JP2004344701A - Electromagnetic filter for removing metal element in high temperature high flow-velocity gas - Google Patents

Electromagnetic filter for removing metal element in high temperature high flow-velocity gas Download PDF

Info

Publication number
JP2004344701A
JP2004344701A JP2003141518A JP2003141518A JP2004344701A JP 2004344701 A JP2004344701 A JP 2004344701A JP 2003141518 A JP2003141518 A JP 2003141518A JP 2003141518 A JP2003141518 A JP 2003141518A JP 2004344701 A JP2004344701 A JP 2004344701A
Authority
JP
Japan
Prior art keywords
temperature
gas
filter
electromagnetic filter
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003141518A
Other languages
Japanese (ja)
Other versions
JP4070209B2 (en
Inventor
Shintaro Ishiyama
新太郎 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP2003141518A priority Critical patent/JP4070209B2/en
Publication of JP2004344701A publication Critical patent/JP2004344701A/en
Application granted granted Critical
Publication of JP4070209B2 publication Critical patent/JP4070209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Filtering Materials (AREA)
  • Electrostatic Separation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problem: FP (fission product) of<SP>110m</SP>Ag,<SP>137</SP>Cs,<SP>131</SP>I produced from core fuel in a high temperature gas-cooled reactor deposit on piping outside the reactor, heat exchangers, or gas-turbine equipment, and exposure on workers involved in the maintenance and inspection is feared, and interfere with such works for those equipment and structures. <P>SOLUTION: The electromagnetic filter capable of resisting high temperature of 1,000°C is constituted of an anode rod made of an Ni-based heat-resistant alloy and a porous filter heat-resistant cathode dust-collection part made of the same material capable of removing fission products of<SP>110m</SP>Ag,<SP>137</SP>Cs, etc., which have been converted into ionic gases in high temperature helium gas of 1,000°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、原子力分野又は一般産業分野で使用される高温高流速ガス中から金属元素を除去する電磁フィルターに関するものである。
【0002】
【従来の技術】
200℃以下の低温で利用できるポリマー又は紙でできたFP(Fission Product:核分裂生成物)集塵除去用のフィルターは、現行の原子力発電プラントで使用実績がある。
【0003】
又、高温ガス炉高温発電システムにおけるターボ機器のメンテナンスを困難にする炉心からの黒鉛粒子や核分裂生成物によるブレークアウトに対し、高温高圧で使用できるハステロイX合金製(W%で、Cr:16〜45,Mo:5〜28、W:2.5〜4,Fe:5〜20、残りNi)のフィルタを使用し、その基本性能を試験したことが行われている(例えば、非特許文献1)。
【0004】
【非特許文献1】
日本原子力学和文論文誌、Vol. 1,No. 2, pp. 164−176, 2002年6月
【0005】
【発明が解決しようとする課題】
高温ガス炉炉心燃料から発生する110mAg(放射性同位体),137Cs,131IのFPが、原子炉外配管、熱交換器又はガスタービン機器に沈着することにより、補修点検作業中の作業員への被曝が考えられ、これらの機器、構造物の補修点検作業の支障をきたしていた。そのため、高温ガス炉の運転中高温ガス炉冷却材ヘリウム中に浮遊するこれらFPをin−situ(その場で)で除去する技術が必要であるが、従来型のガスフィルターでは、次の問題点がある。
【0006】
(1)原子炉出口温度が900℃近いので、かかる高温に耐えるフィルター材料がない。
【0007】
(2)超微粒子がガス化して希薄ガスとして浮遊するFPの捕獲効率が高くなく、特に、原子炉出口側にガスタービン発電機を設ける場合、その捕獲効率が高くない。
【0008】
(3)そのフィルターによる圧力損失が高く発電効率を高くできない。
【0009】
【課題を解決するための手段】
本発明は、図1に示すNi基耐熱合金製の陽電極棒と耐高温フィルターを陰極として用い、900℃のヘリウム中で電離ガス化しているAg及びCsの希薄ガスを含む高温ヘリウム流れに対して直角に電場を負荷することにより、圧力損失をほとんど起こさずにAg及びCs全量の捕獲をin−situ(その場で)で実施できる。
【0010】
本発明の電磁フィルターを、図2に示す原子炉と動力変換容器(ガスタービン、圧縮機、発電機等を収容した容器)の接続配管内に取付けることにより、高温ガス炉タービンシステム内のFPを除去することができる。
【0011】
【発明の実施の形態】
図1に示されるうように、本発明のFP電磁フィルターは、耐熱合金製の棒状陽極、その陽極の周囲に設けられたハステロイ粉末焼結合金製の円筒状多孔質フィルターからなる陰極、及びその両極間の間隙を保持するために挿入された絶縁体で構成される。電離ガス化したAg及びCsを含有する高温ヘリウムガスが、円筒状多孔質フィルターの外周から内部に流入し、そのフィルター陰極と棒状陽極との間を通過する際に両電極間に高電圧が印加され、そのガス流に対して直角方向に電場が負荷される。
【0012】
その結果、電離されたAg,Csが円筒状多孔質フィルターの内外周に沈着除去される。即ち、850℃程度の高温ガス中では融点及びイオン化温度の低いCsはイオン化して存在し、同様にAgの一部もイオン化しているので、この混合ガスに電場を掛けることによりこれらのイオン種はすべて捕捉することが可能である。
【0013】
図2に示されるように、原子炉圧力容器から取出されるFP含有冷却材ヘリウム(He)ガスは、二重管システムを経て動力変換圧力容器に導入され、ガスタービン発電プラントの動力源として使用される。このヘリウムガスは、二重管システムを経て動力変換圧力容器に導入される際に、本発明の図1に示されるFP電磁フィルターによりガス中からFPが除去され、動力源として使用された後、二重管システムの外周管を経て原子炉圧力容器に戻される。
【0014】
図3に示されるように、Nガスが、Nリンダーからヒーター1に供給されて加熱された後、ヒーター2により加熱されているAg蒸発器(2)の外管中に導入される。Ag蒸発器の内管に設けられたAgメッシュにNガスが供給され、Ag蒸気を発生させる。これらの2方向からのNガスが混合されて得られたAg含有N2ガスは、高電圧が付与されるFPフィルター要素電極及び棒状電極を備えた電気集塵装置(3)の入口で60Co源からガンマ線源が照射された後、集塵装置に導入されて集塵処理され、水冷却器(4)を経てNガス出口から取り出される。
【0015】
【実施例】
図3に示す1000℃に加熱した高温加熱窒素ガス中でAgを蒸発させて
+Ag混合ガス化させた流体に対して、図1に示す電磁フィルター(陽極:ハステロイ丸棒、陰極:ハステロイ粉末焼結フィルター)両極間に印加電圧を0.07〜1.5kVとしてラン(RUN)1〜6の条件で試験を行った結果を表1に示す。
【0016】
【表1】

Figure 2004344701
【0017】
その結果、蒸発銀ガス(Agガス)は、図4に示す各試験装置部内▲1▼〜▲4▼に沈着し、全蒸発Agに対して▲4▼(蒸発部)及び▲3▼(出口配管部)への沈着を除き、これら下流方向からの蒸発Ag濃度に対する電磁フィルター部▲2▼での沈着(集塵)効率は、表1の最下欄のろ過効率に示されるように、99%に到達する試験条件があることが分かった。
この試験は、放射線の影響も同時に調べた。即ち、高温ガス中に浮遊するFPガスのイオン化を促進するためにγ線を照射しながら捕集試験を行った。
【0018】
その結果、表1及び図4に示されるように、Nガス温度(ヘリウム代替ガス)の温度変化及びAg蒸発温度におけるガス中のAg蒸発濃度変化によるフィルター捕集率の依存性、並びにフィルター捕集条件(電圧、電流)によるAg捕集効率の依存性が解明された。
【0019】
【発明の効果】
本発明により高温ガス炉ガスタービン発電プラントにおいてガスタービン又は熱交換器への沈着を防止でき、補修点検作業が容易、安全に行われる。
【0020】
即ち、表1及び図4に示されるように、本発明の電磁フィルターを使用すれば、その操作条件により99%のろ過効果が達成できるので、上記表及び図の冷却器に相当する上記タービン又は熱交換器への沈着が防止できるという、本発明に特有の顕著な効果を生ずる。
【図面の簡単な説明】
【図1】FP電磁フィルターの概念図である。
【図2】FP電磁フィルターを高温ガス炉ガスタービンシステムに利用した場合の取り付け位置及び取り付け方を示す図である。
【図3】FP電磁フィルター要素の試験装置レイアウトを示す図である。
【図4】FP電磁フィルター要素試験装置内に沈着・捕集された銀蒸気沈着率分布を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electromagnetic filter for removing a metal element from a high-temperature high-velocity gas used in the field of nuclear power or general industry.
[0002]
[Prior art]
Filters for removing FP (Fission Products) made of polymer or paper that can be used at low temperatures of 200 ° C. or less have been used in current nuclear power plants.
[0003]
In addition, it is made of Hastelloy X alloy (W%, Cr: 16 ~) which can be used at high temperature and high pressure against breakout due to graphite particles and fission products from the reactor core, which makes maintenance of turbo equipment in high temperature gas reactor high temperature power generation system difficult. 45, Mo: 5-28, W: 2.5-4, Fe: 5-20, remaining Ni) and tested the basic performance thereof (for example, Non-Patent Document 1). ).
[0004]
[Non-patent document 1]
Journal of the Japan Atomic Energy Society, Vol. 1, No. 2, pp. 164-176, June 2002 [0005]
[Problems to be solved by the invention]
110m Ag (radioisotope) generated from the high-temperature gas-cooled reactor core fuel, 137 Cs, 131 I of FP is, reactor outside the pipe, by depositing a heat exchanger or gas turbine equipment, workers in the repair inspection Exposure to these devices and equipment has impeded repair and inspection work for these devices and structures. Therefore, a technique for removing these FPs floating in the helium coolant of the HTGR during operation of the HTGR in-situ is required. However, the conventional gas filter has the following problems. There is.
[0006]
(1) Since the reactor outlet temperature is close to 900 ° C., there is no filter material that can withstand such a high temperature.
[0007]
(2) The capture efficiency of the FP in which the ultrafine particles are gasified and float as a rare gas is not high, especially when a gas turbine generator is provided at the reactor outlet side.
[0008]
(3) The pressure loss due to the filter is so high that the power generation efficiency cannot be increased.
[0009]
[Means for Solving the Problems]
The present invention uses a positive electrode rod made of a Ni-base heat-resistant alloy and a high-temperature resistant filter shown in FIG. By loading the electric field at right angles, the capture of all Ag + and Cs + can be performed in-situ with little pressure loss.
[0010]
By installing the electromagnetic filter of the present invention in the connection pipe between the reactor and the power conversion vessel (vessel accommodating the gas turbine, compressor, generator, etc.) shown in FIG. Can be removed.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1, the FP electromagnetic filter of the present invention comprises a rod-shaped anode made of a heat-resistant alloy, a cathode made of a cylindrical porous filter made of a Hastelloy powder sintered alloy provided around the anode, and a cathode made of the same. It consists of an insulator inserted to maintain the gap between the two poles. High-temperature helium gas containing ionized Ag and Cs flows into the inside from the outer periphery of the cylindrical porous filter, and a high voltage is applied between both electrodes when passing between the filter cathode and the rod-shaped anode. And an electric field is applied in a direction perpendicular to the gas flow.
[0012]
As a result, the ionized Ag + and Cs + are deposited and removed on the inner and outer peripheries of the cylindrical porous filter. That is, in a high-temperature gas of about 850 ° C., Cs having a low melting point and low ionization temperature is ionized and a part of Ag is similarly ionized. Can all be captured.
[0013]
As shown in FIG. 2, the FP-containing coolant helium (He) gas withdrawn from the reactor pressure vessel is introduced into the power conversion pressure vessel via a double pipe system and used as a power source for a gas turbine power plant. Is done. When this helium gas is introduced into the power conversion pressure vessel via the double pipe system, FP is removed from the gas by the FP electromagnetic filter shown in FIG. 1 of the present invention, and after being used as a power source, It is returned to the reactor pressure vessel via the outer tube of the double tube system.
[0014]
As shown in FIG. 3, after the N 2 gas is supplied from the N 2 cylinder to the heater 1 and heated, the N 2 gas is introduced into the outer tube of the Ag evaporator (2) heated by the heater 2. N 2 gas is supplied to an Ag mesh provided in the inner tube of the Ag evaporator to generate Ag vapor. 60Co source at the inlet of the Ag-containing N2 gas N 2 gas obtained by mixing from these two directions, an electric precipitator equipped with a FP filter element electrode and the rod-shaped electrode a high voltage is applied (3) After being irradiated with a gamma ray source from, it is introduced into a dust collector, subjected to dust collection processing, and taken out from an N 2 gas outlet via a water cooler (4).
[0015]
【Example】
For the fluid in which Ag was evaporated in a high-temperature heated nitrogen gas heated to 1000 ° C. and gasified as N 2 + Ag as shown in FIG. 3, an electromagnetic filter (anode: Hastelloy round bar, cathode: Hastelloy powder) shown in FIG. (Sintered filter) Table 1 shows the results of tests performed under the conditions of run (RUN) 1 to 6 with an applied voltage between both electrodes of 0.07 to 1.5 kV.
[0016]
[Table 1]
Figure 2004344701
[0017]
As a result, the evaporated silver gas (Ag gas) is deposited in each of the test apparatus sections (1) to (4) shown in FIG. 4, and (4) (evaporation section) and (3) (outlet) with respect to all evaporated Ag. Except for the deposition on the piping, the deposition (dust collection) efficiency in the electromagnetic filter unit (2) with respect to the evaporated Ag concentration from the downstream direction is 99% as shown in the filtration efficiency in the lowermost column of Table 1. % Of the test conditions.
This study also examined the effects of radiation. That is, a collection test was performed while irradiating γ-rays to promote ionization of the FP gas floating in the high-temperature gas.
[0018]
As a result, as shown in Table 1 and FIG. 4, the dependence of the filter collection rate on the N 2 gas temperature (helium substitute gas) temperature change and the change in the Ag evaporation concentration in the gas at the Ag evaporation temperature, The dependence of the Ag collection efficiency on the collection conditions (voltage, current) was elucidated.
[0019]
【The invention's effect】
Advantageous Effects of Invention According to the present invention, deposition on a gas turbine or a heat exchanger can be prevented in a high-temperature gas-cooled gas turbine power plant, and repair and inspection work can be performed easily and safely.
[0020]
That is, as shown in Table 1 and FIG. 4, if the electromagnetic filter of the present invention is used, a filtering effect of 99% can be achieved depending on the operation conditions, and therefore, the turbine or the turbine corresponding to the cooler shown in the above Table and FIG. The remarkable effect peculiar to the present invention is obtained that the deposition on the heat exchanger can be prevented.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of an FP electromagnetic filter.
FIG. 2 is a view showing a mounting position and a mounting method when an FP electromagnetic filter is used in a high-temperature gas-cooled reactor gas turbine system.
FIG. 3 is a diagram showing a test apparatus layout of an FP electromagnetic filter element.
FIG. 4 is a diagram showing a distribution of silver vapor deposition rate deposited and collected in an FP electromagnetic filter element test apparatus.

Claims (7)

Ni基耐熱合金材製の陽極棒と同素材の多孔質フィルター耐熱陰極集塵部から構成され、1000℃の高温に耐える高温電磁フィルター。A high-temperature electromagnetic filter that is composed of an anode rod made of a Ni-base heat-resistant alloy and a porous filter heat-resistant cathode dust collector made of the same material and withstands a high temperature of 1000 ° C. 1000℃の高温ヘリウムガス中に電離ガス化した110mAg、137Cs等の核分裂生成物を除去することができる請求項1記載の高温電磁フィルター。The high-temperature electromagnetic filter according to claim 1, wherein fission products such as 110 mAg and 137 Cs ionized into high-temperature helium gas at 1000 ° C can be removed. 多孔質フィルター耐熱陰極集塵部がNi基耐熱合金粉末を焼結して得られたものである請求項1又は請求項2記載の高温電磁フィルター。The high temperature electromagnetic filter according to claim 1 or 2, wherein the porous filter heat-resistant cathode dust collecting part is obtained by sintering a Ni-based heat-resistant alloy powder. 原子炉からの放射線下で使用できる請求項1乃至請求項3のいずれかに記載の高温電磁フィルター。4. The high-temperature electromagnetic filter according to claim 1, which can be used under radiation from a nuclear reactor. 被集塵物質のイオン化機構を必要としないコンパクト化された請求項1乃至請求項4のいずれかに記載の高温電磁フィルター。The high-temperature electromagnetic filter according to any one of claims 1 to 4, wherein the high-temperature electromagnetic filter is compact and does not require an ionization mechanism of a substance to be collected. 流量50m/sの高速大容量の高温ヘリウムガス中の核分裂生成物を集塵除去できる請求項1乃至請求項5のいずれかに記載の高温電磁フィルター。The high-temperature electromagnetic filter according to any one of claims 1 to 5, wherein fission products in a high-speed, large-capacity high-temperature helium gas having a flow rate of 50 m / s can be collected and removed. Ni基耐熱合金粉末焼結材製の棒状陽極、その陽極の周囲に設けられたNi基耐熱合金粉末焼結材製の円筒状多孔質フィルターからなる陰極、及びその両極間の間隙を保持するために挿入された絶縁体で構成され、電離ガス化したAg及び
Csを含有する高温ヘリウムガスが、円筒状多孔質フィルターの外周から内部に流入し、そのフィルター陰極と棒状陽極との間を通過する際に両電極間に高電圧が印加され、そのガス流に対して直角方向に電場が負荷されることにより、電離されたAg,Csが円筒状多孔質フィルターの内外周に沈着除去されることからなる、高温高圧下で使用される電磁フィルター。
A rod-shaped anode made of a Ni-based heat-resistant alloy powder sintered material, a cathode formed of a cylindrical porous filter made of a Ni-based heat-resistant alloy powder sintered material provided around the anode, and for maintaining a gap between the two electrodes High-temperature helium gas containing Ag and Cs, which is composed of an insulator inserted into the porous gas and flows into the inside from the outer periphery of the cylindrical porous filter, passes between the filter cathode and the rod-shaped anode. At this time, a high voltage is applied between the two electrodes, and an electric field is applied in a direction perpendicular to the gas flow, so that the ionized Ag + and Cs + are deposited and removed on the inner and outer peripheries of the cylindrical porous filter. An electromagnetic filter used under high temperature and high pressure.
JP2003141518A 2003-05-20 2003-05-20 Removal of metallic elements from high temperature and high flow rate gas Expired - Fee Related JP4070209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003141518A JP4070209B2 (en) 2003-05-20 2003-05-20 Removal of metallic elements from high temperature and high flow rate gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003141518A JP4070209B2 (en) 2003-05-20 2003-05-20 Removal of metallic elements from high temperature and high flow rate gas

Publications (2)

Publication Number Publication Date
JP2004344701A true JP2004344701A (en) 2004-12-09
JP4070209B2 JP4070209B2 (en) 2008-04-02

Family

ID=33529854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003141518A Expired - Fee Related JP4070209B2 (en) 2003-05-20 2003-05-20 Removal of metallic elements from high temperature and high flow rate gas

Country Status (1)

Country Link
JP (1) JP4070209B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101391574B1 (en) 2008-09-24 2014-05-02 현대자동차주식회사 Blow By Gas Recycling Device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101391574B1 (en) 2008-09-24 2014-05-02 현대자동차주식회사 Blow By Gas Recycling Device

Also Published As

Publication number Publication date
JP4070209B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
Ono et al. Liquid lithium loop system to solve challenging technology issues for fusion power plant
Berka et al. The design and utilization of a high-temperature helium loop and other facilities for the study of advanced gas-cooled reactors in the Czech Republic
JP4070209B2 (en) Removal of metallic elements from high temperature and high flow rate gas
Konings Transmutation of iodine: results of the EFTTRA-T1 irradiation test
JP5754970B2 (en) Nuclear plant exposure reduction method, fuel assembly and nuclear power plant
US11174536B2 (en) Transition metal-based materials for use in high temperature and corrosive environments
Guzonas et al. Activity transport in a supercritical water-cooled reactor
Yang et al. Study of Tritium Permeation Through Peach Bottom Steam Generator Tubes
Cadwallader Preliminary failure modes and effects analysis of the US DCLL test blanket module
Yamamoto Hydrogen embrittlement of nuclear power plant materials
Tamaki et al. Visualization and analysis of forced diffusion of hydrogen in palladium by electrotransport
Clemmer et al. The requirements for processing tritium recovered from liquid lithium blankets: The blanket interface
CN110097989B (en) Graphite dust pollution removing method for pebble-bed high-temperature gas cooled reactor
Semin et al. Experimental Cutting of Snf Samples by Mechanical and Thermal Methods to Examine the Efficiency of Different Air Filtration Techniques of Generated Dust
Muto et al. Design and economics of the HTGR-GT power plant by JAERI
Makarov et al. Experimental cutting of SNF samples by mechanical and thermal methods to examine the efficiency of different air filtration techniques of generated dust
Trauger Some major fuel-irradiation test facilities of the oak ridge national laboratory
Askari et al. Experimental study of the cobalt oxide etching rate from metal surface using F2/He atmospheric pressure plasma for decontamination of nuclear components
Buyers Ceramic-Metal Bonding Stable in Excess of 2248° K
JPS6053892A (en) Device for removing cobalt of light-water reactor
LeSurf et al. Occupational radiation exposures at Canadian CANDU nuclear power stations
Jung et al. Analysis of on a Large Metallic Inclusion in the Irradiated Fuel using EPMA
Furukawa et al. Investigation of a New Dry Surface Decontamination Technology with Low-Pressure ArcPlasma and Its Application to Pipe-Shaped Test Pieces
Persson et al. Improved detection limit for {sup 59} Ni using the technique of accelerator mass spectrometry
Trunov et al. Optimization of the tube-bundle arrangement in horizontal steam generators

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees