JP2004344944A - Casting method for sliding rotary body - Google Patents

Casting method for sliding rotary body Download PDF

Info

Publication number
JP2004344944A
JP2004344944A JP2003145702A JP2003145702A JP2004344944A JP 2004344944 A JP2004344944 A JP 2004344944A JP 2003145702 A JP2003145702 A JP 2003145702A JP 2003145702 A JP2003145702 A JP 2003145702A JP 2004344944 A JP2004344944 A JP 2004344944A
Authority
JP
Japan
Prior art keywords
weir
peripheral edge
casting
runner
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003145702A
Other languages
Japanese (ja)
Other versions
JP4261247B2 (en
Inventor
Atsushi Hiraiwa
淳伺 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP2003145702A priority Critical patent/JP4261247B2/en
Publication of JP2004344944A publication Critical patent/JP2004344944A/en
Application granted granted Critical
Publication of JP4261247B2 publication Critical patent/JP4261247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a casting method for a sliding rotary body which can prevent the bias wear of the sliding rotary body. <P>SOLUTION: When casting a disk rotor as the sliding rotary body having the outer peripheral part circular in a plan view, a mold used for casting has a casting forming space C, a weir 10, and runners 11-14. The casting forming space C has the outer peripheral edge part circular in a plan view corresponding to the shape of the disk rotor. The weir 10, which makes the casting forming space C communicate with the runner 11, is installed so as to occupy 28%-100% of the entire periphery of the outer peripheral edge part (preferably, 100% of the entire periphery) in a position adjacent to the outer peripheral edge part of the casting forming space C. The disk rotor made of cast iron obtained by using the mold has a uniform microstructure (concretely, the graphite length) in arbitrary one circumference on the sliding face. As a result, the bias wear hardly occurs. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ディスクブレーキ用ディスクロータ、ブレーキ用ドラムあるいはクラッチ用フライホイール等の摺動回転体の鋳造方法に関するものである。
【0002】
【従来の技術】
自動車用ディスクブレーキにおいては、ディスクロータが偏摩耗してその厚みにバラツキを生じると、それが原因となって制動時にパッド(摩擦材)に変位を与え、乗員に不快な振動(ブレーキ振動と呼ばれる)を感じさせることが知られている。ブレーキ振動の発生は制動を不安定にするのみならず走行安定性をも低下させるため、ディスクロータの偏摩耗防止が重要な技術課題となっている。例えば特許文献1では、片状黒鉛鋳鉄にNi,Mo更にはCu,Cr,V等の金属元素を添加することで、基地組織をマルテンサイト組織又はパーライト組織としディスクの耐摩耗性を向上させている。また、特許文献2では、母材(鋳鉄)にレーザビームを照射して再溶融処理を施すことにより、チル及びマルテンサイト組織による硬化層を形成し、ディスクの耐摩耗性を向上させている。
【0003】
【特許文献1】特開平6−65673号公報
【特許文献2】特開平5−157134号公報
【0004】
【発明が解決しようとする課題】
上記従来の技術のような手法によれば、ディスクロータの耐摩耗性を向上させることはできるが、特殊な金属を添加することや高エネルギーを必要とするという点で地球環境面での配慮に欠ける。また、ディスクの耐摩耗性が必要以上に向上し、パッドとの接触摺動時に却って滑りが生じ、ブレーキ本来の効き(摩擦力)が得られない虞れがある。
【0005】
本発明は、摺動回転体の耐摩耗性を単に向上させるという観点からでは無く、従来とは全く異なる観点から摺動回転体の偏摩耗を未然防止する技術として、摺動回転体の新規な鋳造方法を提供するものである。
【0006】
【課題を解決するための手段】
(着想の背景説明)
本件発明者は、代表的な摺動回転体である鋳鉄製ブレーキ用ディスクロータの製造技術を長年にわたり研究した結果、ディスク偏摩耗の一因として「組織の差による摩耗量の違い」があることを発見した。ここで言う「組織の差」には、硬さの差として現われる基地組織の差と、鋳鉄に含まれる黒鉛形態の差とがある。更に発明者は、鋳造品における黒鉛形態は鋳造条件と密接な関係があって溶湯凝固時に黒鉛形態の大半が決定されること(知見1)、黒鉛の摩耗は黒鉛と基地組織との界面で起き黒鉛形態の変化は界面長の変化と相関すること(知見2)、黒鉛組織はパッドと凝着して摩擦力の発現に大きく影響すること(知見3)等を把握している。
【0007】
本件発明者は上記のような技術的知見に基づいて、鋳鉄製品における黒鉛形態を表わす指標として定量表現可能な黒鉛長さを用い、その黒鉛長さが鋳鉄製摺動回転体の摩耗(特にブレーキ用ディスクの偏摩耗)に及ぼす影響を各種の試作実験を通じて明らかにした。一般にブレーキ用ディスクロータのように、円盤状あるいは円筒形状をなす(即ち平面視状態で円形状の外周部又は内周部を持った)物体を鋳造で作る場合、その形状に対応した平面視円形状の外周縁部及び/又は内周縁部を持ったキャビティ(鋳物成形空間)を構築する鋳型が使用されるが、試作実験の結果、キャビティと湯道とをつなぐ堰のあり方が、堰を介してキャビティ内に注ぎ込まれる溶湯の凝固速度又は冷却速度に大きく影響することを把握した。そして、以下に述べるように鋳造方案を工夫することで、摺動回転体表面の一円周に沿った領域において黒鉛長さのバラツキを少なくし(即ち黒鉛長さを均一化し)、摺動回転体の偏摩耗を従来よりも低減することに成功した。
【0008】
(手段及び作用)
本発明は、鋳物成形空間、堰及び湯道を具備した鋳型を用い、平面視状態で円形状の外周部又は内周部を持った摺動回転体を鋳造する方法であって、前記鋳物成形空間は、摺動回転体の形状に対応した平面視円形状の外周縁部又は内周縁部を有しており、その鋳物成形空間を湯道に連通させる堰は、前記鋳物成形空間の外周縁部又は内周縁部に隣接する位置においてその外周縁部又は内周縁部の全周の28%〜100%を占拠するように設置されていることを特徴とする。
【0009】
この鋳造方法によれば、鋳型内に構築される鋳物成形空間を湯道に連通させる堰は、鋳物成形空間の外周縁部又は内周縁部に隣接する位置に存在すると共に、鋳物成形空間の外周縁部又は内周縁部の全周の28%〜100%を占拠するように設置されている。このように、鋳物成形空間の外周縁部又は内周縁部の全周に対する堰の占拠比率が十分に大きいことにより、注湯時に、鋳物成形空間の外周縁部又は内周縁部のうちの堰に直接連通している部分(直接連通部分)と、堰に直接連通していないその他部分(非連通部分)との間で大きな熱量差が生じ難くなる。つまり、堰を介して溶湯が直接注ぎ込まれる直接連通部分と、その直接連通部分を経由して溶湯の供給を受ける非連通部分とで、溶湯の熱量分布がほぼ均一化する。仮に鋳物成形空間内で熱勾配が生じるとしてもその熱勾配は鋳物成形空間の半径方向に存在し、その場合の等温点は同心円状に分布して同じ半径の同一円周内ではほぼ等温化する。このため、注湯後の凝固冷却過程でも、鋳物成形空間における任意の同一円周内では凝固速度又は冷却速度が均一化し、その同一円周内では組織(例えば黒鉛長さを指標とする黒鉛形態)がそろい易くなる。そして、この鋳造方法で得られた摺動回転体は、回転軸線周りの任意の円周内において組織(例えば黒鉛形態)が均一化しているため、従来の鋳造方案に従った摺動回転体に比べて偏摩耗し難いという特徴を有する。
【0010】
【発明の実施の形態】
この「発明の実施の形態」の欄では、本発明のより好ましい態様や追加的構成要件等について説明する。
【0011】
本発明の鋳造目的物は平面視状態で円形状の外周部又は内周部を持った摺動回転体であり、回転軸線の周りで回転させたときに軸対称な物体である。摺動回転体の鋳造に際しては、鋳物成形空間、堰及び湯道を具備した鋳型が使用される。鋳型とは、主型及びその内部に配置される中子を含む概念であり、例えば主型及び中子により、鋳造目的物たる摺動回転体の形状をかたどった鋳物成形空間(キャビティ)が構築される。主型及び中子の構成材料としては、いわゆる砂(例えば生砂、シェル砂)を例示できる。尚、鋳型内に設定された堰及び湯道は、湯口系の少なくとも一部を構成する。
【0012】
鋳物成形空間は、摺動回転体の形状に対応した平面視円形状の外周縁部又は内周縁部を有しており、その鋳物成形空間を湯道に連通させる堰は、前記鋳物成形空間の外周縁部又は内周縁部に隣接する位置においてその外周縁部又は内周縁部の全周の28%〜100%(より好ましくは39%〜100%)を占拠するように設置される。鋳物成形空間の周縁部全周に対する堰の占拠率(s)が28%未満になると、堰を介して溶湯が直接注ぎ込まれる前記直接連通部分と、その直接連通部分を経由して溶湯の供給を受ける前記非連通部分とで溶湯の熱量分布を均一化することが難しくなり、摺動回転体の偏摩耗低減を図れない虞れがある。
【0013】
本発明では、鋳物成形空間の周縁部全周に対する堰の占拠率(s)を100%とすることが理想である。即ち、堰が、鋳物成形空間の外周縁部又は内周縁部に隣接する位置においてその外周縁部又は内周縁部の全周を占拠するように設置されること(即ちs=100%)は好ましい。この場合の堰は、平面視状態で円環状をなす単一の堰となる。あるいは互いに不連続な堰が複数個存在してもよい。即ち、堰が、鋳物成形空間の外周縁部又は内周縁部に隣接する位置において複数個存在し、且つそれら複数個の堰によって鋳物成形空間の外周縁部又は内周縁部の全周の28%〜100%(より好ましくは39%〜100%)を占拠するように設置されることは好ましい。
【0014】
本発明では、鋳物成形空間と堰との連通関係における連通断面積の設定も重要な要素となる。即ち、鋳物成形空間のうちの少なくとも一部と堰とが直接つながる位置において、当該鋳物成形空間の少なくとも一部の外周縁部又は内周縁部における周縁全体の表面積に対する堰の連通断面積の比率(断面比)が10%〜60%(より好ましくは20%〜60%)となるように、堰の寸法が設定されていることは好ましい。上記堰の連通断面積の比率(断面比)が10%未満になると、堰を経由して鋳物成形空間に注ぎ込まれる溶湯の注湯速度が非常に遅くなり、溶湯が直接注ぎ込まれる前記直接連通部分と、その直接連通部分を経由して溶湯の供給を受ける前記非連通部分とで溶湯の熱量分布を均一化することが難しくなる虞れがある。他方、堰の連通断面積の比率(断面比)が60%を超えると、堰と鋳物成形空間との区別が付け難くなり、堰の存在意義(即ち、堰で溶湯の流れを絞ることにより不純物の進入を防いだり溶湯の流れを極力均一化するとの意義)が失われる虞れがある。
【0015】
本発明では、堰と、それに隣接する湯道との寸法関係も重要な要素となる。即ち、堰の外側又は内側の隣接位置には、底が堰よりも低位置にあって鋳物成形空間の外周縁部又は内周縁部の全周の70%〜100%に対応する範囲を占拠する湯道が設置されていることは好ましく、更には、湯道の高さ(h1)と堰の高さ(t)との比(h1/t)に対し、鋳物成形空間の外周縁部又は内周縁部の全周に対する堰の占拠率(s)を乗算して得られる湯道堰比(s・h1/t)が1.2以上の値(より好ましくは1.2〜7.0の値)となるように、湯道の寸法が設定されていることは好ましい。上記湯道堰比(s・h1/t)が1.2未満になると、湯道から堰を通過して鋳物成形空間に注ぎ込まれる溶湯の注湯速度が非常に遅くなり、溶湯が直接注ぎ込まれる前記直接連通部分と、その直接連通部分を経由して溶湯の供給を受ける前記非連通部分とで溶湯の熱量分布を均一化することが難しくなる虞れがある。他方、湯道堰比(s・h1/t)が7.0を超えると、堰と湯道との区別が付け難くなり、堰の存在意義(即ち、堰で溶湯の流れを絞ることにより不純物の進入を防いだり溶湯の流れを極力均一化するとの意義)が失われる虞れがある。
【0016】
この鋳造方法で用いる鋳造材料(金属溶湯)としては、鋳鉄などの鉄系金属を例示できる。特に、鉄系金属のうちの片状黒鉛鋳鉄を用いることは好ましい。鋳造材料が片状黒鉛鋳鉄の場合には、鋳造で得られた摺動回転体の摺動表面上の任意の一円周内における黒鉛組織の均一化を図ることが可能となる。
【0017】
堰を鋳物成形空間の外周縁部に隣接設置する場合の好ましい態様として、図1に示すような鋳造方案を例示することができる。これはベンチレーテッド型ディスクロータの鋳造方案である(具体例として実施例1を後述する)。図1では、上型1及び下型2からなる主型並びにその内部に配置された中子3によって鋳物成形空間(キャビティ)Cが鋳型内に構築される。キャビティCには、ベンチレーテッド型ディスクロータを構成する二つの摺動板部のうちの下側摺動板部の鋳造に関与するキャビティC1と、上側摺動板部の鋳造に関与するキャビティC2とが少なくとも存在する。
【0018】
好ましくは、堰10は鋳物成形空間Cの外周縁部に隣接する位置において、その外周縁部の全周を占拠又は包囲するように設置される(即ち占拠率s=100%)。堰10の外側隣接位置には、底が堰10よりも低位置にあって鋳物成形空間Cの外周縁部全周の70%〜100%に対応する範囲を占拠する第1の湯道11が設置される。第1の湯道11の高さh1は、好ましくは堰10の高さ又は厚みtの1.5倍以上、より好ましくは2〜7倍に設定される。
【0019】
好ましくは第1の湯道11の外側隣接位置には第2の湯道12が設置される。第2の湯道12が板状湯道であること、更には鋳物成形空間Cの全体を環状に包囲する全周湯道であることは好ましい。第2の湯道12の高さh2は、好ましくは堰10の高さtの1.5倍以上、より好ましくは1.5〜3倍に設定される。更に好ましくは第2の湯道12の外側隣接位置には、底が第2の湯道12よりも低位置にあって第2の湯道12の周長の50%以上を占拠又は包囲する第3の湯道13が設置される。その第3の湯道13の高さh3は、好ましくは堰10の高さtの2倍以上、より好ましくは2.5〜15倍に設定される。尚、図1に示すように、第3の湯道13の外側位置に、湯口(図示略)からの溶湯を第3の湯道13に導くための第4の湯道14を設けることは好ましい。
【0020】
堰を鋳物成形空間の内周縁部に隣接設置する場合の好ましい態様として、図3に示すような鋳造方案を例示することができる。これはベンチレーテッド型ディスクロータの鋳造方案である(具体例として実施例2,3及び4を後述する)。図3では、上型1及び下型2からなる主型並びにその内部に配置された中子3によって鋳物成形空間(キャビティ)Cが鋳型内に構築される。キャビティCには、ベンチレーテッド型ディスクロータを構成する二つの摺動板部のうちの下側摺動板部の鋳造に関与するキャビティC1と、上側摺動板部の鋳造に関与するキャビティC2とが少なくとも存在する。
【0021】
好ましくは、堰20は鋳物成形空間Cの内周縁部に隣接する位置において、その外周縁部の全周又はその一部を占拠するように設置される。堰20の内側隣接位置には、底が堰20よりも低位置にあって鋳物成形空間Cの内周縁部全周の70%〜100%に対応する範囲を占拠する湯道21が設置される。この湯道21の高さh1は、好ましくは堰20の高さ又は厚みtの1.5倍以上、より好ましくは2〜7倍に設定される。尚、図3に示すように、鋳物成形空間C、堰20及び湯道21の下方に、これらを迂回しながら鋳型の半径方向に延びると共に、湯口(図示略)からの溶湯を湯道21に導くためのトンネル湯道22を設けることは好ましい。
【0022】
なお、堰を鋳物成形空間(キャビティ)の内周縁部に隣接設置することの利点としては、鋳造設備の一枠内におけるキャビティの設置密度を高め得ることがあげられる(堰をキャビティの外周縁部に設置する場合との比較で)。
【0023】
【実施例】
本発明をベンチレーテッド型ディスクロータの鋳造方案に具体化した実施例1〜4、並びに、従来技術の範疇に属する比較例1及び2について説明する。尚、実施例及び比較例の各々につきディスクロータを試作する際には、二種類の片状黒鉛鋳鉄(FC200相当の鋳鉄及びFC150相当の鋳鉄)を使用した。溶湯の調製にあたっては、ねずみ鋳鉄の戻し材、鋼屑、加炭材及びFe−Si合金を高周波誘導炉にて溶解し、誘導炉からの出湯時に接種剤(Fe−75%Si)を添加して成分調整を行った。成分調整後のFC200の組成は、C:3.37%,Si:2.16%,Mn:0.57%,P:0.046%,S:0.082%である。また、成分調整後のFC150の組成は、C:3.82%,Si:2.08%,Mn:0.61%,P:0.051%,S:0.080%である。
【0024】
(実施例1)
図1に示す実施例1の鋳造方案では、板状の堰10(高さt=2mm,水平距離=5mm)が、ディスクロータ下側摺動板部の鋳造に関与するキャビティC1の外周縁部の全周を占拠する(s=100%)。堰10の外側全周に沿った全周湯道11は、高さh1=10mm、径方向長さ約10mmである。全周湯道11の内部には、ディスクロータの風穴部を形成するための中子3を支持固定するための中子固定台座(図示略)が6個配置される。中子固定台座一つあたりの湯道内占拠率は1.3%であるため、湯道11は堰10の全周の92.2%(=100−1.3×6)を実質的に占拠する。湯道11の外側全周に沿った板状全周湯道12は、高さh2=4mm、径方向長さ約5mmである。板状全周湯道12の外側全周に沿った全周湯道13は、高さh3=25mm、径方向長さ約20mmである。全周湯道13の外側全周の約40%の範囲に沿った半周湯道14は、高さh4=15mm、径方向長さ約15mmである。この湯道14は上型1に設定され、それ以外の堰及び湯道10〜13は下型2に設定されている。湯道14と湯道13とは径方向長で5mm重なっており湯道14は湯口につながっている。実施例1の鋳造方案では、キャビティC1の外周縁部全周に対する堰10の占拠率sは100%であり、キャビティC1の外周縁部全体の表面積に対する堰10の連通断面積の比率(断面比)は22%である。また、h1/t=10/2=5,h2/t=4/2=2,h3/t=25/2=12.5である。s=100%であるため、堰10と湯道11との間の湯道堰比(s・h1/t)は5.00となる(後記表1参照)。
【0025】
湯口から供給される溶湯(片状黒鉛鋳鉄)は、湯道14、湯道13及び板状湯道12を経由して湯道11に達しそこを満たす。そして溶湯は、平面視円環状の湯道11から全周堰10を乗り越えて、キャビティC1の外周縁部の全体にほぼ同時に注ぎ込まれ、最終的にキャビティC内全体に満たされる。図2(A)は、鋳造完了直後に鋳型から取り出したときの一次製品を示す。一次製品は堰や湯道に由来する余分な肉部を伴う。この図で、余分な肉部のうちの湯道11部に存在する6つの貫通孔15は前記中子固定台座の痕跡(抜き跡)である。尚、図1の方案断面は、図2(A)のA−A線に沿った断面に対応する。一次製品から余分な肉部を除去し、それに対し加工取り代2mmで表面切削加工を施し、その後に各摺動面に対して鏡面研磨を施して、二次製品(供試品)を得た。
【0026】
そして、二次製品のロータ摺動板部における各摺動面上の特定の一円周に沿って黒鉛長さを測定した。即ち図2(B)に示すように、二次製品の第1摺動面の最外周から2mm内側に位置する一円周(「面1外」と呼ぶ)、第1摺動面の最内周から2mm外側に位置する一円周(「面1内」と呼ぶ)、第2摺動面の最外周から2mm内側に位置する一円周(「面2外」と呼ぶ)、及び、第2摺動面の最内周から2mm外側に位置する一円周(「面2内」と呼ぶ)、をそれぞれ黒鉛長さの測定対象部位として選択した。測定に際しては、各一円周を30等分し各箇所ごとに光学顕微鏡(倍率100倍)で観察すると共に、黒鉛組織の画像をサンプリングして画像処理を行った。「黒鉛長さ」を連続した一つの片状黒鉛に外接する楕円における長軸の長さと定義し、測定一視野(0.9mm×0.5mm)の中で測定された黒鉛長さの平均値をそのサンプリング箇所での黒鉛長さとした。そして、一円周30箇所の中での黒鉛長さの最大値と最小値との差を当該一円周における「黒鉛長さの差」とした。実施例1で得られた二次製品(供試品)における黒鉛長さの差の測定結果を表1に示す。
【0027】
(実施例2)
図3に示す実施例2の鋳造方案では、板状の堰20(高さt=3mm、水平距離5mm)が、ディスクロータ下側摺動板部鋳造用のキャビティC1の内周縁部の全周を占拠する(s=100%)。全周堰20の内側全周に沿った全周湯道21は、高さh1=10mm、径方向長さ約15mmである。また、トンネル湯道22は、高さh5=10mm、幅50mmである。実施例2の鋳造方案では、キャビティC1の内周縁部全周に対する堰20の占拠率sは100%であり、キャビティC1の内周縁部全体の表面積に対する堰20の連通断面積の比率(断面比)は33%である。また、h1/t=10/3=約3.33である。s=100%であるため、堰20と湯道21との間の湯道堰比(s・h1/t)は約3.33となる(後記表1参照)。
【0028】
実施例2の鋳造方案に基づいて得た一次製品に対し、上記実施例1と同様の後加工を施して二次製品(供試品)を得た。そして、その二次製品について上記実施例1と同様の黒鉛長さ測定を行った。実施例2の二次製品(供試品)における黒鉛長さの差の測定結果を表1に示す。
【0029】
(実施例3)
図4(B)及び(C)は実施例3の鋳造方案の概略断面を示し、図4(A)は実施例3の鋳造方案から得られる一次製品の底面を示す。図4(B)の方案断面は図4(A)のX−X線断面に対応し、図4(C)の方案断面は図4(A)のY−Y線断面に対応する。実施例3の鋳造方案は、堰折り性を改善するために上記実施例2の全周堰20を複数分割したものに相当する。即ち、ディスクロータ下側摺動板部鋳造用のキャビティC1の内周縁部に沿って、都合5つの堰23を設けた。各堰23は、高さt=3.5mm、水平距離15mm、周方向の幅40mmである。これらの堰23の内側に設けられた全周湯道21は、高さh1=15mm、径方向長さ約20mmである。前記5つの堰23は、全周湯道21とトンネル湯道22(高さh5=10mm、幅50mm)との結合部を除く範囲において等角度間隔で配置されている。実施例3の鋳造方案では、キャビティC1の内周縁部全周に対する5つの堰23の合計占拠率sは39%であり、キャビティC1の内周縁部全体の表面積に対する5つの堰23の連通断面積の比率(断面比)は15%である。また、h1/t=15/3.5=約4.3である。s=39%であるため、5つの堰23と湯道21との間の湯道堰比(s・h1/t)は約1.67となる(後記表1参照)。
【0030】
実施例3の鋳造方案に基づいて得た一次製品に対し、上記実施例1と同様の後加工を施して二次製品(供試品)を得た。そして、その二次製品について上記実施例1と同様の黒鉛長さ測定を行った。実施例3の二次製品(供試品)における黒鉛長さの差の測定結果を表1に示す。
【0031】
(実施例4)
図5(B)及び(C)は実施例4の鋳造方案の概略断面を示し、図5(A)は実施例4の鋳造方案から得られる一次製品の底面を示す。図5(B)の方案断面は図5(A)のX−X線断面に対応し、図5(C)の方案断面は図5(A)のY−Y線断面に対応する。実施例4の鋳造方案は、堰折り性を改善するために上記実施例2の全周堰20を複数分割したものに相当する。即ち、ディスクロータ下側摺動板部鋳造用のキャビティC1の内周縁部に沿って、都合3つの堰24,25を設けた。全周湯道21(高さh1=15mm、径方向長さ約20mm)及びトンネル湯道22(高さh5=10mm、幅50mm)の結合部と反対側に位置する堰24は、高さt=3.5mm、水平距離15mm、周方向の幅60mmである。堰24の左右90度の位置にある二つの堰25の各々は、高さt=3.5mm、水平距離15mm、周方向の幅40mmである。全周湯道21は、これらの堰24,25の内側にある。実施例4の鋳造方案では、キャビティC1の内周縁部全周に対する3つの堰24,25の合計占拠率sは28%であり、キャビティC1の内周縁部全体の表面積に対する3つの堰24,25の連通断面積の比率(断面比)は11%である。また、h1/t=15/3.5=約4.3である。s=28%であるため、3つの堰24,25と湯道21との間の湯道堰比(s・h1/t)は1.20となる(後記表1参照)。
【0032】
実施例4の鋳造方案に基づいて得た一次製品に対し、上記実施例1と同様の後加工を施して二次製品(供試品)を得た。そして、その二次製品について上記実施例1と同様の黒鉛長さ測定を行った。実施例4の二次製品(供試品)における黒鉛長さの差の測定結果を表1に示す。
【0033】
なお、実施例3は、各堰を幅狭にして堰折り性を向上する一方で堰の数を多くすることで溶湯の充填性を補う方案である。これに対し実施例4は、各堰を幅広にして溶湯の充填性を高める一方で堰の数を少なくすることで堰折り性を改善する方案である。
【0034】
(比較例1及び比較例2)
図6(A)は比較例1の鋳造方案の平面配置を示す。比較例1では、一つの枠31内に6つのキャビティCが設置されると共に、一つのキャビティCにつき一つの堰32が設けられている。他方、図6(B)は比較例2の鋳造方案の平面配置を示す。比較例2では、一つの枠31内に6つのキャビティCが配置されると共に、一つのキャビティCにつき三つの堰32が設けられている。いずれの比較例でも堰32は、枠31内を折れ線状に巡る湯道33を介して湯口34に連結されている。また、各堰32は下型2に設置されている(図6(C)参照)。
【0035】
比較例1の鋳造方案では、キャビティC1の外周縁部全周に対する堰32の占拠率sは7%であり、キャビティC1の外周縁部全体の表面積に対する堰32の連通断面積の比率(断面比)は4%であり、堰32の高さt=5mm、湯道33の高さh1=20mmであって、堰32と湯道33との間の湯道堰比(s・h1/t)は0.28である。他方、比較例2の鋳造方案では、キャビティC1の外周縁部全周に対する三つの堰32の合計占拠率sは13%であり、キャビティC1の外周縁部全体の表面積に対する三つの堰32の連通断面積の比率(断面比)は6%であり、堰32の高さt=4mm、湯道33の高さh1=15mmであって、三つの堰32と湯道33との間の湯道堰比(s・h1/t)は約0.49である。
【0036】
各比較例の鋳造方案に基づいて得た一次製品に対し、上記実施例1と同様の後加工を施して二次製品(供試品)を得た。そして、その二次製品について上記実施例1と同様の黒鉛長さ測定を行った。比較例1及び2の二次製品(供試品)における黒鉛長さの差の測定結果を表1に示す。
【0037】
(ブレーキ制動試験)
上記実施例1〜4並びに比較例1及び2の各供試品について、実際のブレーキの使用環境下でのブレーキ制動試験を行い各供試品の摩耗状況を調査した。まず各供試品のディスク最外周から10mm内側の一円周上でロータ角度30度毎に摩耗量を測定し、それらの平均値を平均摩耗量とした。図7は実施例2(FC150)についての摩耗量の測定結果を示す。図7の結果から実施例2(FC150)の平均摩耗量は110μm(マイクロメートル)と判明した。また、各供試品のディスク最外周から10mm内側の一円周上でのディスクの厚み(即ち第1摺動面と第2摺動面との間の距離)の変化をブレーキ制動試験の前と後に測定した。図8の上段のグラフはブレーキ制動試験前における実施例2(FC150)のディスクの厚みの変化を示し、図8の下段のグラフはブレーキ制動試験後における実施例2(FC150)のディスクの厚みの変化を示す。試験前及び試験後の各グラフにおける最大値と最小値との差がブレーキ振動の因子となる肉厚差である。この結果から実施例2(FC150品)の試験前肉厚差は3μmであり、試験後肉厚差は5μmであることが判明した。その他の実施例及び比較例についても同様の測定を行った。その結果を表1に示す。
【0038】
【表1】

Figure 2004344944
【0039】
(結果の考察)
表1を参照しながら実施例と比較例とで鋳造方案の特徴を対比する。キャビティC1の周縁部全周に対する堰の占拠率sについては、実施例1〜4の占拠率sが28%以上であるのに対し、比較例1及び2の占拠率sはその値よりも低くなっている。キャビティC1の周縁部全体の表面積に対する堰の連通断面積の比率(断面比)については、実施例1〜4の断面比が11%以上であるのに対し、比較例1及び2の断面比はその値よりも低くなっている。堰とその隣接位置にある湯道との間の湯道堰比(s・h1/t)については、実施例1〜4の湯道堰比が1.20以上であるのに対し、比較例1及び2の湯道堰比はその値よりも低くなっている。
【0040】
上述のような鋳造方案の差異は、各供試品における黒鉛長さの差及びブレーキ制動試験の結果に顕著に反映されている。まず黒鉛長さの差について言えば、実施例1〜4のいずれの供試品も、どの測定円周(面1外、面2外、面1内、面2内)においても黒鉛長さの差が10μmを超えることはなかった。これに対し、比較例1及び2の供試品では黒鉛長さの差が10μmを超える測定円周が存在している。つまり、実施例1〜4では同一測定円周内で黒鉛長さが比較的均一化しているのに対し、比較例1及び2では同一測定円周内で黒鉛長さに大きなバラツキを生じている。
【0041】
ブレーキ制動試験での平均摩耗量については各実施例と比較例とで大きな違いはみられないが、試験後のディスク肉厚差については実施例と比較例とで顕著な差が生じた。即ち、実施例1〜4のいずれの供試品も試験後のディスク肉厚差が7μm以下であるのに対し、比較例1及び2の供試品では試験後のディスク肉厚差が11μm以上となっており、ディスク偏摩耗の兆候が見られた。経験則によれば、ディスク肉厚差が10μmを超えると、実車でのブレーキ振動の発生率が急激に高くなる。つまり、実施例1〜4の供試品ではディスク偏摩耗に起因するブレーキ振動が顕在化する可能性が極めて低いが、比較例1及び2の供試品ではディスク偏摩耗に起因するブレーキ振動が顕在化する可能性が非常に高い。
【0042】
このように、実施例1〜4の鋳造方案によれば、ディスクロータの第1及び第2摺動面上の任意の円周内において黒鉛長さを比較的均一化することができる。そして、実施例1〜4の鋳造方案に従ったディスクロータは、使用時にある程度の摩耗はするものの、偏摩耗は起こし難いという優れた特性を有する。
【0043】
【発明の効果】
本発明の摺動回転体の鋳造方法によれば、比較的簡易な鋳造方案で、摺動回転体表面上の任意の円周内において組織(例えば黒鉛形態)がほぼ均一化した摺動回転体を鋳造することができる。特に本発明の鋳造方法は、従来技術と異なり特殊な材料や高エネルギーを必要とせず、ごく普通の材料を用いて実施可能な汎用性の高い技術であるため、LCA(ライフサイクルアセスメント)的にも優れている。そして、この鋳造方法で作られた摺動回転体は、従来の鋳造方案に従った摺動回転体よりも偏摩耗し難いという特徴を有する。
【図面の簡単な説明】
【図1】実施例1の鋳造方案の概略を示す断面図。
【図2】(A)実施例1の鋳造方案から得られる一次製品の平面図、(B)実施例1の二次製品(供試品)の部分断面図。
【図3】実施例2の鋳造方案の概略を示す断面図。
【図4】(A)は実施例3における一次製品の底面図、(B)及び(C)は実施例3の鋳造方案の一部概略断面図。
【図5】(A)は実施例4における一次製品の底面図、(B)及び(C)は実施例4の鋳造方案の一部概略断面図。
【図6】(A)は比較例1の鋳造方案の平面図、(B)は比較例2の鋳造方案の平面図、(C)は比較例1及び2の鋳造方案の一部概略断面図。
【図7】ブレーキ制動試験での実施例2の摩耗量測定結果を示すグラフ。
【図8】ブレーキ制動試験の前後における実施例2のディスク厚みの変化を示すグラフ。
【符号の説明】
1…上型、2…下型、3…中子(1〜3は鋳型を構成する)、10…鋳物成形空間の外周縁部に隣接する堰、11…堰の外側隣接位置にある湯道、12,13,14…湯道、20…鋳物成形空間の内周縁部に隣接する堰、21…堰の内側隣接位置にある湯道、22…トンネル湯道、23,24,25…堰、C,C1,C2…キャビティ(鋳物成形空間)。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for casting a sliding rotor such as a disc rotor for a disc brake, a drum for a brake or a flywheel for a clutch.
[0002]
[Prior art]
In an automobile disk brake, if the disk rotor is unevenly worn and its thickness varies, the pad rotor (friction material) is displaced during braking due to the uneven wear, which causes uncomfortable vibration for passengers (called brake vibration). ) Is known to make you feel. Since the occurrence of the brake vibration not only makes the braking unstable but also reduces the running stability, prevention of uneven wear of the disk rotor is an important technical problem. For example, in Patent Document 1, by adding a metal element such as Ni, Mo, Cu, Cr, or V to flaky graphite cast iron, the base structure is changed to a martensite structure or a pearlite structure to improve the wear resistance of the disk. I have. In Patent Document 2, a base material (cast iron) is irradiated with a laser beam and subjected to a remelting treatment to form a hardened layer having a chill and martensite structure, thereby improving the wear resistance of the disk.
[0003]
[Patent Document 1] JP-A-6-65673
[Patent Document 2] JP-A-5-157134
[0004]
[Problems to be solved by the invention]
According to the above-mentioned conventional technique, the wear resistance of the disk rotor can be improved, but consideration must be given to the global environment in terms of adding special metals and requiring high energy. Chip. In addition, the wear resistance of the disk is unnecessarily improved, and the disk may slip on contact with the pad, and the original effect (frictional force) of the brake may not be obtained.
[0005]
The present invention is not only from the viewpoint of simply improving the wear resistance of the sliding rotating body, but as a technology for preventing uneven wear of the sliding rotating body from a completely different viewpoint from the conventional one. A casting method is provided.
[0006]
[Means for Solving the Problems]
(Background explanation of the idea)
The inventor of the present invention has studied for many years the technology of manufacturing a disc rotor for a cast iron brake, which is a typical sliding rotating body, and as a result of the study, it was found that "a difference in the amount of wear due to a difference in the structure" is one of the causes of uneven wear of the disc. Was found. The “structure difference” referred to here includes a difference in base structure that appears as a difference in hardness and a difference in graphite morphology contained in cast iron. Furthermore, the inventor has found that the graphite morphology in the cast product is closely related to the casting conditions and that most of the graphite morphology is determined during solidification of the molten metal (Knowledge 1), and that graphite wear occurs at the interface between graphite and the matrix structure. It is understood that a change in graphite morphology correlates with a change in interface length (knowledge 2), and that the graphite structure adheres to the pad and greatly affects the development of frictional force (knowledge 3).
[0007]
Based on the above technical knowledge, the present inventor uses a graphite length that can be quantitatively expressed as an index representing the graphite morphology of a cast iron product, and the graphite length is used to determine the wear of a sliding sliding body made of cast iron (particularly brakes). Effect of the disc on the disc) was clarified through various trial production experiments. Generally, when an object having a disk shape or a cylindrical shape (that is, having a circular outer peripheral portion or an inner peripheral portion in a plan view state) such as a brake disk rotor is made by casting, a circle in a plan view corresponding to the shape is formed. A mold for constructing a cavity (casting space) having an outer peripheral edge and / or an inner peripheral edge of the shape is used. As a result of a trial production experiment, the way of the weir connecting the cavity and the runner is determined through the weir. Thus, it was found that the solidification rate or the cooling rate of the molten metal poured into the cavity was greatly affected. By devising a casting method as described below, the variation in the graphite length is reduced in a region along the circumference of the sliding rotating body (that is, the graphite length is made uniform), and the sliding rotating is performed. We succeeded in reducing the uneven wear of the body compared to the past.
[0008]
(Means and actions)
The present invention is a method for casting a sliding rotating body having a circular outer peripheral portion or an inner peripheral portion in a plan view using a mold having a casting molding space, a weir and a runner, wherein the casting molding is performed. The space has an outer peripheral edge or an inner peripheral edge having a circular shape in plan view corresponding to the shape of the sliding rotating body, and a weir for communicating the casting molding space with the runner is provided at the outer peripheral edge of the casting molding space. It is characterized by being installed so as to occupy 28% to 100% of the entire circumference of the outer peripheral edge or the inner peripheral edge at a position adjacent to the portion or the inner peripheral edge.
[0009]
According to this casting method, the weir that connects the casting molding space constructed in the mold to the runner exists at a position adjacent to the outer peripheral edge or the inner peripheral edge of the casting molding space, and is outside the casting molding space. It is installed so as to occupy 28% to 100% of the entire periphery of the periphery or the inner periphery. As described above, the occupancy ratio of the weir to the entire periphery of the outer peripheral edge or the inner peripheral edge of the casting molding space is sufficiently large, so that, at the time of pouring, the weir of the outer peripheral edge or the inner peripheral edge of the casting molding space. A large difference in the amount of heat hardly occurs between the part directly communicating (direct communication part) and the other part (non-communication part) not directly communicating with the weir. In other words, the calorie distribution of the molten metal is substantially uniform between the directly communicating portion into which the molten metal is directly poured via the weir and the non-communicating portion which receives the supply of the molten metal via the directly communicating portion. Even if a thermal gradient occurs in the casting space, the thermal gradient exists in the radial direction of the casting space, and the isothermal points in that case are concentrically distributed and are substantially isothermal within the same circumference having the same radius. . For this reason, even in the solidification cooling process after pouring, the solidification rate or cooling rate is uniform within an arbitrary circumference in the casting molding space, and the structure (for example, the graphite form using the graphite length as an index) within the same circumference. ) Becomes easier. The structure of the sliding rotator obtained by this casting method (for example, graphite) is uniform within an arbitrary circumference around the rotation axis, so that the sliding rotator according to the conventional casting method can be used. It has the characteristic that uneven wear is less likely to occur.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
In the section of “Embodiments of the invention”, more preferable aspects and additional constituent features of the present invention will be described.
[0011]
The casting object of the present invention is a sliding rotator having a circular outer or inner peripheral portion in a plan view, and is an object which is axisymmetric when rotated about a rotation axis. When casting the sliding rotating body, a mold having a casting molding space, a weir, and a runner is used. The mold is a concept including a main mold and a core disposed therein. For example, the main mold and the core form a casting molding space (cavity) in the shape of a sliding rotating body as a casting object. Is done. As a constituent material of the main mold and the core, so-called sand (eg, green sand, shell sand) can be exemplified. The weir and the runner set in the mold constitute at least a part of the gate system.
[0012]
The casting molding space has an outer peripheral edge or an inner peripheral edge of a circular shape in plan view corresponding to the shape of the sliding rotating body, and a weir that communicates the casting molding space with the runner is provided in the casting molding space. It is installed so as to occupy 28% to 100% (more preferably 39% to 100%) of the entire outer periphery or inner periphery at a position adjacent to the outer periphery or the inner periphery. When the occupation ratio (s) of the weir to the entire periphery of the casting molding space is less than 28%, the supply of the molten metal is performed through the direct communication part where the molten metal is directly poured through the weir and the direct communication part. It is difficult to make the calorific value distribution of the molten metal uniform with the non-communicating portion to be received, and there is a possibility that uneven wear of the sliding rotating body cannot be reduced.
[0013]
In the present invention, it is ideal that the occupancy ratio (s) of the weir to the entire periphery of the casting molding space is 100%. That is, it is preferable that the weir is installed so as to occupy the entire periphery of the outer periphery or the inner periphery at a position adjacent to the outer periphery or the inner periphery of the casting molding space (that is, s = 100%). . In this case, the weir is a single weir having an annular shape in a plan view. Alternatively, a plurality of weirs that are discontinuous with each other may exist. That is, there are a plurality of weirs at positions adjacent to the outer peripheral edge or the inner peripheral edge of the casting molding space, and the plurality of weirs accounts for 28% of the entire circumference of the outer peripheral edge or the inner peripheral edge of the casting molding space. Preferably, it is installed so as to occupy 100100% (more preferably 39% to 100%).
[0014]
In the present invention, the setting of the communication sectional area in the communication relationship between the casting molding space and the weir is also an important factor. That is, at a position where at least a part of the casting molding space and the weir are directly connected, the ratio of the communication cross-sectional area of the weir to the surface area of the entire periphery of at least a part of the outer peripheral edge or the inner peripheral edge of the casting molding space ( It is preferable that the size of the weir is set so that the cross section ratio is 10% to 60% (more preferably, 20% to 60%). When the ratio (cross-sectional ratio) of the communication cross-sectional area of the weir is less than 10%, the pouring speed of the molten metal poured into the casting molding space via the weir becomes extremely slow, and the direct communication portion into which the molten metal is directly poured. Then, it may be difficult to make the calorific value distribution of the molten metal uniform with the non-communicating portion that receives the supply of the molten metal via the direct communicating portion. On the other hand, if the ratio of the cross-sectional area of the weir (cross-sectional ratio) exceeds 60%, it becomes difficult to distinguish between the weir and the casting molding space, and the significance of the existence of the weir (that is, by restricting the flow of the molten metal with the weir, the impurities). Of preventing molten metal from entering and making the flow of the molten metal as uniform as possible) may be lost.
[0015]
In the present invention, the dimensional relationship between the weir and the runner adjacent thereto is also an important factor. That is, the outer or inner adjacent position of the weir occupies a range corresponding to 70% to 100% of the entire circumference of the outer peripheral edge or the inner peripheral edge of the casting molding space, with the bottom being lower than the weir. It is preferable that a runner is provided, and further, the ratio (h1 / t) of the height (h1) of the runner to the height (t) of the weir corresponds to the outer peripheral edge portion or the inner portion of the casting molding space. The runner weir ratio (s · h1 / t) obtained by multiplying the occupancy rate (s) of the weir to the entire periphery of the peripheral part is a value of 1.2 or more (more preferably a value of 1.2 to 7.0). It is preferable that the dimensions of the runner be set so as to satisfy ()). When the runner weir ratio (s · h1 / t) is less than 1.2, the pouring speed of the molten metal poured from the runner through the weir into the casting molding space becomes extremely slow, and the molten metal is directly poured. There is a possibility that it may be difficult to make the calorific value distribution of the molten metal uniform between the direct communication portion and the non-communication portion receiving the supply of the molten metal via the direct communication portion. On the other hand, when the runner weir ratio (s · h1 / t) exceeds 7.0, it becomes difficult to distinguish between the weir and the runner, and the existence significance of the weir (that is, by reducing the flow of the molten metal at the weir, the impurities are removed). Of preventing molten metal from entering and making the flow of the molten metal as uniform as possible) may be lost.
[0016]
Examples of the casting material (molten metal) used in this casting method include iron-based metals such as cast iron. In particular, it is preferable to use flaky graphite cast iron among iron-based metals. When the casting material is flaky graphite cast iron, it is possible to make the graphite structure uniform within an arbitrary circumference on the sliding surface of the sliding rotating body obtained by casting.
[0017]
As a preferred embodiment when the weir is installed adjacent to the outer peripheral edge of the casting molding space, a casting scheme as shown in FIG. 1 can be exemplified. This is a method of casting a ventilated disk rotor (Example 1 will be described later as a specific example). In FIG. 1, a casting molding space (cavity) C is constructed in a mold by a main mold including an upper mold 1 and a lower mold 2 and a core 3 arranged therein. The cavity C includes a cavity C1 involved in casting the lower sliding plate of the two sliding plates constituting the ventilated disk rotor, and a cavity C2 involved in casting the upper sliding plate. And at least exists.
[0018]
Preferably, the weir 10 is installed at a position adjacent to the outer peripheral edge of the casting molding space C so as to occupy or surround the entire periphery of the outer peripheral edge (that is, the occupancy rate s = 100%). At a position adjacent to the outside of the weir 10, a first runner 11 whose bottom is lower than the weir 10 and occupies a range corresponding to 70% to 100% of the entire outer peripheral edge of the casting molding space C is provided. Will be installed. The height h1 of the first runner 11 is preferably set to 1.5 times or more, more preferably 2 to 7 times, the height or thickness t of the weir 10.
[0019]
Preferably, a second runner 12 is provided at a position outside and adjacent to the first runner 11. It is preferable that the second runner 12 is a plate runner, and furthermore, it is a full circumference runner that surrounds the entire casting molding space C in a ring shape. The height h2 of the second runner 12 is preferably set to 1.5 times or more, more preferably 1.5 to 3 times, the height t of the weir 10. More preferably, at a position outside the second runner 12 adjacent to the outside, the bottom is lower than the second runner 12 and occupies or surrounds at least 50% of the circumference of the second runner 12. A third runner 13 is installed. The height h3 of the third runner 13 is preferably set to be at least twice the height t of the weir 10, more preferably 2.5 to 15 times. In addition, as shown in FIG. 1, it is preferable to provide a fourth runner 14 for guiding the molten metal from the gate (not shown) to the third runner 13 at a position outside the third runner 13. .
[0020]
As a preferred embodiment when the weir is installed adjacent to the inner peripheral edge of the casting molding space, a casting method as shown in FIG. 3 can be exemplified. This is a casting method of a ventilated disk rotor (embodiments 2, 3 and 4 will be described later as specific examples). In FIG. 3, a casting mold space (cavity) C is constructed in a mold by a main mold including an upper mold 1 and a lower mold 2 and a core 3 disposed therein. The cavity C includes a cavity C1 involved in casting the lower sliding plate of the two sliding plates constituting the ventilated disk rotor, and a cavity C2 involved in casting the upper sliding plate. And at least exists.
[0021]
Preferably, the weir 20 is installed at a position adjacent to the inner peripheral edge of the casting forming space C so as to occupy the entire outer peripheral edge or a part thereof. At a position adjacent to the inside of the weir 20, a runner 21 whose bottom is lower than the weir 20 and occupies a range corresponding to 70% to 100% of the entire inner peripheral edge of the casting space C is installed. . The height h1 of the runner 21 is preferably set to 1.5 times or more, more preferably 2 to 7 times, the height or thickness t of the weir 20. In addition, as shown in FIG. 3, while extending around the casting forming space C, the weir 20, and the runner 21 in the radial direction of the mold while bypassing them, the molten metal from the gate (not shown) is fed to the runner 21. It is preferred to provide a tunnel runner 22 for guiding.
[0022]
An advantage of disposing the weir adjacent to the inner peripheral edge of the casting molding space (cavity) is that the density of installation of the cavity in one frame of the casting equipment can be increased (the weir is located on the outer peripheral edge of the cavity). In comparison with the case where it is installed in
[0023]
【Example】
Examples 1 to 4 in which the present invention is embodied in a casting method of a ventilated disk rotor and Comparative Examples 1 and 2 belonging to the category of the prior art will be described. Incidentally, when producing a disk rotor for each of Examples and Comparative Examples, two types of flaky graphite cast iron (cast iron equivalent to FC200 and cast iron equivalent to FC150) were used. In the preparation of molten metal, gray cast iron return material, steel scrap, carburizing material and Fe-Si alloy are melted in a high-frequency induction furnace, and an inoculant (Fe-75% Si) is added at the time of tapping from the induction furnace. To adjust the components. The composition of FC200 after component adjustment is C: 3.37%, Si: 2.16%, Mn: 0.57%, P: 0.046%, and S: 0.082%. Further, the composition of FC150 after the component adjustment is C: 3.82%, Si: 2.08%, Mn: 0.61%, P: 0.051%, and S: 0.080%.
[0024]
(Example 1)
In the casting method according to the first embodiment shown in FIG. 1, the plate-shaped weir 10 (height t = 2 mm, horizontal distance = 5 mm) is provided at the outer peripheral edge of the cavity C1 involved in the casting of the disk rotor lower sliding plate. (S = 100%). The entire runner 11 along the entire outer periphery of the weir 10 has a height h1 = 10 mm and a radial length of about 10 mm. Six core fixing pedestals (not shown) for supporting and fixing the core 3 for forming the air holes of the disk rotor are arranged inside the all-round hot runner 11. Since the occupancy rate in the runner per core fixing base is 1.3%, the runner 11 substantially occupies 92.2% (= 100-1.3 × 6) of the entire circumference of the weir 10. I do. The plate-shaped full-peripheral runner 12 along the entire outer periphery of the runner 11 has a height h2 = 4 mm and a radial length of about 5 mm. The perimeter runner 13 along the entire outer periphery of the plate-shaped perimeter runner 12 has a height h3 = 25 mm and a length in the radial direction of about 20 mm. The semi-peripheral runner 14 along the range of about 40% of the entire outer periphery of the perimeter runner 13 has a height h4 = 15 mm and a radial length of about 15 mm. The runner 14 is set to the upper mold 1, and the other weirs and the runners 10 to 13 are set to the lower mold 2. The runner 14 and the runner 13 overlap each other by 5 mm in the radial direction, and the runner 14 is connected to the gate. In the casting method of the first embodiment, the occupation ratio s of the weir 10 with respect to the entire outer peripheral edge of the cavity C1 is 100%, and the ratio of the communication cross-sectional area of the weir 10 to the total surface area of the outer peripheral edge of the cavity C1 (cross-sectional ratio) ) Is 22%. Also, h1 / t = 10/2 = 5, h2 / t = 4/2 = 2, h3 / t = 25/2 = 12.5. Since s = 100%, the runner weir ratio (s · h1 / t) between the weir 10 and the runner 11 is 5.00 (see Table 1 below).
[0025]
The molten metal (flake graphite cast iron) supplied from the gate reaches the runner 11 via the runner 14, the runner 13 and the plate runner 12, and fills the runner. Then, the molten metal runs over the entire circumferential weir 10 from the annular runner 11 in a plan view, and is poured almost simultaneously into the entire outer peripheral edge of the cavity C <b> 1, and finally fills the entire cavity C. FIG. 2A shows the primary product when it is taken out of the mold immediately after the completion of casting. Primary products are accompanied by extra meat from the weirs and runners. In this figure, six through-holes 15 existing in the runner 11 among the excess meat portions are traces (removed traces) of the core fixing base. Note that the plan cross section of FIG. 1 corresponds to a cross section along the line AA in FIG. Excessive flesh was removed from the primary product, the surface was cut with a machining allowance of 2 mm, and then each sliding surface was mirror-polished to obtain a secondary product (sample). .
[0026]
Then, the graphite length was measured along a specific circumference on each sliding surface of the rotor sliding plate portion of the secondary product. That is, as shown in FIG. 2 (B), one circumference (referred to as “outside of surface 1”) located 2 mm inside from the outermost periphery of the first sliding surface of the secondary product, and the innermost of the first sliding surface. One circumference located 2 mm outside of the circumference (called “inside 1”), one circumference located 2 mm inside from the outermost circumference of the second sliding surface (called “outside of surface 2”), and One circumference (referred to as “inside 2”) located 2 mm outside from the innermost circumference of the two sliding surfaces was selected as a portion to be measured for graphite length. At the time of measurement, each circumference was divided into 30 equal parts, each part was observed with an optical microscope (magnification: 100 times), and an image of graphite structure was sampled and subjected to image processing. "Graphite length" is defined as the length of the major axis of an ellipse circumscribing one continuous flaky graphite, and the average value of the graphite length measured in one field of view (0.9 mm x 0.5 mm) Was the graphite length at the sampling point. Then, the difference between the maximum value and the minimum value of the graphite length in 30 places on one circumference was defined as the "difference in graphite length" in the circumference. Table 1 shows the measurement results of the difference in graphite length in the secondary product (test sample) obtained in Example 1.
[0027]
(Example 2)
In the casting method according to the second embodiment shown in FIG. 3, the plate-shaped weir 20 (height t = 3 mm, horizontal distance 5 mm) is formed around the entire inner periphery of the cavity C1 for casting the disk rotor lower sliding plate. (S = 100%). The entire runner 21 along the entire inner periphery of the entire weir 20 has a height h1 = 10 mm and a length in the radial direction of about 15 mm. The tunnel runner 22 has a height h5 = 10 mm and a width of 50 mm. In the casting method of the second embodiment, the occupation ratio s of the weir 20 to the entire inner peripheral edge of the cavity C1 is 100%, and the ratio of the cross-sectional area of the weir 20 to the surface area of the entire inner peripheral edge of the cavity C1 (cross-sectional ratio) ) Is 33%. H1 / t = 10/3 = approximately 3.33. Since s = 100%, the runner weir ratio (s · h1 / t) between the weir 20 and the runner 21 is about 3.33 (see Table 1 below).
[0028]
The primary product obtained based on the casting method of Example 2 was subjected to the same post-processing as in Example 1 to obtain a secondary product (sample). And the graphite length measurement similar to the said Example 1 was performed about the secondary product. Table 1 shows the measurement results of the difference in graphite length in the secondary product (test sample) of Example 2.
[0029]
(Example 3)
4 (B) and 4 (C) show schematic cross sections of the casting method of the third embodiment, and FIG. 4 (A) shows the bottom surface of a primary product obtained from the casting method of the third embodiment. The plan section of FIG. 4B corresponds to the section taken along line XX of FIG. 4A, and the plan section of FIG. 4C corresponds to the section taken along line YY of FIG. 4A. The casting method according to the third embodiment corresponds to a case where the entire circumferential weir 20 according to the second embodiment is divided into a plurality of parts in order to improve the weir foldability. That is, five dams 23 are provided along the inner peripheral edge of the cavity C1 for casting the disk rotor lower sliding plate. Each weir 23 has a height t = 3.5 mm, a horizontal distance of 15 mm, and a circumferential width of 40 mm. The entire circumference runner 21 provided inside these weirs 23 has a height h1 = 15 mm and a radial length of about 20 mm. The five weirs 23 are arranged at equal angular intervals in a range excluding a joint portion between the entire circumference runner 21 and the tunnel runner 22 (height h5 = 10 mm, width 50 mm). In the casting method of the third embodiment, the total occupation ratio s of the five weirs 23 with respect to the entire inner peripheral edge of the cavity C1 is 39%, and the communication cross-sectional area of the five weirs 23 with respect to the surface area of the entire inner peripheral edge of the cavity C1. Is 15%. H1 / t = 15 / 3.5 = about 4.3. Since s = 39%, the runner weir ratio (s · h1 / t) between the five weirs 23 and the runner 21 is about 1.67 (see Table 1 below).
[0030]
The primary product obtained based on the casting method of Example 3 was subjected to the same post-processing as in Example 1 to obtain a secondary product (sample). And the graphite length measurement similar to the said Example 1 was performed about the secondary product. Table 1 shows the measurement results of the difference in graphite length in the secondary product (test sample) of Example 3.
[0031]
(Example 4)
5 (B) and 5 (C) show schematic cross sections of the casting method of the fourth embodiment, and FIG. 5 (A) shows the bottom surface of a primary product obtained from the casting method of the fourth embodiment. The plan section of FIG. 5B corresponds to the cross section taken along line XX of FIG. 5A, and the plan section of FIG. 5C corresponds to the cross section taken along line YY of FIG. 5A. The casting method according to the fourth embodiment corresponds to one obtained by dividing the entire circumferential weir 20 of the second embodiment into a plurality in order to improve the weir foldability. That is, three dams 24 and 25 are provided along the inner peripheral edge of the cavity C1 for casting the disk rotor lower sliding plate. The weir 24 located on the opposite side of the connection between the entire runner 21 (height h1 = 15 mm, radial length about 20 mm) and the tunnel runner 22 (height h5 = 10 mm, width 50 mm) has a height t = 3. 0.5 mm, horizontal distance 15 mm, width 60 mm in the circumferential direction. Each of the two weirs 25 located 90 degrees to the left and right of the weir 24 has a height t = 3.5 mm, a horizontal distance of 15 mm, and a circumferential width of 40 mm. The entire circumference runner 21 is inside these weirs 24 and 25. In the casting method of the fourth embodiment, the total occupancy s of the three weirs 24 and 25 with respect to the entire inner peripheral edge of the cavity C1 is 28%, and the three weirs 24 and 25 with respect to the surface area of the entire inner peripheral edge of the cavity C1. Is 11%. H1 / t = 15 / 3.5 = about 4.3. Since s = 28%, the runner weir ratio (s · h1 / t) between the three weirs 24 and 25 and the runner 21 is 1.20 (see Table 1 below).
[0032]
The primary product obtained based on the casting method of Example 4 was subjected to the same post-processing as in Example 1 to obtain a secondary product (sample). And the graphite length measurement similar to the said Example 1 was performed about the secondary product. Table 1 shows the measurement results of the difference in graphite length in the secondary product (test sample) of Example 4.
[0033]
In the third embodiment, each weir is narrowed to improve the weir foldability, while increasing the number of weirs to compensate for the filling property of the molten metal. On the other hand, the fourth embodiment is a method for improving the fillability of the molten metal by increasing the width of each weir and increasing the fillability of the molten metal, while reducing the number of weirs.
[0034]
(Comparative Example 1 and Comparative Example 2)
FIG. 6A shows a planar arrangement of the casting method of Comparative Example 1. In Comparative Example 1, six cavities C are provided in one frame 31 and one weir 32 is provided for one cavity C. On the other hand, FIG. 6B shows a plan layout of the casting method of Comparative Example 2. In Comparative Example 2, six cavities C are arranged in one frame 31 and three weirs 32 are provided for one cavity C. In each of the comparative examples, the weir 32 is connected to a gate 34 through a runner 33 that runs in a broken line in the frame 31. Each weir 32 is installed in the lower mold 2 (see FIG. 6C).
[0035]
In the casting method of Comparative Example 1, the occupation ratio s of the weir 32 with respect to the entire outer peripheral edge of the cavity C1 is 7%, and the ratio of the communicating cross-sectional area of the weir 32 to the surface area of the entire outer peripheral edge of the cavity C1 (cross-sectional ratio) ) Is 4%, the height of the weir 32 is t = 5 mm, the height of the runner 33 is h1 = 20 mm, and the ratio of the runner weir between the weir 32 and the runner 33 (s · h1 / t). Is 0.28. On the other hand, in the casting method of Comparative Example 2, the total occupancy s of the three weirs 32 with respect to the entire outer peripheral edge of the cavity C1 is 13%, and the three weirs 32 communicate with the entire surface area of the outer peripheral edge of the cavity C1. The cross-sectional area ratio (cross-sectional ratio) is 6%, the height t of the weir 32 is 4 mm, the height h1 of the runner 33 is 15 mm, and the runner between the three weirs 32 and the runner 33 The weir ratio (s · h1 / t) is about 0.49.
[0036]
The primary product obtained based on the casting scheme of each comparative example was subjected to the same post-processing as in Example 1 to obtain a secondary product (sample). And the graphite length measurement similar to the said Example 1 was performed about the secondary product. Table 1 shows the measurement results of the difference in graphite length between the secondary products (test samples) of Comparative Examples 1 and 2.
[0037]
(Brake braking test)
For each of the test samples of Examples 1 to 4 and Comparative Examples 1 and 2, a brake braking test was performed in an actual brake use environment, and the wear state of each test sample was investigated. First, the wear amount was measured at every rotor angle of 30 degrees on one circumference of 10 mm from the outermost circumference of the disk of each sample, and the average value thereof was defined as the average wear amount. FIG. 7 shows the measurement results of the wear amount for Example 2 (FC150). From the results in FIG. 7, it was found that the average wear amount of Example 2 (FC150) was 110 μm (micrometer). Before the brake braking test, the change in the thickness of the disk (ie, the distance between the first sliding surface and the second sliding surface) on one circle inside 10 mm from the outermost periphery of the disk of each test sample was measured. And later measured. The upper graph of FIG. 8 shows the change in the thickness of the disk of Example 2 (FC150) before the brake braking test, and the lower graph of FIG. 8 shows the thickness of the disk of Example 2 (FC150) after the brake braking test. Indicates a change. The difference between the maximum value and the minimum value in each of the graphs before and after the test is a thickness difference that is a factor of brake vibration. From this result, it was found that the thickness difference before the test of Example 2 (FC150 product) was 3 μm, and the thickness difference after the test was 5 μm. Similar measurements were performed for other examples and comparative examples. Table 1 shows the results.
[0038]
[Table 1]
Figure 2004344944
[0039]
(Discussion of results)
With reference to Table 1, the features of the casting method will be compared between the embodiment and the comparative example. Regarding the occupancy s of the weir with respect to the entire periphery of the cavity C1, the occupancy s of Examples 1 to 4 is 28% or more, whereas the occupancy s of Comparative Examples 1 and 2 is lower than that value. Has become. Regarding the ratio of the cross-sectional area of the weir to the surface area of the entire peripheral portion of the cavity C1 (cross-sectional ratio), the cross-sectional ratio of Examples 1 to 4 is 11% or more, whereas the cross-sectional ratio of Comparative Examples 1 and 2 is It is lower than that value. Regarding the runner weir ratio (s · h1 / t) between the weir and the runner located adjacent to the weir, the runner weir ratio in Examples 1 to 4 is 1.20 or more, while the comparative example The runner weir ratio of 1 and 2 is lower than that value.
[0040]
The difference in the casting method as described above is remarkably reflected in the difference in the graphite length in each specimen and the result of the brake braking test. First, regarding the difference in graphite length, any of the specimens of Examples 1 to 4 has a graphite length of any measured circumference (outside surface 1, outside surface 2, inside surface 1, inside surface 2). The difference did not exceed 10 μm. On the other hand, in the test samples of Comparative Examples 1 and 2, there is a measurement circumference where the difference in graphite length exceeds 10 μm. That is, in Examples 1 to 4, the graphite length was relatively uniform within the same measurement circumference, whereas in Comparative Examples 1 and 2, the graphite length varied greatly within the same measurement circumference. .
[0041]
The average wear amount in the brake braking test was not significantly different between each example and the comparative example, but the disc thickness difference after the test showed a remarkable difference between the example and the comparative example. That is, the disk thickness difference after the test was 7 μm or less in all the test products of Examples 1 to 4, whereas the disk thickness difference after the test was 11 μm or more in the test products of Comparative Examples 1 and 2. The disk showed signs of uneven wear. According to a rule of thumb, when the disc thickness difference exceeds 10 μm, the rate of occurrence of brake vibration in an actual vehicle sharply increases. That is, in the test samples of Examples 1 to 4, the possibility of the occurrence of brake vibration due to uneven disk wear is extremely low, but in the test samples of Comparative Examples 1 and 2, the brake vibration due to uneven disk wear is small. Very likely to manifest.
[0042]
As described above, according to the casting schemes of Examples 1 to 4, the graphite length can be made relatively uniform within an arbitrary circumference on the first and second sliding surfaces of the disk rotor. The disk rotors according to the casting methods of Examples 1 to 4 have an excellent property that, although they are worn to some extent during use, uneven wear hardly occurs.
[0043]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the casting method of a sliding rotating body of this invention, the sliding rotating body whose structure (for example, graphite form) was made substantially uniform within an arbitrary circumference on the sliding rotating body surface by a relatively simple casting method. Can be cast. In particular, the casting method of the present invention does not require special materials or high energy unlike the conventional technology, and is a highly versatile technology that can be performed using ordinary materials. Is also excellent. And, the sliding rotating body made by this casting method has a feature that it is less likely to be unevenly worn than the sliding rotating body according to the conventional casting method.
[Brief description of the drawings]
FIG. 1 is a sectional view schematically showing a casting method according to a first embodiment.
2A is a plan view of a primary product obtained from a casting method according to the first embodiment, and FIG. 2B is a partial cross-sectional view of a secondary product (test sample) according to the first embodiment.
FIG. 3 is a sectional view schematically showing a casting method according to a second embodiment.
FIG. 4A is a bottom view of a primary product according to a third embodiment, and FIGS. 4B and 4C are partial schematic cross-sectional views of a casting method according to the third embodiment.
5A is a bottom view of a primary product according to a fourth embodiment, and FIGS. 5B and 5C are partial schematic cross-sectional views of a casting method according to the fourth embodiment.
6A is a plan view of a casting plan of Comparative Example 1, FIG. 6B is a plan view of a casting plan of Comparative Example 2, and FIG. 6C is a partial schematic cross-sectional view of the casting plans of Comparative Examples 1 and 2. FIG. .
FIG. 7 is a graph showing a measurement result of a wear amount of Example 2 in a brake braking test.
FIG. 8 is a graph showing a change in disk thickness of Example 2 before and after a brake braking test.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Upper mold, 2 ... Lower mold, 3 ... Core (1-3 constitutes a mold), 10 ... Weir adjacent to the outer peripheral edge of the casting molding space, 11 ... Runner located outside the weir , 12, 13, 14 ... runner, 20 ... weir adjacent to the inner peripheral edge of the casting molding space, 21 ... runner located adjacent to the inside of the weir, 22 ... tunnel runner, 23, 24, 25 ... weir, C, C1, C2: cavity (casting molding space).

Claims (5)

鋳物成形空間、堰及び湯道を具備した鋳型を用い、平面視状態で円形状の外周部又は内周部を持った摺動回転体を鋳造する方法であって、
前記鋳物成形空間は、摺動回転体の形状に対応した平面視円形状の外周縁部又は内周縁部を有しており、その鋳物成形空間を湯道に連通させる堰は、前記鋳物成形空間の外周縁部又は内周縁部に隣接する位置においてその外周縁部又は内周縁部の全周の28%〜100%を占拠するように設置されていることを特徴とする摺動回転体の鋳造方法。
A method for casting a sliding rotating body having a circular outer peripheral portion or inner peripheral portion in a plan view state, using a casting molding space, a mold having a weir and a runner,
The casting molding space has an outer peripheral edge or an inner peripheral edge having a circular shape in plan view corresponding to the shape of the sliding rotating body, and a weir that communicates the casting molding space with a runner is provided in the casting molding space. Characterized in that it is installed so as to occupy 28% to 100% of the entire outer periphery or inner periphery at a position adjacent to the outer periphery or the inner periphery of the sliding rotating body. Method.
前記堰は、前記鋳物成形空間の外周縁部又は内周縁部に隣接する位置においてその外周縁部又は内周縁部の全周を占拠するように設置されていることを特徴とする請求項1に記載の摺動回転体の鋳造方法。The said weir is installed so that it may occupy the whole perimeter of the outer peripheral edge or the inner peripheral edge in the position adjacent to the outer peripheral edge or the inner peripheral edge of the casting molding space, The claim 1 characterized by the above-mentioned. A method for casting a sliding rotary body according to the above. 前記堰は、前記鋳物成形空間の外周縁部又は内周縁部に隣接する位置において複数個存在し、且つそれら複数個の堰によって前記鋳物成形空間の外周縁部又は内周縁部の全周の28%〜100%を占拠するように設置されていることを特徴とする請求項1に記載の摺動回転体の鋳造方法。A plurality of the weirs are present at positions adjacent to the outer peripheral edge or the inner peripheral edge of the casting molding space, and the plurality of weirs constitutes 28 of the entire periphery of the outer peripheral edge or the inner peripheral edge of the casting molding space. The casting method for a sliding rotary body according to claim 1, wherein the sliding rotary body is installed so as to occupy% to 100%. 鋳物成形空間のうちの少なくとも一部と堰とが直接つながる位置において、当該鋳物成形空間の少なくとも一部の外周縁部又は内周縁部における周縁全体の表面積に対する堰の連通断面積の比率(断面比)が10%〜60%となるように、堰の寸法が設定されていることを特徴とする請求項1〜3のいずれかに記載の摺動回転体の鋳造方法。At a position where at least a part of the casting molding space and the weir are directly connected, the ratio of the cross-sectional area of the weir to the surface area of the entire periphery at the outer peripheral edge or the inner peripheral edge of at least a part of the casting molding space (sectional ratio) The method according to any one of claims 1 to 3, wherein the size of the weir is set so that the value of the weir is 10% to 60%. 前記堰の外側又は内側の隣接位置には、底が堰よりも低位置にあって前記鋳物成形空間の外周縁部又は内周縁部の全周の70%〜100%に対応する範囲を占拠する湯道が設置されており、更に、前記湯道の高さ(h1)と堰の高さ(t)との比(h1/t)に対し、鋳物成形空間の外周縁部又は内周縁部の全周に対する堰の占拠率(s)を乗算して得られる湯道堰比(s・h1/t)が1.2以上の値となるように、湯道の寸法が設定されていることを特徴とする請求項1〜4のいずれかに記載の摺動回転体の鋳造方法。At the outer or inner adjacent position of the weir, the bottom is lower than the weir and occupies a range corresponding to 70% to 100% of the entire circumference of the outer peripheral edge or the inner peripheral edge of the casting molding space. A runner is provided, and a ratio (h1 / t) between the height (h1) of the runner and the height (t) of the weir is determined by the ratio of the outer peripheral edge or the inner peripheral edge of the casting molding space. The dimension of the runner is set so that the ratio of the runner weir (s · h1 / t) obtained by multiplying the occupancy ratio (s) of the weir to the entire circumference is 1.2 or more. A method for casting a sliding rotary body according to any one of claims 1 to 4.
JP2003145702A 2003-05-23 2003-05-23 Casting method of sliding rotating body Expired - Fee Related JP4261247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003145702A JP4261247B2 (en) 2003-05-23 2003-05-23 Casting method of sliding rotating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003145702A JP4261247B2 (en) 2003-05-23 2003-05-23 Casting method of sliding rotating body

Publications (2)

Publication Number Publication Date
JP2004344944A true JP2004344944A (en) 2004-12-09
JP4261247B2 JP4261247B2 (en) 2009-04-30

Family

ID=33532768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003145702A Expired - Fee Related JP4261247B2 (en) 2003-05-23 2003-05-23 Casting method of sliding rotating body

Country Status (1)

Country Link
JP (1) JP4261247B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057357A1 (en) * 2007-10-29 2009-05-07 Aisin Takaoka Co., Ltd. Method for casting disc rotor
CN102489674A (en) * 2011-12-28 2012-06-13 玉林市达志机械配件有限公司 Universal negative type combined model used in production of diesel engine flywheel with iron mold coated sand
JP2013173151A (en) * 2012-02-23 2013-09-05 Aisin Aw Co Ltd Molten metal forging mold
CN109454205A (en) * 2018-12-13 2019-03-12 淮海工业集团有限公司 A kind of sand mold of revolution solid of curved surface

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103639370B (en) * 2013-11-29 2015-07-22 杨国能 Casting method for flywheel
JP5696322B1 (en) * 2014-07-11 2015-04-08 有限会社ファンドリーテック・コンサルティング Column-shaped feeder shape and casting method with high feeder efficiency

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057357A1 (en) * 2007-10-29 2009-05-07 Aisin Takaoka Co., Ltd. Method for casting disc rotor
JP2009106951A (en) * 2007-10-29 2009-05-21 Aisin Takaoka Ltd Method for casting disc rotor
JP4653796B2 (en) * 2007-10-29 2011-03-16 アイシン高丘株式会社 Disc rotor casting method
US8235089B2 (en) 2007-10-29 2012-08-07 Aisin Takaoka Co., Ltd. Method for casting disk rotor
CN102489674A (en) * 2011-12-28 2012-06-13 玉林市达志机械配件有限公司 Universal negative type combined model used in production of diesel engine flywheel with iron mold coated sand
JP2013173151A (en) * 2012-02-23 2013-09-05 Aisin Aw Co Ltd Molten metal forging mold
CN109454205A (en) * 2018-12-13 2019-03-12 淮海工业集团有限公司 A kind of sand mold of revolution solid of curved surface
CN109454205B (en) * 2018-12-13 2024-01-26 淮海工业集团有限公司 Sand mould of curved surface revolution body

Also Published As

Publication number Publication date
JP4261247B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
Luan et al. Effect of solidification rate on the morphology and distribution of eutectic carbides in centrifugal casting high-speed steel rolls
Zeuner et al. Developing trends in disc bralke technology for rail application
CN107073570A (en) Composite casting abnormal shape roll and preparation method thereof
CN107475641A (en) High-speed steel roll and preparation method thereof
Rashidi et al. The effects of solidification on the microstructure and mechanical properties of modified ductile Ni-resist iron with a high manganese content
JP4261247B2 (en) Casting method of sliding rotating body
US8235089B2 (en) Method for casting disk rotor
AU7147591A (en) Brake discs for automobiles and methods for their manufacture
JP5726043B2 (en) Spheroidal graphite cast iron steel pipe forming roll and method for producing the same
JP2557711B2 (en) Method of manufacturing single cam made of casting material and single cam manufactured thereby
JPWO2019097678A1 (en) Cast iron cylindrical member and composite structure
JP2007270195A (en) Method for producing spheroidal graphite cast-iron article, and spheroidal graphite cast-iron article
Bevza et al. Use of directional solidification for improving tubular workpiece quality of different cast irons
RU2153004C2 (en) Method for making cast products in the form of one part
CN109402495A (en) Alloying element addition method for determination of amount and ductile cast iron casting and its casting and mold in ductile cast iron casting with uniform wall thickness
RU2159368C1 (en) Metal-ceramic friction lining for disc brake of railway vehicle
EP2473750B1 (en) Brake drum with a friction liner
JPH0115576B2 (en)
CN109504890A (en) Alloying element addition method for determination of amount and ductile cast iron casting and its casting and mold in ductile cast iron casting with uniform wall thickness
JPH035055A (en) Manufacture of integrated body of ring gear and fly wheel
JPS61229459A (en) Production of composite casting roll
Khuntrakool et al. Control of Graphite Structure in High Phosphorus Grey Cast Iron Brake Shoes through Ferro-Silicon Inoculant
JPS60255256A (en) Casting method
JPH02209413A (en) Manufacture of spheroidal graphite case iron gear raw material
JP2022188445A (en) cylinder liner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060705

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070628

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070809

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20071009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4261247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees