JP2004345426A - Air conditioner for fuel cell vehicle - Google Patents

Air conditioner for fuel cell vehicle Download PDF

Info

Publication number
JP2004345426A
JP2004345426A JP2003142598A JP2003142598A JP2004345426A JP 2004345426 A JP2004345426 A JP 2004345426A JP 2003142598 A JP2003142598 A JP 2003142598A JP 2003142598 A JP2003142598 A JP 2003142598A JP 2004345426 A JP2004345426 A JP 2004345426A
Authority
JP
Japan
Prior art keywords
fuel cell
air
heat
cooling water
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003142598A
Other languages
Japanese (ja)
Inventor
Keiichi Yoshii
桂一 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003142598A priority Critical patent/JP2004345426A/en
Publication of JP2004345426A publication Critical patent/JP2004345426A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize an air conditioner for a fuel cell vehicle capable of preventing occurrence of defect of a hydrogen supply member and saving power for the air conditioner by utilizing low temperature generated in inflating of high-pressure hydrogen for the air conditioner. <P>SOLUTION: The air conditioner for the fuel cell vehicle is equipped with a fuel cell device 10 generating the power using the high-pressure hydrogen and the air conditioner 30 which consists of refrigeration cycle S and performs air-conditioning of the air in the cabin. The fuel cell device 10 is provided with a first heat exchanging means 19 which exchanges the low-temperature hydrogen generated during reducing the pressure of the high-pressure hydrogen with cooling water. The air conditioner 30 is provided with a cooler 21 which exchanges the low-temperature cooling water obtained by heat exchange with the first heat exchanging means 19 with the air in the cabin, and an evaporator 31 which consists of the refrigeration cycle S and exchanges the pressure-reduced refrigerant with the air in the cabin. The occurrence of defect of the hydrogen supply member can be prevented and the power for the air conditioner can be saved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高圧水素を用いて発電する燃料電池装置と車室内の空気を空調する空調装置とを備える燃料電池車用空調装置に関するものであり、特に、高圧水素が減圧する際に発生する低温度の水素の利用に関する。
【0002】
【従来の技術】
従来、水素と酸素との電気化学反応により化学エネルギーから電気エネルギーに変換して発電するこの種の燃料電池装置においては、一般的に高圧タンクに収容された高圧水素を減圧して燃料電池本体に供給するように構成されている。
【0003】
【発明が解決しようとする課題】
しかしながら、例えば、70MPa程度の高圧タンク内の水素を0.3MPa程度まで減圧させると、水素が断熱膨張するため周囲から熱を吸熱し、約100℃程度、周囲の温度を低下させる。このため、水素を燃料電池本体に供給する水素供給経路に配設される水素配管、開閉弁、燃料電池本体内の電極板、電解質膜などの水素供給部材が冷却されて、結露や凍結による機能不良などの不具合が発生する問題がある。
【0004】
特に、開閉弁では凍結すると弁の開閉ができなくなる。また、燃料電池本体では、イオン交換膜である電解質膜の温度が0℃以下となると電解質膜中の水分が凍結して発電できなくなる問題がある。なお、この種の燃料電池装置では、燃料電池本体内の電解質膜の温度が80℃程度であれば発電効率が最良であり、それ以下の温度であると発電効率が低下すると知られている。
【0005】
そこで、本発明の目的は、上記点を鑑みたものであり、高圧水素の膨張時に生じる低温を空調装置に利用させることで、水素供給部材の不具合の発生防止および空調装置の省動力化が可能な燃料電池車用空調装置を提供することにある。
【0006】
【課題を解決するための手段】
上記、目的を達成するために、請求項1ないし請求項6に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、高圧水素を用いて発電する燃料電池装置(10)と、冷凍サイクル(S)から構成され、車室内の空気を空調する空調装置(30)とを備える燃料電池車用空調装置において、
燃料電池装置(10)には、高圧水素を減圧する際に発生する低温の水素と冷却水とを熱交換する第1熱交換手段(19)が設けられ、空調装置(30)は、第1熱交換手段(19)により熱交換することで得られる低温の冷却水が、冷凍サイクル(S)と組み合わせて車室内の空気を空調する際の冷却源として利用されるように構成したことを特徴としている。
【0007】
請求項1に記載の発明によれば、第1熱交換手段(19)により高圧水素を減圧する際に発生する低温の水素と冷却水とを熱交換することにより、低温の水素を温めることで、水素を供給する水素供給回路(13)に配設される図示しない水素供給部材の結露、凍結による機能不良などの不具合の発生防止が図れる。
【0008】
また、高圧水素の減圧によって発生する低温の水素と冷却水とを熱交換して車室内の空気を空調する際の冷却源として利用するように構成したことにより、冷凍サイクル(S)から構成される空調装置(30)の省動力化が図れる。
【0009】
請求項2に記載の発明では、空調装置(30)は、第1熱交換手段(19)により熱交換することで得られる低温の冷却水と車室内の空気とを熱交換する冷却器(21)と、冷凍サイクル(S)に構成され、減圧された冷媒と車室内の空気とを熱交換する冷却手段(31)とが設けられたことを特徴としている。
【0010】
請求項2に記載の発明によれば、具体的には、低温度の水素と熱交換することで得られる冷却水と車室内の空気とを熱交換する冷却器(21)と減圧された冷媒と車室内の空気とを熱交換する冷却手段(31)とが設けられたことにより、冷却器(21)と冷却手段(31)とを組み合わせることで、冷却手段(31)が構成される冷凍サイクル(S)側の空調動力が低減できるため空調装置(30)の省動力化が図れる。
【0011】
請求項3に記載の発明では、空調装置(30)は、第1熱交換手段(19)により熱交換することで得られる低温の冷却水と冷凍サイクル(S)の高圧冷媒とが熱交換されるように構成したことを特徴としている。請求項3に記載の発明によれば、冷凍サイクル(S)に構成される凝縮器(42)の放熱量が軽減されるため凝縮器(42)の小型化が図れる。しかも、凝縮器(42)の空気側条件が同一であれば、冷媒側の圧力および温度が低下することで空調動力の低減が図れる。
【0012】
また、上述のように冷凍サイクル(S)側の凝縮器(42)の放熱量が低減するため、凝縮器(42)と一体に配設された燃料電池装置(10)を冷却するためのラジエータ(15)の入口空気温度が低下する。これにより、ラジエータ(15)の放熱に余裕が生ずるのでラジエータ(15)を小型にできる。
【0013】
請求項4に記載の発明では、燃料電池装置(10)は、冷却水と外気とを熱交換するラジエータ(15)を有し、その冷却水を流通させて燃料電池本体(11)を冷却する燃料電池冷却水回路(12)と、減圧された水素と冷却水とを熱交換する第2熱交換手段(16)とが設けられるとともに、空調装置(30)は、燃料電池冷却水回路(12)に接続され、冷却水と車室内の空気とを熱交換する加熱手段(34)が設けられることを特徴としている。
【0014】
請求項4に記載の発明によれば、燃料電池冷却水回路(12)と、第2熱交換手段(16)とが設けられることにより、燃料電池本体(11)に供給される水素が所定の温度に加熱される。これにより、燃料電池本体(11)に構成される電解質膜近傍の温度が凍結温度にならないため凍結による機能不良が防止できる。また、減圧された水素が上記所定温度に加熱されることで発電効率の低下を招くこともない。
【0015】
請求項5に記載の発明では、第2熱交換手段(16)および加熱手段(34)が互いに並列に配置した上で、ラジエータ(15)に対して直列に配設され、かつそれぞれに流通する冷却水の流量が制御されるように構成したことを特徴としている。
【0016】
請求項5に記載の発明によれば、第2熱交換手段(16)および加熱手段(34)に流通する冷却水の流量が制御されるように構成したことにより、燃料電池本体(11)に構成される電解質膜近傍の温度を、例えば約80℃程度の所定温度に容易に加熱することができるため燃料電池装置(10)の発電効率が最良の状態を維持することができる。
【0017】
請求項6に記載の発明では、作動により発熱する発熱補機(11a)と、この発熱補機(11a)に冷却水を流通させて発熱補機(11a)を冷却する発熱補機冷却水回路(12c)とが設けられるとともに、燃料電池装置(10)は、減圧された水素と冷却水とを熱交換する第3熱交換手段(16a)が設けられることを特徴としている。
【0018】
請求項6に記載の発明によれば、車両には、燃料電池本体(11)の他に、例えば、電動モータ、電動ポンプ、インバータなど作動により発熱する発熱補機(11a)があり、これらの発熱分を回収する発熱補機冷却水回路(12c)と、第3熱交換手段(16a)とが設けられることにより、減圧された水素を加熱することができるとともに、発熱補機(11a)の冷却が容易にできる。
【0019】
なお、上記各手段の括弧内の符号は、後述する実施形態の具体的手段との対応関係を示すものである。
【0020】
