JP2004344146A - Product enclosed with microorganism having thermal resistance and method for producing the same - Google Patents
Product enclosed with microorganism having thermal resistance and method for producing the same Download PDFInfo
- Publication number
- JP2004344146A JP2004344146A JP2003177303A JP2003177303A JP2004344146A JP 2004344146 A JP2004344146 A JP 2004344146A JP 2003177303 A JP2003177303 A JP 2003177303A JP 2003177303 A JP2003177303 A JP 2003177303A JP 2004344146 A JP2004344146 A JP 2004344146A
- Authority
- JP
- Japan
- Prior art keywords
- coagulation
- solution
- microorganisms
- coagulant
- fermentation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Dairy Products (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
Abstract
Description
【0001】
【発明に属する技術分野】
この発明は健康食品であるヨーグルト等の腸内有用菌等の微生物を調理の熱から守り、また胃液、胆汁等の酸アルカリなどから保護して腸内に供給することで、整腸作用を強化した、耐熱性耐あるいは化学剤性を有する微生物封入物に関するものである。
【0002】
【従来の技術】
従来、ヨーグルト等腸内有用菌は食べたとき、胃液、胆汁によって死滅し、腸内に生きたまま届く腸内有用菌は極めてわずかであると知られている。このため、腸内有用菌をカプセルまたはマイクロカプセルに封入した健康食品があった。また、ヨーグルトに少量のゼラチンやペクチンや寒天を添加したヨーグルト製品はあるが、これは滑らかな舌触りや製品の形状を保つために添加剤として使われている。菌の粉体を圧力で固めたものもある。また、アルギン酸塩に菌体を混合し凝固塩溶液にノズルで注入し固め、乾燥させる方法がある(例えば特許文献1、2参照)。クッキー等など加熱加工を要するものに加えるための物はまだない。
【0003】
【特許文献1】
特開平8−242763号公報
【特許文献2】
特開昭60−141281号公報
【0004】
【発明が解決しようとする課題】
これには次のような欠点があった。
(イ)カプセルやマイクロカプセルに乾燥させた腸内有用菌を閉じ込める方法は耐胃液があるが、耐熱性は難しい。また、工程が複雑で高価であり、噛むと被膜が破れ、腸内有用菌を胃液から守る効果がなくなる。(ロ)少量のゼラチンや寒天でヨーグルトの凝固を補助した食品は、食すると舌触りがよく美味であるが、40℃以上の温度にすると菌が死滅してしまう。また、寒天の濃度は0.2〜0.5%の低濃度で使用されるため、ゲルの強度が弱く、水を加えるなり、振動を加えるなりしただけで、形が崩れ、またはゲルが溶け出してしまい、腸内有用菌を胃液や胆汁から守る効果は少ない。(ニ)アルギン酸塩に菌体を混合し凝固塩溶液にノズルで注入し固め、乾燥させる方法も、耐熱性は難しい。また、遠心分難機で濃縮した菌を取りだし洗浄を数回繰り返しコストがかかる。ただ混ぜてあるのみで、菌の密度を増すことはできず、また、ゲルの網目構造の細部に微生物をもぐりこませることは難しい。これら従来のものは、クッキー等を焼く高温では死滅してしまい、加熱加工が必要な食品に混ぜることは困難である。
【0005】
【課題を解決するための手段】
図1の構造概念図のように、微生物と気泡を凝固剤で固められた凝固化固形物などの固体に分散させ、熱の伝導を妨げ、耐熱性を持たせる発泡構造になっている。また、胃液などの酸、胆汁などアルカリ、殺菌剤などの化学剤、または外界らの刺激から微生物を保護する構造にもなっている。それから、図2の構造概念図のようにカプセル構造の被膜にも気泡を入れると、耐熱性が高くなる。
凝固化固形物がゲルである場合、ゲルで微生物が囲まれており、胃液、胆汁に含まれる、酸、アルカリ等の濃度勾配に従う拡散速度が減速する。そのため、酸、アルカリ、または殺菌剤が浸透する浸透速度が遅くなり、耐化学剤性が高まる。耐化学剤性とは、耐胃液性すなわち耐酸性、耐胆汁性すなわち耐アルカリ性、耐殺菌剤などである。従来のヨーグルトでも食後に食べると、胃酸が薄いために、少しであるが腸に届く。凝固剤で固めることでさらに腸に届く確率が高くなる。
凝固化固形物中に微生物が分散しているものは、摂取するときに噛むことで砕かれても、固形物中に微生物が分散しているため、凝固化固形物で微生物は常に保護されている。一方、微生物をマイクロカプセル等の被膜で覆う方法であると、摂取時に噛むと被膜が破れ、耐化学剤性を有しなくなる。
製造手段の概略は、まず、凝固剤、発泡剤、培養液を加え、発泡させる。次に、凝固発酵すなわち凝固し発酵または発酵と凝固を同時に行う。微生物を加えるときは、高温で死滅しないように、温度が微生物の増殖温度にまで下がってから、微生物を接種し、凝固発酵の工程の前であるならばどこでもよい。この発泡凝固発酵により、凝固剤入り培養液に気泡と微生物が分散した状態で発酵し、微生物が増殖し、乳酸などの有効成分も生産され、発泡したゲルの網目構造の中に微生物が閉じ込められた、均質な製品が簡便に得られる。そのため、粉程度にまでサイズを小さくできる。粉にすることで、食したときのザラツキ感がなくなり、様々な食品に混合することができる。 寒天の場合、溶液状態ではランダムコイルの分子として存在しているが、冷却により会合し、ダブルヘリックス構造の三次元の網目構造を形成する。この凝固発酵により、凝固剤で固められた培養液に微生物が分散した状態で発酵し、微生物が増殖し、乳酸などの有効成分も豊富に生産され、ゲルの網目構造の隅々まで、微生物や有効成分が入り込み均質な製品が簡便に得られる。細菌類の大きさは0.2〜10μで、多くは桿状,球状ないしは繊維状を呈し0.5〜1μである。一方、ヨーグルトを寒天などの凝固剤と混ぜてただ凝固させ場合は、ヨーグルトと凝固剤が一部分離し、均質である製品を製造することは難しく、ただ混ぜてあるのみで微生物の密度を増すことはできず、また、ゲルの網目構造の細部に微生物をもぐりこませることは難しい。
凝固剤で固められた乳酸菌等の微生物を、乾燥または脱溶媒させ、水分等を少なくすると、常温保存ができる。また、熱伝導が低下し耐熱性がさらに高まる。胃液、胆汁が浸透していく浸透速度がさらに遅くなり、耐化学剤性がいっそう高まる。また、微生物の密度も増やすことができる。凝固剤の量が少ない場合でも、乾燥させることで、固体の強度が強くなり、耐化学剤性が高くなる。
凝固発酵させて、そのまま使用したり、乾燥させて使用するので、遠心分離機で菌体を取り出す必要がなく、設備の手間が省け、効率的に生産できる。また、微生物を混合するときになど、通常は微生物が死滅しないように、温度の設定が厳しいが、本発明の場合、わずかでも死滅せず残った微生物がいるならば、凝固の後、発酵させるので、多少、温度が高くても問題がない。
本発明に用いる凝固剤は、寒天、ペクチン、ゼラチン、蒟蒻などのマンナン、ガラギナン、キサンタンガム、アルギン酸、アルギン酸塩、ローカストビーンガム、デンプン、フノリ、アラビアゴム等のゲル化剤または接着剤を含む。また凝固剤の組み合わせは、腸内に腸内有用菌を生きたまま到達させるために、胃液や胆汁に対して耐化学剤性を有し、腸内では腸溶性を有することが望ましい。また、耐熱性を要する場合は、熱に強い材質がよい。微生物は、特に限定されるものではないが、ヨーグルトに使われるケフィア菌、カスピ海ヨーグルト菌、乳酸菌であるラクトーバキルス(Lactobacillus)属のL.アキドーピルス(L.acidophilus)、L.ガセリ(L.gasseri)、L.カセイ(L.casei)、L.ブルガリクス(L.bulgaricus)、エンテロコックス(Enterococcus)属のE.ファエキウム(E.faecium)、E.フェーカリス(E.fecalis)、ストレプトコックス(Streptococcus)属のS.テルモピルス(S.thermophilus)、S.サリーワリウス(S.salivarius)、バキルス(Bacillus)属のB.コアグランス(B.coagulans)、B.ナットー(B.natto)等を例示することができる。また、ビフィズス菌としては、ビフィドーバクテリウム(Bifidobacterium)属のB.ビフィドゥム(B.bifidum)、B.インファンティス(B.infantis)、B.ブレウェ(B.breve)、B.ロングム(B.longum)等を例示することができる。発泡剤または界面活性剤は、特に限定されるものではないが、ゼラチン、卵白、卵黄、ミルク等のタンパク質、またはタンパク分解物、サポニン、レシチンなどである。
以上のような構造または製造方法からなる耐熱性や耐化学剤性を有する微生物封入物およびその製造方法である。
【0006】
【発明の実施の形態】
【実施例】以下、本発明の実施の形態を説明する。
実施例1 図3,にもとづいて説明する。(第1工程):水に凝固剤兼食物繊維である寒天を混合し、沸騰して煮溶かし、凝固剤溶液を製造する。この実施例では水、寒天の重量比45:1で行い、凝固剤溶液を作った。凝固剤は、第9工程で凝固する程度以上の量が必要で、通常寒天として食する濃度以上が望ましい。寒天は伊那食品工業のかんてんクックを用いた。(第2工程):砂糖とてんさい糖を混ぜて、混合糖を製造する。この実施例では砂糖とてんさい糖の重量比5:1で行った。糖分は、甘味の役割と菌の培養液の役割を兼ねている。(第3工程):第1工程の凝固剤溶液に第2工程の混合糖を混合し、糖凝固剤溶液を製造する。この実施例では凝固剤溶液と混合糖の重量比8:1で糖凝固剤溶液を作った。(第4工程):水とスキムミルクの重量比4:1で、培養液であるスキムミルク溶液を製造する。糖凝固剤溶液を混ぜたとき、溶液が凝固しない程度の温度まで温める。この実施例では50℃で行った。加熱する前に、種溶液を製造するために10分の1残しておく。牛乳、スキムミルク自体、発泡作用があり、発泡剤の役目もする。時間が経つと気泡は消えてしまうが、寒天と混ぜることで、泡が立ちやすくなり、消えにくくなる。(第5工程):第3工程で出来た糖凝固剤溶液に等重量の第4工程の培養発泡剤液を加えて混ぜ、培養発泡剤凝固剤溶液を製造する。(第6工程):第4工程の培養発泡剤液10分の1とヨーグルトを重量比1:2の割合で混合し、発酵に適した温度まで温め、種溶液を製造する。種を溶液にすることで、培養発泡剤凝固剤溶液に分散しやすくなる。微生物の繁殖には最適温度があり、温度を上げすぎると死滅してしまう。また、種溶液の温度が低すぎると、培養発泡剤凝固剤溶液に混ぜた場合、撹拌の段階で凝固してしまい、培養発泡剤凝固剤溶液中に微生物を充分に分散することができなくなる。この実施例では35℃で行った。ケフィアヨーグルトまたはカスピ海ヨーグルトを用いた。(第7工程):第5工程の培養発泡剤凝固剤溶液を泡立て発泡させる。泡立て器で撹拌しながら、凝固しない程度まで冷やしていく。この実施例では43℃まで下げた。気泡は細かい方が、壊れ難い。そのため、十分泡立てる必要がある。十分泡を細かくするために、超音波を使用してもよい。例えば、泡だて器で泡を立てた後、超音波を加える。(第8工程):第7工程の発泡させた培養発泡剤凝固剤溶液と第6工程の種溶液を重量比6:1で混合し、撹拌することで、微生物の種を分散し接種する。凝固剤、発泡剤や微生物の種類により、培養発泡剤凝固剤溶液が固まらず、気泡が消えにくく、かつ微生物が死滅しにくい温度になるように、培養凝固剤溶液と種溶液の温度と重量比を決める必要がある。微生物の接種量が少ないときは発酵時間を増やす必要がある。ここで寒天の濃度はおよそ0.8%になった。(第9工程):第8工程の混合液を気泡が消えないうちに、直ちに冷却し凝固させる。そののち適温にして発酵させる。この実施例においては25℃で行った。微生物の種類によって、適温である発酵温度が異なる。寒天の場合、40℃付近でゲル化する。そのため、一旦温度を下げ、気泡が消えないうち凝固させると、温度を上げても気泡が消えず、発泡構造の状態で発酵できる。発酵進むと乳酸が増えるので、発酵度合いを香りで判断した。なお、第8工程で腸内有用菌が熱で死滅しないよう、かつ気泡が消えないように、直ちに第9工程に移ることが望ましい。しかし多少死減しても、第9工程で発酵させ微生物を増やすことができる。第6工程で種溶液を製造しているが、粉末または固形状態の微生物の種を第8工程で直接入れてもよい。第9工程で出来上がったものをそのまま利用してもよいが、実施例10にもあるように、乾燥させることで、耐熱性は高まる。スキムミルク溶液の代わりに牛乳を使用してもよい。腸内有用菌が繁殖しやすくするため、糖類、ビタミン、ミネラル等を培養液に混合してもよい。嫌気菌の場合、炭酸ガス、窒素ガス等を加えて行う。
実施例2:発泡剤添加タイプ 実施例1の第1工程に発泡剤であるゼラチンなどが加わる。水に凝固剤兼食物繊維である寒天と発泡剤であるゼラチンを混合し、沸騰して煮溶かし、発泡凝固剤溶液を製造する。この実施例では水、寒天、ゼラチンの重量比45:0.8:0.2で行い、発泡凝固剤溶液を作った。この工程では、凝固剤と発泡剤が溶け出す温度まで温度を上げる必要がある。発泡剤は泡立つ程度でよいが、凝固の過程で気泡が消えにくい程度加えることが望ましい。第2工程以降は、実施例1と同じである。以上のように、凝固剤と発泡剤と培養液と微生物を混合し、発泡凝固発酵させ、凝固剤に微生物と気泡を閉じ込めることを特徴とする微生物封入物の製造方法である。
実施例3:気泡量調節タイプ 実施例1や実施例2の培養発泡凝固剤溶液を全て泡立て発泡させると、気泡の膜が薄くなり、乾燥時に破れ易くなることがある。そのため気泡の量を少なくする必要がある。実施例1や実施例2の第7工程で一部を泡立て、残りに加えることで、気泡の量を調整する。そのとき、気泡は浮き易いので、混ぜたら、すぐ冷却し凝固させ、気泡を固定させる必要がある。この実施例では、第5工程で出来た培養発泡凝固剤溶液の半分を泡立て、残りの培養発泡凝固剤溶液を加え、次に微生物を接種攪拌し、ただちに冷却凝固させた。このように、以上のように、凝固剤と発泡剤と培養液と微生物を混合し、一部を発泡させ、凝固発酵させ、凝固剤に微生物と調節された気泡を閉じ込めることを特徴とする微生物封入物の製造方法である。
実施例4:炭酸水発泡タイプ 実施例1、実施例2の第7工程で、泡立て器ではなく炭酸水で発泡させる。炭酸水で凝固剤や培養液の濃度が薄まるため、凝固剤溶や培養液を濃くする必要がある。このタイプは、炭酸による新たな食感も有する。以上のように、凝固剤と発泡剤と培養液と微生物を混合し、炭酸水で発泡させてから、凝固発酵させ、凝固剤に微生物と気泡を閉じ込めることを特徴とする微生物封入物の製造方法である。
実施例5:減圧タイプ 実施例1、実施例2などにおいて、減圧状態で泡立て、常圧に戻し凝固させると、細かい気泡になり、乾燥させたあと、気泡が破れ難くなる。以上のように、減圧状態で発泡させてから、常圧で凝固発酵させ、凝固剤に微生物と気泡を閉じ込めることを特徴とする微生物封入物の製造方法である。
実施例6:実施例1〜実施例5の第1工程ででんぷん、ペクチン、ゼラチン、フノリ、アラビアゴムなどの凝固剤を複数組み合わせてもよい。耐化学剤性と耐熱性を調整でき、腸液で溶け出しやすい最適な凝固剤の組み合わせを特徴とする凝固剤の混合タイプを提供できる。マンナン、フスマ、ゴボウ、茸類などの食物繊維を添加する。茸類は、椎茸、エノキ茸、アガリスクなど種類を問わない。食物繊維を強化することで、腸内有用菌が腸内で増殖しやすい環境を供給することを特徴とする食物繊維強化タイプを提供できる。凝固させる前の工程でCa、Mgム、Fe等のミネラル類、各種ビタミン、または食物の抽出物あるいは食物を加える。食物はハーブやスパイスでもよく、発酵させたものでもよい。Mgなどの場合下剤機能があり、ハーブには薬効等の機能がある。すなわち、ミネラル、ビタミン、または食物抽出エキスの少なくとも1つを強化することで、人、動物等の生体に栄養素、機能を同時に供給できることを特徴としたものを提供できる。
実施例7:腸内では様々な菌が共存している。そこで、実施例1〜実施例6において、複数の菌を組み合わせることで、各個人の腸内で定着しやすい菌の組み合わせを作ることを特徴とする菌の混合タイプを提供できる。嫌気菌を種とした場合、嫌気菌が発酵できるように、炭酸ガス、窒素ガス等封入状態で工程を処理するか、ビタミンC等の還元剤や酸素吸収剤を入れるなどし、嫌気菌であるビフィズス菌等を増殖する。発泡させるときに、酸素が入らないように、炭酸ガスや窒素ガスなど酸素がない状態で発泡させる。実施例4の炭酸水発泡タイプのときは、炭酸ガスが発生するので、酸素の混入をあまり気にせず製造できる。このように、嫌気菌を増殖させることを特徴とした方法を提供できる。また、嫌気菌と好気菌を混合した種を用いることができる。凝固発酵する際、外から酸素が入り込まないよう、密封した容器で培養するか、酸素の流入を制限する。始め好気菌が増殖し酸素が消費された後、嫌気菌が増殖する。すなわち、好気菌と嫌気菌を共存増殖させることを特徴とした方法を提供する。
実施例8:直接分散凝固法 濃縮された微生物溶液、微生物の粉末または疎水性を有する油などに微生物の粉末を混ぜたものを直接、凝固剤に混ぜ分散させ、凝固させる方法。発泡させる場合、微生物の粉末または疎水性を有する油などに微生物の粉末を混ぜたものを直接、泡立てた発泡凝固剤に混ぜ分散させ、凝固させる方法。微生物の粉末を発泡凝固剤に混ぜてから発泡させてもよい。大豆油、オリーブ油、ゴマ油、胚芽油、ヤシ油、菜種油、グレープシード油等の疎水性の物質に菌を混ぜた物を、発泡させた発泡凝固剤溶液に分散させ凝固させると、耐化学剤性が高まる。実施例1などの第1工程で、凝固剤溶液を作った後、凝固点に達しない温度まで下げる。発泡させながら、温度を下げる。寒天ならば、40℃位まで下げる。菌の粉末または疎水性を有する油などに菌の粉を混ぜたものを凝固剤溶液に加え撹拌し、分散させて凝固させる。または、実施例1の第8工程で種溶液の代わりに、菌の粉末を入れるか、または疎水性を有する油などに菌の粉を混ぜたものを入れる。これは、腸内に菌が増殖する栄養を同時に加える効果になる。嫌気菌の場合、炭酸ガス封入で行うか、ビタミンC等の還元剤を加えるとよい。凝固溶液に、食物繊維、ミネラル、ビタミン、または食物の抽出エキスの少なくとも1つを混ぜてもよい。凝固剤の溶媒は、水以外の物質でもよい。ゲル化剤がアルギン酸ナトリウムなどのアルギン酸類の場合、40℃以下の菌が死滅しない温度で、凝固剤溶液や発泡させた発泡凝固剤溶液に、微生物粉末や、濃縮微生物溶液を分散させた後、Caイオンを含む溶液に浸し、凝固させてもよい。すなわち、発泡凝固剤溶液、または、発泡凝固剤溶液に培養液、食物繊維、ミネラル、ビタミン、食物抽出エキスの少なくとも1つを混ぜた物に菌粉末または疎水性物質に菌の粉末を混ぜたものを分散させ、固体にすることを特徴とする微生物封入物の製造方法である。
実施例9:強度強化タイプ Caイオン、Mgイオン、Kイオン、高分子の荷電物質等のある種の化学物質で、凝固を促進し、または架橋構造などで固体の強度を強化し、Hイオン、HOイオンなどの浸透速度を減速してもよい。実施例1から実施例8の凝固の工程で加えてもよい、または凝固の後で浸してもよい。このように本実施例により、実施例1から実施例8などにおいて、化学物質で凝固を促進、または固体の強度を強化した微生物封入物を提供することができる。
実施例10:乾燥タイプ 乾燥することで、菌が眠った状態になり、常温保存ができる。菌の密度も高くなる。水分がなくなることで、熱伝導が落ち、耐熱性が強くなり、また、固体の強度が強くなり、酸、アルカリ、殺菌剤等の化学剤が浸透していく浸透速度がいっそう遅くなり、耐酸性、耐アルカリ性等の耐化学剤性も高まる。実施例1から実施例9で凝固発酵または凝固して得られたものを適度な大きさにカットし、乾燥させる。または、実施例1から実施例8で凝固発酵または凝固して得られたものを乾燥してから適度の大きさにカットしてもよい。乾燥方法は、日陰干し、冷風乾燥、温風乾燥、常温減圧乾燥、低温減圧乾燥またはフリーズドライ等の処理でもよい。遠心力、圧搾等を利用して、溶媒を搾り出してもよいし、搾り出してから、上記の乾燥方法を用いてもよい。溶媒を搾り出すことで、早く乾燥できる。また、始めから、凝固剤の量を多くしたり、培養液の濃度を濃くするなど、水や溶媒の割合を少なくして実施例1から実施例9を行っておくと、乾燥させやすい。例えば、実施例1の第1工程において水、寒天の重量比45:2で行う。乾燥させたものを粉末あるいは顆粒状にして用いてもよい。実施例1で得られたものを、適度な大きさに角切りし、日陰干した。約7mm角のものを120℃の電気オーブンの中に入れ、加熱時間2分30秒、5分、7分で耐熱実験を行った。実施例1を乾燥させた非発泡性タイプのものも同時に比較実験を行った。熱湯消毒したビンに牛乳とともに入れ、密閉し、室温(およそ20℃)で放置した。加熱時間2分30秒で、発泡タイプは2日、非発泡タイプは3日ほど発酵した。5分加熱した場合、表面が少し茶色になり、発泡タイプは2日後、非発泡タイプは6日後に発酵した。非発泡タイプは、生き残っていた微生物が少ないため、発酵に時間がかかったと思われる。7分加熱した場合、表面がこげ茶色になり、発泡タイプは2日後に発酵したが、非発泡タイプは発酵しなかった。乾燥させた物を粒状にして摂取してもよい。サイズは、耐化学剤性が保てる程度の大きさから、飲み込める程度の大きさである。例えば、最少のサイズは、マイクロカプセルタイプの被膜の厚さ程度あれば、十分である。そのまま錠剤にしてもよく、飲み込みやすくするために、表面に糖衣を施す、油を塗るなど、コーティングしてもよい。乾燥させたものを適度に加熱することで、サクサクとして感触の食品になる。耐熱性があるため、乾燥したものやサクサク感のあるものを様々な食品に混ぜ合わせ加熱加工ができる。例えば、ケーキ、クッキー、ビスケット、チョコレート、せんべい、饅頭、スナック菓子等、パン、チーズ、餅、かまぼこ、卵焼き等の食品に加えることができる。後で、まぶしてもよい。
実施例11:油吸着タイプ 実施例10で得られた乾燥させたものを、食用油に漬ける。これにより、耐水性が高まり、耐化学剤性も高まる。熱に強いので油で揚げてもよい。油としては、大豆油、オリーブ油、ゴマ油、胚芽油、ヤシ油、菜種油、グレープシード油等である。なお、油に漬けるときに、油が浸透しやすいように、油の温度を35℃〜50℃ぐらいにしてもよい。このように、実施例10で得られた乾燥させた微生物封入物を食用油に漬け、耐水性を高めることを特徴とした微生物封入物を提供することができる
実施例12:錠剤タイプ 錠剤タイプにすると摂取しやすくなる。また、錠剤化するときに、様々な栄養物と一緒に固めることができ、同時に有効に摂取できる。実施形態として、実施例10の乾燥タイプや実施例11の油吸着タイプをそのまま錠剤化するか、大豆、麦類、トウモロコシ、米、フスマ等の胚芽、ココア、野菜、ジャガイモ、オリゴ糖 花粉、コンニャク、果実の粉等の食用性粉末と各種ビタミン、ミネラル、糊料を一緒に固め、錠剤化してもよい。立方体、球体、紡錘形、円盤形、三角形、六角形等の形の錠剤にしてもよい。飲み込みやすくするため、表面に糖衣を施すなど、コーティングしてもよい。このように、実施例10または実施例11をそのまま、またはそれらに食物の粉末、ビタミン類、ミネラル類、糊料、あるいは食物抽出物等を少なくとも一つを混ぜ固め、錠剤化したことを特徴とする微生物封入物を提供することができる。
実施例13:粉末タイプ 実施例10において得られた乾燥させたものを、粉末あるいは顆粒状にする。そのまま、用いてもよいし、粉を他の食品に混ぜたりして固形化する。粉末あるいは顆粒状にすることで他のものと混ぜやすくなる。
【0007】
【発明の効果】
微生物と気泡を凝固剤で固められた凝固化固形物に分散させることで、熱の伝導を妨げる発泡構造になっている。そのため、今まで生きたまま微生物を加えることが出来なかった食品に加えることができる。また、胃液などの酸、胆汁などアルカリ、殺菌剤などの化学剤から微生物を保護もでき、多くの有用菌を生きたまま腸内に大量に運ぶことができる。噛むことによっても、その機能は保たれる。
凝固発酵、発泡凝固発酵、または発泡させた凝固剤で微生物を固める製造方法は、簡便であり、安価で耐熱性の高い製品を提供できる。凝固剤が寒天などの場合、食物繊維を同時に摂取でき、腸内有用菌が腸内で繁殖、定着しやすい環境も提供し、食物繊維による腸内浄化作用、ダイエット効果も期待できる。
乾燥させた微生物封入物は常温長期保存ができ、乾燥させない微生物封入物よりさらに耐熱性、耐化学剤性が高まる。加熱加工を要する様々な食品にまで使うことができ、整腸作用がある食品、お菓子類になる。例えば、ケーキ、クッキー、ビスケット、チョコレート、せんべい、飴、スナック菓子等、かまぼこ、卵焼き等の食品に加えることができる。粉状にしたものは、ドレッシングに入れたり、様々な食品に加えられる。また錠剤化することで携帯可能なサプリメントになる。このように広範囲の食品に加えられることで、ヨーグルトが苦手な人でも、どこでも気軽に食せることができる。これらの製品は、人間以外の動物にも使用でき、ペットフードにも利用できる。
【図面の簡単な説明】
【図1】本発明の構造概念図である。
【図2】本発明の構造概念図である。
【図3】本発明の工程図である。
【符号の説明】
1 菌 2 凝固化固形物 3 被膜[0001]
TECHNICAL FIELD OF THE INVENTION
This invention protects microorganisms such as useful enteric bacteria such as yogurt, which is a health food, from the heat of cooking, and protects them from acid alkali such as gastric juice and bile and supplies them to the intestine to enhance intestinal regulation. The present invention relates to a microbial inclusion having heat resistance or chemical agent resistance.
[0002]
[Prior art]
Conventionally, useful enteric bacteria such as yogurt are known to be killed by gastric juice and bile when eaten, and that very few enteric useful bacteria reach the intestine alive. For this reason, there has been a health food in which useful intestinal bacteria are encapsulated in capsules or microcapsules. There is also a yogurt product in which a small amount of gelatin, pectin, or agar is added to yogurt, but this is used as an additive to maintain a smooth texture and shape of the product. There are also powders of bacteria that have been hardened by pressure. In addition, there is a method in which cells are mixed with alginate, injected into a coagulated salt solution with a nozzle, solidified, and dried (for example, see Patent Documents 1 and 2). There is still nothing to add to things that require heat processing, such as cookies.
[0003]
[Patent Document 1]
JP-A-8-242773
[Patent Document 2]
JP-A-60-141281
[0004]
[Problems to be solved by the invention]
This had the following disadvantages.
(A) A method for entrapping dried intestinal bacteria in capsules or microcapsules has gastric juice resistance, but heat resistance is difficult. In addition, the process is complicated and expensive, and the film is broken when chewed, so that there is no effect of protecting useful enteric bacteria from gastric juice. (B) Foods that assist in the coagulation of yogurt with a small amount of gelatin or agar are pleasant to the touch when eaten, but the bacteria are killed at temperatures above 40 ° C. Further, since the concentration of agar is used at a low concentration of 0.2 to 0.5%, the strength of the gel is weak, and the shape of the gel collapses or the gel melts only by adding water or applying vibration. It has little effect on protecting intestinal useful bacteria from gastric juice and bile. (D) The method of mixing bacterial cells with alginate, injecting it into a coagulated salt solution with a nozzle, solidifying it, and drying it is also difficult in heat resistance. In addition, the bacteria concentrated by a centrifugal separator are taken out and washed several times to increase the cost. It is not possible to increase the density of bacteria by merely mixing them, and it is difficult to allow microorganisms to penetrate into the details of the gel network structure. These conventional products die at the high temperature of baking cookies and the like, and are difficult to mix with foods that require heat processing.
[0005]
[Means for Solving the Problems]
As shown in the structural conceptual diagram of FIG. 1, the foam has a foam structure in which microorganisms and air bubbles are dispersed in a solid such as a solidified solid solidified by a coagulant, thereby preventing heat conduction and having heat resistance. It also has a structure that protects microorganisms from acids such as gastric juice, alkalis such as bile, chemicals such as bactericides, and external stimuli. Then, as shown in FIG. 2, if bubbles are also introduced into the capsule structure coating, the heat resistance increases.
When the solidified solid is a gel, the microorganism is surrounded by the gel, and the diffusion rate according to the concentration gradient of acids, alkalis, and the like contained in gastric juice and bile is reduced. As a result, the penetration rate of the acid, alkali, or disinfectant is reduced, and the resistance to the chemical agent is increased. The chemical resistance is gastric juice resistance, that is, acid resistance, bile resistance, that is, alkali resistance, and a bactericide. Even conventional yogurt, when eaten after a meal, reaches the intestines, albeit a little, due to the thin stomach acid. Hardening with a coagulant increases the probability of reaching the intestine.
If microorganisms are dispersed in the solidified solid, even if they are broken by chewing when ingesting, the microorganisms are always dispersed in the solidified solid because the microorganisms are dispersed in the solid. I have. On the other hand, in the method of covering microorganisms with a film such as a microcapsule, the film is broken when chewed at the time of ingestion, and has no chemical agent resistance.
As an outline of the production means, first, a coagulant, a foaming agent, and a culture solution are added and foamed. Next, coagulation fermentation, that is, coagulation and fermentation, or fermentation and coagulation are performed simultaneously. When adding the microorganisms, the temperature may be reduced to the growth temperature of the microorganisms so that the microorganisms are inoculated and the microorganisms may be inoculated anywhere before the coagulation and fermentation step so as not to die at high temperatures. By this foam coagulation fermentation, fermentation is performed in a state in which bubbles and microorganisms are dispersed in a culture solution containing a coagulant, the microorganisms proliferate, active ingredients such as lactic acid are produced, and the microorganisms are confined in the network structure of the foamed gel. In addition, a homogeneous product can be easily obtained. Therefore, the size can be reduced to the level of powder. By making the powder, the grainy feeling when eaten is eliminated, and it can be mixed with various foods. In the case of agar, it exists as a molecule of a random coil in a solution state, but associates upon cooling to form a three-dimensional network structure of a double helix structure. By this coagulation fermentation, microorganisms are fermented in a state in which the microorganisms are dispersed in a culture solution solidified with a coagulant, the microorganisms proliferate, and active ingredients such as lactic acid are produced abundantly. A homogeneous product containing the active ingredient is easily obtained. Bacteria have a size of 0.2 to 10 μm, most of which are rod-like, spherical or fibrous and have a size of 0.5 to 1 μm. On the other hand, if yogurt is mixed with a coagulant such as agar to simply coagulate, it is difficult to produce a homogenous product because the yogurt and coagulant are partially separated, and it is difficult to increase the density of microorganisms just by mixing them. It is not possible, and it is difficult to penetrate microorganisms into the details of the gel network.
Microorganisms such as lactic acid bacteria solidified with a coagulant are dried or desolvated to reduce the amount of water and the like, so that they can be stored at room temperature. In addition, heat conduction is reduced and heat resistance is further increased. The penetration rate of gastric juice and bile penetrates further, and the resistance to chemical agents is further increased. Also, the density of microorganisms can be increased. Even when the amount of the coagulant is small, by drying, the strength of the solid is increased and the resistance to the chemical agent is increased.
Since the coagulation fermentation is used as it is or after being used after drying, it is not necessary to take out the cells with a centrifugal separator. Also, such as when mixing the microorganisms, usually so that the microorganisms do not die, the temperature setting is severe, but in the case of the present invention, if there are microorganisms that have not died even a little, after coagulation, fermentation Therefore, there is no problem even if the temperature is somewhat high.
The coagulant used in the present invention includes a gelling agent or an adhesive such as agar, pectin, gelatin, mannan such as konjac, galaginan, xanthan gum, alginic acid, alginate, locust bean gum, starch, funori, and gum arabic. In addition, the combination of coagulants preferably has a chemical resistance to gastric juice and bile and has an enteric property in the intestine in order to allow useful enteric bacteria to reach the intestine alive. If heat resistance is required, a material that is resistant to heat is preferred. Examples of the microorganism include, but are not particularly limited to, kefir bacteria used in yogurt, Caspian sea yogurt bacteria, and Lactobacillus Lactobacillus genus Lactobacillus. L. acidophilus, L. acidophilus L. gasseri, L. L. casei, L. Bulgaricus (L. bulgaricus), E. coli of the genus Enterococcus. E. faecium, E. E. fecalis, Streptococcus sp. Thermophilus, S. thermophilus. S. salivarius, Bacillus sp. Coagulans, B. coagulans; Natto (B. natto) and the like can be exemplified. Bifidobacteria include Bifidobacterium genus Bifidobacterium. Bifidum, B. B. infantis, B. infantis; B. breve, B. Longum (B. longum) and the like can be exemplified. The foaming agent or surfactant is not particularly limited, but is gelatin, protein such as egg white, egg yolk, milk, or a protein decomposed product, saponin, lecithin and the like.
A microbial inclusion having heat resistance and chemical agent resistance comprising the structure or the production method as described above, and a production method thereof.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below.
Example 1 This will be described with reference to FIGS. (First step): Agar, which is a coagulant and a dietary fiber, is mixed with water, boiled and dissolved to produce a coagulant solution. In this example, a coagulant solution was prepared using a 45: 1 weight ratio of water to agar. The coagulant is required to be in an amount equal to or greater than the degree of coagulation in the ninth step, and is desirably equal to or higher than the concentration usually consumed as agar. The agar used was Kanten Cook from Ina Food Industry. (Second step): Sugar and sugar beet are mixed to produce a mixed sugar. In this embodiment, the weight ratio of sugar to beet sugar was 5: 1. The sugar has both a role of sweetness and a role of a culture solution of the fungus. (Third step): The mixed sugar of the second step is mixed with the coagulant solution of the first step to produce a sugar coagulant solution. In this example, a sugar coagulant solution was prepared with a weight ratio of coagulant solution to mixed sugar of 8: 1. (Fourth step): A skim milk solution as a culture solution is produced at a weight ratio of water to skim milk of 4: 1. When the sugar coagulant solution is mixed, warm it to a temperature at which the solution does not solidify. In this example, the test was performed at 50 ° C. Before heating, leave one tenth to make the seed solution. Milk and skim milk itself has a foaming effect and also acts as a foaming agent. The bubbles disappear over time, but when mixed with agar, the bubbles are more likely to form and hardly disappear. (Fifth step): An equal weight of the culture foaming agent solution of the fourth step is added to and mixed with the sugar coagulant solution obtained in the third step to produce a culture foaming agent coagulant solution. (Sixth step): One tenth of the culture foaming agent liquid of the fourth step and yogurt are mixed at a weight ratio of 1: 2, and warmed to a temperature suitable for fermentation to produce a seed solution. By making the seed a solution, it becomes easier to disperse it in the culture foaming agent coagulant solution. There is an optimal temperature for the growth of microorganisms, and if the temperature is raised too high it will die. On the other hand, if the temperature of the seed solution is too low, when it is mixed with the culture foaming agent coagulant solution, it coagulates at the stage of stirring, and the microorganisms cannot be sufficiently dispersed in the culture foaming agent coagulant solution. In this example, the test was performed at 35 ° C. Kefir yogurt or Caspian sea yogurt was used. (Seventh step): The culture foaming agent coagulant solution of the fifth step is foamed by foaming. While stirring with a whisk, cool to a degree that does not solidify. In this example, the temperature was lowered to 43 ° C. Smaller bubbles are more difficult to break. Therefore, it is necessary to foam sufficiently. Ultrasound may be used to make the foam fine enough. For example, ultrasonic waves are applied after foaming with a whisk. (Eighth step): The foamed culture foaming agent coagulant solution of the seventh step and the seed solution of the sixth step are mixed at a weight ratio of 6: 1 and stirred to disperse and inoculate the seeds of the microorganism. Depending on the type of coagulant, foaming agent, and microorganism, the temperature and weight ratio of the culture coagulant solution and the seed solution are adjusted so that the culture foaming agent coagulant solution does not solidify, bubbles are not easily eliminated, and microorganisms are hardly killed. Need to decide. When the amount of inoculated microorganism is small, it is necessary to increase the fermentation time. Here, the concentration of agar became approximately 0.8%. (Ninth step): The liquid mixture of the eighth step is immediately cooled and solidified before bubbles disappear. After that, ferment at an appropriate temperature. In this example, the test was performed at 25 ° C. The optimum fermentation temperature varies depending on the type of microorganism. In the case of agar, it gels around 40 ° C. Therefore, once the temperature is lowered and solidified before the bubbles disappear, even if the temperature is raised, the bubbles do not disappear and fermentation can be performed in a foamed structure. As the fermentation proceeds, lactic acid increases, so the degree of fermentation was judged based on the aroma. It is desirable to immediately proceed to the ninth step so that the useful intestinal bacteria will not be killed by heat and the bubbles will not disappear in the eighth step. However, even with some death, fermentation in the ninth step can increase the number of microorganisms. Although the seed solution is produced in the sixth step, the seeds of the microorganisms in powder or solid state may be directly introduced in the eighth step. The product obtained in the ninth step may be used as it is, but as in Example 10, by drying, the heat resistance is increased. Milk may be used instead of skim milk solution. Sugars, vitamins, minerals, and the like may be mixed with the culture solution to facilitate propagation of useful intestinal bacteria. In the case of an anaerobic bacterium, carbon dioxide gas, nitrogen gas or the like is added.
Example 2: Foaming agent added type In the first step of Example 1, gelatin as a foaming agent is added. Agar, which is a coagulant / dietary fiber, and gelatin, which is a foaming agent, are mixed in water, boiled and dissolved to produce a foamed coagulant solution. In this example, the operation was carried out at a weight ratio of water, agar and gelatin of 45: 0.8: 0.2 to prepare a foamed coagulant solution. In this step, it is necessary to raise the temperature to a temperature at which the coagulant and the foaming agent melt. The foaming agent may be foamed, but is desirably added to such an extent that bubbles are not easily eliminated during the coagulation process. The second and subsequent steps are the same as in the first embodiment. As described above, there is provided a method for producing a microbial inclusion, which comprises mixing a coagulant, a foaming agent, a culture solution, and microorganisms, foaming and coagulating and fermenting the mixture, and confining the microorganisms and bubbles in the coagulant.
Example 3: Bubble volume control type When all of the culture foaming coagulant solutions of Examples 1 and 2 are foamed and foamed, the film of the foam becomes thin and may be easily broken during drying. Therefore, it is necessary to reduce the amount of bubbles. In the seventh step of Example 1 or Example 2, a part is foamed and added to the rest to adjust the amount of bubbles. At that time, since the bubbles are easily floated, it is necessary to cool and solidify the bubbles immediately after mixing to fix the bubbles. In this example, half of the cultured foaming coagulant solution produced in the fifth step was foamed, the remaining cultured foaming coagulant solution was added, and then the microorganism was inoculated and stirred, and immediately cooled and coagulated. Thus, as described above, a microorganism characterized by mixing a coagulant, a foaming agent, a culture solution, and microorganisms, partially foaming, coagulating and fermenting, and confining the microorganisms and regulated bubbles in the coagulant. This is a method for producing an enclosure.
Example 4: Carbonated water foaming type In the seventh step of the first and second embodiments, foaming is performed not with a whisk but with carbonated water. Since the concentration of the coagulant or the culture solution is reduced by the carbonated water, the coagulant solution or the culture solution needs to be thickened. This type also has a new texture due to carbonic acid. As described above, a method for producing a microorganism-filled material, comprising mixing a coagulant, a foaming agent, a culture solution, and microorganisms, foaming the mixture with carbonated water, coagulating and fermenting, and confining the microorganisms and bubbles in the coagulant. It is.
Example 5: Decompression type In Examples 1 and 2, when bubbling is performed under reduced pressure and returned to normal pressure and coagulated, fine bubbles are formed, and after drying, the bubbles are not easily broken. As described above, the present invention provides a method for producing a microbial inclusion, characterized by foaming under reduced pressure, coagulating and fermenting at normal pressure, and confining microorganisms and air bubbles in a coagulant.
Example 6 : In the first step of Examples 1 to 5, a plurality of coagulants such as starch, pectin, gelatin, funori and gum arabic may be combined. It is possible to provide a mixed type of coagulant which can adjust chemical resistance and heat resistance and is characterized by an optimal combination of coagulants which is easily dissolved in intestinal fluid. Add dietary fiber such as mannan, bran, burdock and mushrooms. The types of mushrooms are not limited, such as shiitake mushrooms, enoki mushrooms, and agarsk. By reinforcing dietary fiber, it is possible to provide a dietary fiber-reinforced type characterized by supplying an environment in which useful enteric bacteria are proliferated in the intestine. In the step before coagulation, minerals such as Ca, Mg, and Fe, various vitamins, or food extracts or foods are added. The food may be herbs or spices, or fermented. Mg has a laxative function and herbs have a medicinal function. That is, it is possible to provide a product characterized by being able to simultaneously supply nutrients and functions to living bodies such as humans and animals by enhancing at least one of minerals, vitamins, and food extract.
Example 7 : Various bacteria coexist in the intestine. Therefore, in Examples 1 to 6, it is possible to provide a mixed type of bacteria characterized by making a combination of bacteria that easily settle in the intestine of each individual by combining a plurality of bacteria. When anaerobic bacteria are used as seeds, the process is performed in a sealed state such as carbon dioxide or nitrogen gas, or a reducing agent such as vitamin C or an oxygen absorbent is added so that the anaerobic bacteria can be fermented. Proliferates bifidobacteria and the like. When foaming, foaming is performed in the absence of oxygen such as carbon dioxide gas or nitrogen gas so that oxygen does not enter. In the case of the carbonated water foaming type of the fourth embodiment, carbon dioxide gas is generated, so that it can be manufactured without much concern about mixing of oxygen. Thus, a method characterized by growing anaerobic bacteria can be provided. In addition, a mixture of anaerobic bacteria and aerobic bacteria can be used. During coagulation and fermentation, culture in a sealed container or restrict the inflow of oxygen to prevent oxygen from entering from outside. After an aerobic bacterium grows and oxygen is consumed at first, an anaerobic bacterium grows. That is, the present invention provides a method characterized by allowing aerobic bacteria and anaerobic bacteria to coexist and grow.
Example 8: Direct dispersion coagulation method A method in which a microbial powder mixed with a concentrated microbial solution, microbial powder, or hydrophobic oil is directly mixed with a coagulant, dispersed and coagulated. In the case of foaming, a method in which microbial powder or a mixture of microbial powder in hydrophobic oil or the like is directly mixed with a foamed coagulant, dispersed and coagulated. Microbial powder may be mixed with the foaming coagulant before foaming. A mixture of bacteria in a hydrophobic substance such as soybean oil, olive oil, sesame oil, germ oil, coconut oil, rapeseed oil, grape seed oil, etc. is dispersed in a foamed foaming coagulant solution and coagulated. Increase. In the first step, such as in Example 1, after the coagulant solution is prepared, the temperature is lowered to a temperature below the freezing point. While foaming, lower the temperature. If agar, lower to around 40 ° C. Bacterial powder or a mixture of bacterial powder in a hydrophobic oil or the like is added to a coagulant solution, stirred, dispersed, and coagulated. Alternatively, in the eighth step of Example 1, instead of the seed solution, bacterial powder is added, or a mixture of bacterial oil and hydrophobic oil or the like is added. This has the effect of simultaneously adding nutrients for the bacteria to grow in the intestine. In the case of an anaerobic bacterium, it is advisable to perform the treatment by encapsulating carbon dioxide gas or to add a reducing agent such as vitamin C. The coagulation solution may contain at least one of dietary fiber, minerals, vitamins, or an extract of food. The solvent of the coagulant may be a substance other than water. In the case where the gelling agent is alginic acid such as sodium alginate, at a temperature at which bacteria of 40 ° C. or less do not die, a microbial powder or a concentrated microbial solution is dispersed in a coagulant solution or a foamed coagulant solution. It may be immersed in a solution containing Ca ions and solidified. That is, a foaming coagulant solution or a mixture of a foaming coagulant solution, a culture solution, dietary fiber, minerals, vitamins, and at least one of food extract extracts mixed with bacterial powder or a hydrophobic substance mixed with bacterial powder. Is dispersed and solidified.
Example 9: Strength strengthening type Certain chemical substances such as Ca ions, Mg ions, K ions, and charged substances of polymers, which promote solidification or enhance the strength of solids with a cross-linked structure, etc., and increase the penetration rate of H ions, HO ions, etc. You may slow down. It may be added in the coagulation step of Examples 1 to 8, or may be soaked after coagulation. As described above, according to the present embodiment, it is possible to provide a microbial inclusion in which coagulation is promoted by a chemical substance or solid strength is enhanced in Examples 1 to 8 and the like.
Example 10: Dry type By drying, the bacteria become asleep and can be stored at room temperature. Bacterial density also increases. By eliminating moisture, heat conduction decreases, heat resistance increases, solid strength increases, and the penetration rate of chemicals such as acids, alkalis, and germicides further decreases, resulting in acid resistance. Also, chemical resistance such as alkali resistance is increased. The product obtained by coagulation fermentation or coagulation in Examples 1 to 9 is cut into a suitable size and dried. Alternatively, the product obtained by coagulation fermentation or coagulation in Examples 1 to 8 may be dried and then cut into an appropriate size. The drying method may be a process such as shade drying, cold air drying, warm air drying, reduced pressure drying at normal temperature, reduced pressure drying at low temperature, or freeze drying. The solvent may be squeezed out using centrifugal force, squeezing, or the like, or the above drying method may be used after squeezing out the solvent. By squeezing out the solvent, it can be dried quickly. In addition, if the ratios of water and the solvent are reduced from the beginning, such as by increasing the amount of coagulant or increasing the concentration of the culture solution, the examples 1 to 9 are easily dried. For example, in the first step of Example 1, the weight ratio of water to agar is 45: 2. The dried product may be used in the form of powder or granules. The product obtained in Example 1 was cut into a suitable size and dried in the shade. About 7 mm square thing was put in the electric oven of 120 degreeC, and the heat resistance experiment was performed by heating time 2 minutes 30 seconds, 5 minutes, and 7 minutes. A non-foamable type obtained by drying Example 1 was also subjected to a comparative experiment at the same time. The milk was placed in a bottle disinfected with boiling water, sealed, and left at room temperature (about 20 ° C.). With a heating time of 2 minutes and 30 seconds, the foaming type fermented for 2 days and the non-foaming type fermented for about 3 days. When heated for 5 minutes, the surface became slightly brown, and the foamed type fermented after 2 days and the non-foamed type after 6 days. The non-foamed type seems to have taken longer to ferment because fewer microorganisms survived. When heated for 7 minutes, the surface became dark brown and the foamed type fermented after 2 days, while the non-foamed type did not. The dried product may be taken in the form of granules. The size ranges from a size that can maintain the resistance to the chemical agent to a size that can be swallowed. For example, the minimum size is sufficient if it is about the thickness of a microcapsule type coating. The tablet may be used as it is, or the surface may be coated with sugar coating or oiling to make it easy to swallow. By heating the dried product moderately, it becomes a crispy and comfortable food. Because of its heat resistance, it is possible to mix dried and crispy foods with various foods and heat them. For example, it can be added to foods such as bread, cheese, rice cake, kamaboko, fried egg, etc., cakes, cookies, biscuits, chocolate, rice crackers, buns, snacks and the like. You may wear it later.
Example 11: Oil adsorption type The dried product obtained in Example 10 is immersed in edible oil. Thereby, water resistance is increased and chemical agent resistance is also increased. Because it is strong against heat, it may be fried in oil. Examples of the oil include soybean oil, olive oil, sesame oil, germ oil, coconut oil, rapeseed oil, grape seed oil and the like. The temperature of the oil may be about 35 ° C. to 50 ° C. so that the oil easily penetrates when immersed in the oil. Thus, the dried microbial inclusion obtained in Example 10 can be provided in a microbial inclusion characterized by being immersed in edible oil to enhance water resistance.
Example 12: Tablet type Tablet type makes it easier to take. In addition, when tableting, it can be hardened together with various nutrients and can be ingested effectively at the same time. As an embodiment, the dried type of Example 10 or the oil-adsorbed type of Example 11 may be tableted as it is, or germ, cocoa, vegetable, potato, oligosaccharide pollen, konjac of soybean, barley, corn, rice, bran, etc. An edible powder such as fruit powder and various vitamins, minerals, and pastes may be solidified together and formed into tablets. The tablet may be in the form of a cube, a sphere, a spindle, a disk, a triangle, a hexagon, or the like. In order to make it easy to swallow, the surface may be coated with sugar coating or the like. As described above, Example 10 or Example 11 is used as it is, or a mixture of at least one of food powder, vitamins, minerals, paste, or food extract is solidified and tabletted. Microorganism inclusions can be provided.
Example 13: powder type The dried product obtained in Example 10 is powdered or granulated. It may be used as it is, or the powder may be mixed with other foods and solidified. Powdering or granulating makes it easier to mix with other substances.
[0007]
【The invention's effect】
By dispersing microorganisms and air bubbles in a solidified solidified with a coagulant, a foamed structure that prevents heat conduction is obtained. Therefore, it can be added to foods to which microorganisms could not be added alive. In addition, the microorganisms can be protected from acids such as gastric juice, alkalis such as bile, and chemical agents such as bactericides, and many useful bacteria can be transported in large quantities to the intestine alive. The function is maintained by chewing.
Coagulation fermentation, foam coagulation fermentation, or a method for solidifying microorganisms with a foamed coagulant can provide a simple, inexpensive, and highly heat-resistant product. When the coagulant is agar or the like, dietary fiber can be ingested at the same time, an environment where useful intestinal bacteria can easily propagate and colonize in the intestine is provided, and the intestinal purification action and diet effect of the dietary fiber can be expected.
The dried microbial inclusions can be stored at room temperature for a long period of time, and have higher heat resistance and chemical agent resistance than non-dried microbial inclusions. It can be used for various foods that require heat processing, and can be used as foods and sweets that have an intestinal action. For example, it can be added to foods such as cakes, cookies, biscuits, chocolate, rice crackers, candy, snacks, etc., kamaboko, fried eggs and the like. The powdered form can be put into dressings or added to various foods. It can be made into a portable supplement by tableting. By being added to a wide range of foods in this way, even people who are not good at yogurt can easily eat anywhere. These products can be used for non-human animals and also for pet food.
[Brief description of the drawings]
FIG. 1 is a structural conceptual diagram of the present invention.
FIG. 2 is a structural conceptual diagram of the present invention.
FIG. 3 is a process chart of the present invention.
[Explanation of symbols]
1 Bacteria 2 Solidified solid 3 Coating
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003177303A JP2004344146A (en) | 2003-05-20 | 2003-05-20 | Product enclosed with microorganism having thermal resistance and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003177303A JP2004344146A (en) | 2003-05-20 | 2003-05-20 | Product enclosed with microorganism having thermal resistance and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004344146A true JP2004344146A (en) | 2004-12-09 |
Family
ID=33534931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003177303A Pending JP2004344146A (en) | 2003-05-20 | 2003-05-20 | Product enclosed with microorganism having thermal resistance and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004344146A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010183863A (en) * | 2009-02-12 | 2010-08-26 | Npo Hiroshima Junkangata Shakai Suishin Kiko | Method for producing ethanol from food waste and apparatus therefor |
WO2020196844A1 (en) | 2019-03-28 | 2020-10-01 | 森永乳業株式会社 | Heat-resistant bacterium composition |
-
2003
- 2003-05-20 JP JP2003177303A patent/JP2004344146A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010183863A (en) * | 2009-02-12 | 2010-08-26 | Npo Hiroshima Junkangata Shakai Suishin Kiko | Method for producing ethanol from food waste and apparatus therefor |
WO2020196844A1 (en) | 2019-03-28 | 2020-10-01 | 森永乳業株式会社 | Heat-resistant bacterium composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101536773B (en) | Core stuff of probiotic biscuit, sandwich biscuit and method for manufacturing same | |
JP2670691B2 (en) | Reconfigurable dry product for direct ingestion and process for its production | |
Ozyurt et al. | Properties of probiotics and encapsulated probiotics in food | |
Heidebach et al. | Microencapsulation of probiotic cells for food applications | |
Arepally et al. | A review on probiotic microencapsulation and recent advances of their application in bakery products | |
EP2347661B1 (en) | Method for obtaining a mixture of probiotics, nutrient prebiotics having synergistic symbiotic action | |
CN101518294A (en) | Probiotics-containing chocolate and method for manufacturing same and application | |
EP2796056A1 (en) | Probiotic or symbiotic gelled products and method for the production thereof | |
CN109566935A (en) | The preparation method of the comprehensive compound powder solid beverage of probiotics | |
JPWO2017179602A1 (en) | Composition for improving brain function for newborns | |
CN104642539A (en) | Probiotic granules and preparation method thereof, and long-shelf-life fermented milk containing probiotic granules and preparation method thereof | |
RU2470518C1 (en) | Milk yoghurt with probiotic cultures | |
CN108289919A (en) | Anti-allergic agent towards baby | |
JP2968089B2 (en) | Coating material and enteric-coated granules using the same | |
JP2007330177A (en) | Activator of enteric bacterium | |
JP2004173675A (en) | Bacterium-encapsulated product having chemical-resistant property and method for producing the same | |
Karthikeyan et al. | Augmentation of probiotic viability in ice cream using microencapsulation technique | |
JP2890746B2 (en) | Foods containing highly stable intestinal useful bacteria | |
JP2004344146A (en) | Product enclosed with microorganism having thermal resistance and method for producing the same | |
US20240115509A1 (en) | A probiotic granule having a unified stabilizing coating and a method for the production thereof | |
BRPI0905590A2 (en) | industrial process of immobilization of a consortium of microorganisms present in kefir biologicus, as well as their bioactives, through the formation of modified calcium alginate microcapsules | |
KR20030070799A (en) | Method for preparation of bilayered microcapsules containing lactic acid bacteria | |
Hati et al. | Encapsulation of probiotics for enhancing the survival in gastrointestinal tract | |
JP2003334065A (en) | Nucleic acid complex for protecting lactic acid bacterium | |
RU2229251C2 (en) | Method for obtaining of immobilized composition of functional food probiotic gelatinized product, immobilized composition and functional product comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050301 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070911 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071109 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080819 |