JP2004346420A - Warm-rolling method - Google Patents

Warm-rolling method Download PDF

Info

Publication number
JP2004346420A
JP2004346420A JP2003180290A JP2003180290A JP2004346420A JP 2004346420 A JP2004346420 A JP 2004346420A JP 2003180290 A JP2003180290 A JP 2003180290A JP 2003180290 A JP2003180290 A JP 2003180290A JP 2004346420 A JP2004346420 A JP 2004346420A
Authority
JP
Japan
Prior art keywords
rolling
warm
oval
shape
pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003180290A
Other languages
Japanese (ja)
Other versions
JP4221497B2 (en
Inventor
Shiro Toritsuka
史郎 鳥塚
Eijiro Muramatsu
榮次郎 村松
Tadanobu Inoue
忠信 井上
Hisashi Nagai
寿 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003180290A priority Critical patent/JP4221497B2/en
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to TW093114215A priority patent/TWI266659B/en
Priority to US10/557,416 priority patent/US20060191613A1/en
Priority to CNB2004800136487A priority patent/CN100366761C/en
Priority to KR1020057021834A priority patent/KR100749381B1/en
Priority to EP04734146A priority patent/EP1642988B1/en
Priority to PCT/JP2004/007277 priority patent/WO2004104235A1/en
Publication of JP2004346420A publication Critical patent/JP2004346420A/en
Application granted granted Critical
Publication of JP4221497B2 publication Critical patent/JP4221497B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/18Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a continuous process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0231Warm rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new multi-way warm rolling method which introduces a large strain in a material with a simple means and with less reduction ratio and less number of passes, and to produce a steel material having extremely fine crystal grain structure, excellent strength and ductility by the above method. <P>SOLUTION: The warm rolling method is employed to produce the extremely fine grain steel material having the extremely fine crystal grain structure of ≤3 μm average grain diameter. When rolling having ≥2 passes in a temperature range of 350 to 800°C rolling temperature range is applied to the steel material, the rolling of at least one time with a caliber having an oval shape and the rolling with a caliber having the other shape are performed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この出願の発明は、粒径3μm以下の超微細結晶粒組織を有する強度・延性に優れた超微細粒鋼材の製造のための、新しい温間圧延方法に関するものである。
【0002】
【従来の技術】
超微細粒鋼は、合金元素を添加せずに、強度を著しく上昇させることのでき、同時に、延性・脆性遷移温度も著しく低下させることができると考えられることから、この出願の発明者らも、工業的にこの超微細粒鋼を実現するために検討を進め、温間多パス圧延(文献1)方法や多方向加工(文献2)の方法を発明してきた。
【0003】
ただ、温間多方向圧延を容易化ができれば、超微細粒鋼のより広範な使用につながるものの、発明者らの検討の過程においてもこのことは必ずしも容易ではなかった。
【0004】
それと言うのも、技術的な難しさのひとつとして、一定以上のひずみを材料中に導入することが必要だからである。たとえば、臨界ひずみは1.5−2.3、望ましくは3程度であるが、ひずみ3の場合、減面率では95%に相当し、大変形加工を行わねばならないのである。直径10mmの丸棒を最終製品として得ようとした場合、直径45mmから温間加工してゆく必要があり、変形抵抗が高い温間温度域でこの大ひずみを導入するためには、素材を大きくしなければならない、また、どうしても圧延パス数が多くなるという問題があった。
【0005】
そこで、大きなひずみをより少ない減面率やパス数で材料中に導入することができれば、より容易に超微細組織を得ることができ、工業的にみて、圧延効率が高まる等多くの利点がある。
【0006】
この出願の発明者らにおいても、これまでに、多方向圧延に関しては、アンビルで多方向から圧縮する方法(文献2)や2方向圧下圧延技術を提案してきた。しかしながら、多方向加工は、大ひずみを効率的に導入できる方法であるものの、少なくとも2方向から加工することが、一定の技術上の難しさを含んでいた。
【0007】
【文献】
1:特開2000−309850
2:特開2001−240912
【0008】
【発明が解決しようとする課題】
そこで、この出願の発明は、以上のとおりの背景を踏まえてなされたものであって、発明者らによるこれまでの検討から得られた知見をさらに発展させ、より簡便な手段によって、大きなひずみをより少ない減面率やパス数で材料中に導入することを可能とする、新しい温間多方向圧延方法を提供し、これによる超微細結晶粒組織を有する、強度、延性に優れた鋼材の製造方法を提供することを課題としている。
【0009】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、第1には、平均粒径3μm以下の超微細結晶粒組織を有する超微細粒鋼材の製造のための温間圧延方法であって、鋼材に対して圧延温度範囲が350℃−800℃の温度域で2パス以上の圧延を行う際に、少くとも1回以上のオーバル形状の孔型による圧延と他形状の孔型による圧延とを行うことを特徴とする温間圧延方法を提供し、第2には、オーバル形状の孔型による圧延に引き続いて他形状の孔型による圧延を行うことを特徴とする温間圧延方法を提供する。
【0010】
また、上記方法について、第3には、他形状の孔型が、角形、丸形の形状のものであることを特徴とする温間圧延方法を提供する。
【0011】
第4には、全パス数:Nのうち、N>2において、オーバル孔型による圧延を2回以上、最大N/2以下の回数行うことを特徴とする前記いずれかの温間圧延方法を、第5には、連続する2パス圧延を行うことを特徴とする前記いずれかの温間圧延方法を、第6には、孔型形状がオーバルと角の2パス圧延において、素材から角形孔型圧延後の減面率を20%以上とすることを特徴とする温間圧延方法を、第7には、孔型形状がオーバルと角の2パス圧延の組み合わせの圧延で、組み合わせ2回の圧延では減面率40%以上、組み合わせ3回の圧延では減面率60%以上とすることを特徴とする温間圧延方法を提供する。
【0012】
そして、この出願の発明は、第8には、オーバル孔型で圧延後の材料の最大短軸長がオーバル圧延前の素材対辺長さの70%以下である圧延工程を含むことを特徴とする前記いずれかの温間圧延方法を、第9には、少くとも材料内部の50体積%の領域に塑性ひずみ1.5以上を導入することを特徴とする前記いずれかの温間圧延方法を、第10には、材料内部の90体積%以上の領域に塑性ひずみ2以上を導入することを特徴とする温間圧延方法を、第11には、次の(1)式で表される圧延条件パラメータZが11以上(圧延直前の組織がフェライト,ベイナイト,マルテンサイト,パーライトなどFeの結晶構造がbccである場合)あるいは20以上(圧延直前の組織がオーステナイトでFeの結晶構造がfccである場合)であることを特徴とする温間圧延方法を、
【0013】
【数2】