【発明の実施の形態】
(第1実施形態)
以下、本発明を適用した第1実施形態の燃料電池車用空調装置を図1に基づいて説明する。図1は、燃料電池車用空調装置の全体構成を示す模式図であり、高圧水素を用いて発電する燃料電池装置10と、冷凍サイクルSから構成され車室内の空気を空調する空調装置30とから構成されている。
【0021】
まず、燃料電池装置10は、燃料電池本体11、この燃料電池本体11を冷却する燃料電池冷却水回路12、燃料電池本体11に水素を供給する水素供給回路13、および燃料電池本体11に酸素を供給する酸素供給回路(図示せず)等から構成されている。
【0022】
燃料電池本体11は、図示しないが水素や酸素を供給する二つのセパレータと、二つの電極(燃料極、空気極)と、電解質膜(イオン交換膜)とから構成され、水素と酸素を供給することにより、水素と酸素との電気化学反応により化学エネルギーを直接電気エネルギーに変換する発電システムである。
【0023】
燃料電池冷却水回路12は、発電により発熱する燃料電池本体11を冷却する冷却回路であり、水にエチレングリコールを添加した冷却水を燃料電池本体11に循環させている。また、燃料電池冷却水回路12は、冷却水を循環させる循環ポンプ14、その冷却水を冷却するラジエータ15、および減圧された水素と冷却水とを熱交換する第2熱交換手段16から構成されている。
【0024】
なお、ラジエータ15は外気と冷却水とを熱交換するものであり、ラジエータ15の後方に設けられた送風機15aによりラジエータ15の放熱効果が高められてラジエータ15内の冷却水の冷却が促進される。第2熱交換手段16は、減圧された水素を燃料電池冷却水回路12内に循環する冷却水の温度に加熱する熱交換器であり、本実施形態では、後述する水素供給回路13の流れ方向と対向するように配設され、かつ後述する加熱手段であるヒータコア34と直列に配設されている。
【0025】
水素供給回路13には、高圧水素を収容する水素タンク17、高圧水素を減圧する減圧器18、減圧された水素と冷却水とが熱交換する第1熱交換手段19、および上述した第2熱交換手段16から構成されている。第1熱交換手段19は、水素タンク17内の高圧水素が減圧器18により減圧する際に発生する低温の水素と冷却水とを熱交換するための熱交換器であり、水にエチレングリコールを添加した冷却水を第1熱交換手段19に循環させて、その冷却水と低温の水素とを熱交換するようにしている。
【0026】
20は、第1熱交換手段19により熱交換することで得られる低温の冷却水を後述する冷却手段である蒸発器31と組み合わせて車室内の空気を空調する際の冷却源として利用するための冷却水回路であり、第1熱交換手段19、冷却器21、および冷却水を循環させる循環ポンプ22から構成されている。なお、第1熱交換手段19は、第2熱交換手段16と同じように、水素供給回路13の流れ方向と対向するように配設されている。また、冷却器21は冷却水回路20を循環する冷却水と車室内の空気とを熱交換して車室内の空気を冷却するための熱交換器であり、後述する空調装置30に配設されている。
【0027】
次に、本実施形態の空調装置30は、冷媒を用いた冷凍サイクルSからなる空調システムであり、冷凍サイクルSに構成される冷媒を蒸発する冷却手段である蒸発器31と上記冷却器21とを組み合わせて車室内の空気を空調するように構成している。
【0028】
本実施形態の空調装置30は、車室内へ送風空気を導く空調ケース32、この空調ケース32内に空気を導入して車室内へ送る送風手段である送風機33、空調ケース32内に配設された蒸発器31を含む冷凍サイクルS、空調ケース32内で蒸発器31の空気流れ下流側に配設された加熱手段であるヒータコア34、および空調ケース32内で蒸発器31の空気流れ上流側に配設された上記冷却器21を備えたものである。
【0029】
空調ケース32は、その上流端に内気導入口35および外気導入口36が設けられ、各導入口35、36は、選択された内外気モードに応じて作動する内外気切替ドア37によって開閉される。そして、空調ケース32の下流端には、車室内に開口する各吹出口(車室内のフロントガラスに向かって開口するデフロスタ吹出口、乗員の足元に開口するフット吹出口、乗員の上半身に向かって開口するフェイス吹出口など)に送風空気を導くための図示しない分岐ダクトがそれぞれ接続されている。また、各分岐ダクト(図示せず)の上流側開口部には、選択された吹出口モードに応じて各分岐ダクを開閉する吹出口開閉手段(図示せず)が設けられている。
【0030】
次に、冷凍サイクルSは、図示しない電動モータにより駆動される圧縮機である電動圧縮機41、電動圧縮機41で圧縮された高温高圧の冷媒を送風機15aの送風を受けて凝縮液化する凝縮器42、この凝縮器42より導かれた冷媒を一時蓄えて液冷媒のみを流すレシーバ43、レシーバ43より導かれた冷媒を減圧膨脹する膨脹弁44、この膨脹弁44で減圧された冷媒を送風機33の送風を受けて蒸発させる蒸発器31より構成され、それぞれ冷媒配管45によって環状に接続されている。
【0031】
電動圧縮機41は、冷媒の吸入、圧縮、吐出を行なうもので、例えば、電動モータ(図示せず)と一体的に密封ケース内に配設されている。凝縮器42は、上述したラジエータ15の空気流れ上流側に配設され、送風機15aにより外気と冷媒とが熱交換されるように構成されている。
【0032】
次に、ヒータコア34は、温水配管12aを介して燃料電池本体11の燃料電池冷却水回路12と接続されており、燃料電池本体11を冷却して加熱された冷却水を熱源として、ヒータコア34を通過する空気を加熱する。このヒータコア34を通過する空気量は切替ドア38によって調節される。なお、本実施形態では、第2熱交換手段16の下流側にヒータコア34を配設したが、これに限らず、第2熱交換手段16の上流側にヒータコア34を配設しても良い。
【0033】
また、図示しないが冷却器21および蒸発器31の空気流れ下流側には、冷却器21および蒸発器31を通過した空気の温度を検出する温度センサが設けられ、図示しない制御装置に温度情報を入力するように構成している。なお、上記の内外気切替ドア37、吹出口開閉手段(図示せず)、切替ドア38は、それぞれ各アクチュエータ(図示せず)によって操作され、その各アクチュエータ(図示せず)は、それぞれ各駆動回路(図示せず)を介して、図示しない制御装置からの制御信号に基づいて制御される。
【0034】
また、制御装置(図示せず)には、操作パネル(図示せず)で選択された選択信号が入力されるとともに、上記温度センサ(図示せず)のほかに各センサ(車室内の温度を検出する内気温センサ、車室外の温度を検出する外気温センサ、車室内に差し込む日射量を検出する日射センサ、燃料電池冷却水の温度を検出する水温センサなど)からの検出信号が入力インターフェイスを介して入力される。
【0035】
次に、以上の構成による燃料電池車用空調装置の作動について説明する。本実施形態の空調装置30では、燃料電池本体11に供給する水素の圧力や消費量によって作動が異なる。つまり、水素タンク17の内圧が高く、かつ消費量が多いときには、減圧器18により断熱膨張する際の温度低下が著しいため、第1熱交換手段19による熱交換量が大である。逆に、水素タンク17の内圧が低く、かつ消費量が少ないときには、減圧器18により断熱膨張する際の温度低下が僅かとなるため、第1熱交換手段19による熱交換量が小である。
【0036】
そこで、本発明では、第1熱交換手段19による熱交換で得られる熱交換量、すなわち、冷却水温度と循環量とが車室内冷房必要量に対して多い場合の第1運転モードと、逆に、熱交換量、すなわち、冷却水温度と循環量とが車室内冷房必要量に対し不足する場合の第2運転モードとを有している。まず、第1運転モードにおいては、冷却水回路20の冷却器21のみで車室内の空気を冷却するものであり、冷却水回路20の循環ポンプ22および送風機33を稼動させて第1熱交換手段19により得られる低温の冷却水を冷却器21に循環させて車室内の空気を冷房する。
【0037】
さらに、燃料電池冷却水回路12の循環ポンプ14および送風機15aを稼動させて、燃料電池本体11により発熱される熱を第2熱交換手段16、ヒータコア34、ラジエータ15の順に循環させて燃料電池本体11を冷却するとともに、第2熱交換手段16により、燃料電池冷却水回路12を循環する冷却水と減圧された水素とが熱交換されて水素が所定温度(例えば、80℃程度)に加熱される。なお、ラジエータ15および送風機15aは燃料電池冷却水回路12を循環する冷却水の水温が所定温度以上となったときに放熱するようにしている。
【0038】
ここで、ヒータコア34は、切替ドア38の開度を制御することで、暖房、もしくは除湿の加熱ができるようになっており、冷房のみのときには、送風機33の送風空気がヒータコア34を迂回するように切替ドア38の開度を制御するものである。次に、第2運転モードにおいては、上述の冷却器21のみによる車室内の空気の冷却に加えて、冷凍サイクルSを稼動させて蒸発器31により送風機33から送風された空気の冷房必要量分だけ冷却するものである。つまり、冷凍サイクルSは冷房必要量に応じて稼動/停止させるようにしている。
【0039】
具体的には、蒸発器31および冷却器21を通過した空気の温度を検出する温度センサ(図示せず)に基づいて冷凍サイクルSを駆動させるようにしている。因みに、冷凍サイクルSおよび循環ポンプ22を稼動させて車室内を冷房もしくは除湿運転を行なって、蒸発器31を通過した温度が次第に下降していく場合には、冷却器21を通過した空気の温度が、例えば、15℃以下のときは冷凍サイクルSを停止させる。すなわち、上述した第1運転モードとなる。
【0040】
また、例えば、冷却器21を通過した空気の温度が3℃以下のときは、冷却器21のフロスト防止のため循環ポンプ22を停止させて冷却水回路20による冷房運転を中断させる。なお、ここで、除湿運転のときは冷却した空気の一部のみヒータコア34を通過させて加熱した空気と、ヒータコア34を迂回した空気と混合させて車室内に吹き出す。
【0041】
一方、車室内を冷房もしくは除湿運転を行なって、蒸発器31を通過した温度が次第に上昇していく場合には、冷却器21を通過した空気の温度が、例えば、5℃未満のときは冷凍サイクルSおよび循環ポンプ22を停止しておくが、冷却器21を通過した空気の温度が5℃以上のときは循環ポンプ22を稼動させる。これにより、冷却器21によって車室内の空気を冷却する。
【0042】
また、このときに、冷却器21もしくは蒸発器31通過した空気の温度が、例えば、20℃以下を維持することができないときには冷凍サイクルSを稼動させる。すなわち、上述した第2運転モードとなる。ここで、除湿運転のときは冷却した空気の一部のみヒータコア34を通過させて加熱した空気と、ヒータコア34を迂回した空気と混合させて車室内に吹き出す。
【0043】
以上の第1実施形態の燃料電池車用空調装置によれば、燃料電池装置10には、高圧水素を減圧する際に発生する低温の水素と冷却水とを熱交換する第1熱交換手段19が設けられ、空調装置30は、第1熱交換手段19により熱交換することで得られる低温の冷却水が冷却器21によって車室内の空気を空調する際の冷却源として利用されることにより、蒸発器31が構成される冷凍サイクルS側の空調動力が低減できるため空調装置30の省動力化が図れる。
【0044】
また、第1熱交換手段19により高圧水素を減圧する際に発生する低温の水素と冷却水とを熱交換することにより、低温の水素を暖めることで、水素を供給する水素供給回路13に配設される図示しない水素供給部材の結露、凍結による機能不良などの不具合の発生防止が図れる。
【0045】
また、燃料電池冷却水回路12と、第2熱交換手段16とが設けられることにより、発電により発熱する燃料電池本体11からの熱により燃料電池本体11に供給する減圧された水素が所定の温度に加熱される。これにより、燃料電池本体11に構成される電解質膜近傍の温度が凍結温度にならないため凍結による機能不良が防止できる。さらに、減圧された水素が所定の温度に加熱されることで、電解質膜近傍の温度を発電効率が最良となる温度を保つため、燃料電池本体11の発電効率の低下を招くこともない。
【0046】
(第2実施形態)
以上の第1実施形態では、燃料電池冷却水回路12において、第2熱交換手段16、ヒータコア34およびラジエータ15を直列に配設させたが、これに限らず、第2熱交換手段16およびヒータコア34を互いに並列に配置した上で、ラジエータ15に対して直列に配設し、それぞれに循環する冷却水の流量を制御するように構成させても良い。
【0047】
具体的には、図2に示すように、第2熱交換手段16およびヒータコア34を互いに並列に配置した上で、ラジエータ15に対して直列に配設するとともに、第2熱交換手段16およびヒータコア34を迂回するバイパス通路12bを設けている。しかも、それぞれの経路には流量調整弁14bが設けられている。これにより、ラジエータ15、第2熱交換手段16およびヒータコア34に循環する冷却水の流量調節が容易に制御することができる。なお、図中に示す符号は、第1実施形態と同じ構成のものは同一符号を付して説明は省略する。
【0048】
以上の構成による燃料電池用空調装置によれば、発電により発熱する燃料電池本体11からの熱を用途に応じて分配が可能となる。従って、燃料電池本体11に構成される電解質膜近傍の温度を、例えば、約80℃程度の所定温度に容易に加熱することができるため燃料電池装置10の発電効率が最良の状態を維持することができる。また、第1実施形態では、ヒータコア34を通過する送風機33からの送風空気を切替ドア38により制御させていたが、ヒータコア34を循環する流量を調節することでも良い。
【0049】
(第3実施形態)
以上の第1、第2実施形態では、第1熱交換手段19により熱交換することで得られる低温の冷却水と車室内の空気と熱交換する冷却器21により車室内の空気を空調する際の冷却源として利用させたが、これに限らず、冷凍サイクルSの高圧冷媒と熱交換させるように構成させても良い。
【0050】
具体的には、図3に示すように、凝縮器42の下流側に第2凝縮器42aを設けたものである。この第2凝縮器42aは、第1熱交換手段19により熱交換することで得られる低温の冷却水と冷凍サイクルS内の高圧冷媒と熱交換するように冷却水回路20により構成したものである。これによれば、冷凍サイクルSに構成される凝縮器42の放熱量が軽減されるため凝縮器42の小型化が図れる。
【0051】
しかも、凝縮器42の空気側条件が同一であれば、冷媒側の圧力および温度が低下することで冷凍サイクルSの空調動力の低減が図れる。従って、空調装置30の省動力化が図れる。また、凝縮器42の放熱量が低減するため、凝縮器42の空気流れの下流側に設けられたラジエータ15の入口空気温度が低下する。これにより、ラジエータ15の放熱に余裕が生ずるのでラジエータ15を小型にできる。
【0052】
なお、本実施形態では、第1実施形態と同じように、燃料電池冷却水回路12において、第2熱交換手段16、ヒータコア34およびラジエータ15を直列に配設させたが、これに限らず、図4に示すように、第2熱交換手段16およびヒータコア34を互いに並列に配置した上で、ラジエータ15に対して直列に配設し、それぞれに循環する冷却水の流量を制御するように構成させても良い。図中に示す符号は、第1、第2実施形態と同じ構成のものは同一符号を付して説明は省略する。
【0053】
(第4実施形態)
本実施形態では、作動により発熱する電動モータ、インバータ、循環ポンプなどの発熱補機11aからの熱を回収して減圧された水素を第2熱交換手段16のように加熱させたものである。具体的には、図5に示すように、水素供給回路13に第3熱交換手段16aを設けるとともに、作動により発熱する発熱補機11aを冷却する発熱補機冷却水回路12cを設けたものである。
【0054】
この発熱補機冷却水回路12cは、発熱補機11aに水にエチレングリコールを添加した冷却水を循環させて冷却する冷却水回路であり、発熱補機11aと冷却水を循環させる循環ポンプ14a、減圧された水素と冷却水とを熱交換する第3熱交換手段16aから構成されている。また、第3熱交換手段16aは、減圧された水素を発熱補機冷却水回路12c内に循環する冷却水の温度に加熱する熱交換器であり、本実施形態では、第2熱交換手段16と同じように水素供給回路13の流れ方向と対向するように配設されている。
【0055】
これにより、燃料電池本体11の他に、車両には、例えば、電動モータ、電動ポンプ、インバータなど作動により発熱する発熱補機11aがあり、これらの発熱分を回収する発熱補機冷却水回路12cと、第3熱交換手段16aとが設けられることにより、減圧された水素を加熱することができるとともに、発熱補機11aの冷却が容易にできる。
【0056】
なお、本実施形態では、減圧され低温になった水素を加熱するために、燃料電池本体11からの熱に加えるように配設したが、燃料電池本体11の代わりにこれらの発熱補機11aからの熱のみでも良い。
【0057】
(他の実施形態)
以上の第1、第2実施形態では、蒸発器31の空気流れの上流側に冷却器21を空調ケース22内に配設したが、これに限らず、図6に示すように、蒸発器31および冷却器21が送風機33の空気流れに対して並列となるように配設しても良い。
【0058】
また、以上の第3実施形態では、凝縮器42の下流側に第2凝縮器42aを設けたが、これに限らず、図7および図8に示すように、凝縮器42の上流側に第2凝縮器42aを設けても良い。これにより、第3実施形態と同様の効果を奏する。
【0059】
また、以上の実施形態では、凝縮器42の下流側にレシーバ43を用いた冷凍サイクルSを構成させたが、レシーバ43の代わりに、電動圧縮機41の上流側にアキュームレータを用いて冷凍サイクルSを構成しても良い。また、膨張弁44の代わりに減圧手段としてエゼクタを用いて冷凍サイクルSを構成しても良い。
【図面の簡単な説明】
【図1】本発明の第1実施形態における燃料電池車用空調装置の全体構成を示す模式図である。
【図2】本発明の第2実施形態における燃料電池車用空調装置の全体構成を示す模式図である。
【図3】本発明の第3実施形態における燃料電池車用空調装置の全体構成を示す模式図である。
【図4】本発明の第3実施形態における燃料電池車用空調装置の全体構成を示す模式図である。
【図5】本発明の第4実施形態における燃料電池車用空調装置の全体構成を示す模式図である。
【図6】他の実施形態における燃料電池車用空調装置の全体構成を示す模式図である。
【図7】他の実施形態における燃料電池車用空調装置の全体構成を示す模式図である。
【図8】他の実施形態における燃料電池車用空調装置の全体構成を示す模式図である。
【符号の説明】
10…燃料電池装置
11…燃料電池本体
11a…発熱補機
12…燃料電池冷却水回路
12c…発熱補機冷却水回路
15…ラジエータ
16…第2熱交換手段
16a…第3熱交換手段
19…第1熱交換手段
21…冷却器
30…空調装置
31…蒸発器(冷却手段)
34…ヒータコア(加熱手段)
S…冷凍サイクル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell vehicle air conditioner including a fuel cell device that generates power using high-pressure hydrogen and an air conditioner that air-conditions air in a vehicle compartment. Regarding the use of temperature hydrogen.
[0002]
[Prior art]
Conventionally, in this type of fuel cell device which generates electric power by converting chemical energy into electric energy by an electrochemical reaction between hydrogen and oxygen, generally, high-pressure hydrogen stored in a high-pressure tank is decompressed and supplied to the fuel cell body. It is configured to supply.
[0003]
[Problems to be solved by the invention]
However, for example, if the pressure in the high-pressure tank of about 70 MPa is reduced to about 0.3 MPa, hydrogen adiabatically expands, so that heat is absorbed from the surroundings and the surrounding temperature is reduced by about 100 ° C. For this reason, hydrogen supply members such as a hydrogen pipe, an on-off valve, an electrode plate and an electrolyte membrane in the fuel cell main body which are disposed in a hydrogen supply path for supplying hydrogen to the fuel cell main body are cooled, and functions due to condensation and freezing are performed. There is a problem that defects such as defects occur.
[0004]
In particular, if the valve is frozen, it cannot be opened or closed. Further, in the fuel cell main body, when the temperature of the electrolyte membrane, which is an ion exchange membrane, becomes 0 ° C. or lower, there is a problem that water in the electrolyte membrane freezes and power cannot be generated. In this type of fuel cell device, it is known that the power generation efficiency is the best when the temperature of the electrolyte membrane in the fuel cell body is about 80 ° C., and that the power generation efficiency decreases when the temperature is lower than 80 ° C.
[0005]
In view of the above, an object of the present invention is to make use of a low temperature generated during expansion of high-pressure hydrogen for an air conditioner, thereby preventing a failure of a hydrogen supply member and reducing power consumption of the air conditioner. It is an object of the present invention to provide a fuel cell vehicle air conditioner.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the technical means described in claims 1 to 6 is adopted. That is, the invention according to claim 1 includes a fuel cell device (10) that generates power using high-pressure hydrogen, and an air conditioner (30) that includes a refrigeration cycle (S) and air-conditions the air in the passenger compartment. In air conditioners for fuel cell vehicles,
The fuel cell device (10) is provided with first heat exchange means (19) for exchanging heat between low-temperature hydrogen generated when depressurizing high-pressure hydrogen and cooling water, and the air conditioner (30) The low-temperature cooling water obtained by heat exchange by the heat exchange means (19) is configured to be used as a cooling source for air-conditioning the air in the passenger compartment in combination with the refrigeration cycle (S). And
[0007]
According to the first aspect of the present invention, the low-temperature hydrogen is warmed by exchanging heat between the low-temperature hydrogen generated when the high-pressure hydrogen is depressurized and the cooling water by the first heat exchange means (19). In addition, it is possible to prevent a malfunction such as a malfunction due to condensation and freezing of a hydrogen supply member (not shown) provided in the hydrogen supply circuit (13) for supplying hydrogen.
[0008]
In addition, since the low-pressure hydrogen generated by the decompression of the high-pressure hydrogen and the cooling water are heat-exchanged to be used as a cooling source for air-conditioning the air in the passenger compartment, the refrigeration cycle (S) is configured. Power of the air conditioner (30) can be reduced.
[0009]
In the invention described in claim 2, the air conditioner (30) is provided with a cooler (21) for exchanging heat between low-temperature cooling water obtained by exchanging heat by the first heat exchange means (19) and air in the vehicle compartment. ) And a cooling means (31) configured in the refrigeration cycle (S) and exchanging heat between the depressurized refrigerant and the air in the vehicle cabin.
[0010]
According to the second aspect of the present invention, specifically, the cooler (21) for exchanging heat between the cooling water obtained by heat exchange with low-temperature hydrogen and the air in the vehicle interior, and the depressurized refrigerant Cooling means (31) for exchanging heat with the air in the cabin is provided, so that the cooling means (31) is constituted by combining the cooler (21) and the cooling means (31). Since the air conditioning power on the cycle (S) side can be reduced, power saving of the air conditioner (30) can be achieved.
[0011]
In the third aspect of the present invention, in the air conditioner (30), the low-temperature cooling water obtained by exchanging heat by the first heat exchange means (19) and the high-pressure refrigerant of the refrigeration cycle (S) exchange heat. It is characterized by having been constituted so that. According to the third aspect of the present invention, since the amount of heat radiation of the condenser (42) included in the refrigeration cycle (S) is reduced, the size of the condenser (42) can be reduced. Moreover, if the condition on the air side of the condenser (42) is the same, the pressure and temperature on the refrigerant side are reduced, so that the power for air conditioning can be reduced.
[0012]
Further, as described above, the radiator for cooling the fuel cell device (10) provided integrally with the condenser (42) is used in order to reduce the heat radiation of the condenser (42) on the refrigeration cycle (S) side. (15) The inlet air temperature decreases. Thus, there is a margin for heat radiation of the radiator (15), so that the radiator (15) can be downsized.
[0013]
In the invention described in claim 4, the fuel cell device (10) has a radiator (15) for exchanging heat between cooling water and outside air, and cools the fuel cell body (11) by flowing the cooling water. A fuel cell cooling water circuit (12) and second heat exchange means (16) for exchanging heat between decompressed hydrogen and cooling water are provided, and the air conditioner (30) includes a fuel cell cooling water circuit (12). ), And a heating means (34) for exchanging heat between the cooling water and the air in the passenger compartment is provided.
[0014]
According to the fourth aspect of the present invention, by providing the fuel cell cooling water circuit (12) and the second heat exchange means (16), hydrogen supplied to the fuel cell main body (11) is reduced to a predetermined level. Heated to temperature. Thereby, the temperature near the electrolyte membrane formed in the fuel cell body (11) does not reach the freezing temperature, so that a malfunction due to freezing can be prevented. Further, heating of the decompressed hydrogen to the predetermined temperature does not cause a decrease in power generation efficiency.
[0015]
According to the fifth aspect of the present invention, the second heat exchange means (16) and the heating means (34) are arranged in parallel with each other, are arranged in series with the radiator (15), and circulate through each. The cooling water flow rate is controlled.
[0016]
According to the fifth aspect of the present invention, since the flow rate of the cooling water flowing through the second heat exchange means (16) and the heating means (34) is controlled, the fuel cell main body (11) can be used. Since the temperature in the vicinity of the constituted electrolyte membrane can be easily heated to a predetermined temperature of, for example, about 80 ° C., the power generation efficiency of the fuel cell device (10) can be maintained in the best condition.
[0017]
In the invention according to claim 6, a heat generating auxiliary device (11a) that generates heat by operation and a heat generating auxiliary device cooling water circuit that cools the heat generating auxiliary device (11a) by flowing cooling water through the heat generating auxiliary device (11a). (12c) is provided, and the fuel cell device (10) is provided with third heat exchange means (16a) for exchanging heat between decompressed hydrogen and cooling water.
[0018]
According to the invention described in claim 6, the vehicle includes, in addition to the fuel cell main body (11), for example, an electric motor, an electric pump, and a heating auxiliary device (11a) that generates heat by operation such as an inverter. The provision of the heat generating auxiliary equipment cooling water circuit (12c) for recovering the generated heat and the third heat exchange means (16a) enables heating of the decompressed hydrogen and the heat generating auxiliary equipment (11a). Cooling is easy.
[0019]
Note that the reference numerals in parentheses of the above means indicate the correspondence with specific means of the embodiment described later.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
Hereinafter, an air conditioner for a fuel cell vehicle according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram showing the overall configuration of a fuel cell vehicle air conditioner, which includes a fuel cell device 10 that generates power using high-pressure hydrogen, an air conditioner 30 that includes a refrigeration cycle S, and air-conditions the air in the passenger compartment. It is composed of
[0021]
First, the fuel cell device 10 includes a fuel cell main body 11, a fuel cell cooling water circuit 12 for cooling the fuel cell main body 11, a hydrogen supply circuit 13 for supplying hydrogen to the fuel cell main body 11, and oxygen to the fuel cell main body 11. It comprises an oxygen supply circuit (not shown) for supplying.
[0022]
The fuel cell body 11 includes two separators (not shown) for supplying hydrogen and oxygen, two electrodes (fuel electrode and air electrode), and an electrolyte membrane (ion exchange membrane), and supplies hydrogen and oxygen. This is a power generation system that directly converts chemical energy into electric energy by an electrochemical reaction between hydrogen and oxygen.
[0023]
The fuel cell cooling water circuit 12 is a cooling circuit for cooling the fuel cell body 11 that generates heat by power generation, and circulates cooling water obtained by adding ethylene glycol to water to the fuel cell body 11. The fuel cell cooling water circuit 12 includes a circulation pump 14 for circulating the cooling water, a radiator 15 for cooling the cooling water, and a second heat exchange means 16 for exchanging heat between the decompressed hydrogen and the cooling water. ing.
[0024]
The radiator 15 exchanges heat between the outside air and the cooling water, and a fan 15a provided behind the radiator 15 enhances the heat radiation effect of the radiator 15, thereby promoting cooling of the cooling water in the radiator 15. . The second heat exchange means 16 is a heat exchanger for heating the decompressed hydrogen to the temperature of the cooling water circulating in the fuel cell cooling water circuit 12, and in the present embodiment, the flow direction of a hydrogen supply circuit 13 described later , And in series with a heater core 34 which is a heating means described later.
[0025]
The hydrogen supply circuit 13 includes a hydrogen tank 17 for storing high-pressure hydrogen, a decompressor 18 for reducing the pressure of high-pressure hydrogen, first heat exchange means 19 for exchanging heat between the reduced-pressure hydrogen and cooling water, and the second heat It consists of exchange means 16. The first heat exchange means 19 is a heat exchanger for exchanging heat between low-temperature hydrogen generated when high-pressure hydrogen in the hydrogen tank 17 is depressurized by the decompressor 18 and cooling water, and uses ethylene glycol for water. The added cooling water is circulated through the first heat exchange means 19 to exchange heat between the cooling water and low-temperature hydrogen.
[0026]
Reference numeral 20 denotes a combination of low-temperature cooling water obtained by exchanging heat with the first heat exchanging means 19 and an evaporator 31 serving as a cooling means to be described later, which is used as a cooling source for air-conditioning the air in the passenger compartment. The cooling water circuit includes a first heat exchange means 19, a cooler 21, and a circulation pump 22 for circulating cooling water. Note that the first heat exchange means 19 is disposed so as to face the flow direction of the hydrogen supply circuit 13, similarly to the second heat exchange means 16. The cooler 21 is a heat exchanger for exchanging heat between the cooling water circulating in the cooling water circuit 20 and the air in the passenger compartment to cool the air in the passenger compartment, and is provided in an air conditioner 30 described later. ing.
[0027]
Next, the air conditioner 30 of the present embodiment is an air conditioning system including a refrigeration cycle S using a refrigerant, and includes an evaporator 31 serving as a cooling unit that evaporates the refrigerant included in the refrigeration cycle S and the cooler 21. Are combined to air-condition the air in the vehicle cabin.
[0028]
The air conditioner 30 of the present embodiment is disposed in an air conditioner case 32 that guides blast air into a vehicle interior, a blower 33 that is a blower that introduces air into the air conditioner case 32 and sends the air into the vehicle interior, and an air conditioner case 32. Refrigeration cycle S including the evaporator 31, a heater core 34 which is a heating means disposed downstream of the evaporator 31 in the airflow in the air-conditioning case 32, and upstream of the airflow of the evaporator 31 in the air-conditioning case 32. It is provided with the above-mentioned cooler 21 arranged.
[0029]
The air-conditioning case 32 is provided with an inside air inlet 35 and an outside air inlet 36 at its upstream end, and each of the inlets 35 and 36 is opened and closed by an inside / outside air switching door 37 that operates according to the selected inside / outside air mode. . At the downstream end of the air-conditioning case 32, there are air outlets opening into the passenger compartment (a defroster outlet opening toward the windshield in the passenger compartment, a foot outlet opening at the feet of the occupant, and an upper body of the occupant. Branch ducts (not shown) for guiding the blown air to an open face outlet or the like. An outlet opening / closing means (not shown) for opening / closing each branch duct according to the selected outlet mode is provided at an upstream opening of each branch duct (not shown).
[0030]
Next, the refrigeration cycle S is an electric compressor 41, which is a compressor driven by an electric motor (not shown), and a condenser that condenses and liquefies the high-temperature and high-pressure refrigerant compressed by the electric compressor 41 by receiving air from the blower 15a. 42, a receiver 43 for temporarily storing the refrigerant introduced from the condenser 42 and flowing only the liquid refrigerant, an expansion valve 44 for decompressing and expanding the refrigerant introduced from the receiver 43, and a blower 33 for the refrigerant decompressed by the expansion valve 44. The evaporator 31 is configured to receive and send air to evaporate, and are connected in a ring shape by a refrigerant pipe 45.
[0031]
The electric compressor 41 suctions, compresses, and discharges the refrigerant, and is disposed, for example, integrally with an electric motor (not shown) in a sealed case. The condenser 42 is disposed on the upstream side of the radiator 15 in the air flow, and is configured to exchange heat between the outside air and the refrigerant by the blower 15a.
[0032]
Next, the heater core 34 is connected to the fuel cell cooling water circuit 12 of the fuel cell main body 11 via the hot water pipe 12a, and uses the cooling water heated by cooling the fuel cell main body 11 as a heat source to heat the heater core 34. Heat the passing air. The amount of air passing through the heater core 34 is adjusted by the switching door 38. In the present embodiment, the heater core 34 is provided on the downstream side of the second heat exchange unit 16. However, the invention is not limited to this, and the heater core 34 may be provided on the upstream side of the second heat exchange unit 16.
[0033]
Further, although not shown, a temperature sensor for detecting the temperature of the air passing through the cooler 21 and the evaporator 31 is provided downstream of the air flow of the cooler 21 and the evaporator 31, and the temperature information is sent to a control device (not shown). It is configured to input. The inside / outside air switching door 37, the air outlet opening / closing means (not shown), and the switching door 38 are respectively operated by respective actuators (not shown), and the respective actuators (not shown) are respectively driven. It is controlled based on a control signal from a control device (not shown) via a circuit (not shown).
[0034]
A control device (not shown) receives a selection signal selected on an operation panel (not shown), and also controls the temperature sensor (not shown) in addition to the sensors (not shown). Detection signals from an internal air temperature sensor to detect, an external air temperature sensor to detect the temperature outside the cabin, an insolation sensor to detect the amount of solar radiation inserted into the cabin, and a water temperature sensor to detect the temperature of the fuel cell cooling water. Is entered via
[0035]
Next, the operation of the air conditioner for a fuel cell vehicle having the above configuration will be described. The operation of the air conditioner 30 of the present embodiment differs depending on the pressure and consumption of hydrogen supplied to the fuel cell main body 11. That is, when the internal pressure of the hydrogen tank 17 is high and the amount of consumption is large, the amount of heat exchange by the first heat exchange means 19 is large because the temperature during adiabatic expansion by the pressure reducer 18 is remarkable. Conversely, when the internal pressure of the hydrogen tank 17 is low and the amount of consumption is small, the amount of heat exchange by the first heat exchange means 19 is small because the temperature drop during adiabatic expansion by the pressure reducer 18 is small.
[0036]
Therefore, in the present invention, the heat exchange amount obtained by the heat exchange by the first heat exchange means 19, that is, the first operation mode in which the cooling water temperature and the circulation amount are larger than the required amount of cooling in the vehicle compartment, is opposite to the first operation mode. In addition, a second operation mode is provided in a case where the heat exchange amount, that is, the cooling water temperature and the circulation amount are insufficient for the required amount of cooling in the vehicle interior. First, in the first operation mode, the air in the passenger compartment is cooled only by the cooler 21 of the cooling water circuit 20, and the circulating pump 22 and the blower 33 of the cooling water circuit 20 are operated to make the first heat exchange means. The low-temperature cooling water obtained by 19 is circulated through the cooler 21 to cool the air in the passenger compartment.
[0037]
Further, the circulation pump 14 and the blower 15a of the fuel cell cooling water circuit 12 are operated to circulate the heat generated by the fuel cell main body 11 in the order of the second heat exchange means 16, the heater core 34, and the radiator 15 so that the fuel cell main body 11 11 is cooled, and the second heat exchange means 16 exchanges heat between the cooling water circulating in the fuel cell cooling water circuit 12 and the decompressed hydrogen to heat the hydrogen to a predetermined temperature (for example, about 80 ° C.). You. The radiator 15 and the blower 15a release heat when the temperature of the cooling water circulating in the fuel cell cooling water circuit 12 becomes equal to or higher than a predetermined temperature.
[0038]
Here, the heater core 34 can perform heating or dehumidification heating by controlling the opening degree of the switching door 38. When only cooling is performed, the air blown from the blower 33 bypasses the heater core 34. The opening degree of the switching door 38 is controlled. Next, in the second operation mode, in addition to the cooling of the air in the passenger compartment by only the cooler 21 described above, the refrigeration cycle S is operated, and the required amount of the air blown from the blower 33 by the evaporator 31 is reduced. Only cool down. That is, the refrigeration cycle S is operated / stopped according to the required cooling amount.
[0039]
Specifically, the refrigeration cycle S is driven based on a temperature sensor (not shown) that detects the temperature of the air that has passed through the evaporator 31 and the cooler 21. By the way, when the refrigeration cycle S and the circulation pump 22 are operated to perform the cooling or dehumidifying operation in the vehicle interior and the temperature passing through the evaporator 31 gradually decreases, the temperature of the air passing through the cooler 21 is reduced. However, for example, when the temperature is 15 ° C. or lower, the refrigeration cycle S is stopped. That is, the above-described first operation mode is set.
[0040]
Further, for example, when the temperature of the air passing through the cooler 21 is 3 ° C. or less, the circulating pump 22 is stopped to prevent the frost of the cooler 21 and the cooling operation by the cooling water circuit 20 is interrupted. Here, during the dehumidifying operation, only a part of the cooled air is passed through the heater core 34 and mixed with the heated air and the air bypassing the heater core 34 to be blown into the vehicle interior.
[0041]
On the other hand, when the temperature passing through the evaporator 31 is gradually increased by performing the cooling or dehumidifying operation in the vehicle interior, if the temperature of the air passing through the cooler 21 is less than 5 ° C. Although the cycle S and the circulation pump 22 are stopped, when the temperature of the air passing through the cooler 21 is 5 ° C. or higher, the circulation pump 22 is operated. Thereby, the air in the vehicle interior is cooled by the cooler 21.
[0042]
At this time, when the temperature of the air passing through the cooler 21 or the evaporator 31 cannot be maintained at, for example, 20 ° C. or lower, the refrigeration cycle S is operated. That is, the above-described second operation mode is set. Here, in the dehumidifying operation, only a part of the cooled air passes through the heater core 34 and is mixed with the heated air and the air bypassing the heater core 34 to be blown into the vehicle interior.
[0043]
According to the fuel cell vehicle air conditioner of the first embodiment described above, the fuel cell device 10 includes the first heat exchange means 19 for exchanging heat between low-temperature hydrogen generated when decompressing high-pressure hydrogen and cooling water. The air conditioner 30 is configured such that the low-temperature cooling water obtained by exchanging heat with the first heat exchange means 19 is used as a cooling source when the air in the passenger compartment is air-conditioned by the cooler 21. Since the air conditioning power on the refrigeration cycle S side where the evaporator 31 is configured can be reduced, the power saving of the air conditioner 30 can be achieved.
[0044]
In addition, the first heat exchange means 19 exchanges heat between low-temperature hydrogen generated when depressurizing high-pressure hydrogen and cooling water, thereby heating low-temperature hydrogen and distributing it to the hydrogen supply circuit 13 that supplies hydrogen. It is possible to prevent a malfunction such as a malfunction due to condensation or freezing of a hydrogen supply member (not shown) provided.
[0045]
Further, by providing the fuel cell cooling water circuit 12 and the second heat exchanging means 16, the decompressed hydrogen supplied to the fuel cell main body 11 by the heat from the fuel cell main body 11, which generates heat by power generation, has a predetermined temperature. Heated. Thereby, the temperature near the electrolyte membrane formed in the fuel cell main body 11 does not reach the freezing temperature, so that a malfunction due to freezing can be prevented. Further, since the decompressed hydrogen is heated to a predetermined temperature, the temperature in the vicinity of the electrolyte membrane is kept at the temperature at which the power generation efficiency is the best, and thus the power generation efficiency of the fuel cell main body 11 does not decrease.
[0046]
(2nd Embodiment)
In the above-described first embodiment, in the fuel cell cooling water circuit 12, the second heat exchange means 16, the heater core 34, and the radiator 15 are arranged in series. However, the present invention is not limited to this. 34 may be arranged in parallel with each other and arranged in series with the radiator 15 so as to control the flow rate of the cooling water circulating in each.
[0047]
Specifically, as shown in FIG. 2, the second heat exchange means 16 and the heater core 34 are arranged in parallel with each other, and then arranged in series with the radiator 15. A bypass passage 12 b bypassing the bypass 34 is provided. In addition, a flow control valve 14b is provided in each path. Thus, the flow rate of the cooling water circulating through the radiator 15, the second heat exchange means 16, and the heater core 34 can be easily controlled. Note that the same reference numerals in the drawing denote the same components as in the first embodiment, and a description thereof will be omitted.
[0048]
According to the fuel cell air conditioner having the above configuration, the heat from the fuel cell main body 11 that generates heat by power generation can be distributed according to the application. Therefore, the temperature in the vicinity of the electrolyte membrane formed in the fuel cell main body 11 can be easily heated to a predetermined temperature of, for example, about 80 ° C., so that the power generation efficiency of the fuel cell device 10 maintains the best state. Can be. In the first embodiment, the air blown from the blower 33 passing through the heater core 34 is controlled by the switching door 38, but the flow rate circulating through the heater core 34 may be adjusted.
[0049]
(Third embodiment)
In the first and second embodiments described above, when air in the vehicle compartment is air-conditioned by the cooler 21 that exchanges heat with low-temperature cooling water obtained by exchanging heat by the first heat exchange means 19 and air in the vehicle compartment. However, the present invention is not limited to this, and may be configured to exchange heat with the high-pressure refrigerant of the refrigeration cycle S.
[0050]
Specifically, as shown in FIG. 3, a second condenser 42a is provided downstream of the condenser 42. The second condenser 42a is configured by the cooling water circuit 20 so as to exchange heat between low-temperature cooling water obtained by exchanging heat by the first heat exchange means 19 and high-pressure refrigerant in the refrigeration cycle S. . According to this, since the amount of heat radiation of the condenser 42 included in the refrigeration cycle S is reduced, the size of the condenser 42 can be reduced.
[0051]
In addition, if the condition on the air side of the condenser 42 is the same, the pressure and temperature on the refrigerant side are reduced, so that the air conditioning power of the refrigeration cycle S can be reduced. Therefore, power saving of the air conditioner 30 can be achieved. Further, since the heat release amount of the condenser 42 is reduced, the inlet air temperature of the radiator 15 provided on the downstream side of the air flow of the condenser 42 is reduced. This allows the radiator 15 to have sufficient heat radiation, thereby reducing the size of the radiator 15.
[0052]
In the present embodiment, as in the first embodiment, the second heat exchange means 16, the heater core 34, and the radiator 15 are arranged in series in the fuel cell cooling water circuit 12, but the present invention is not limited to this. As shown in FIG. 4, the second heat exchange means 16 and the heater core 34 are arranged in parallel with each other, and then arranged in series with the radiator 15 so as to control the flow rate of the cooling water circulating in each. You may let it. In the drawings, the same components as those in the first and second embodiments are denoted by the same reference numerals, and description thereof is omitted.
[0053]
(Fourth embodiment)
In the present embodiment, the heat from the heat-generating auxiliary equipment 11a such as an electric motor, an inverter, and a circulating pump that generates heat by operation is recovered, and the decompressed hydrogen is heated like the second heat exchange means 16. Specifically, as shown in FIG. 5, a third heat exchange means 16a is provided in the hydrogen supply circuit 13, and a heat-generating auxiliary equipment cooling water circuit 12c for cooling the heat-generating auxiliary equipment 11a which generates heat by operation is provided. is there.
[0054]
The heating accessory cooling water circuit 12c is a cooling water circuit that circulates and cools cooling water obtained by adding ethylene glycol to water to the heating accessory 11a, and includes a circulation pump 14a that circulates the heating accessory 11a and the cooling water. It comprises a third heat exchange means 16a for exchanging heat between decompressed hydrogen and cooling water. The third heat exchange means 16a is a heat exchanger for heating the decompressed hydrogen to the temperature of the cooling water circulating in the heat generating auxiliary equipment cooling water circuit 12c. In the present embodiment, the third heat exchange means 16a In the same manner as described above, it is disposed so as to face the flow direction of the hydrogen supply circuit 13.
[0055]
Thus, in addition to the fuel cell main body 11, the vehicle has, for example, a heat-generating auxiliary equipment 11a that generates heat by operation of an electric motor, an electric pump, an inverter, etc., and a heat-generating auxiliary equipment cooling water circuit 12c that collects the heat generated by these elements. And the third heat exchange means 16a, it is possible to heat the decompressed hydrogen and easily cool the heat generating auxiliary equipment 11a.
[0056]
Note that, in the present embodiment, in order to heat the decompressed and low-temperature hydrogen, it is arranged so as to add to the heat from the fuel cell main body 11. Heat alone may be sufficient.
[0057]
(Other embodiments)
In the first and second embodiments described above, the cooler 21 is disposed in the air-conditioning case 22 on the upstream side of the air flow of the evaporator 31. However, the present invention is not limited to this, and as shown in FIG. Alternatively, the cooler 21 may be disposed so as to be parallel to the air flow of the blower 33.
[0058]
Further, in the above third embodiment, the second condenser 42a is provided on the downstream side of the condenser 42. However, the present invention is not limited to this, and the second condenser 42a is provided on the upstream side of the condenser 42 as shown in FIGS. A two condenser 42a may be provided. Thereby, the same effect as in the third embodiment can be obtained.
[0059]
In the above embodiment, the refrigeration cycle S using the receiver 43 is configured downstream of the condenser 42. However, instead of the receiver 43, the refrigeration cycle S is configured using an accumulator upstream of the electric compressor 41. May be configured. Further, the refrigeration cycle S may be configured by using an ejector as a pressure reducing means instead of the expansion valve 44.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an overall configuration of a fuel cell vehicle air conditioner according to a first embodiment of the present invention.
FIG. 2 is a schematic diagram showing an overall configuration of a fuel cell vehicle air conditioner according to a second embodiment of the present invention.
FIG. 3 is a schematic diagram showing an overall configuration of a fuel cell vehicle air conditioner according to a third embodiment of the present invention.
FIG. 4 is a schematic diagram showing the overall configuration of a fuel cell vehicle air conditioner according to a third embodiment of the present invention.
FIG. 5 is a schematic diagram showing an overall configuration of a fuel cell vehicle air conditioner according to a fourth embodiment of the present invention.
FIG. 6 is a schematic diagram showing the overall configuration of a fuel cell vehicle air conditioner according to another embodiment.
FIG. 7 is a schematic diagram showing the overall configuration of a fuel cell vehicle air conditioner according to another embodiment.
FIG. 8 is a schematic diagram showing an overall configuration of an air conditioner for a fuel cell vehicle according to another embodiment.
[Explanation of symbols]
10. Fuel cell device
11 ... fuel cell body
11a ... heating auxiliary equipment
12. Fuel cell cooling water circuit
12c: Heating auxiliary equipment cooling water circuit
15 ... radiator
16 Second heat exchange means
16a: Third heat exchange means
19: First heat exchange means
21 ... Cooler
30 ... air conditioner
31 ... Evaporator (cooling means)
34: heater core (heating means)
S: Refrigeration cycle

Claims (6)

高圧水素を用いて発電する燃料電池装置(10)と、
冷凍サイクル(S)から構成され、車室内の空気を空調する空調装置(30)とを備える燃料電池車用空調装置において、
前記燃料電池装置(10)には、前記高圧水素を減圧する際に発生する低温の水素と冷却水とを熱交換する第1熱交換手段(19)が設けられ、前記空調装置(30)は、前記第1熱交換手段(19)により熱交換することで得られる低温の冷却水が、前記冷凍サイクル(S)と組み合わせて車室内の空気を空調する際の冷却源として利用されるように構成したことを特徴とする燃料電池車用空調装置。
A fuel cell device (10) for generating power using high-pressure hydrogen;
An air conditioner for a fuel cell vehicle, comprising: a refrigerating cycle (S); and an air conditioner (30) for air-conditioning the air in the passenger compartment.
The fuel cell device (10) is provided with first heat exchange means (19) for exchanging heat between low-temperature hydrogen generated when decompressing the high-pressure hydrogen and cooling water, and the air conditioner (30) The low-temperature cooling water obtained by exchanging heat with the first heat exchange means (19) is used as a cooling source for air-conditioning the air in the passenger compartment in combination with the refrigeration cycle (S). An air conditioner for a fuel cell vehicle, comprising:
前記空調装置(30)は、前記第1熱交換手段(19)により熱交換することで得られる低温の冷却水と車室内の空気とを熱交換する冷却器(21)と、前記冷凍サイクル(S)に構成され、減圧された冷媒と車室内の空気とを熱交換する冷却手段(31)とが設けられたことを特徴とする請求項1に記載の燃料電池車用空調装置。The air conditioner (30) includes a cooler (21) for exchanging heat between low-temperature cooling water obtained by exchanging heat by the first heat exchange means (19) and air in the vehicle interior, and the refrigeration cycle ( 2. The air conditioner for a fuel cell vehicle according to claim 1, further comprising: a cooling unit configured to exchange heat between the depressurized refrigerant and air in the vehicle cabin. 3. 前記空調装置(30)は、前記第1熱交換手段(19)により熱交換することで得られる低温の冷却水と前記冷凍サイクル(S)の高圧冷媒とが熱交換されるように構成したことを特徴とする請求項1に記載の燃料電池車用空調装置。The air conditioner (30) is configured such that heat is exchanged between low-temperature cooling water obtained by exchanging heat by the first heat exchange means (19) and high-pressure refrigerant of the refrigeration cycle (S). The air conditioner for a fuel cell vehicle according to claim 1, wherein: 前記燃料電池装置(10)は、冷却水と外気とを熱交換するラジエータ(15)を有し、その冷却水を流通させて燃料電池本体(11)を冷却する燃料電池冷却水回路(12)と、減圧された水素と前記冷却水とを熱交換する第2熱交換手段(16)とが設けられるとともに、前記空調装置(30)は、前記燃料電池冷却水回路(12)に接続され、前記冷却水と車室内の空気とを熱交換する加熱手段(34)が設けられることを特徴とする請求項1ないし請求項3のいずれか一項に記載の燃料電池車用空調装置。The fuel cell device (10) has a radiator (15) for exchanging heat between cooling water and outside air, and a fuel cell cooling water circuit (12) for flowing the cooling water to cool the fuel cell body (11). And second heat exchange means (16) for exchanging heat between the decompressed hydrogen and the cooling water, and the air conditioner (30) is connected to the fuel cell cooling water circuit (12), The air conditioner for a fuel cell vehicle according to any one of claims 1 to 3, further comprising a heating means (34) for exchanging heat between the cooling water and air in the passenger compartment. 前記第2熱交換手段(16)および前記加熱手段(34)が互いに並列に配置した上で、前記ラジエータ(15)に対して直列に配設され、かつそれぞれに流通する前記冷却水の流量が制御されるように構成したことを特徴とする請求項4に記載の燃料電池車用空調装置。The second heat exchange means (16) and the heating means (34) are arranged in parallel with each other, and are arranged in series with the radiator (15). The air conditioner for a fuel cell vehicle according to claim 4, wherein the air conditioner is configured to be controlled. 作動により発熱する発熱補機(11a)と、前記発熱補機(11a)に冷却水を流通させて前記発熱補機(11a)を冷却する発熱補機冷却水回路(12c)とが設けられるとともに、前記燃料電池装置(10)は、減圧された水素と前記冷却水とを熱交換する第3熱交換手段(16a)が設けられることを特徴とする請求項1または請求項4に記載の燃料電池車用空調装置。A heat-generating auxiliary device (11a) that generates heat by operation and a heat-generating auxiliary device cooling water circuit (12c) that cools the heat-generating auxiliary device (11a) by flowing cooling water through the heat-generating auxiliary device (11a) are provided. The fuel cell according to claim 1 or 4, wherein the fuel cell device (10) is provided with third heat exchange means (16a) for exchanging heat between decompressed hydrogen and the cooling water. Air conditioner for battery car.
JP2003142598A 2003-05-20 2003-05-20 Air conditioner for fuel cell vehicle Pending JP2004345426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003142598A JP2004345426A (en) 2003-05-20 2003-05-20 Air conditioner for fuel cell vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003142598A JP2004345426A (en) 2003-05-20 2003-05-20 Air conditioner for fuel cell vehicle

Publications (1)

Publication Number Publication Date
JP2004345426A true JP2004345426A (en) 2004-12-09

Family

ID=33530641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142598A Pending JP2004345426A (en) 2003-05-20 2003-05-20 Air conditioner for fuel cell vehicle

Country Status (1)

Country Link
JP (1) JP2004345426A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064955A1 (en) * 2004-12-15 2006-06-22 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2007273376A (en) * 2006-03-31 2007-10-18 Honda Motor Co Ltd Heating system of valve, and control method of heating device of valve
JP2007280927A (en) * 2005-12-12 2007-10-25 Toyota Motor Corp Cooling system for fuel cell
WO2009078181A1 (en) * 2007-12-18 2009-06-25 Panasonic Corporation Cogeneration system
CN102485516A (en) * 2010-12-06 2012-06-06 现代自动车株式会社 Fuel cell vehicle
KR101237212B1 (en) * 2005-11-07 2013-02-26 한라공조주식회사 Cooling system of fuel cell
KR101242324B1 (en) 2005-11-07 2013-03-11 한라공조주식회사 Fuel cell
JP2013536975A (en) * 2010-08-30 2013-09-26 ダイムラー・アクチェンゲゼルシャフト Fuel cell system
KR101437066B1 (en) 2012-02-24 2014-09-02 한라비스테온공조 주식회사 Air conditioner for electric vehicles
CN110712496A (en) * 2019-10-21 2020-01-21 上海捷氢科技有限公司 Thermal management system of fuel cell vehicle
JP2020123510A (en) * 2019-01-31 2020-08-13 トヨタ自動車株式会社 Fuel cell system
CN113276627A (en) * 2021-06-11 2021-08-20 浙江吉利控股集团有限公司 Thermal management system of vehicle and vehicle

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8142946B2 (en) 2004-12-15 2012-03-27 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2006064955A1 (en) * 2004-12-15 2006-06-22 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8420270B2 (en) 2004-12-15 2013-04-16 Toyota Jidosha Kabushiki Kaisha Fuel cell system
KR101237212B1 (en) * 2005-11-07 2013-02-26 한라공조주식회사 Cooling system of fuel cell
KR101242324B1 (en) 2005-11-07 2013-03-11 한라공조주식회사 Fuel cell
US8642219B2 (en) 2005-12-12 2014-02-04 Toyota Jidosha Kabushiki Kaisha Cooling system and method of a fuel cell
JP2007280927A (en) * 2005-12-12 2007-10-25 Toyota Motor Corp Cooling system for fuel cell
US8753782B2 (en) 2005-12-12 2014-06-17 Toyota Jidosha Kabushiki Kaisha Cooling system and method of a fuel cell
JP2007273376A (en) * 2006-03-31 2007-10-18 Honda Motor Co Ltd Heating system of valve, and control method of heating device of valve
WO2009078181A1 (en) * 2007-12-18 2009-06-25 Panasonic Corporation Cogeneration system
JP5309035B2 (en) * 2007-12-18 2013-10-09 パナソニック株式会社 Cogeneration system
US9070912B2 (en) 2010-08-30 2015-06-30 Daimler Ag Fuel cell system having an integral turbine/compressor unit
JP2013536975A (en) * 2010-08-30 2013-09-26 ダイムラー・アクチェンゲゼルシャフト Fuel cell system
US8875531B2 (en) 2010-12-06 2014-11-04 Hyundai Motor Company Fuel cell vehicle
CN102485516A (en) * 2010-12-06 2012-06-06 现代自动车株式会社 Fuel cell vehicle
CN102485516B (en) * 2010-12-06 2016-09-07 现代自动车株式会社 Fuel-cell vehicle
KR101437066B1 (en) 2012-02-24 2014-09-02 한라비스테온공조 주식회사 Air conditioner for electric vehicles
JP2020123510A (en) * 2019-01-31 2020-08-13 トヨタ自動車株式会社 Fuel cell system
CN110712496A (en) * 2019-10-21 2020-01-21 上海捷氢科技有限公司 Thermal management system of fuel cell vehicle
CN113276627A (en) * 2021-06-11 2021-08-20 浙江吉利控股集团有限公司 Thermal management system of vehicle and vehicle
CN113276627B (en) * 2021-06-11 2022-06-24 浙江吉利控股集团有限公司 Thermal management system of vehicle and vehicle

Similar Documents

Publication Publication Date Title
JP7326074B2 (en) Vehicle heat pump system
CN109383219B (en) Heat pump system for vehicle
CN108016232B (en) Heat pump system for vehicle
KR101836272B1 (en) Heat pump system for vehicle
CN108699943B (en) Heat management device for vehicle
JP6925288B2 (en) Vehicle air conditioner
US9180754B2 (en) Heat pump system for vehicle
JP2021037931A (en) Heat pump system for vehicles
KR101313593B1 (en) Heat pump system for vehicle
US11007850B2 (en) Heat pump system for vehicle
KR20180007021A (en) Heat pump system for vehicle
CN112848836A (en) Heat pump system for vehicle
US20080041071A1 (en) Heat pump cycle device
CN112776557A (en) System for vehicle and method of operating heat pump system of vehicle
WO2004056594A1 (en) Air conditioner
JP2014037180A (en) Thermal management system for electric vehicle
CN107499087B (en) Air conditioner for vehicle
CN112867616A (en) Air conditioner for vehicle
US20160159199A1 (en) Vehicular air conditioning device, and constituent unit thereof
JP2004345426A (en) Air conditioner for fuel cell vehicle
JP2014037179A (en) Thermal management system for electric vehicle
WO2014136446A1 (en) Air conditioning device for vehicles
KR101903143B1 (en) Heat Pump For a Vehicle
WO2020184146A1 (en) Vehicle air conditioner
KR20180114388A (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401