20 2003-05-20 Flow passage switching apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003141896A JP2004346965A (en) 2003-05-20 2003-05-20 Flow passage switching apparatus

Publications (1)

Publication Number Publication Date
JP2004346965A true JP2004346965A (en) 2004-12-09

Family

ID=33530133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003141896A Pending JP2004346965A (en) 2003-05-20 2003-05-20 Flow passage switching apparatus

Country Status (1)

Country Link
JP (1) JP2004346965A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015057564A (en) * 2013-08-12 2015-03-26 株式会社テクノ高槻 Multidirectional selector valve
JP2016186358A (en) * 2015-03-27 2016-10-27 大阪ガスケミカル株式会社 Flow passage switching device and water purifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015057564A (en) * 2013-08-12 2015-03-26 株式会社テクノ高槻 Multidirectional selector valve
JP2016186358A (en) * 2015-03-27 2016-10-27 大阪ガスケミカル株式会社 Flow passage switching device and water purifier

Similar Documents

Publication Publication Date Title
US7255129B2 (en) Valve with elbow joint diverter
CN106890735B (en) Long-range switching combining shower
JP2018100682A (en) Flow path switching valve
WO2009046242A4 (en) Valve
KR20150134288A (en) Modular valve system
US20190301621A1 (en) Shower diverter
CA3104037A1 (en) Shunt valve for a bidet and a toilet cover plate including the shunt valve
MXPA06000567A (en) Flow-through rotary damper providing compartment selectivity for a multi-compartment refrigerator.
CA2305361C (en) Multi-way stop or diverter valve
JP2004346965A (en) Flow passage switching apparatus
JP4471587B2 (en) Channel switching device
JP7060903B2 (en) Switching valve that can prevent fluid crossing
CN106523736B (en) A kind of water purifier switch valve structure
CN205217176U (en) Teleswitching makes up gondola water faucet
EP2898242A1 (en) Nonlinear transmission rate between operating handle and operated mechanism
JP4809876B2 (en) Switching valve cartridge and switching valve device
JP5621126B2 (en) Switching valve
JP3972113B1 (en) Ratchet mechanism for water purifier switching valve
CN210141342U (en) Water tap
JP2008175334A (en) Changing-over lever mechanism of selector valve for water purifier
JP6479528B2 (en) Channel switching device and water purifier
CN215059714U (en) Water mixing valve core convenient to adjust
JP2006042993A (en) Showerhead with water purifying function
CN216223276U (en) Tap water purifier
US20230241631A1 (en) Fluid switching valve with pressure difference subjectable valve closure bodies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060511

A977 Report on retrieval

Effective date: 20081226

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

A02 Decision of refusal

Effective date: 20090827

Free format text: JAPANESE INTERMEDIATE CODE: A02