Figure 2004346420
ε:ひずみ
t:圧延開始から終了までの時間(s)
T:圧延温度(℃,多パス圧延の場合は各パスの圧延温度を平均したもの)
Q:圧延直前の組織がフェライト,ベイナイト,マルテンサイト,パーライトを母相とする場合は254000。オーステナイトを母相とする場合は300000を用いる。
【0014】
第12には、初期素材と最終圧延後の減面率を90%以下とすることを特徴とする温間圧延方法を提供し、第13には、C断面またはL断面の平均結晶粒径が3ミクロン以下である超微細粒鋼を製造することを特徴とする温間圧延方法を、第14には、C断面またはL断面の平均結晶粒径が1ミクロン以下である超微細粒鋼を製造することを特徴とする温間圧延方法を提供する。
【0015】
以上のとおりの特徴を有するこの出願の発明は、発明者の検討によって得られた新しい知見に基づいて完成されたものである。すなわち、従来より、棒鋼の製造方法として、孔型の溝を有するロールを用いて圧延を行うカリバー圧延が一般的であることが知られており、孔型の形状は、角形(スクエア形、ダイヤモンド型)、オーバル形、丸形に大別される。カリバー(溝ロール)圧延を温間温度域で行うことで、多パス圧延によって、超微細粒フェライト主体組織を得ることができる(文献1)。そして、オーバル孔型を用いることが、棒鋼のL断面(棒の長手方向の平行な断面)フェライト粒の形状の等軸化に有効であることが見出されている。
【0016】
発明者による鋭意研究の結果、今般、オーバル孔型と角形、丸型等の他種の孔型を組み合わせたカリバー圧延を適切な温度域で行うことによって、比較的少ない減面率でも、材料中に大きなひずみを導入しえることを見出し、技術として確立することができた。
【0017】
【発明の実施の形態】
この出願の発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。
【0018】
この出願の発明の温間圧延方法は、前記のように、オーバル孔型と他種の孔型との圧延を組合わせることによって、平均粒径3μm以下の超微細結晶粒組織を有する鋼材を製造可能としている。この場合の圧延に用いる溝ロールは、オーバル孔型のものと、これとは異なる種類の孔型のものである。
【0019】
ここでオーバル孔型の溝ロールについては、上型と下型とによって形成される孔形が、円形(丸形)ではなく、いわば円形(丸形)が偏平化された形状を有している。このオーバル孔型に組合わされる他種の孔型としては、角、菱形、丸形あるいはこれらに類似の各種のものであってよい。
【0020】
この出願の発明においては、平均粒径3μm以下の超微細結晶粒組織を有する超微細粒鋼材の製造のための温間圧延方法として、鋼材に対して圧延温度範囲が350℃−800℃の温度域で2パス以上の圧延を行う際に、少くとも1回以上のオーバル形状の孔型による圧延と他形状の孔型による圧延とを行う。
【0021】
そして、実際には、オーバル形状の孔型による圧延に引き続いて他形状の孔型による圧延を行うことや、全パス数:Nのうち、N>2において、オーバル孔型による圧延を2回以上、最大N/2以下の回数行うこと、連続する2パス圧延を行うこと等を好ましい形熊としている。
【0022】
たとえばオーバル孔型と角型とを組合わせる場合には、全圧延パスのうち孔型形状がオーバル−角の組み合わせによる圧延を2回以上含むことや、また、オーバル−角−角−オーバル−角のように、オーバル−角の組み合わせの中間に角による圧延が入っていること、オーバル−角−オーバル−角の4パス、オーバル−角−オーバル−角−オーバル−角の6パスの圧延等が考慮される。もちろん、この場合でも、角は丸形状や菱形等であってもいい。
【0023】
この出願の発明の圧延方法においては、温間加工により大きな歪を導入することによって生じたミクロな局所方位差が超微細結晶粒の起源となり、加工中あるいは加工後に起きる回復過程において、粒内の転位密度が低下すると同時に結晶粒界が形作られて超微細粒組織が形成される。ただ、温度が低いと回復が十分でないため、転位密度の高い加工組織が残存する。一方、温度が高すぎると不連続再結晶あるいは通常の粒成長により結晶粒が粗大化して3μm以下の超微細粒組織は得られない。それゆえに、圧延温度は350℃〜800℃に限定している。
【0024】
また、この出願の発明では、温間加工により扁平化した加工粒から超微細結晶粒が生成し、歪の増加にともなってそれが増加するが、ほぼ全体が超微細結晶粒からなる組織を得るには、少なくとも1.5の歪が必要である。
【0025】
より具体的には、少くとも材料内部の50体積%の領域に塑性ひずみ1.5以上、さらには2以上を導入することによって、その領域には、超微細粒を形成させることができる。望ましくは、材料内部90%以上の領域に塑性ひずみ2以上を導入することによって、その領域には超微細粒領域を形成することができる。
【0026】
導入するひずみが大きいほど、微細粒間の方位差角は大きくなる。すなわち、大角粒界が多くなる。ひずみ3が導入できると、微細粒の粒界に大角粒界の割合が十分となる。したがって、ひずみ3以上の領域が全断面の50%以上、望ましくは80%以上あれば、力学的性質の優れた棒鋼ができあがる。
【0027】
また、主たる圧下方向の加工に加え、それとおおよそ90°の角度をなす別の方向からの圧下を組み合わせて、少なくとも2方向からの加工歪を与えることによって、超微細結晶粒の方位を分散して大角粒界の割合を増加することができる。
【0028】
そして、発明者らのこれまでの研究により、温間強加工によって形成される超微細粒の平均粒径は、加工温度と歪速度に依存することが明らかになった。結晶粒径は、加工温度と歪速度の関数である前記の式(1)の圧延条件パラメータZの増加にともなって微細化する。平均粒径1μm以下の組織を得るには、圧延条件パラメータZをある臨界値以上にする必要がある。小型試料を用いた1パス大歪圧縮加工による実験の結果、その臨界値はbcc構造の鉄(フェライト、ベイナイト、マルテンサイト、パーライト等)の場合はおよそ11、fcc構造(オーステナイト)の場合はおよそ20になることがわかった(図17)。
【0029】
なお、式(1)におけるひずみ(ε)は、工業的に簡便なひずみである真ひずみでよい。たとえば、棒鋼の初期面積をSo、圧延後のC断面面積をSとすると、減面率Rは
R=(So−S)/So (2)
で表される。すると、真ひずみε
ε=−Ln(1−R)
で表される。また、真ひずみに代わり、有限要素法により計算されるもの(たとえば、春海佳三郎、他「有限要素法入門」(共立出版(株):1990年3月15日)でもよい。より具体的には、塑性ひずみの計算は、次の表1のフロートによって行うことができる。
【0030】
【表1】
Figure 2004346420
【0031】
この出願の発明の温間圧延方法では、以上のことから、パラメータZが11以上(bcc構造)または20以上(fcc構造)となるように圧延の条件が設定されることが望ましい。
【0032】
また、この出願の発明においては、好適な形態として、素材のオーバル孔型圧延と角形孔型圧延の2パス圧延において、孔型形状がオーバルと角の2パス圧延で、減面率を20%以上とすることや、孔型形状がオーバルと角の2パス圧延の組み合わせ2回の圧延では40%以上、組み合わせ3回の圧延では60%以上とすること、オーバル孔型で圧延後の材料の最大短軸長がオーバル圧延前の素材対辺長さの70%以下である圧延工程を含むことを例示することができる。
【0033】
そして、この出願の発明の温間圧延法が適用できる鋼材の組成に関しては、相変態による高強度化の機構を全く利用せず、強度を高めるための合金元素の添加を必要としないために鋼の組成が制限されることがなく、たとえば、フェライト単相鋼や、オーステナイト単相鋼等のような相変態の存在しない鋼種等の、広い成分範囲の鋼材を用いることができる。より具体的には、たとえば、組成が、重量%で、
C:0.001%以上1.2%以下、
Si:0.1%以上2%以下、
Mn:0.1%以上3%以下、
P:0.2%以下、
S:0.2%以下、
Al:1.0%以下、
N:0.02%以下、
Cr,Mo,Cu,Niが合計で30%以下、
Nb,Ti,Vが合計で0.5%以下、
B:0.01以下、
残部Feおよび不可避的不純物といった、合金元素が添加されていない組成のものを1つの例として示すことができる。もちろん、上記のCr,Mo,Cu,Ni,Nb,Ti,V,B等の合金元素は、必要に応じて上記の範囲を超えて添加することも可能であるし、逆に全く含まれていなくてもよい。
【0034】
そこで以下に実施例を示し、さらに詳しく説明する。もちろん、以下の例によって発明が限定されることはない。
【0035】
【実施例】
次の表2は、実施例において用いられた供試鋼の化学組成(残部はFe)を示したものである。
【0036】
【表2】
Figure 2004346420
【0037】
<実施例1>
表2aの組成を有する平均フェライト粒径5ミクロンのフェライト+パーライト組織をもつ24mm角の棒鋼を、圧延温度520−450℃で、図1に示す孔型を用いた6パスカリバー圧延を行った。この図1における孔型寸法(mm)の概要は次の表3のとおりである。
【0038】
【表3】
Figure 2004346420
【0039】
図2に圧延各パスごとの断面形状変化と減面率を示す。素材24×24mmの角棒が、1パス目のオーバル孔型で圧延された時の減面率は37%、2パス目の角孔型で圧延された時の減面率は21%、3パス目のオーバル孔型で圧延された時の減面率は15%、4パス目の角孔型で圧延された時の減面率は24%、5パス目のオーバル孔型で圧延された時の減面率は13%、6パス目の角孔型で圧延された時の減面率は12%である。また、素材から2パス目の17mmの角棒への減面率は44%、素材から4パス目の13mmの角棒への減面率は71%、素材から2パス目の17mmの角棒への減面率は80%である。
【0040】
図3〜図9には、有限要素法により計算された材料内部の塑性ひずみ分布を示す。図5より、オーバル−角の2パス圧延で、すでに材料内部に塑性ひずみ1.5を越えるような領域が存在していることがわかる。その面積率は75%である。図6に示すように、オーバル−角−オーバルの3パス圧延後には、塑性ひずみ2以上の領域が全体の92%を占め、さらに、図7に示すオーバル−角−オーバル−角の4パス圧延後には、塑性ひずみ3以上の領域が全体の95%を占めていることがわかる。さらに、図9のオーバル−丸と圧延を行うと、100%の領域で塑性ひずみ3以上となる。
【0041】
2パス後の減面率は約49%(減面率Rを単純に真ひずみeになおすとe=−ln(1−R/100)より、e=0.67)、4パス後で71%(減面率を単純に真ひずみになおすと1.23)、6パス後で80%(減面率を単純に真ひずみになおすと1.61)であるにも関わらず、材料内部にはきわめて大きな塑性ひずみが生じていることがわかる。これは、オーバル孔型と角孔型を組み合わせて圧延したことにより、単純な断面減少から計算されるひずみよりはるかに大きなひずみが生じるためである。
【0042】
図10、図11に組織のSEM写真を示す。図5に対応する図10の▲1▼、▲2▼の部位には1ミクロン以下の微細なフェライト粒が生成し、▲3▼の部位には微細粒が生成していない。図7に対応する図11の組織写真によれば、ほぼ全域が1ミクロン以下の超微細フェライト粒の超微細組織からなっている。
【0043】
4パス後13mm角の材料の力学的性質を表4に示した。また、圧延前の24角棒の性質も比較に示した。2倍の降伏強さ、液体窒素温度でも脆性破壊せず、Jの吸収エネルギーを有していた。
【0044】
【表4】
Figure 2004346420
【0045】
<実施例2〜4>
表1aの組成を有する平均フェライト粒径5ミクロンのフェライト+パーライト組織をもつ24mm角の棒鋼を、圧延温度400℃、600℃および700℃で、図1に示す(1)、(2)の孔型を用いた2パスカリバー圧延を行った。図12(a)、(b)、(c)に棒鋼中心部(図10の▲1▼に相当する部分)のSEM組織を示すが、平均粒径0.5、1、1.5ミクロンと微細なフェライト粒径が得られている。
<実施例5>
表1bの組成を有する平均フェライト粒径20ミクロンのフェライト+パーライト組織をもつ直径15mmの棒鋼を、圧延温度450−550℃で、図13に示す孔型を用いたカリバー圧延を行い、直径8mmまで6パス圧延を行った。表5にはカリバーの寸法概要を示した。図14に圧延各パスごとの断面形状変化と減面率を示す。また、図15には6パス後の組織のSEM写真を示すが、減面率約74%であるにも関わらず、微細なフェライト粒組織からなっていた。力学的性質に関して、ビッカース硬さを図15の写真の下に併記するが270−310と引張強さで800MPa以上の優れた性質が得られている。
【0046】
【表5】
Figure 2004346420
【0047】
<比較例1>
表1aの組成を有する平均フェライト粒径5ミクロンのフェライト+パーライト組織をもつ24mm角の棒鋼を、圧延温度500℃で、図1に示す孔型を用いて、13mm角になるまで、減面率70%(ひずみ1.2)の7パスカリバー圧延を行った。オーバル孔型による圧延は含まれていない。図16のSEM写真に示すように、棒鋼の中心部には微細粒の生成はなかった。
<比較例2>
表1aの組成を有する直径115mmの棒鋼を、900℃に加熱後、圧延温度870−850℃で、角形孔型を用いて、24mm角になるまで、減面率94%(ひずみ3.1)のカリバー圧延を行った。オーバル孔型による圧延は含まれていない。平均粒径は5μmで微細粒の生成はなかった。力学的性質を表2に示すが、降伏強さ、引張強さは480、560MPaであった。
【0048】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、より簡便な手段によって、大きなひずみをより少ない減面率やパス数で材料中に導入することを可能とする、新しい温間多方向圧延方法を提供し、これによる超微細結晶粒組織を有する、強度、延性に優れた鋼材の製造方法を提供することができる。
【図面の簡単な説明】
【図1】実施例1における孔型を示した図である。
【図2】圧延後の棒鋼のC断面を示した図である。
【図3】素材のメッシュ図である。
【図4】1パス・オーバル後の塑性ひずみを示した図である。
【図5】2パス・角孔型後の塑性ひずみを示した図である。
【図6】3パス・オーバル後の塑性ひずみを示した図である。
【図7】4パス・角孔型後の塑性ひずみを示した図である。
【図8】5パス・オーバル後の塑性ひずみを示した図である。
【図9】6パス・丸孔後の塑性ひずみを示した図である。
【図10】2パス・角孔型後の組織のSEM像である。
【図11】4パス・角孔型後の組織のSEM像である。
【図12】実施例2〜4の組織のSEM像である。
【図13】孔型を示した図である。
【図14】圧延後の棒鋼のC断面を示した図である。
【図15】組織のSEM像である。
【図16】比較例1の組織のSEM像である。
【図17】パラメータZと平均粒径との関係を示した図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The invention of this application relates to a new warm rolling method for producing an ultrafine grained steel material having an ultrafine grain structure having a grain size of 3 μm or less and excellent in strength and ductility.
[0002]
[Prior art]
Ultrafine-grained steel is considered to be able to significantly increase the strength without adding any alloying element, and at the same time, significantly reduce the ductile-brittle transition temperature. In order to industrially realize this ultrafine-grained steel, studies have been advanced, and a method of warm multi-pass rolling (Reference 1) and a method of multi-directional working (Reference 2) have been invented.
[0003]
However, if the warm multi-direction rolling could be facilitated, it would lead to a wider use of ultrafine-grained steel, but this was not always easy in the course of the study by the inventors.
[0004]
One of the technical difficulties is that it is necessary to introduce a certain amount of strain into the material. For example, the critical strain is 1.5-2.3, preferably about 3. However, in the case of a strain of 3, the reduction in area corresponds to 95%, and large deformation processing must be performed. When trying to obtain a round bar with a diameter of 10 mm as the final product, it is necessary to warm work from a diameter of 45 mm, and in order to introduce this large strain in a warm temperature range where deformation resistance is high, the material must be large. And that the number of rolling passes must be increased.
[0005]
Therefore, if a large strain can be introduced into a material with a smaller area reduction ratio or a smaller number of passes, an ultrafine structure can be obtained more easily, and there are many advantages such as an increase in rolling efficiency from an industrial viewpoint. .
[0006]
The inventors of this application have also proposed a method of compressing from multiple directions with an anvil (Reference 2) and a two-direction rolling reduction technique for multidirectional rolling. However, although multidirectional processing is a method capable of efficiently introducing large strains, processing from at least two directions involves certain technical difficulties.
[0007]
[Literature]
1: JP-A-2000-309850
2: JP 2001-240912 A
[0008]
[Problems to be solved by the invention]
Therefore, the invention of this application has been made in view of the above background, and further expands the knowledge obtained from the previous studies by the inventors, and by using simpler means, large distortion can be obtained. Providing a new warm multi-directional rolling method that can be introduced into the material with a smaller area reduction and a smaller number of passes, thereby producing a steel material with an ultrafine grain structure, excellent strength and ductility The task is to provide a method.
[0009]
[Means for Solving the Problems]
The invention of this application is to provide a warm rolling method for producing an ultrafine grained steel material having an ultrafine grain structure having an average grain size of 3 μm or less, as a first object of the present invention, When rolling is performed on steel materials in a rolling temperature range of 350 ° C. to 800 ° C. in two or more passes, at least one or more times of rolling with an oval shape die and rolling with another shape die are performed. Secondly, there is provided a warm rolling method characterized by performing rolling with an oval-shaped groove, followed by rolling with another shape of a groove. .
[0010]
Thirdly, the present invention provides a warm rolling method characterized in that the other hole shape is a square or round shape.
[0011]
Fourthly, among the total number of passes: N, when N> 2, any one of the above-mentioned warm rolling methods is characterized in that rolling is performed twice or more and at most N / 2 or less with an oval hole die. Fifth, any one of the warm rolling methods described above, wherein continuous two-pass rolling is performed. Sixth, in a two-pass rolling in which the oval shape is an oval and a corner, a square hole is formed from a material. Seventh, a warm rolling method characterized in that the area reduction rate after die rolling is set to 20% or more. Seventh, rolling is a combination of two-pass rolling in which the groove shape is an oval and a corner. A warm rolling method is characterized in that a reduction in area is 40% or more in rolling and a reduction in area is 60% or more in rolling three times in combination.
[0012]
Eighth, the invention of this application is characterized in that it includes a rolling step in which the maximum minor axis length of the material after rolling in the oval hole form is 70% or less of the material-to-side length before oval rolling. Ninth, any one of the warm rolling methods, wherein a plastic strain of 1.5 or more is introduced into a region of at least 50% by volume inside the material, Tenthly, a warm rolling method characterized by introducing a plastic strain of 2 or more into a region of 90% by volume or more inside a material is described. Eleventh, a rolling condition represented by the following equation (1) is described. Parameter Z is 11 or more (when the structure just before rolling is Fe crystal such as ferrite, bainite, martensite, or pearlite is bcc) or 20 or more (when the structure just before rolling is austenite and the crystal structure of Fe is fcc) ) The warm rolling method characterized the door,
[0013]
(Equation 2)
Figure 2004346420
ε: strain t: time from start to end of rolling (s)
T: Rolling temperature (° C, in the case of multi-pass rolling, the average of rolling temperatures in each pass)
Q: 254000 when the structure immediately before rolling has ferrite, bainite, martensite, or pearlite as a matrix. When austenite is used as the parent phase, 300,000 is used.
[0014]
Twelfth, there is provided a warm rolling method characterized in that the area reduction rate after the initial rolling and final rolling is 90% or less, and thirteenth, the average grain size of the C section or the L section is reduced. A fourteenth aspect of the present invention relates to a warm rolling method for producing an ultrafine grained steel having a grain size of 3 μm or less. To provide a warm rolling method.
[0015]
The invention of this application having the features as described above has been completed based on new findings obtained by study of the inventors. That is, it has been known that caliber rolling, in which rolling is performed using a roll having a groove in a groove shape, is generally used as a method of manufacturing a steel bar, and the shape of the groove shape is square (square, diamond). Type), oval, and round. By performing caliber (groove roll) rolling in a warm temperature range, an ultrafine grain ferrite-based structure can be obtained by multi-pass rolling (Reference 1). It has been found that the use of the oval hole type is effective for making the shape of ferrite grains L-section (parallel to the longitudinal direction of the bar) ferrite grains equiaxed.
[0016]
As a result of earnest research by the inventor, this time, by performing caliber rolling in which an oval hole type and other types such as a square shape and a round shape are combined in an appropriate temperature range, even in a relatively small area reduction rate, the material can be formed in a material. It was found that large strain could be introduced into the material, and it was established as a technology.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention of this application has the features as described above, and embodiments thereof will be described below.
[0018]
As described above, the warm rolling method of the invention of this application produces a steel material having an ultrafine grain structure with an average grain size of 3 μm or less by combining rolling of an oval hole shape and another type of hole shape. It is possible. The groove roll used for rolling in this case is an oval hole type and a different type of hole type.
[0019]
Here, with regard to the oval hole type groove roll, the hole formed by the upper die and the lower die has a shape in which a so-called circular (round) is flattened, rather than a circle (round). . Other types of holes that can be combined with the oval holes may be corners, diamonds, rounds, or various similar ones.
[0020]
In the invention of this application, as a warm rolling method for producing an ultrafine grained steel material having an ultrafine grain structure having an average grain size of 3 μm or less, a rolling temperature range of 350 ° C to 800 ° C for the steel material is used. When two or more passes are rolled in the region, at least one or more rolls with an oval shape die and rolls with another shape die shape are performed.
[0021]
Then, in actuality, rolling with an oval shape is performed after rolling with an oval shape, or rolling with an oval shape is performed twice or more in N> 2 out of the total number of passes: N. , A maximum number of N / 2 or less, and a continuous two-pass rolling are preferred.
[0022]
For example, in the case of combining the oval hole shape and the square shape, the shape of the hole in the entire rolling pass may include rolling twice or more by the combination of the oval-angle, or the oval-angle-angle-oval-angle. Rolling by corners in the middle of the combination of oval-angle, rolling of oval-angle-oval-angle 4 passes, oval-angle-oval-angle-oval-angle 6-pass rolling, etc. Be considered. Of course, even in this case, the corners may be round or rhombic.
[0023]
In the rolling method of the invention of the present application, the micro local misorientation caused by introducing a large strain during warm working becomes the origin of ultrafine crystal grains, and in the recovery process occurring during or after working, the intra-grain At the same time as the dislocation density is lowered, crystal grain boundaries are formed and an ultrafine grain structure is formed. However, when the temperature is low, the recovery is not sufficient, so that a processed structure having a high dislocation density remains. On the other hand, if the temperature is too high, the crystal grains become coarse due to discontinuous recrystallization or normal grain growth, and an ultrafine grain structure of 3 μm or less cannot be obtained. Therefore, the rolling temperature is limited to 350 ° C to 800 ° C.
[0024]
Further, in the invention of this application, ultrafine crystal grains are generated from the processed grains flattened by warm working, and the number increases with an increase in strain, but a structure almost entirely composed of ultrafine crystal grains is obtained. Requires a strain of at least 1.5.
[0025]
More specifically, by introducing a plastic strain of 1.5 or more, or even 2 or more, into a region of at least 50% by volume inside the material, ultrafine grains can be formed in that region. Desirably, by introducing a plastic strain of 2 or more in a region of 90% or more inside the material, an ultrafine grain region can be formed in that region.
[0026]
The greater the strain introduced, the greater the misorientation angle between the fine grains. That is, large-angle grain boundaries increase. When the strain 3 can be introduced, the ratio of the large-angle grain boundary to the fine-grain boundary becomes sufficient. Therefore, if the region having a strain of 3 or more is 50% or more, preferably 80% or more of the entire cross section, a steel bar having excellent mechanical properties can be obtained.
[0027]
Further, in addition to working in the main rolling direction, by combining it with rolling from another direction forming an angle of about 90 °, by giving processing strain from at least two directions, it is possible to disperse the orientation of ultrafine crystal grains. The proportion of large-angle grain boundaries can be increased.
[0028]
The inventors' previous studies have revealed that the average particle size of the ultrafine particles formed by the strong warm working depends on the working temperature and the strain rate. The crystal grain size becomes finer as the rolling condition parameter Z in the above equation (1), which is a function of the processing temperature and the strain rate, increases. In order to obtain a structure having an average particle size of 1 μm or less, it is necessary to set the rolling condition parameter Z to a certain critical value or more. As a result of an experiment by one-pass large strain compression processing using a small sample, the critical value is about 11 for iron having a bcc structure (ferrite, bainite, martensite, pearlite, etc.) and about 11 for an fcc structure (austenite). It turned out to be 20 (FIG. 17).
[0029]
Note that the strain (ε) in the equation (1) may be a true strain which is industrially simple strain. For example, assuming that the initial area of the steel bar is So and the C cross-sectional area after rolling is S, the area reduction rate R is R = (So−S) / So (2)
Is represented by Then, true strain ε
ε = -Ln (1-R)
Is represented by Instead of the true strain, one calculated by the finite element method (for example, Kasaburo Harumi, et al., “Introduction to the Finite Element Method” (Kyoritsu Shuppan Co., Ltd .: March 15, 1990)) may be used. The calculation of the plastic strain can be performed by the float of Table 1 below.
[0030]
[Table 1]
Figure 2004346420
[0031]
From the above, in the warm rolling method of the invention of this application, the rolling conditions are desirably set so that the parameter Z is 11 or more (bcc structure) or 20 or more (fcc structure).
[0032]
Further, in the invention of this application, as a preferred form, in the two-pass rolling of the oval groove rolling and the square groove rolling of the material, the area reduction rate is 20% in the two-pass rolling in which the groove shape is an oval and a corner. The above, or the shape of the material after rolling in the oval hole shape, should be 40% or more in the two-time rolling combination of the oval shape and the two-pass rolling with the corner shape, and 60% or more in the three-time rolling combination. It is possible to exemplify including a rolling step in which the maximum minor axis length is 70% or less of the material side length before oval rolling.
[0033]
Regarding the composition of the steel material to which the warm rolling method of the invention of the present application can be applied, the mechanism of increasing the strength by phase transformation is not used at all, and the addition of alloying elements for increasing the strength is not required. Is not limited, and a steel material having a wide range of components such as a steel type having no phase transformation such as a ferritic single phase steel or an austenitic single phase steel can be used. More specifically, for example, if the composition is
C: 0.001% or more and 1.2% or less,
Si: 0.1% or more and 2% or less,
Mn: 0.1% or more and 3% or less,
P: 0.2% or less,
S: 0.2% or less,
Al: 1.0% or less,
N: 0.02% or less,
Cr, Mo, Cu, Ni are 30% or less in total,
Nb, Ti, V are 0.5% or less in total;
B: 0.01 or less,
A composition having no alloying element added, such as the balance of Fe and unavoidable impurities, can be shown as an example. Of course, the above-mentioned alloying elements such as Cr, Mo, Cu, Ni, Nb, Ti, V, and B can be added beyond the above-mentioned range if necessary, or are contained at all. It is not necessary.
[0034]
Therefore, an embodiment will be shown below and will be described in more detail. Of course, the invention is not limited by the following examples.
[0035]
【Example】
Table 2 below shows the chemical composition of the test steels used in the examples (the balance being Fe).
[0036]
[Table 2]
Figure 2004346420
[0037]
<Example 1>
A 24-mm square steel bar having a composition of Table 2a and a ferrite having an average ferrite grain size of 5 μm and a pearlite structure was subjected to 6-pass caliber rolling using a die shown in FIG. 1 at a rolling temperature of 520 to 450 ° C. The outline of the hole dimensions (mm) in FIG. 1 is as shown in Table 3 below.
[0038]
[Table 3]
Figure 2004346420
[0039]
FIG. 2 shows a change in cross-sectional shape and a reduction in area for each pass of rolling. The area reduction rate when the material 24 × 24 mm square bar is rolled by the oval hole type in the first pass is 37%, and the area reduction rate when rolled by the square hole type in the second pass is 21%. The area reduction rate when rolled with the oval hole type in the pass is 15%, and the area reduction rate when rolled with the square hole type in the fourth pass is 24%. The area reduction rate at the time of rolling is 13%, and the area reduction rate at the time of rolling by the square hole type in the sixth pass is 12%. The reduction rate of the material from the material to the 17 mm square bar in the second pass is 44%, the reduction ratio of the material from the material to the 13 mm square bar in the fourth pass is 71%, and the 17 mm square bar in the second pass from the material. The area reduction rate is 80%.
[0040]
3 to 9 show the plastic strain distribution inside the material calculated by the finite element method. From FIG. 5, it can be seen that there is already a region within the material that exceeds a plastic strain of 1.5 in the oval-angle two-pass rolling. The area ratio is 75%. As shown in FIG. 6, after the three-pass rolling of the oval-angle-oval, a region having a plastic strain of 2 or more occupies 92% of the whole, and further, the four-pass rolling of the oval-angle-oval-angle shown in FIG. Later, it can be seen that the region with a plastic strain of 3 or more occupies 95% of the whole. Further, when rolling is performed with the oval circle shown in FIG. 9, the plastic strain becomes 3 or more in the 100% region.
[0041]
The area reduction rate after two passes is about 49% (e = 0.67 from e = −ln (1-R / 100) when simply reducing the area reduction rate R to true strain e), and 71 after four passes. % (1.23 when simply reducing the area reduction to true strain), and 80% (1.61 when simply reducing the area reduction to true strain) after 6 passes, the material has It can be seen that extremely large plastic strain has occurred. This is because the rolling by combining the oval hole type and the square hole type generates a strain much larger than the strain calculated from a simple reduction in cross section.
[0042]
10 and 11 show SEM photographs of the tissue. Fine ferrite grains of 1 micron or less are generated at the portions (1) and (2) in FIG. 10 corresponding to FIG. 5, and no fine particles are generated at the portion (3). According to the structure photograph of FIG. 11 corresponding to FIG. 7, almost the entire region is made of an ultrafine structure of ultrafine ferrite grains of 1 μm or less.
[0043]
Table 4 shows the mechanical properties of the 13 mm square material after 4 passes. The properties of the 24-square bar before rolling are also shown for comparison. It had twice the yield strength, did not break brittlely even at liquid nitrogen temperature, and had J absorbed energy.
[0044]
[Table 4]
Figure 2004346420
[0045]
<Examples 2 to 4>
A ferrite having an average ferrite grain size of 5 microns and a 24 mm square steel bar having a pearlite structure having a composition shown in Table 1a were subjected to rolling at 400 ° C., 600 ° C. and 700 ° C., and the holes (1) and (2) shown in FIG. Two-pass caliber rolling using a mold was performed. FIGS. 12 (a), 12 (b) and 12 (c) show the SEM structures of the central portion of the steel bar (portion corresponding to (1) in FIG. 10). Fine ferrite grain size is obtained.
<Example 5>
A ferrite having a composition of Table 1b and a ferrite having an average ferrite grain size of 20 μm and a bar having a pearlite structure and a diameter of 15 mm are subjected to caliber rolling at a rolling temperature of 450 to 550 ° C. using a groove shown in FIG. Six-pass rolling was performed. Table 5 shows the dimensions of the caliber. FIG. 14 shows the cross-sectional shape change and the area reduction rate for each rolling pass. FIG. 15 shows an SEM photograph of the structure after 6 passes, and it was composed of a fine ferrite grain structure despite the area reduction rate of about 74%. Regarding the mechanical properties, the Vickers hardness is also described below the photograph in FIG. 15, and excellent properties of 270-310 and a tensile strength of 800 MPa or more are obtained.
[0046]
[Table 5]
Figure 2004346420
[0047]
<Comparative Example 1>
A steel sheet having a composition of Table 1a and a ferrite having an average ferrite grain size of 5 μm and a 24 mm square bar having a pearlite structure was rolled at a rolling temperature of 500 ° C. using a hole die shown in FIG. Seven-pass caliber rolling at 70% (strain 1.2) was performed. Oval hole rolling is not included. As shown in the SEM photograph of FIG. 16, there was no generation of fine grains in the center of the steel bar.
<Comparative Example 2>
After heating a steel bar having a composition of Table 1a having a diameter of 115 mm to 900 ° C, a rolling reduction temperature of 870 to 850 ° C is used to reduce the surface area to 94 mm square using a square hole die until the area becomes 94 mm square (strain 3.1). Caliber rolling was performed. Oval hole rolling is not included. The average particle size was 5 μm, and no fine particles were formed. The mechanical properties are shown in Table 2, and the yield strength and tensile strength were 480 and 560 MPa.
[0048]
【The invention's effect】
As described in detail above, the invention of this application provides a new warm multi-directional rolling method that enables a large strain to be introduced into a material with a smaller area reduction rate and a smaller number of passes by simpler means. In addition, it is possible to provide a method for producing a steel material having an ultrafine crystal grain structure and having excellent strength and ductility.
[Brief description of the drawings]
FIG. 1 is a diagram showing a hole type according to a first embodiment.
FIG. 2 is a view showing a C section of a steel bar after rolling.
FIG. 3 is a mesh diagram of a material.
FIG. 4 is a diagram showing plastic strain after one pass oval.
FIG. 5 is a diagram showing plastic strain after a two-pass square hole type.
FIG. 6 is a diagram showing plastic strain after three-pass oval.
FIG. 7 is a diagram showing plastic strain after a 4-pass square hole type.
FIG. 8 is a diagram showing plastic strain after a 5-pass oval.
FIG. 9 is a view showing plastic strain after 6 passes and a round hole.
FIG. 10 is an SEM image of the tissue after two-pass square hole type.
FIG. 11 is an SEM image of a tissue after a 4-pass square hole type.
FIG. 12 is an SEM image of the tissues of Examples 2 to 4.
FIG. 13 is a view showing a mold.
FIG. 14 is a view showing a C section of a steel bar after rolling.
FIG. 15 is a SEM image of a tissue.
FIG. 16 is an SEM image of the tissue of Comparative Example 1.
FIG. 17 is a diagram showing a relationship between a parameter Z and an average particle diameter.

Claims (14)

平均粒径3μm以下の超微細結晶粒組織を有する超微細粒鋼材の製造のための温間圧延方法であって、鋼材に対して圧延温度範囲が350℃−800℃の温度域で2パス以上の圧延を行う際に、少くとも1回以上のオーバル形状の孔型による圧延と他形状の孔型による圧延とを行うことを特徴とする温間圧延方法。A hot rolling method for producing an ultrafine grained steel material having an ultrafine grain structure having an average grain size of 3 μm or less, wherein the rolling temperature range for the steel material is two or more passes in a temperature range of 350 ° C to 800 ° C. A hot rolling method characterized by performing at least one or more rolls using an oval shape die and rolling using another shape die when rolling. オーバル形状の孔型による圧延に引き続いて他形状の孔型による圧延を行うことを特徴とする請求項1の温間圧延方法。The warm rolling method according to claim 1, wherein rolling is performed by another shape of the die after the rolling by the oval shape. 他形状の孔型が、角形、丸形の形状のものであることを特徴とする請求項1または2の温間圧延方法。The warm rolling method according to claim 1, wherein the other shape is a square shape or a round shape. 全パス数:Nのうち、N>2において、オーバル孔型による圧延を2回以上、最大N/2以下の回数行うことを特徴とする請求項1ないし3のいずれかの温間圧延方法。The warm rolling method according to any one of claims 1 to 3, wherein the rolling by the oval hole die is performed twice or more and at most N / 2 or less when N> 2 out of the total number of passes: N. 連続する2パス圧延を行うことを特徴とする請求項1ないし3のいずれかの温間圧延方法。The warm rolling method according to any one of claims 1 to 3, wherein continuous two-pass rolling is performed. 孔型形状がオーバルと角の2パス圧延の2パス圧延において、素材から角形孔型圧延後の減面率を20%以上とすることを特徴とする請求項5の温間圧延方法。6. The warm rolling method according to claim 5, wherein in the two-pass rolling of the oval shape and the corner shape in the two-pass rolling, a reduction in area of the raw material after the square shape rolling is 20% or more. 孔型形状がオーバルと角の2パス圧延の組み合わせの圧延では、組み合わせ2回の圧延では減面率40%以上、組み合わせ3回の圧延では減面率60%以上とすることを特徴とする請求項1ないし3のいずれかの温間圧延方法。In the rolling of a combination of two-pass rolling in which the oval shape is an oval and a corner, a reduction in area is 40% or more by rolling two times in combination, and a reduction in area is 60% or more in rolling three times in combination. Item 5. The warm rolling method according to any one of Items 1 to 3. オーバル孔型で圧延後の材料の最大短軸長がオーバル圧延前の素材対辺長さの70%以下である圧延工程を含むことを特徴とする請求項1ないし7のいずれかの温間圧延方法。8. The warm rolling method according to claim 1, further comprising a rolling step in which the maximum minor axis length of the material after rolling in the oval hole die is 70% or less of the material side length before the oval rolling. . 少くとも材料内部の50体積%の領域に塑性ひずみ1.5以上を発生させることを特徴とする請求項1ないし8のいずれかの温間圧延方法。The method according to any one of claims 1 to 8, wherein a plastic strain of 1.5 or more is generated at least in a region of 50% by volume inside the material. 材料内部の90体積%以上の領域に塑性ひずみ2以上を発生させることを特徴とする請求項9の温間圧延方法。The warm rolling method according to claim 9, wherein a plastic strain of 2 or more is generated in a region of 90% by volume or more inside the material. 次の(1)式で表される圧延条件パラメータZが11以上(圧延直前の組織がフェライト,ベイナイト,マルテンサイト,パーライトなどFeの結晶構造がbccである場合)あるいは20以上(圧延直前の組織がオーステナイトでFeの結晶構造がfccである場合)であることを特徴とする請求項1ないし10のいずれかの温間圧延方法。
Figure 2004346420
ε:ひずみ
t:圧延開始から終了までの時間(s)
T:圧延温度(℃,多パス圧延の場合は各パスの圧延温度を平均したもの)
Q:圧延直前の組織がフェライト,ベイナイト,マルテンサイト,パーライトを母相とする場合は254000。オーステナイトを母相とする場合は300000を用いる。
The rolling condition parameter Z expressed by the following equation (1) is 11 or more (when the structure immediately before rolling is Fe, such as ferrite, bainite, martensite, or pearlite is bcc) or 20 or more (structure immediately before rolling). Is austenitic and the crystal structure of Fe is fcc).
Figure 2004346420
ε: strain t: time from start to end of rolling (s)
T: Rolling temperature (° C, in the case of multi-pass rolling, the average of rolling temperatures in each pass)
Q: 254000 when the structure immediately before rolling has ferrite, bainite, martensite, or pearlite as a matrix. When austenite is used as the parent phase, 300,000 is used.
初期素材と最終圧延後の減面率を90%以下とすることを特徴とする請求項1ないし11のいずれかの温間圧延方法。The warm rolling method according to any one of claims 1 to 11, wherein an area reduction rate after initial rolling and final rolling is set to 90% or less. C断面またはL断面の平均結晶粒径が3ミクロン以下である超微細粒鋼を製造することを特徴とする請求項1ないし12のいずれかの温間圧延方法。The warm rolling method according to any one of claims 1 to 12, wherein an ultrafine-grained steel having an average grain size of C section or L section of 3 microns or less is manufactured. C断面またはL断面の平均結晶粒径が1ミクロン以下である超微細粒鋼を製造することを特徴とする請求項1ないし12のいずれかの温間圧延方法。The warm rolling method according to any one of claims 1 to 12, wherein an ultrafine grained steel having an average crystal grain size of C section or L section of 1 micron or less is manufactured.
JP2003180290A 2003-05-20 2003-05-20 Warm rolling method for ultra-fine grain steel Expired - Lifetime JP4221497B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003180290A JP4221497B2 (en) 2003-05-20 2003-05-20 Warm rolling method for ultra-fine grain steel
US10/557,416 US20060191613A1 (en) 2003-05-20 2004-05-20 Warm rolling method
CNB2004800136487A CN100366761C (en) 2003-05-20 2004-05-20 Warm rolling method
KR1020057021834A KR100749381B1 (en) 2003-05-20 2004-05-20 Warm rolling method
TW093114215A TWI266659B (en) 2003-05-20 2004-05-20 Warm rolling method
EP04734146A EP1642988B1 (en) 2003-05-20 2004-05-20 Warm rolling method
PCT/JP2004/007277 WO2004104235A1 (en) 2003-05-20 2004-05-20 Warm rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003180290A JP4221497B2 (en) 2003-05-20 2003-05-20 Warm rolling method for ultra-fine grain steel

Publications (2)

Publication Number Publication Date
JP2004346420A true JP2004346420A (en) 2004-12-09
JP4221497B2 JP4221497B2 (en) 2009-02-12

Family

ID=33475458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003180290A Expired - Lifetime JP4221497B2 (en) 2003-05-20 2003-05-20 Warm rolling method for ultra-fine grain steel

Country Status (7)

Country Link
US (1) US20060191613A1 (en)
EP (1) EP1642988B1 (en)
JP (1) JP4221497B2 (en)
KR (1) KR100749381B1 (en)
CN (1) CN100366761C (en)
TW (1) TWI266659B (en)
WO (1) WO2004104235A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160628A (en) * 2008-01-09 2009-07-23 Tama Tlo Ltd Apparatus for severe plastic deformation and severe plastic deformation method
JP2012177170A (en) * 2011-02-28 2012-09-13 National Institute For Materials Science High strength nonmagnetic austenitic stainless steel material, and method of manufacturing the same
JP2012180542A (en) * 2011-02-28 2012-09-20 National Institute For Materials Science Non-magnetic high-strength molded product and method for manufacturing the same
JP2015212418A (en) * 2015-05-14 2015-11-26 国立研究開発法人物質・材料研究機構 High strength nonmagnetic austenitic stainless steel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102284488B (en) * 2011-07-22 2013-01-30 四川三洲特种钢管有限公司 Symmetric hole-shaped curve cycle roll
KR101355464B1 (en) * 2011-12-20 2014-01-28 주식회사 포스코 Rolling method of carbon steels
CN102825097A (en) * 2012-09-07 2012-12-19 白银有色集团股份有限公司 Production method of alloy HMn60-3-1-0.75 large section bar
RU2515781C1 (en) * 2012-12-28 2014-05-20 Анатолий Васильевич Алдунин Method to produce metal rhombic profiles
CN109127730B (en) * 2018-08-28 2019-10-01 成都蜀虹装备制造股份有限公司 A kind of 5356 aluminium alloy rod continuous casting and rolling production systems

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816704A (en) * 1981-07-21 1983-01-31 Sumitomo Metal Ind Ltd Caliber rolling method
CA1262226A (en) * 1984-12-28 1989-10-10 Fukukazu Nakasato Method for producing steel bars having improved low temperature toughness and steel bars produced thereby
CA2066475C (en) * 1991-05-06 1997-06-03 Terence M. Shore Method and apparatus for continuously hot rolling of ferrous long products
EP1010476A3 (en) * 1998-12-14 2003-09-03 SMS Demag AG Roll stand arrangement for the rolling of wire
JP3904351B2 (en) * 1999-02-26 2007-04-11 独立行政法人物質・材料研究機構 High-strength and high-toughness rod and its manufacturing method
JP2000301204A (en) * 1999-04-15 2000-10-31 Daido Steel Co Ltd Method and device for rolling multisize wire and steel bar
JP2000309823A (en) * 1999-04-23 2000-11-07 Nippon Steel Corp Production of hot rolled silicon steel sheet uniform in magnetic property
JP3796536B2 (en) 2000-02-29 2006-07-12 独立行政法人物質・材料研究機構 Large strain uniform introduction processing method
US6546777B2 (en) * 2000-09-08 2003-04-15 Morgan Construction Company Method and apparatus for reducing and sizing hot rolled ferrous products
JP2002137002A (en) * 2000-10-30 2002-05-14 Daido Steel Co Ltd Guideless rolling method for hot rolling
JP2002192201A (en) * 2000-12-26 2002-07-10 National Institute For Materials Science Metalworking process for introducing large amount of strain into metal due to combined line of forging and rolling
JP3983065B2 (en) * 2002-02-28 2007-09-26 独立行政法人物質・材料研究機構 Manufacturing method of thick steel plate having ultrafine grain structure and thick steel plate
EP1559804A4 (en) * 2002-10-17 2006-01-25 Nat Inst For Materials Science Formed product and method for production thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160628A (en) * 2008-01-09 2009-07-23 Tama Tlo Ltd Apparatus for severe plastic deformation and severe plastic deformation method
JP2012177170A (en) * 2011-02-28 2012-09-13 National Institute For Materials Science High strength nonmagnetic austenitic stainless steel material, and method of manufacturing the same
JP2012180542A (en) * 2011-02-28 2012-09-20 National Institute For Materials Science Non-magnetic high-strength molded product and method for manufacturing the same
JP2015212418A (en) * 2015-05-14 2015-11-26 国立研究開発法人物質・材料研究機構 High strength nonmagnetic austenitic stainless steel

Also Published As

Publication number Publication date
KR20060035603A (en) 2006-04-26
US20060191613A1 (en) 2006-08-31
TWI266659B (en) 2006-11-21
KR100749381B1 (en) 2007-08-14
CN100366761C (en) 2008-02-06
EP1642988A4 (en) 2006-11-15
EP1642988B1 (en) 2011-07-20
CN1791688A (en) 2006-06-21
EP1642988A1 (en) 2006-04-05
JP4221497B2 (en) 2009-02-12
WO2004104235A1 (en) 2004-12-02
TW200510084A (en) 2005-03-16

Similar Documents

Publication Publication Date Title
US11866815B2 (en) High entropy alloy structure and a method of preparing the same
JP4123937B2 (en) High strength titanium alloy and method for producing the same
EP0903412A2 (en) Ultra-fine texture steel and method for producing it
JP2004346420A (en) Warm-rolling method
KR930009391B1 (en) Ultrahigh carbon steel containing aluminium
JP6747639B2 (en) Metal material and processing method
JP3983065B2 (en) Manufacturing method of thick steel plate having ultrafine grain structure and thick steel plate
CN109722508B (en) Ferritic stainless steel sheet and method for producing same
Yamaguchi et al. Deformation and recrystallization behavior of super high-purity niobium for SRF cavity
Kim et al. Evolution of the microstructure and mechanical properties of interstitial-free steel during multi-axial diagonal forging
JP2000309850A (en) High strength and high toughness rod material and its production
JP2004060046A (en) Molded part and method for producing the same
JP4164589B2 (en) Manufacturing method of ultra-fine structure steel
WO2004035851A1 (en) Formed product and method for production thereof
WO2011078600A2 (en) Method for producing a high-strength and highly ductile titanium alloy
JP2004346421A (en) Controlled warm-rolling method
JP3845696B2 (en) Method for producing ultrafine-grained ferritic steel
JPH02305937A (en) Fine-pearlite steel
JP2017218660A (en) Titanium alloy forging material
JP3924632B2 (en) Manufacturing method of thick ultrafine ferritic steel
Shin et al. A new low carbon steel microstructure: Ultrafine ferrite grains with homogeneously distributed fine cementite particles
Ferraiuolo et al. New stainless TWIP steel Fe-17Cr-MnNiCu: mechanical properties characterization and microstructure evolution during deformation
JP2017186648A (en) Metallic material
Li et al. Multiple shearing induced in one-step deformation fabricating gradient-structured aluminium disks
Dolzhenko et al. Ultrafine-Grained Stainless Steels after Severe Plastic Deformation. Metals 2023, 13, 674

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4221497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term