JP2004345603A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2004345603A
JP2004345603A JP2003147909A JP2003147909A JP2004345603A JP 2004345603 A JP2004345603 A JP 2004345603A JP 2003147909 A JP2003147909 A JP 2003147909A JP 2003147909 A JP2003147909 A JP 2003147909A JP 2004345603 A JP2004345603 A JP 2004345603A
Authority
JP
Japan
Prior art keywords
tread
groove
ridge
pneumatic tire
circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003147909A
Other languages
Japanese (ja)
Other versions
JP4286586B2 (en
Inventor
Takayuki Fukunaga
高之 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2003147909A priority Critical patent/JP4286586B2/en
Publication of JP2004345603A publication Critical patent/JP2004345603A/en
Application granted granted Critical
Publication of JP4286586B2 publication Critical patent/JP4286586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic tire capable of suppressing the drop of the water draining performance in the tread central region as much as practicable, maintaining sufficiently high the rigidity of the crown part of the central region, heightening the maneuvering stability on a dry road surface, and equipping the crown part with excellent resistance against uneven wear. <P>SOLUTION: The pneumatic tire is configured so that circumferentially stretching main grooves 2 are provided in the central region of the tread surface 1 and a plurality of traversing grooves 4 are arranged extending continuously from the road surface side edge E to each main groove 2, and angle-section ridges 7 are formed in the main grooves, wherein the maximum depth of the main grooves 2 is made smaller than that of the traversing grooves, and the skirt part 7a of the ridge 7 is intruded into the traversing groove, and the peak height of the ridge 7 measured from the bottom of the traversing groove is made 85% or less of the maximum depth of the traversing grooves 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、ウェット路面での排水性の低下を抑制しつつ、トレッド踏面中央域の陸部部分の剛性を高めて、耐偏摩耗性および、ドライ路面での操縦安定性を向上させた空気入りタイヤ、とくには空気入りラジアルタイヤに関するものである。
【0002】
【従来の技術】
ウェット路面での排水性の向上のためには、トレッド踏面の中央部に、トレッド周方向に連続する広幅の周方向主溝を設けることが広く一般に行われている。
しかるに、これによれば、周方向主溝に隣接する陸部部分の剛性が相対的に低くなるため、ドライ路面での操縦安定性が低下する他、その陸部部分に偏摩耗が発生し易いという問題があった。
【0003】
この一方で、ドライ路面での操縦安定性等を向上させる目的で、トレッド踏面中央部の周方向主溝の横断面積を低減させて、隣接陸部部分の剛性を増加させた場合には、踏面中央部の排水性が低下し、ウェット路面での操縦安定性が損なわれるという問題があった。
【0004】
【発明が解決しようとする課題】
この発明は、このような点に着目し、相互に二律背反の関係にある、ウェット路面での排水性と、ドライ路面での操縦安定性とを高い次元で両立させることを課題としてなされたものであり、それの目的とするところは、トレッド踏面中央域での排水性の低下を極力抑制するとともに、その中央域の陸部部分の剛性を十分高く確保して、ドライ路面での操縦安定性を高め、併せて、その陸部部分にすぐれた耐偏摩耗性を付与した空気入りタイヤを提供するにある。
【0005】
【課題を解決するための手段】
この発明の空気入りタイヤは、トレッド踏面の中央域、たとえば、赤道線上もしくは、それから幾分オフセットした位置に、トレッド周方向へ、これもたとえば直線状、ジグザグ状等に連続して延びる一本以上の周方向主溝を設けるとともに、少なくとも一方の踏面側縁から、それに最も近接して位置する周方向主溝まで連続して延びる横溝をトレッド周方向に間隔をおいて複数本配設して、その周方向主溝とそれに開口する横溝との間に陸部部分を区画したものであり、上記周方向主溝内に、トレッド周方向に連続し、たとえば主溝幅の中央部にピークをもつ一本の山形突条を設け、この周方向主溝の最大深さを横溝の最大深さより浅くするとともに、山形突条の裾野部分を、周方向主溝に開口する各横溝内まで入り込ませ、その山形突条の、横溝底から測ったピーク高さを、横溝の最大深さの85%以下としたものである。
【0006】
ここでトレッド踏面とは、タイヤを適用リムに装着するとともに、それに規定の空気圧を充填して平板に対して垂直に置き、最大負荷能力に相当する質量を負荷したときに平板と接触することになるトレッドゴムの表面領域をいうものとする。
【0007】
なお、適用リムとは下記の規格に規定されたリムをいい、規定の空気圧とは、下記の規格において、最大負荷能力に対応して規定される空気圧をいい、最大負荷能力とは、下記の規格でタイヤに負荷することが許される最大の質量をいう。そして規格とは、タイヤが生産又は使用される地域に有効な産業規格によって決められている。例えば、アメリカ合衆国では“THE TIRE AND RIM ASSOCIATION INC.のYEAR BOOK あり、欧州では、“The European Tyre and Rim Technical Organization のSTANDARDS MANUAL”であり、日本では日本自動車タイヤ協会の“JATMA YEAR BOOK”である。
【0008】
このタイヤでは、ウェット路面での排水性は、接地圧の高い、トレッド踏面中央域に設けた一本以上の周方向主溝による、タイヤの前方側への排水および、その周方向主溝に開口する横溝による、タイヤの側方への排水のそれぞれによって十分に担保されることになる。
【0009】
またここでは、トレッド踏面の中央域に、周方向主溝と横溝とで区画される陸部部分の剛性は、その周方向主溝の最大深さを横溝のそれより浅くすることおよび、周方向主溝内に形成した山形突条の裾野部分を、その主溝に開口する横溝内へ入り込ませることのそれぞれによって有利に増加されることになるので、ドライ路面での操縦安定性に加えて、その陸部部分の耐偏摩耗性を有効に向上させることができる。
【0010】
しかもここでは、周方向主溝内に山形突条を設けることによって、上記陸部部分の剛性を一層高めることができる。なおここで、山形突条の、横溝底から測ったピーク高さを、横溝の最大深さの85%以下とするのは、踏面中央域の陸部部分剛性を確保してなお、周方向主溝による排水性の十分なる発揮を担保することを意図したものであり、それが85%を越えると、周方向主溝の溝容積が不足することになって、踏面中央域の排水性、ひいては、タイヤ全体としてのウェット排水性が低下することになる。
【0011】
この一方で、山形突条は、トレッド踏面中央域の水の、トレッド側方への積極的な排水をアシストして排水効率を高めるべくも機能する。いいかえれば山形突条を設けない場合には、トレッド踏面中央域の水の大部分が、タイヤの前方側へ押し出されることになるため、タイヤの負荷転動に当って、一旦排水した水の繰り返しの排水が必要になるという排水効率の低下が否めない。
【0012】
かかるタイヤにおいてより好ましくは、山形突条のピーク高さを、横溝の最大深さの30%以上とする。これによれば、山形突条の作用に基づく、上記中央域陸部部分の剛性増加を有効に担保することができる。
いいかえれば、それが30%未満では、その陸部部分に十分な剛性を付与することが難しく、従って、高い操縦安定性および耐偏摩耗性の確保が困難になる。
またこの一方で、それが30%未満では排水効率が低くなるおそれもある。
【0013】
また好ましくは、山形突条の、横溝内への入り込み長さを、トレッド踏面幅の3〜15%の範囲とする。このように構成したときは、踏面中央域の陸部部分の剛性をより効果的に高めることができる。
すなわち、3%未満では、上記剛性を大きく増加させることが難しく、一方、15%を越えると、トレッド中央部の溝体積が不足し、排水性が低下するうれいがのこる。
【0014】
かかるタイヤにおいて、山形突条の横断面内での、突条側壁の延長線もしくは、その側壁のペリフェリ中点、すなわち、周方向主溝の溝底と、突条の頂面もしくは頂点との間の、断面輪郭線の中点における接線の、トレッドの横断面内のトレッド踏面輪郭線に立てた法線、いいかえれば、トレッド陸部部分の表面を結ぶ輪郭線に立てた法線との交角を30〜70°の範囲とした場合には、十分な主溝容積を確保するとともに、タイヤの負荷転動に当って、路面上の水を、突条側壁をもって周方向主溝内へ適正に流入させることができる。
【0015】
交角が30°未満では、突条の頂部側から突条側壁に沿って流れる水が横溝内に急激に流入してその横溝内に乱流を生じさせるため、排水性が低下するおそれがあり、またそれが70°を越えると、横溝の、主溝への開口端近傍部分の溝容積が不足することに起因する排水性の低下のおそれがある。
【0016】
そしてまた好ましくは、周方向主溝のそれぞれの側部に、相互に対をなす周方向副溝を設けるとともに、それぞれの踏面側縁から周方向副溝に交差して延びて周方向主溝に開口するそれぞれの横溝を設け、それらの横溝の相互の延在態様を、タイヤの正面視でほぼV字状とする。
【0017】
これによれば、周方向副溝それ自体の作用により、また、その周方向副溝と横溝との交差に基づいて、排水をより迅速に、かつ円滑に行って排水性を一層向上させることができる。
しかもここでは、それぞれの横溝を、正面視でほぼV字状に延在させて、各横溝の、周方向主溝に近い部分ほど先に接地面内に入り込む方向性パターンを形成することで、タイヤの斜め前方側への排水をより確実にしてタイヤの排水性をさらに高めることができる。
【0018】
ところで、山形突条の横断面内で、その突条のピーク幅を、トレッド踏面幅の0〜10%の範囲としたときは、周方向主溝の溝容積を確保して踏面中央域の高い排水性を実現することができる。一方、それが10%を越えると、周方向主溝の溝容積が不足して踏面中央域の高い排水性を担保することが難しくなる。
【0019】
また好ましくは、横溝の溝幅を、周方向副溝から周方向主溝に向けて漸増させる。これによれば、横溝の、山形突条が入り込む、主溝への開口端近傍部分の横溝容積を十分大きく確保して、たとえば、横溝幅が一定の場合等に比して排水性をはるかに高めることができる。
【0020】
【発明の実施の形態】
以下にこの発明の実施の形態を図面に示すところに基づいて説明する。
図1は、この発明に係るタイヤの実施形態を示すトレッドパターンの展開図である。
なお、タイヤの内部補強構造等は、一般的なラジアルタイヤのそれと同様であるので、ここでは図示を省略する。
【0021】
この図に示すところでは、先に定義したトレッド踏面1の中央部に、トレッド周方向へ直線状に連続して延びる一本の周方向主溝2を設けるとともに、この周方向主溝2のそれぞれの側部に、その主溝2からともに等しい間隔をおいて位置して、トレッド周方向へ直線状に延びる一対の周方向副溝3を設け、そして、トレッド踏面1のそれぞれの側縁Eから、周方向副溝3に交差して周方向主溝2まで連続して延びるそれぞれの横溝4をトレッド周方向に所要の間隔をおいて複数本ずつ配設するとともに、それぞれの側部に延在するそれぞれの横溝4の相互を、タイヤの正面視でほぼV字状をなす延在形態とし、これにより、周方向主溝2と周方向副溝3との間および、周方向副溝3と踏面側縁Eとの間のそれぞれに、二列ずつの陸部列、図ではブロック列5,6を形成する。
【0022】
なおこの図に示すところでは、各横溝4の、トレッド円周に対する延在角度を、周方向主溝2から離れるにつれて大きくし、ことに、周方向副溝3と踏面側縁Eとの間でその傾向を強めており、また、各横溝4の溝幅を、それの全長にわたってほぼ一定としているが、前者の、トレッド円周に対する延在角度は、周方向主溝2と周方向副溝3との間および、周方向副溝3と踏面側縁Eとの間の少なくとも一方または、トレッド踏面1内のほぼ全体にわたってほぼ一定とすることもできる。
そして後者の、横溝4の溝幅は、先にも述べたように、周方向副溝3から周方向主溝2に向けて漸増させることがより好ましい。
【0023】
ところで、図示のトレッドパターンでは、周方向主溝2内に、図1のII−II線に沿う拡大断面図を示す図2から明らかなように、主溝幅の中央部にピークを有してトレッド周方向に連続する一本の山形突条7、図では三角山形の突条を設け、この山形突条7を形成後の、周方向主溝2の最大深さDを、横溝4の最大深さdより浅くするとともに、その山形突条7の裾野部分7aを、主溝2に開口する横溝4内まで入り込ませ、また、突条7の、横溝底から測ったピーク高さHを、横溝4の最大深さdの85%以下、より好ましくは30%以上とする。
【0024】
これによれば、周方向主溝2と隣接する位置に形成されるそれぞれのブロック列5のブロック5aの、とくに主溝近傍部分の剛性が、その主溝2の最大深さDを、横溝4のそれより浅くしたことおよび、山形突条7の裾野部分7aを横溝4内へ入れ込んだことにより、山形突条それ自体が、主溝部分の剛性増加をもたらすことと相俟って、大きく高められることになり、また、踏面中央域の排水性は、周方向主溝2の存在それ自体および、主溝2に開口させた横溝4のそれぞれによって十分に確保することができる。
【0025】
そしてこれらのことは、山形突条7のピーク高さHを、横溝4の最大深さdの85%以下とすること、好適には、それに加えて30%以上とすることで、よりうまくバランスさせることができる。
ここで好ましくは、山形突条7の、横溝4内への入り込み長さは、トレッド踏面幅Wの3〜15%とすることが好ましく、この比率は、横溝4のトレッド円周に対する延在角度の大小、いいかえれば、横溝4の全長の長短のいかんにかかわらず選択することができる。
【0026】
また、図2に示す、山形突条7の横断面内での、突条側壁7bの延長線の、トレッド横断面内のトレッド踏面輪郭線に立てた法線Nとの交角θは、30〜70°の範囲とすることが好ましい。
ここで、突条側壁が円弧状をなすときは、その側壁のペリフェリ中点における接線の、上記法線Nとの交角を30〜70°の範囲とすることが、そして、突条側壁が折れ曲がり直線からなる場合、曲率の異なる複数の円弧からなる場合には、それぞれの延長線交角の平均値または、複数の接線交角の平均値を30〜70°の範囲とすることが好ましい。
【0027】
なお、山形突条7の横断面形状を三角山形とした図1,2によれば、その突条7のピーク幅の、トレッド踏面幅Wに対する比率は0%となるも、それがピーク幅を有する場合にあっても、トレッド踏面幅Wに対する比率は10%以下とすることが好ましい。
【0028】
図3,4はそれぞれ他の実施形態を示す、図1および図2と同様の図であり、これはとくに、周方向主溝2内に、横断面形状が台形をなす山形突条7を設けたものであり、その他の点については先に述べたところと同様としたものである。
かかるタイヤによってもまた、先の場合と同様に、踏面中央域の排水性の低下を有効に防止して、それぞれのブロック5aの主溝側の部分に高い剛性を付与することができる。
【0029】
以上この発明の実施の形態を、トレッドパターンのパターンセンタをトレッド踏面1の中央部に位置させた場合について説明したが、この発明は、パターンセンタを、トレッド踏面中央部のいずれか一方側へオフセットさせる場合にも適用し得ることはもちろんである。
【0030】
【実施例】
サイズが205/55 R16で、トレッド踏面幅Wが180mmの乗用車用タイヤであって、図1,2に示すトレッド構造を有する発明タイヤ1および図3,4に示すトレッド構造を有する発明タイヤ2ならびに、図5に示す、山形突条を有しないトレッド構造をもつ従来タイヤのそれぞれの、とくには突条の寸法諸元を表1に示すように設定したところにおいて、適用リムに組付けたタイヤに、220kPaの空気圧を充填するとともに、それを実車に装着し、2名乗車に相当する荷重条件の下で、ウェット路面での、直進時および旋回時のそれぞれの耐ハイドロプレーニング性ならびに、ドライ路面での操縦安定性を求めた。
その結果を表2に指数をもって示す。なお指数値は大きいほどすぐれた結果を示すものとした。
【0031】
【表1】

Figure 2004345603
【0032】
【表2】
Figure 2004345603
【0033】
ここで、直進時の耐ハイドロプレーニング性は、水深10mmのウェット路面を走行時の、ハイドロプレーニング現象の発生速度をフィーリングをもって評価することにより求め、旋回時の耐ハイドロプレーニング性は、水深6mmで半径80mのウェット路面を走行時の、ハイドロプレーニング現象の発生限界での横Gを計測することにより求めた。
また、ドライ路面での操縦安定性は、ドライサーキットを各種の走行モードでスポーツ走行したときのテストドライバーのフィーリングをもって評価することにより求めた。
【0034】
表2によれば、横断面形状が三角山形をなす突条を設けた発明タイヤ1では、とくには直進走行時の耐ハイドロプレーニング性を有効に向上させることができ、横断面形状が台形をなす突条を設けた発明タイヤ2では、旋回走行時の耐ハイドロプレーニング性および、ドライ路面で操縦安定性をとくに大きく向上させ得ることが解る。
【0035】
【発明の効果】
以上に述べたところから明らかなように、この発明によれば、とくには、トレッド踏面中央域でのウェット排水性の低下を有効に抑制して、その中央域の陸部部分の剛性を大きく高めることができ、これにより、タイヤ全体としてのすぐれた排水性を確保しつつ、ドライ路面での操縦安定性を大きく向上させ、併せて、踏面中央域の陸部部分の耐偏摩耗性をもまた大きく高めることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示すトレッドパターンの展開図である。
【図2】図1のII−II線に沿う、山形突条の横断面図である。
【図3】他の実施形態を示す図1と同様の図である。
【図4】図3のIV−IV線に沿う、図2と同様の断面図である。
【図5】従来タイヤのトレッドパターンの展開図である。
【符号の説明】
1 トレッド踏面
2 周方向主溝
3 周方向副溝
4 横溝
5,6 ブロック列
5a ブロック
7 山形突条
7a 裾野部分
7b 突条側壁
E 踏面側縁
D 周方向主溝の最大深さ
d 横溝の最大深さ
H 山形突条のピーク高さ[0001]
TECHNICAL FIELD OF THE INVENTION
This invention improves the rigidity of the land portion in the central area of the tread tread while suppressing the drainage on wet roads, and improves the abrasion resistance and steering stability on dry roads. The present invention relates to a tire, particularly a pneumatic radial tire.
[0002]
[Prior art]
In order to improve drainage on a wet road surface, it is widely and generally practiced to provide a wide circumferential main groove continuous in the tread circumferential direction at the center of the tread tread surface.
However, according to this, since the rigidity of the land portion adjacent to the circumferential main groove is relatively low, the steering stability on a dry road surface is reduced, and uneven wear easily occurs on the land portion. There was a problem.
[0003]
On the other hand, if the cross-sectional area of the circumferential main groove at the center of the tread tread is reduced and the rigidity of the adjacent land part is increased, for the purpose of improving steering stability on dry road surfaces, the tread There is a problem that the drainage property in the central portion is reduced and steering stability on wet road surfaces is impaired.
[0004]
[Problems to be solved by the invention]
The present invention, which focuses on such points, has been made with the object of achieving a high level of compatibility between drainage on wet roads and steering stability on dry roads, which are in a trade-off relationship with each other. The purpose of this is to minimize the drainage in the central area of the tread tread as much as possible and to secure a sufficiently high rigidity in the land area in the central area to improve steering stability on dry road surfaces. It is another object of the present invention to provide a pneumatic tire which has an enhanced uneven wear resistance in a land portion thereof.
[0005]
[Means for Solving the Problems]
The pneumatic tire according to the present invention has at least one or more extending continuously in the central region of the tread tread, for example, on the equator line or at a position slightly offset therefrom, in the circumferential direction of the tread, also in a straight line, a zigzag shape or the like. Along with providing the circumferential main groove, a plurality of lateral grooves continuously extending from at least one tread side edge to the circumferential main groove located closest thereto are arranged at intervals in the tread circumferential direction, A land portion is defined between the circumferential main groove and the lateral groove opening there.The tread circumferentially continuous in the circumferential main groove, for example, having a peak at the center of the width of the main groove. A single ridge is provided, the maximum depth of the circumferential main groove is made shallower than the maximum depth of the lateral groove, and the skirt portion of the ridge is inserted into each horizontal groove opening in the circumferential main groove, The Yamagata ridge The peak heights measured from the lateral groove bottom, in which a 85% or less of the maximum depth of lateral grooves.
[0006]
Here, the tread tread means that the tire is mounted on the applicable rim, filled with the specified air pressure and placed perpendicular to the flat plate, and comes into contact with the flat plate when a mass equivalent to the maximum load capacity is loaded Surface area of the tread rubber.
[0007]
The applicable rim refers to the rim specified in the following standard, and the specified air pressure refers to the air pressure specified corresponding to the maximum load capacity in the following standard, and the maximum load capacity refers to the following. Refers to the maximum mass allowed to be applied to the tire according to the standard. The standard is determined by an industrial standard effective in a region where the tire is manufactured or used. For example, in the United States, "THE TIRE AND RIM ASSOCIATION INC. YEAR BOOK", in Europe, "The European Tire and Rim Technical Organization" STANDARDS MANUAL is the Japan Association of Motor Vehicles, and the OJA is the Japan Association of Motor Vehicles Association (JAR), and the OJA is the Japan Association for Motor Vehicles (OJA), and the OJA is the Japan Association for Motor Vehicles (OJA), and the OJA is the Japan Association for Motor Vehicles.
[0008]
In this tire, drainage on a wet road surface is controlled by one or more circumferential main grooves provided in the central area of the tread tread, which have a high contact pressure and drainage to the front side of the tire and opening in the circumferential main grooves. Each of the lateral drains of the tire due to the lateral grooves provided is sufficiently secured.
[0009]
Also, here, the rigidity of the land portion defined by the circumferential main groove and the lateral groove in the central region of the tread tread is to make the maximum depth of the circumferential main groove shallower than that of the lateral groove, and The skirt portion of the angled ridge formed in the main groove is advantageously increased by each entering the lateral groove opening in the main groove, so in addition to steering stability on a dry road surface, The uneven wear resistance of the land portion can be effectively improved.
[0010]
Moreover, here, by providing the ridges in the circumferential main groove, the rigidity of the land portion can be further increased. Here, the peak height of the chevron measured from the bottom of the lateral groove is set to 85% or less of the maximum depth of the lateral groove. It is intended to ensure sufficient drainage by the groove, and if it exceeds 85%, the groove capacity of the circumferential main groove will be insufficient, and drainage in the center area of the tread, and eventually As a result, the wet drainage performance of the tire as a whole decreases.
[0011]
On the other hand, the Yamagata ridge also functions to assist the active drainage of the water in the central area of the tread tread to the side of the tread and to increase the drainage efficiency. In other words, if the ridges are not provided, most of the water in the central area of the tread will be pushed out to the front side of the tire. It is unavoidable that the drainage efficiency becomes lower because the drainage becomes necessary.
[0012]
More preferably, in such a tire, the peak height of the chevron is 30% or more of the maximum depth of the lateral groove. According to this, it is possible to effectively ensure an increase in the rigidity of the land portion in the central region based on the action of the ridge.
In other words, if it is less than 30%, it is difficult to impart sufficient rigidity to the land portion, and it is therefore difficult to ensure high steering stability and uneven wear resistance.
On the other hand, if it is less than 30%, the drainage efficiency may be reduced.
[0013]
Preferably, the length of the ridges entering the lateral grooves is in the range of 3 to 15% of the tread tread width. With this configuration, the rigidity of the land portion in the center area of the tread can be more effectively increased.
That is, if it is less than 3%, it is difficult to greatly increase the rigidity, while if it exceeds 15%, the groove volume at the center of the tread is insufficient, and the drainage is reduced.
[0014]
In such a tire, in the cross section of the chevron ridge, the extension of the ridge side wall or the midpoint of the periphery of the side wall, that is, between the groove bottom of the circumferential main groove and the top surface or apex of the ridge. The intersection of the tangent at the midpoint of the cross-sectional profile with the normal set on the tread tread profile in the cross-section of the tread, in other words, the normal set on the profile connecting the surface of the tread land part When the angle is in the range of 30 to 70 °, a sufficient volume of the main groove is ensured, and water on the road surface is appropriately introduced into the circumferential main groove with the ridge side wall when the tire is rolling. Can be done.
[0015]
If the angle of intersection is less than 30 °, water flowing along the side wall of the ridge from the top side of the ridge suddenly flows into the lateral groove to generate turbulent flow in the lateral groove, so that drainage may be reduced, If it exceeds 70 °, drainage may be reduced due to insufficient groove volume near the opening end of the lateral groove to the main groove.
[0016]
And preferably, on each side of the circumferential main groove, a pair of circumferential sub-grooves is provided, and each cross-section extends from the side edge of the tread surface so as to intersect with the circumferential sub-groove. Each of the open lateral grooves is provided, and the mutually extending lateral grooves are substantially V-shaped in a front view of the tire.
[0017]
According to this, by the action of the circumferential sub-groove itself, and based on the intersection of the circumferential sub-groove and the lateral groove, drainage can be performed more quickly and smoothly to further improve drainage. it can.
Moreover, here, the respective lateral grooves are extended substantially in a V-shape in a front view, and a directional pattern is formed such that a portion of each lateral groove closer to the circumferential main groove enters the ground plane first. The drainage of the tire to the diagonally forward side can be more reliably performed, and the drainage of the tire can be further enhanced.
[0018]
By the way, when the peak width of the ridge is set in the range of 0 to 10% of the width of the tread tread in the cross section of the ridge, the groove volume of the circumferential main groove is ensured, and the center area of the tread is high. Drainage can be realized. On the other hand, if it exceeds 10%, the groove capacity of the circumferential main groove is insufficient, and it is difficult to ensure high drainage in the center area of the tread.
[0019]
Preferably, the width of the lateral groove is gradually increased from the circumferential sub groove toward the circumferential main groove. According to this, the lateral groove has a sufficiently large lateral groove volume in the vicinity of the opening end to the main groove into which the chevron ridges enter, and, for example, drainage is far more than when the lateral groove width is constant. Can be enhanced.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a developed view of a tread pattern showing an embodiment of a tire according to the present invention.
The internal reinforcement structure of the tire and the like are the same as those of a general radial tire, and are not illustrated here.
[0021]
As shown in this figure, a single circumferential main groove 2 extending linearly and continuously in the tread circumferential direction is provided at the center of the tread tread surface 1 defined above, and each of the circumferential main grooves 2 A pair of circumferential sub-grooves 3 which are located at equal intervals from the main groove 2 and extend linearly in the circumferential direction of the tread, and from the respective side edges E of the tread surface 1 A plurality of transverse grooves 4 intersecting with the circumferential sub-groove 3 and extending continuously to the circumferential main groove 2 are arranged at required intervals in the circumferential direction of the tread, and extend to respective side portions. Each of the lateral grooves 4 is formed in an extended form that is substantially V-shaped when viewed from the front of the tire, and thereby, between the circumferential main groove 2 and the circumferential sub groove 3 and between the circumferential main groove 3 and the circumferential sub groove 3. Two rows of land sections, respectively, between the tread side edge E and the figure To form a block train (5, 6).
[0022]
In addition, as shown in this figure, the extending angle of each lateral groove 4 with respect to the tread circumference increases as the distance from the circumferential main groove 2 increases, and in particular, between the circumferential sub groove 3 and the tread side edge E. This tendency is strengthened, and the width of each lateral groove 4 is made substantially constant over its entire length. However, the extension angle of the former with respect to the tread circumference is determined by the circumferential main groove 2 and the circumferential sub groove 3. , And at least one between the circumferential sub-groove 3 and the tread side edge E, or substantially the entire tread tread surface 1.
It is more preferable that the width of the latter lateral groove 4 be gradually increased from the circumferential sub groove 3 toward the circumferential main groove 2 as described above.
[0023]
By the way, in the illustrated tread pattern, as is apparent from FIG. 2 showing an enlarged cross-sectional view along the line II-II in FIG. A single ridge 7 continuous in the circumferential direction of the tread, in the figure, a triangular ridge is provided, and the maximum depth D of the circumferential main groove 2 after the formation of the ridge 7 is determined by the maximum of the lateral groove 4. The depth d is made shallower than the depth d, and the skirt portion 7a of the chevron ridge 7 is inserted into the lateral groove 4 opening to the main groove 2. Further, the peak height H of the ridge 7 measured from the lateral groove bottom is It is 85% or less of the maximum depth d of the lateral groove 4, more preferably 30% or more.
[0024]
According to this, the rigidity of the block 5 a of each block row 5 formed at a position adjacent to the circumferential main groove 2, particularly in the vicinity of the main groove, determines the maximum depth D of the main groove 2 by the lateral groove 4. And by inserting the skirt portion 7a of the chevron 7 into the lateral groove 4, the chevron itself increases the rigidity of the main groove portion, which greatly increases The drainage in the central area of the tread can be sufficiently ensured by the existence of the circumferential main groove 2 itself and the lateral grooves 4 opened in the main groove 2.
[0025]
These factors can be better balanced by setting the peak height H of the ridge 7 to 85% or less of the maximum depth d of the lateral groove 4, preferably 30% or more. Can be done.
Here, it is preferable that the length of the ridge 7 entering the lateral groove 4 be 3 to 15% of the tread tread width W, and this ratio is determined by the extension angle of the lateral groove 4 with respect to the tread circumference. This can be selected regardless of the length of the lateral groove 4 or the length of the lateral groove 4.
[0026]
Also, as shown in FIG. 2, the intersection angle θ between the extension of the ridge side wall 7b in the cross section of the chevron ridge 7 and the normal N to the tread tread contour in the tread cross section is 30 to It is preferable that the angle be in the range of 70 °.
Here, when the ridge side wall is formed in an arc shape, the intersection angle of the tangent at the midpoint of the periphery of the side wall with the above-mentioned normal line N is set in the range of 30 to 70 °, and the ridge side wall is bent. In the case of a straight line, and in the case of a plurality of circular arcs having different curvatures, it is preferable that the average value of the respective extension line intersection angles or the average value of the plurality of tangent intersection angles be in the range of 30 to 70 °.
[0027]
In addition, according to FIGS. 1 and 2 in which the cross-sectional shape of the chevron ridge 7 is a triangular chevron, the ratio of the peak width of the ridge 7 to the tread tread width W is 0%, but it is the peak width. Even if it has, it is preferable that the ratio to the tread tread width W is 10% or less.
[0028]
FIGS. 3 and 4 are views similar to FIGS. 1 and 2, each showing another embodiment, in which, in the circumferential main groove 2, a ridge 7 having a trapezoidal cross section is provided. The other points are the same as those described above.
Also with such tires, similarly to the above case, it is possible to effectively prevent the drainage of the tread central area from lowering, and to impart high rigidity to the main groove side portion of each block 5a.
[0029]
Although the embodiment of the present invention has been described with reference to the case where the pattern center of the tread pattern is located at the center of the tread tread 1, the present invention offsets the pattern center to any one side of the tread tread center. It is needless to say that the present invention can be applied to the case in which the control is performed.
[0030]
【Example】
A tire for a passenger car having a size of 205/55 R16 and a tread tread width W of 180 mm, the invention tire 1 having the tread structure shown in FIGS. 1 and 2, and the invention tire 2 having the tread structure shown in FIGS. In FIG. 5, each of the conventional tires having a tread structure having no chevron ridges, particularly when the dimensional specifications of the ridges are set as shown in Table 1, the tires attached to the applicable rims , 220kPa air pressure, it is mounted on the actual vehicle, and under the load conditions equivalent to two passengers, on the wet road surface, each hydroplaning resistance during straight running and turning, and on the dry road surface The steering stability was required.
The results are shown in Table 2 with indices. The larger the index value, the better the result.
[0031]
[Table 1]
Figure 2004345603
[0032]
[Table 2]
Figure 2004345603
[0033]
Here, the hydroplaning resistance during straight traveling is determined by evaluating the rate of occurrence of the hydroplaning phenomenon when traveling on a wet road surface with a water depth of 10 mm by feeling. The hydroplaning resistance during turning is 6 mm in water depth. It was determined by measuring the lateral G at the limit of occurrence of the hydroplaning phenomenon when traveling on a wet road surface with a radius of 80 m.
Driving stability on a dry road surface was determined by evaluating the feeling of a test driver when driving a dry circuit in various driving modes in sports.
[0034]
According to Table 2, in the invention tire 1 provided with the ridge having a triangular cross-sectional shape, the hydroplaning resistance, particularly when traveling straight, can be effectively improved, and the cross-sectional shape is trapezoidal. It can be seen that the inventive tire 2 provided with the ridges can significantly improve the hydroplaning resistance during turning and the steering stability on a dry road surface.
[0035]
【The invention's effect】
As is apparent from the above description, according to the present invention, particularly, a decrease in wet drainage in the central region of the tread tread is effectively suppressed, and the rigidity of the land portion in the central region is greatly increased. As a result, while maintaining excellent drainage performance of the tire as a whole, handling stability on dry roads is greatly improved, and at the same time, uneven wear resistance of the land part in the center area of the tread is also improved. Can be greatly increased.
[Brief description of the drawings]
FIG. 1 is a developed view of a tread pattern showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the chevron ridge, taken along line II-II of FIG.
FIG. 3 is a view similar to FIG. 1 showing another embodiment.
FIG. 4 is a sectional view similar to FIG. 2, taken along line IV-IV of FIG. 3;
FIG. 5 is a development view of a tread pattern of a conventional tire.
[Explanation of symbols]
Reference Signs List 1 tread tread surface 2 circumferential main groove 3 circumferential sub groove 4 lateral groove 5, 6 block row 5a block 7 chevron ridge 7a foot portion 7b ridge side wall E tread side edge D maximum depth of circumferential main groove d maximum of lateral groove Depth H Peak height of Yamagata ridge

Claims (7)

トレッド踏面の中央域に、トレッド周方向に連続して延びる一本以上の周方向主溝を設けるとともに、少なくとも一方の踏面側縁から、それに最も近接して位置する周方向主溝まで連続して延びる横溝をトレッド周方向に間隔をおいて複数本配設してなる空気入りタイヤであって、
その周方向主溝内に、トレッド周方向に連続する一本の山形突条を設け、この周方向主溝の最大深さを横溝の最大深さより浅くするとともに、
山形突条の裾野部分を各横溝内まで入り込ませ、その山形突条の、横溝底から測ったピーク高さを、横溝の最大深さの85%以下としてなる空気入りタイヤ。
In the central area of the tread tread, one or more circumferential main grooves extending continuously in the tread circumferential direction are provided, and at least one tread side edge is continuously connected to the circumferential main groove located closest thereto. A pneumatic tire having a plurality of extending lateral grooves arranged at intervals in a tread circumferential direction,
In the circumferential main groove, a single continuous ridge is provided in the tread circumferential direction, and the maximum depth of the circumferential main groove is made shallower than the maximum depth of the lateral groove,
A pneumatic tire in which a skirt portion of a mountain ridge extends into each lateral groove, and a peak height of the mountain ridge measured from the lateral groove bottom is 85% or less of a maximum depth of the lateral groove.
山形突条のピーク高さを、横溝の最大深さの30%以上としてなる請求項1に記載の空気入りタイヤ。The pneumatic tire according to claim 1, wherein the peak height of the chevron is 30% or more of the maximum depth of the lateral groove. 山形突条の、横溝内への入り込み長さを、トレッド踏面幅の3〜15%の範囲としてなる請求項1もしくは2に記載の空気入りタイヤ。3. The pneumatic tire according to claim 1, wherein a length of the angled ridge entering the lateral groove is in a range of 3 to 15% of a tread tread width. 4. 山形突条の横断面内での、突条側壁の延長線もしくは、その側壁のペリフェリ中点における接線の、トレッドの横断面内のトレッド踏面輪郭線に立てた法線との交角を30〜70°の範囲としてなる請求項1〜3のいずれかに記載の空気入りタイヤ。In the cross section of the chevron ridge, the intersection of the extension line of the ridge side wall or the tangent at the midpoint of the periphery of the side wall with the normal to the tread tread surface contour line in the cross section of the tread is 30 to 70. The pneumatic tire according to any one of claims 1 to 3, which is in a range of °. 周方向主溝のそれぞれの側部に、相互に対をなす周方向副溝を設けるとともに、それぞれの踏面側縁から周方向副溝に交差して延びて周方向主溝に開口するそれぞれの横溝を設け、それらの横溝の相互の延在態様を、タイヤの正面視でほぼV字状としてなる請求項1〜4のいずれかに記載の空気入りタイヤ。On each side of the circumferential main groove, a pair of circumferential sub-grooves is provided, and each lateral groove extending from each tread side edge to cross the circumferential sub-groove and opening to the circumferential main groove. The pneumatic tire according to any one of claims 1 to 4, wherein the lateral grooves have a substantially V-shaped extending shape in a front view of the tire. 山形突条の横断面内で、その突条のピーク幅を、トレッド踏面幅の0〜10%の範囲としてなる請求項1〜5のいずれかに記載の空気入りタイヤ。The pneumatic tire according to any one of claims 1 to 5, wherein a peak width of the ridge is in a range of 0 to 10% of a tread tread width in a cross section of the ridge. 横溝の溝幅を、周方向副溝から周方向主溝に向けて漸増させてなる請求項1〜6のいずれかに記載の空気入りタイヤ。The pneumatic tire according to any one of claims 1 to 6, wherein the width of the lateral groove is gradually increased from the circumferential auxiliary groove toward the circumferential main groove.
JP2003147909A 2003-05-26 2003-05-26 Pneumatic tire Expired - Fee Related JP4286586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003147909A JP4286586B2 (en) 2003-05-26 2003-05-26 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003147909A JP4286586B2 (en) 2003-05-26 2003-05-26 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2004345603A true JP2004345603A (en) 2004-12-09
JP4286586B2 JP4286586B2 (en) 2009-07-01

Family

ID=33534310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003147909A Expired - Fee Related JP4286586B2 (en) 2003-05-26 2003-05-26 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP4286586B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222091A (en) * 2007-03-14 2008-09-25 Bridgestone Corp Pneumatic tire
DE102007032226A1 (en) 2007-07-11 2009-01-15 Continental Aktiengesellschaft Vehicle i.e. passenger car, pneumatic tire, has elevation continuously declining in radial extension based on maximum radial extension, when viewed in cross-sectional plane perpendicular to longitudinal extension direction of grooves
JP2014196084A (en) * 2013-03-29 2014-10-16 横浜ゴム株式会社 Pneumatic tire
JP7485134B1 (en) 2023-03-15 2024-05-16 住友ゴム工業株式会社 tire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222091A (en) * 2007-03-14 2008-09-25 Bridgestone Corp Pneumatic tire
DE102007032226A1 (en) 2007-07-11 2009-01-15 Continental Aktiengesellschaft Vehicle i.e. passenger car, pneumatic tire, has elevation continuously declining in radial extension based on maximum radial extension, when viewed in cross-sectional plane perpendicular to longitudinal extension direction of grooves
DE102007032226B4 (en) * 2007-07-11 2016-07-07 Continental Reifen Deutschland Gmbh Vehicle tires
JP2014196084A (en) * 2013-03-29 2014-10-16 横浜ゴム株式会社 Pneumatic tire
JP7485134B1 (en) 2023-03-15 2024-05-16 住友ゴム工業株式会社 tire

Also Published As

Publication number Publication date
JP4286586B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP4862090B2 (en) Pneumatic tire
US10343462B2 (en) Pneumatic tire
US7891392B2 (en) Pneumatic tire with tread having curved oblique grooves and chamfers
US8267131B2 (en) Studless tire
CN101815624B (en) Pneumatic tire
US7178570B2 (en) Pneumatic tire including main and auxiliary oblique grooves in axially inner region of tread
US8496036B2 (en) Pneumatic tire with tread having center rib, curved oblique grooves and connecting groove portions
EP2193935A1 (en) Pneumatic tire with asymetric tread pattern
KR20100111233A (en) Pneumatic tire
JP4744800B2 (en) Pneumatic tire
US11407255B2 (en) Pneumatic tire
JP6139843B2 (en) Pneumatic tire
JP2017019438A (en) Pneumatic tire
JP2004352023A (en) Pneumatic tire
JP6092569B2 (en) Pneumatic tire
JP2007112218A (en) Inclined groove structure of tire tread
JP4369001B2 (en) Pneumatic tire with directional pattern
JP4331345B2 (en) Pneumatic tire with directional pattern
KR20110021674A (en) Pneumatic tire
JP5171179B2 (en) Pneumatic tire
JP2008120232A (en) Pneumatic tire
CN107709046B (en) Pneumatic tire
JP2003326918A (en) Pneumatic tire
JP4286586B2 (en) Pneumatic tire
JPH0891025A (en) Pneumatic radial tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees