JP2004342999A - Method for manufacturing cylindrical magnetic substance and apparatus for manufacturing cylindrical magnetic substance - Google Patents

Method for manufacturing cylindrical magnetic substance and apparatus for manufacturing cylindrical magnetic substance Download PDF

Info

Publication number
JP2004342999A
JP2004342999A JP2003140692A JP2003140692A JP2004342999A JP 2004342999 A JP2004342999 A JP 2004342999A JP 2003140692 A JP2003140692 A JP 2003140692A JP 2003140692 A JP2003140692 A JP 2003140692A JP 2004342999 A JP2004342999 A JP 2004342999A
Authority
JP
Japan
Prior art keywords
cylindrical
magnetic field
setter
manufacturing
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003140692A
Other languages
Japanese (ja)
Inventor
Teruo Mori
輝夫 森
Kesaharu Takato
今朝春 高藤
Takatomo Toda
孝友 遠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003140692A priority Critical patent/JP2004342999A/en
Publication of JP2004342999A publication Critical patent/JP2004342999A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a cylindrical magnetic substance using a transverse magnetic field molding method. <P>SOLUTION: A transverse magnetic field molding step of molding a molded body of magnetic powder and a material, a plurality of sets of which are to be combined into a cylinder by applying a compression pressure in a thickness direction while applying a magnetic field in a length direction, and a sintering step of combining and sintering a pair of the molded bodies 11, 11 molded by the transverse magnetic field molding step to manufacture an integrated cylindrical magnetic substance, are executed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、長さ方向に沿って配向された筒状磁性体を製造する筒状磁性体の製造方法、およびこの筒状磁性体を製造する筒状磁性体製造装置に関するものである。
【0002】
【従来の技術】
この種の筒状磁性体を製造する製造方法として、特開平9−232134号公報に開示された磁性体の製造方法が知られている。この磁性体の製造方法では、同公報中の図1に示すように、上側パンチ(51)の非磁性体(6)、下側パンチ(54)の非磁性体(10)、臼型(7)および中棒(8)の配置によって作り出される成型空間(9)において、上下パンチの圧縮方向と同方向の磁場中で原料粉末を圧縮成形して成形体を作製し、作製した成形体を焼結することにより、筒状磁性体(偏平環状永久磁石)を製造している。この製造方法によれば、圧縮成形時に成形体の軸線方向(長さ方向)に沿った磁界が印加されるため、軸線方向(長さ方向)に配向された筒状磁性体が製造される。
【0003】
ところで、特開2001−44055号公報にも記載されているように、磁場中で圧縮成形(加圧成形)する方式には、圧縮方向と磁場印加方向とが略平行な縦磁場成形方法(上記の特開平9−232134号公報に開示された磁性体の製造方法において採用している成形方法)、および圧縮方向と磁場印加方向とが略直角の横磁場成形方法があり、縦磁場成形方法に比べて横磁場成形方法の方が成形体の配向度が高くなり、その結果、より優れた磁気特性を有する焼結体を製造できることが知られている。このため、長さ方向に配向された筒状磁性体を製造する際においても、磁場印加方向に対してほぼ直角な方向から原料粉末を圧縮して成形体を作製することが好ましい。
【0004】
【特許文献1】
特開平9−232134号公報(第3−4頁、第1図)
【特許文献2】
特開2001−44055号公報(第3頁)
【0005】
【発明が解決しようとする課題】
ところが、上記した従来の製造方法には、以下の問題点がある。つまり、特開平9−232134号公報において開示された磁性体の製造方法に横磁場成形方法を適用する場合、例えば、図12に示すような下側パンチ62、上側パンチ63、臼型64および中棒65を備えた横磁場成形装置61を用意して、下側パンチ62、上側パンチ63、臼型64および中棒65の配置によって横磁場成形装置61の内部に作り出される筒状の成型空間(キャビティ)CA内に満たした原料粉末66を横磁場A(磁界印加方向は紙面の奥側から手前側に向かう向きとなる)中において上下パンチ63,62によって圧縮して筒状成形体を製造する製造方法が考えられる。しかしながら、この製造方法では、上下パンチ63,62によって原料粉末66を圧縮する際に、原料粉末66を介して各パンチ63,62から加わる応力によって中棒65が変形するおそれがあるために筒状成形体を作製するのが難しい結果、筒状磁性体を作製するのが困難であるという問題点が存在する。
【0006】
本発明は、かかる問題点に鑑みてなされたものであり、筒状磁性体を横磁場成形方法を用いて製造し得る筒状磁性体の製造方法を提供することを主目的とする。また、この製造方法の実施に好適な筒状磁性体製造装置を提供することを他の主目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成すべく本発明に係る筒状磁性体の製造方法は、長さ方向に沿って磁界を印加しつつ厚み方向に圧縮圧力を印加することにより、複数組み合わせて筒状に形成可能な成形体を磁性粉末を材料として成形する横磁場成形工程と、当該横磁場成形工程によって成形した複数の前記成形体を組み合わせた状態で焼結して一体化することによって前記筒状の磁性体を製造する焼結工程とを実行する。
【0008】
この場合、前記横磁場成形工程において、前記成形体として前記長さ方向と直交する方向に沿った断面形状が円弧状の成形体を成形し、前記焼結工程において、前記円弧状の成形体を組み合わせた状態で焼結して一体化することによって円筒状の磁性体を製造するのが好ましい。
【0009】
また、前記横磁場成形工程において、前記円弧状の成形体として前記断面形状が半円弧状の成形体を成形し、前記焼結工程において、互いに離間して平行に配設された一対の支持部を備えたセッターを用いて、前記横磁場成形工程において成形して前記円筒状に組み合わせた一対の前記成形体をその各合わせ目が同一垂直面上に位置するように前記セッターの前記両支持部間に架け渡して載置し、その状態で前記各成形体を焼結するのが好ましい。
【0010】
また、前記横磁場成形工程において、前記成形体として前記長さ方向と直交する方向に沿った断面形状がV字状の成形体を成形し、前記焼結工程において、互いに離間して平行に配設された一対の支持部を備えたセッターを用いて、前記横磁場成形工程において成形して角筒状に組み合わせた一対の前記成形体をその各合わせ目が同一垂直面上に位置するように前記セッターの前記両支持部間に架け渡して載置し、その状態で前記各成形体を焼結するのが好ましい。
【0011】
また、前記焼結工程において、互いに離間して平行に配設された一対の支持部を備えたセッターを用いて、前記横磁場成形工程において成形して前記円筒状に組み合わせた3つの前記成形体をその内の下方に位置する一対の当該成形体が左右対称状態となるように前記セッターの前記両支持部間に架け渡して載置し、その状態で前記各成形体を焼結するのが好ましい。
【0012】
さらに、前記焼結工程において、前記セッターに載置した前記各成形体における上側の前記合わせ目に重しを載置し、その状態で前記各成形体を焼結するのが好ましい。
【0013】
また、本発明に係る筒状磁性体製造装置は、横磁場成形によって成形された断面形状が半円弧状の一対の成形体を円筒状に組み合わせた状態で焼結して一体化することによって当該円筒状の磁性体を製造する際に使用可能に構成され、互いに離間して平行に配設可能な一対の支持部を備え、前記円筒状に組み合わせた前記各成形体をその各合わせ目が同一垂直面上に位置するように前記両支持部間に架け渡して載置可能なセッターを備えている。
【0014】
この場合、横磁場成形によって成形された断面形状がV字状の一対の成形体を角筒状に組み合わせた状態で焼結して一体化することによって当該角筒状の磁性体を製造する際に使用可能に構成され、互いに離間して平行に配設可能な一対の支持部を備え、前記角筒状に組み合わせた前記各成形体をその各合わせ目が同一垂直面上に位置するように前記両支持部間に架け渡して載置可能なセッターを備えているのが好ましい。
【0015】
また、横磁場成形によって成形された断面形状が円弧状の複数の成形体を円筒状に組み合わせた状態で焼結して一体化することによって当該円筒状の磁性体を製造する際に使用可能に構成され、互いに離間して平行に配設可能な一対の支持部を備え、前記円筒状に組み合わせた前記各成形体をその内の下方に位置する一対の当該成形体が左右対称状態となるように前記両支持部間に架け渡して載置可能なセッターを備えているのが好ましい。
【0016】
さらに、前記セッターに載置した前記各成形体における上側の前記合わせ目に載置可能な重しを備えているのが好ましい。
【0017】
【発明の実施の形態】
以下、添付図面を参照して、本発明に係る筒状磁性体の製造方法および筒状磁性体製造装置の好適な実施の形態について説明する。
【0018】
最初に、本発明に係る筒状磁性体製造装置の構成について、図面を参照して説明する。
【0019】
筒状磁性体製造装置は、図2に示す横磁場成形装置1、図4,5に示すセッター2、重し板3、焼結装置(図示せず)、および機械加工装置(図示せず)を備え、原料粉末としての磁性粉末を圧縮成形して板状の成形体11(図3参照。同図中では、半円筒状に湾曲した板状に形成されている)を複数作製し、作製した複数(この例では2つ)の成形体11を円筒状に組み合わせた状態で焼結して一体化することによって筒状磁性体12(図7参照)を製造可能に構成されている。
【0020】
この場合、横磁場成形装置1は、図2に示すように、下側パンチ21、上側パンチ22、臼型23および横磁場発生器(図示せず)を備えている。下側パンチ21は、図2に示すように、臼型23内に挿入される端部(同図中における上端部)における端面中央部分に樋状の凹溝21aが形成されている。本実施の形態では、凹溝21aは、その内面が断面半円弧状に形成されている。上側パンチ22は、同図に示すように、臼型23内に挿入される端部(同図中における下端部)における端面中央部分に、断面半円状のリブ22aが凹溝21aに対向して形成されている。この場合、リブ22aは、その直径が凹溝21aの直径よりも小径に形成されて、凹溝21a内に進入可能に構成されている。この構成により、横磁場成形装置1では、下側パンチ21の凹溝21a内に上側パンチ22のリブ22aが進入した型閉状態(図2に示す状態)において、下側パンチ21、上側パンチ22および臼型23によってほぼ半円筒状の成形空間(キャビティ)CAが内部に形成される。一例として、本実施の形態では、成形空間CAは、半円筒状の成形空間CA1と、この成形空間CA1の各端部(同図中の左右の各端部)から側方に水平に延びるほぼ直方体状の成形空間CA2,CA2とで構成されている。横磁場発生器は、例えば、電磁コイルと、この電磁コイルに励磁電流(直流電流)を供給する駆動部とを含んで構成されて、供給された励磁電流に基づいて、図2において紙面奥側から手前側に向かう直流磁界で構成される磁場Aを成形空間CA内に発生させる。
【0021】
セッター2は、図4,5に示すように、直方体状のベース部2aと、ベース部2aの長さ方向に沿った各縁部(同図中の左縁部および右縁部)から同一方向(同図中の上方向)に延出する直方体状の一対の支持部2b,2bとを一体的に形成して、断面形状が凹状に構成されている。また、セッター2は、一例として、酸化Dyを用いて形成されている。この場合、各支持部2bは、互いに離間して平行に配設されると共に、その間隔dが下側パンチ21の上面に形成された凹溝21aの直径よりも短く形成されている。また、ベース部2aは、一例として、横磁場成形装置1の内部に形成される成形空間CAの長さと同じ長さに形成されている。重し板3は、本発明における重しに相当し、一例として、セッター2と同じ材料を用いて、セッター2とほぼ同じ長さの直方体に形成されている。焼結装置は一例として焼結炉で構成され、機械加工装置は一例として研磨機で構成されている。
【0022】
次に、本発明に係る筒状磁性体12の製造方法について、図面を参照して説明する。なお、一例として、磁性粉末として磁歪粉末を使用することにより、長さ方向に沿って配向された筒状磁歪素子としての筒状磁性体12を製造する例について説明する。
【0023】
最初に、図1に示すように、横磁場成形工程51を実施して、図3に示す成形体11を作製する。
【0024】
具体的には、この横磁場成形工程51では、まず、上側パンチ22を臼型23から離間させてその上方に位置させている横磁場成形装置1の型開状態において、臼型23の内部(成形空間CA内)に磁歪粉末を投入する。この場合、磁歪粉末として、例えば、粉末状に形成したTb、Dy、Ho、SmまたはT(Fe,Co,Ni)を用いる。次いで、横磁場発生器を作動させて、図2に示すように、凹溝21a(成形空間CA)の長さ方向に沿った磁場Aを成形空間CA内(つまり磁歪粉末内)に発生させると共に、上側パンチ22を下動させて臼型23内に進入させることにより、横磁場成形装置1を図2に示す型閉状態に移行させる。これにより、臼型23内の磁歪粉末が、下側パンチ21、上側パンチ22および臼型23によって形成されるほぼ半円筒状の成形空間CAで規定される形状に圧縮成形されて、図3に示す成形体11が作製される。この場合、成形体11は、同図に示すように、成形空間CA1で規定される形状(半円筒状)の本体部11aと、各成形空間CA2,CA2で規定される形状(直方体状)の一対のリブ部11bとを備えて、長さ方向と直交する方向に沿った断面形状がほぼ半円弧状の略半円筒体に構成される。ここで、各リブ部11bは、本体部11aの各端部に、この各端部から側方にそれぞれ水平に延びるように形成されている。また、成形体11は、その長さ方向に沿った磁場A中で(その長さ方向に沿った磁界が印加された状態で)、その厚み方向(磁場と直交する方向)に圧縮圧力が印加されて成形される。つまり、成形体11は横磁場成形によって成形される。したがって、縦磁場成形法によって成形された成形体と比較して、この成形体11は、配向度の高い良好な磁性特性(この例では磁歪特性)を有する。また、この横磁場成形工程51では、上述した手順を繰り返して成形体11を少なくとも2つ作製する。
【0025】
次いで、図1に示すように、焼結工程52を実施して、2つの成形体11,11を組み合わせた状態で焼結することによって一体化して図6に示す筒状磁性体12の中間体Mを作製する。
【0026】
具体的には、この焼結工程52では、まず、互いの各リブ部11b,11b同士を密着させるようにして2つの成形体11,11を円筒状に組み合わせる。次いで、図4に示すように、この円筒状に組み合わせた各成形体11,11をその各合わせ目が同一垂直面上に位置するように、つまり各成形体11,11がその垂直面を中心として左右対称状態となるように、セッター2の各支持部2b,2b間に架け渡して載置する。この状態では、図5に示すように、各成形体11,11には、各々の自重に起因してセッター2の各支持部2b,2bから各成形体11,11が組み合わさって形成される円筒体の中央部に向かう力Fが作用する。このため、各成形体11,11は、この力Fによって互いに接近する方向に常時付勢されて密着状態を維持する。さらに、同図に示すように、セッター2に載置した各成形体11,11における上側の合わせ目に(具体的には、各成形体11,11における上側の各リブ部11b,11bの各端面に)重し板3を載置する。この場合、重し板3を載置することにより、各成形体11,11が互いの合わせ目に沿って位置ずれしようとするときに、それに伴って互いに上下方向に位置ずれしようとする各リブ部11b,11bの動きに対して各リブ部11b,11bの各端面(同図では上端面)を重し板3で抑えて抑制することができる結果、各成形体11,11の位置ずれが防止される。続いて、焼結装置を用いて、各成形体11,11をセッター2に載置した状態で焼結させて互いに接合させることによって一体化させる。これにより、図6に示す筒状に形成された中間体Mが作製される。なお、磁歪粉末に共晶物質(R−rich)を予め混入させておくことにより、各成形体11,11を焼結させる際に一体化させることができる。
【0027】
最後に、図1に示すように、機械加工工程53を実施して、図6に示すように中間体Mの表面に形成されている一対のリブMa,Maを研磨機を用いて除去する。この場合、この各リブMa,Maは、各成形体11,11の上側および下側の各リブ部11b,11bが一体化することによって形成されている。以上により、図7に示すように、円筒状の外形を有する筒状磁歪素子としての筒状磁性体12が製造される。
【0028】
このように、この筒状磁性体の製造方法によれば、その長さ方向に沿って磁歪粉末に磁界を印加しつつ(言い換えれば、その長さ方向に沿った磁場中において)厚み方向に圧縮圧力を印加することで複数組み合わせて筒状に形成可能な板状の成形体11を成形する横磁場成形工程51と、横磁場成形工程51によって成形した各成形体11,11を筒状に組み合わせた状態で焼結して一体化させて筒状磁性体12を製造する焼結工程52とを実施して筒状磁性体12を製造することにより、その長さ方向に沿って非常に良好に配向されて磁歪値が十分に大きい筒状(円筒状)磁歪素子としての筒状磁性体12を製造することができる。
【0029】
また、一対の成形体11,11を筒状に組み合わせて焼結する際に、一対の支持部2b,2bが形成されたセッター2を使用して、円筒状に組み合わせた各成形体11,11をその各合わせ目が同一垂直面上に位置するようにセッター2の両支持部2b,2b間に架け渡して載置することにより、各成形体11,11の自重に起因してセッター2の各支持部2b,2bから各成形体11,11に対して互いに接近する方向に作用する力Fによって各成形体11,11の密着状態を良好に維持することができる。したがって、互いの合わせ目が確実に密着した状態で各成形体11,11を一体化させることができる。さらに、焼結工程52において、セッター2に載置した各成形体11,11における上側の合わせ目に重し板3を載置することにより、セッター2に載置した各成形体11,11を移動する際や、焼結装置で各成形体11,11を焼結している際に、何らかの外力が各成形体11,11に加わったときであっても、各リブ部11b,11bの各端面が重し板3で抑えられるため、各成形体11,11の位置ずれを有効に回避することができる。
【0030】
なお、本発明は、上記した実施の形態に限定されない。例えば、上記の実施の形態では、それぞれ半円筒状に形成された2つの成形体11,11を作製すると共に、各成形体11,11を組み合わせて焼結することにより、円筒状の筒状磁性体12を製造する例について説明したが、3つ以上の円弧状の成形体を作製すると共に、それらを組み合わせた状態で焼結して一体化することによっても、円筒状の筒状磁性体を作製することができる。一例として、3つの円弧状の成形体を作製して筒状磁性体を作製する際には、図8に示すように、3つの成形体31,31,31の内の下方に位置する一対の成形体31,31の一端面同士を密着させてその合わせ目を通過する垂直面を中心として左右対称となる状態でセッター2の両支持部2b,2b間に架け渡すと共に、残りの1つの成形体31については、その両端面を他の2つの成形体31,31の各他面に密着させて円筒状に組み合わせた状態でセッター2上に載置する。この状態では、各支持部2b,2bと接する2つの成形体31,31に各支持部2b,2bから中央に向けて作用する力Fと、両成形体31,31上に載置された残りの成形体31の自重Gとがバランスすることにより、3つの成形体31,31,31は、崩壊することなくセッター2上に安定的に載置される。したがって、この状態で各成形体31,31,31を焼結して一体化することによって筒状磁性体が製造される。
【0031】
また、上述した実施の形態では、長さ方向に沿った断面形状が円弧状に形成された成形体11(または31)を使用して筒状磁性体を製造する例について説明したが、成形体の断面形状は円弧状に限定されない。例えば、図11に示すように、断面形状が四角筒状の成形体42を製造することもできる。具体的には、横磁場成形装置1の上記した下側パンチ21における樋状の凹溝21aに代えてV字状の凹溝を形成した下側パンチと、その凹溝に対向するように下端面中央部分がV字状に突出する上側パンチとを備えた横磁場成形装置を用いて、上記の横磁場成形工程51と同様にして、図9に示す成形体41を作製する。この場合、成形体41は、断面形状がV字状に形成された本体部41aとリブ部41b,41bとで一体的に構成される。次いで、図10に示すように、一対の成形体41,41を組み合わせて、四角筒状に組み合わせた各成形体41,41をその各合わせ目が同一垂直面上に位置するように、つまり各成形体41,41がその垂直面を中心として左右対称状態となるように、セッター2の各支持部2b,2b間に架け渡して載置する。
【0032】
この状態では、図10に示すように、各成形体41,41には、各々の自重に起因してセッター2の各支持部2b,2bから各成形体41,41が組み合わさって形成される角筒体の中央部に向かう力Fが作用する。このため、各成形体41,41は、この力Fによって互いに接近する方向に常時付勢されて密着状態を維持する。さらに、同図に示すように、各成形体41,41における上側の合わせ目に(各リブ部41b,41bの各端面に)重し板3を載置する。この場合、筒状磁性体12の製造時と同様にして、各成形体41,41の位置ずれが防止される。続いて、焼結装置を用いて、各成形体41,41をセッター2に載置した状態で焼結させて互いに接合させることによって一体化させる。次いで、筒状磁性体12と同様にして、一体化させた角筒状磁性体の表面に各リブ部41b,41bによって形成される一対のリブを研磨機を用いて除去することにより、図11に示すように、四角筒状に形成された角筒状磁性体42が製造される。
【0033】
さらに、本発明に係る筒状磁性体は、六角形状や八角形状などの多角形状の断面形状や、楕円状等の任意の形状に製造することができるのは勿論である。
【0034】
また、上記した各実施の形態では、磁性粉末として磁歪粉末を使用することによって筒状磁歪素子を製造する例について説明したが、一般的な磁性粉末を使用して上記の横磁場成形工程51、焼結工程52および機械加工工程53を実施して筒状磁性体を作製した後、さらに図1に破線で示す着磁工程54を実施することによって筒状磁性体としての筒状の永久磁石を製造することもできる。また、上記した各実施の形態では、横磁場成形工程51と焼結工程52とを実施した後に、機械加工工程53を実施する例について説明したが、機械加工工程53を省いてもよいのは勿論である。
【0035】
【発明の効果】
以上のように、本発明に係る筒状磁性体の製造方法によれば、長さ方向に沿って磁性粉末に磁界を印加しつつ厚み方向に圧縮圧力を印加することによって成形体を成形する横磁場成形工程と、成形した複数の成形体を組み合わせた状態で焼結して一体化することによって筒状の磁性体を製造することにより、その長さ方向に沿って非常に良好に配向された磁性特性を有する筒状の磁性体を製造することができる。したがって、磁性粉末として磁歪粉末を使用することにより、長さ方向に対する磁歪率が十分に大きい筒状の磁歪素子を製造することができる。
【0036】
また、本発明に係る筒状磁性体の製造方法によれば、横磁場成形工程において、断面形状が円弧状の成形体を成形し、焼結工程において、円弧状の成形体を組み合わせた状態で焼結して一体化することによって円筒状の磁性体を製造することにより、その長さ方向に沿って非常に良好に配向された磁性特性を有する円筒状の磁性体を製造することができる。したがって、磁性粉末として磁歪粉末を使用することにより、長さ方向に対する磁歪率が十分に大きい円筒状の磁歪素子を製造することができる。
【0037】
また、本発明に係る筒状磁性体の製造方法および筒状磁性体製造装置によれば、焼結工程において、互いに離間して平行に配設された一対の支持部を備えたセッターを用いて、横磁場成形によって成形した成形体をセッターの両支持部間に架け渡して載置し、その状態で各成形体を焼結することにより、各成形体の自重に起因してセッターの各支持部から各成形体に互いに接近する方向の力が作用するため、各成形体の密着状態を良好に維持することができる結果、互いの合わせ目が確実に密着した状態で各成形体を一体化させることができる。また、この筒状磁性体製造装置によれば、この筒状磁性体の製造方法の実施に好適に用いることができる。
【0038】
また、本発明に係る筒状磁性体の製造方法および筒状磁性体製造装置によれば、焼結工程において、セッターに載置した各成形体における上側の合わせ目に重しを載置し、その状態で各成形体を焼結することにより、セッターに載置された各成形体に何らかの外力が加わったときであっても、重しが各成形体の各端面を抑えるため、各成形体の位置ずれを有効に回避することができる。また、この筒状磁性体製造装置でも、この筒状磁性体の製造方法の実施に好適に用いることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る筒状磁性体の製造方法を実施するための各工程を示すフローチャートである。
【図2】横磁場成形装置1の構成を説明するための正面断面図である。
【図3】横磁場成形工程51を実施して作製した成形体11の斜視図である。
【図4】2つの成形体11,11を円筒状に組み合わせた状態でセッター2に載置した状態の斜視図である。
【図5】図4において各成形体11,11の上側の合わせ目に重し板3を載置した状態の正面図である。
【図6】図5の各成形体11,11に対して焼結工程52を実施して作製した中間体Mの斜視図である。
【図7】図6の中間体Mに対して機械加工工程53を実施して製造した筒状磁性体12の斜視図である。
【図8】円弧状の3つの成形体31,31,31を円筒状に組み合わせてセッター2に載置した状態の斜視図である。
【図9】横磁場成形工程51を実施して作製した成形体41の斜視図である。
【図10】V字状の2つの成形体41,41を四角筒状に組み合わせてセッター2に載置した状態の斜視図である。
【図11】製造した角筒状磁性体42の斜視図である。
【図12】下側パンチ62、上側パンチ63、臼型64および中棒65を備えて構成される横磁場成形装置61の構成を説明するための正面断面図である。
【符号の説明】
1 横磁場成形装置
2 セッター
2a ベース部
2b 支持部
3 重し板
2b 支持部
11,41 成形体
12 筒状磁性体
42 角筒状磁性体
51 横磁場成形工程
52 焼結工程
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a cylindrical magnetic body that manufactures a cylindrical magnetic body oriented along the length direction, and a cylindrical magnetic body manufacturing apparatus that manufactures the cylindrical magnetic body.
[0002]
[Prior art]
As a manufacturing method for manufacturing this kind of cylindrical magnetic body, a method for manufacturing a magnetic body disclosed in Japanese Patent Application Laid-Open No. 9-232134 is known. In this method of manufacturing a magnetic material, as shown in FIG. 1 of the publication, the non-magnetic material (6) of the upper punch (51), the non-magnetic material (10) of the lower punch (54), and the mortar (7) ) And a molding space (9) created by the arrangement of the center rod (8), a raw material powder is compression-molded in a magnetic field in the same direction as the compression direction of the upper and lower punches to produce a compact, and the produced compact is fired. By tying, a cylindrical magnetic body (flat annular permanent magnet) is manufactured. According to this manufacturing method, since a magnetic field is applied along the axial direction (length direction) of the molded body during compression molding, a cylindrical magnetic body oriented in the axial direction (length direction) is manufactured.
[0003]
As described in Japanese Patent Application Laid-Open No. 2001-44055, the method of compression molding (pressure molding) in a magnetic field includes a vertical magnetic field molding method in which the compression direction and the magnetic field application direction are substantially parallel. And a horizontal magnetic field forming method in which the compression direction and the magnetic field application direction are substantially perpendicular to each other. It is known that the transverse magnetic field forming method has a higher degree of orientation of the formed body, and as a result, a sintered body having more excellent magnetic properties can be produced. For this reason, when producing a cylindrical magnetic body oriented in the length direction, it is preferable to produce a compact by compressing the raw material powder from a direction substantially perpendicular to the direction of applying the magnetic field.
[0004]
[Patent Document 1]
JP-A-9-232134 (pages 3-4, FIG. 1)
[Patent Document 2]
JP 2001-44055 A (page 3)
[0005]
[Problems to be solved by the invention]
However, the conventional manufacturing method described above has the following problems. That is, when the transverse magnetic field forming method is applied to the method for manufacturing a magnetic material disclosed in Japanese Patent Application Laid-Open No. 9-232134, for example, a lower punch 62, an upper punch 63, a die 64, and a A horizontal magnetic field forming device 61 having a rod 65 is prepared, and a cylindrical molding space (inside of the horizontal magnetic field forming device 61 created by the arrangement of the lower punch 62, the upper punch 63, the die 64, and the middle rod 65) ( The raw material powder 66 filled in the cavity (CA) is compressed by the upper and lower punches 63 and 62 in a transverse magnetic field A (the direction of application of the magnetic field is from the back side to the front side of the drawing) to produce a cylindrical molded body. Manufacturing methods are conceivable. However, in this manufacturing method, when the raw material powder 66 is compressed by the upper and lower punches 63 and 62, the central rod 65 may be deformed by stress applied from each of the punches 63 and 62 via the raw material powder 66. As a result of difficulty in manufacturing a molded body, there is a problem that it is difficult to manufacture a cylindrical magnetic body.
[0006]
The present invention has been made in view of such a problem, and has as its main object to provide a method of manufacturing a cylindrical magnetic body that can manufacture a cylindrical magnetic body using a transverse magnetic field forming method. Another object of the present invention is to provide a tubular magnetic material manufacturing apparatus suitable for carrying out this manufacturing method.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the method for manufacturing a cylindrical magnetic body according to the present invention can apply a magnetic field along a length direction and apply a compressive pressure in a thickness direction to form a cylindrical shape by combining a plurality of them. A lateral magnetic field molding step of molding the molded body using magnetic powder as a material, and the cylindrical magnetic body is formed by sintering and integrating the plurality of molded bodies formed by the transverse magnetic field molding step in a combined state. And a sintering step for manufacturing.
[0008]
In this case, in the transverse magnetic field forming step, a cross-sectional shape along a direction perpendicular to the length direction is formed as the formed body, and in the sintering step, the arc-shaped formed body is formed. It is preferable to produce a cylindrical magnetic body by sintering and integrating in a combined state.
[0009]
Also, in the transverse magnetic field forming step, the cross-sectional shape is formed into a semi-circular shaped body as the arc-shaped formed body, and in the sintering step, a pair of support portions spaced apart from each other and arranged in parallel. The pair of molded bodies formed in the transverse magnetic field molding step and combined in the cylindrical shape by using a setter having the above-mentioned two support portions of the setter so that each joint is located on the same vertical plane. It is preferable that the compacts are placed in a state of being placed between them, and the respective compacts are sintered in that state.
[0010]
Further, in the transverse magnetic field forming step, shaped bodies having a V-shaped cross section along a direction orthogonal to the length direction are formed as the formed bodies, and in the sintering step, the formed bodies are separated from each other and arranged in parallel. Using a setter provided with a pair of support portions provided, a pair of the molded bodies formed in the transverse magnetic field forming step and combined in a rectangular cylindrical shape so that each joint thereof is located on the same vertical plane. It is preferable that the molded body is sintered in such a state that it is placed over the two supporting portions of the setter.
[0011]
Further, in the sintering step, using the setter provided with a pair of support parts spaced apart and parallel to each other, the three molded bodies formed in the transverse magnetic field molding step and combined into the cylindrical shape It is preferable to sinter each of the compacts in such a state that a pair of the compacts located below the pair are placed between the two support portions of the setter so as to be symmetrical. preferable.
[0012]
Further, in the sintering step, it is preferable that a weight is placed on the upper seam of each of the compacts placed on the setter, and the compacts are sintered in that state.
[0013]
Further, the cylindrical magnetic material manufacturing apparatus according to the present invention is characterized in that a pair of molded bodies having a semi-circular cross section formed by transverse magnetic field molding are sintered and integrated in a state of being combined in a cylindrical shape. It has a pair of support portions that are configured to be usable when manufacturing a cylindrical magnetic body and that can be disposed in parallel with a distance from each other, and each joint of the molded bodies combined in the cylindrical shape is the same. There is provided a setter which can be placed between the support portions so as to be positioned on a vertical plane.
[0014]
In this case, when the rectangular magnetic body is manufactured by sintering and integrating a pair of green bodies having a V-shaped cross section formed by transverse magnetic field forming in a state of being combined into a rectangular cylindrical shape, It comprises a pair of support portions that are configured so as to be spaced apart from each other and can be arranged in parallel, so that the respective joints of the molded bodies combined in the rectangular tube shape are located on the same vertical plane. It is preferable that a setter that can be placed between the two supporting portions is provided.
[0015]
In addition, it is possible to use it when manufacturing a cylindrical magnetic body by sintering and integrating a plurality of molded bodies having a cross-sectional shape formed by a transverse magnetic field and having a circular arc shape combined with a cylindrical shape. It comprises a pair of support portions that are configured to be spaced apart from each other and can be arranged in parallel, and a pair of the molded bodies located in the lower part of each of the molded bodies combined in a cylindrical shape is symmetrical. It is preferable that a setter is provided which can be placed between the two support portions.
[0016]
Further, it is preferable that a weight that can be placed on the upper seam of each of the molded bodies placed on the setter is provided.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of a method for manufacturing a cylindrical magnetic body and an apparatus for manufacturing a cylindrical magnetic body according to the present invention will be described with reference to the accompanying drawings.
[0018]
First, a configuration of a cylindrical magnetic body manufacturing apparatus according to the present invention will be described with reference to the drawings.
[0019]
The apparatus for manufacturing a cylindrical magnetic material includes a transverse magnetic field forming apparatus 1 shown in FIG. 2, a setter 2, a weight plate 3, a sintering apparatus (not shown), and a machining apparatus (not shown) shown in FIGS. A plurality of plate-like compacts 11 (see FIG. 3, which are formed in a semi-cylindrical curved plate-like shape) are produced by compression-molding magnetic powder as a raw material powder. The cylindrical magnetic body 12 (see FIG. 7) can be manufactured by sintering and integrating a plurality of (two in this example) formed bodies 11 into a cylindrical shape.
[0020]
In this case, as shown in FIG. 2, the transverse magnetic field forming apparatus 1 includes a lower punch 21, an upper punch 22, a die 23, and a transverse magnetic field generator (not shown). As shown in FIG. 2, the lower punch 21 has a trough-shaped groove 21 a formed at the center of the end face at the end (the upper end in the figure) inserted into the die 23. In the present embodiment, the inner surface of the concave groove 21a is formed in a semicircular cross section. As shown in the figure, the upper punch 22 has a rib 22a having a semicircular cross section facing the concave groove 21a at the center of the end face at the end (lower end in the figure) inserted into the die 23. It is formed. In this case, the rib 22a is formed to have a smaller diameter than the diameter of the concave groove 21a, and is configured to be able to enter the concave groove 21a. With this configuration, in the horizontal magnetic field forming apparatus 1, in the mold closed state (the state shown in FIG. 2) in which the rib 22 a of the upper punch 22 enters the concave groove 21 a of the lower punch 21, the lower punch 21 and the upper punch 22 The mold half 23 forms a substantially semi-cylindrical molding space (cavity) CA therein. As an example, in the present embodiment, the molding space CA includes a semi-cylindrical molding space CA1 and substantially horizontally extending laterally from each end of the molding space CA1 (the left and right ends in the drawing). It is composed of rectangular parallelepiped molding spaces CA2 and CA2. The transverse magnetic field generator is configured to include, for example, an electromagnetic coil and a drive unit that supplies an exciting current (a direct current) to the electromagnetic coil. , A magnetic field A composed of a DC magnetic field heading toward the front side is generated in the molding space CA.
[0021]
As shown in FIGS. 4 and 5, the setter 2 is formed in the same direction from a rectangular parallelepiped base 2a and each edge (left edge and right edge in FIG. 4) along the length direction of the base 2a. A pair of rectangular parallelepiped support parts 2b, 2b extending upward (upward in the figure) are integrally formed to have a concave cross section. The setter 2 is formed using, for example, Dy oxide. In this case, the support portions 2b are arranged in parallel with each other at a distance from each other, and the interval d is formed to be shorter than the diameter of the concave groove 21a formed on the upper surface of the lower punch 21. The base 2a is formed to have the same length as the length of the molding space CA formed inside the transverse magnetic field molding device 1 as an example. The weight plate 3 corresponds to a weight in the present invention. As an example, the weight plate 3 is formed in a rectangular parallelepiped having substantially the same length as the setter 2 using the same material as the setter 2. The sintering device is constituted by a sintering furnace as an example, and the machining device is constituted by a polishing machine as an example.
[0022]
Next, a method for manufacturing the cylindrical magnetic body 12 according to the present invention will be described with reference to the drawings. As an example, an example in which a cylindrical magnetic body 12 as a cylindrical magnetostrictive element oriented along the length direction by using magnetostrictive powder as a magnetic powder will be described.
[0023]
First, as shown in FIG. 1, a transverse magnetic field forming step 51 is performed to produce the formed body 11 shown in FIG.
[0024]
Specifically, in the transverse magnetic field forming step 51, first, in the mold open state of the transverse magnetic field forming apparatus 1 in which the upper punch 22 is separated from the die 23 and is positioned above the die, the inside of the die 23 ( The magnetostrictive powder is put into the molding space CA. In this case, as the magnetostrictive powder, for example, Tb, Dy, Ho, Sm or T (Fe, Co, Ni) formed in a powder form is used. Next, the transverse magnetic field generator is operated to generate a magnetic field A along the length direction of the concave groove 21a (the molding space CA) in the molding space CA (that is, in the magnetostrictive powder) as shown in FIG. By moving the upper punch 22 downward to enter the die 23, the horizontal magnetic field forming apparatus 1 is shifted to the mold closed state shown in FIG. Thereby, the magnetostrictive powder in the die 23 is compression-molded into a shape defined by a substantially semi-cylindrical molding space CA formed by the lower punch 21, the upper punch 22, and the die 23, as shown in FIG. The molded body 11 shown is produced. In this case, as shown in the figure, the molded body 11 has a main body 11a having a shape (semi-cylindrical shape) defined by the molding space CA1 and a shape (rectangular parallelepiped) defined by the molding spaces CA2 and CA2. It has a pair of ribs 11b, and is formed into a substantially semi-cylindrical body having a substantially semi-circular cross section along a direction orthogonal to the length direction. Here, each rib 11b is formed at each end of the main body 11a so as to extend horizontally from each end to the side. Further, in the molded body 11, in the magnetic field A along the length direction (in a state where the magnetic field along the length direction is applied), a compression pressure is applied in the thickness direction (the direction orthogonal to the magnetic field). It is molded. That is, the formed body 11 is formed by the transverse magnetic field forming. Therefore, as compared with a molded product molded by the vertical magnetic field molding method, the molded product 11 has good magnetic characteristics (magnetostriction characteristics in this example) having a high degree of orientation. In the transverse magnetic field forming step 51, at least two formed bodies 11 are produced by repeating the above-described procedure.
[0025]
Next, as shown in FIG. 1, a sintering step 52 is performed, and the two compacts 11 are sintered in a combined state to be integrated into an intermediate body of the cylindrical magnetic body 12 shown in FIG. 6. M is produced.
[0026]
Specifically, in the sintering step 52, first, the two molded bodies 11, 11 are combined in a cylindrical shape so that the respective ribs 11b, 11b are brought into close contact with each other. Next, as shown in FIG. 4, the molded bodies 11, 11 combined in a cylindrical shape are arranged such that their joints are located on the same vertical plane, that is, the molded bodies 11, 11 are centered on the vertical plane. The supporting member 2b of the setter 2 is placed so as to be symmetrical. In this state, as shown in FIG. 5, the respective molded bodies 11, 11 are formed by combining the respective molded bodies 11, 11 from the respective support portions 2b, 2b of the setter 2 due to their own weights. A force F directed toward the center of the cylinder acts. For this reason, the molded bodies 11, 11 are constantly urged in the direction approaching each other by this force F, and maintain a close contact state. Further, as shown in the figure, the upper joint of each of the molded bodies 11, 11 placed on the setter 2 (specifically, each of the upper ribs 11b, 11b of each of the molded bodies 11, 11) The weight plate 3 is placed on the end face). In this case, by placing the weight plate 3, when the molded bodies 11, 11 are to be displaced along the seam of each other, the ribs that are to be displaced in the vertical direction with each other. As a result of the movement of the portions 11b, 11b, each end surface (upper end surface in the figure) of each rib portion 11b, 11b can be suppressed by the weight plate 3, so that the displacement of each molded body 11, 11 can be reduced. Is prevented. Subsequently, using a sintering device, the respective compacts 11 are sintered in a state of being placed on the setter 2 and joined together to be integrated. Thereby, the intermediate body M formed in a cylindrical shape as shown in FIG. 6 is produced. In addition, if the eutectic substance (R-rich) is mixed in the magnetostrictive powder in advance, the compacts 11 can be integrated when they are sintered.
[0027]
Finally, as shown in FIG. 1, a machining step 53 is performed to remove a pair of ribs Ma, Ma formed on the surface of the intermediate body M using a polishing machine as shown in FIG. In this case, the ribs Ma, Ma are formed by integrating the upper and lower rib portions 11b, 11b of the molded bodies 11, 11, respectively. As described above, as shown in FIG. 7, the cylindrical magnetic body 12 as a cylindrical magnetostrictive element having a cylindrical outer shape is manufactured.
[0028]
As described above, according to the method of manufacturing the cylindrical magnetic body, the magnetic field is applied to the magnetostrictive powder along the length direction (in other words, in the magnetic field along the length direction), the compression is performed in the thickness direction. A transverse magnetic field forming step 51 for forming a plate-shaped formed body 11 that can be formed into a cylindrical shape by applying a plurality of pressures by applying pressure, and each of the formed bodies 11, 11 formed by the transverse magnetic field forming step 51 are combined in a cylindrical shape. And sintering step 52 for producing the cylindrical magnetic body 12 by sintering and integrating it in a state where the cylindrical magnetic body 12 is manufactured, thereby making the cylindrical magnetic body 12 very well along its length direction. The cylindrical magnetic body 12 as a cylindrical (cylindrical) magnetostrictive element that is oriented and has a sufficiently large magnetostriction value can be manufactured.
[0029]
Further, when the pair of molded bodies 11, 11 are combined in a cylindrical shape and sintered, the molded bodies 11, 11 combined in a cylindrical shape using the setter 2 in which the pair of support portions 2b, 2b are formed. Of the setter 2 due to the weight of each of the molded bodies 11, 11 by placing the two over the support portions 2 b, 2 b of the setter 2 so that the joints thereof are located on the same vertical plane. The close contact of the molded bodies 11, 11 can be favorably maintained by the force F applied from the support portions 2b, 2b to the molded bodies 11, 11 in a direction approaching each other. Therefore, the molded bodies 11 can be integrated with the joints of the molded articles firmly adhered to each other. Further, in the sintering step 52, the weight plate 3 is placed on the upper seam of each of the molded bodies 11, 11 placed on the setter 2, so that each of the molded bodies 11, 11 placed on the setter 2 is moved. When moving or when sintering the compacts 11 with a sintering device, even if some external force is applied to the compacts 11, each of the ribs 11 b, 11 b Since the end face is suppressed by the weight plate 3, the displacement of each of the molded bodies 11, 11 can be effectively avoided.
[0030]
Note that the present invention is not limited to the above embodiment. For example, in the above-described embodiment, two compacts 11, 11 each formed in a semi-cylindrical shape are produced, and the compacts 11, 11 are combined and sintered to form a cylindrical cylindrical magnetic material. The example in which the body 12 is manufactured has been described. However, by forming three or more arc-shaped molded bodies and sintering and integrating them in a combined state, a cylindrical cylindrical magnetic body can be formed. Can be made. As an example, when producing a cylindrical magnetic body by producing three arc-shaped molded bodies, as shown in FIG. 8, a pair of lower molded bodies 31 One end surfaces of the molded bodies 31, 31 are brought into close contact with each other, and are bridged between the two support portions 2b, 2b of the setter 2 in a state of being symmetrical about a vertical plane passing through the joint, and the other one molded body is formed. The body 31 is placed on the setter 2 in a state where both end surfaces thereof are brought into close contact with the other surfaces of the other two molded bodies 31 and 31 and are combined in a cylindrical shape. In this state, the force F acting on the two molded bodies 31, 31 in contact with the respective support parts 2 b, 2 b from the respective support parts 2 b, 2 b toward the center, and the remaining force placed on both molded bodies 31, 31. The three molded bodies 31, 31, 31 are stably mounted on the setter 2 without collapsing because the self-weight G of the molded body 31 is balanced. Therefore, in this state, the cylindrical magnetic bodies are manufactured by sintering and integrating the molded bodies 31, 31, 31.
[0031]
Further, in the above-described embodiment, the example in which the cylindrical magnetic body is manufactured using the molded body 11 (or 31) having the cross section along the length direction formed in an arc shape has been described. Is not limited to an arc shape. For example, as shown in FIG. 11, a molded body 42 having a square tubular cross section can be manufactured. Specifically, a lower punch in which a V-shaped groove is formed instead of the gutter-shaped groove 21a in the lower punch 21 of the horizontal magnetic field forming apparatus 1 described above, and a lower punch is formed so as to face the groove. A molded body 41 shown in FIG. 9 is manufactured in the same manner as in the transverse magnetic field forming step 51 using a transverse magnetic field forming apparatus provided with an upper punch whose center portion protrudes in a V-shape. In this case, the molded body 41 is integrally formed of a main body 41a having a V-shaped cross section and ribs 41b, 41b. Next, as shown in FIG. 10, a pair of molded bodies 41, 41 are combined, and the molded bodies 41, 41 combined in the shape of a rectangular tube are combined so that their joints are located on the same vertical plane, that is, The molded bodies 41, 41 are placed between the supporting portions 2b, 2b of the setter 2 so as to be symmetrical about the vertical plane.
[0032]
In this state, as shown in FIG. 10, the molded bodies 41, 41 are formed by combining the molded bodies 41, 41 from the support portions 2b, 2b of the setter 2 due to their own weights. A force F directed toward the center of the rectangular cylinder acts. For this reason, the molded bodies 41, 41 are constantly urged by the force F in a direction approaching each other, and maintain a close contact state. Further, as shown in the figure, the weight plate 3 is placed on the upper joint of each molded body 41, 41 (on each end face of each rib portion 41b, 41b). In this case, the displacement of each of the molded bodies 41 is prevented in the same manner as when manufacturing the cylindrical magnetic body 12. Subsequently, using a sintering device, the respective compacts 41, 41 are sintered while being placed on the setter 2 and joined together to be integrated. Next, a pair of ribs formed by the respective rib portions 41b, 41b is removed from the surface of the integrated rectangular cylindrical magnetic body using a polishing machine in the same manner as in the case of the cylindrical magnetic body 12, thereby obtaining a structure shown in FIG. As shown in (2), a rectangular cylindrical magnetic body 42 formed in a rectangular cylindrical shape is manufactured.
[0033]
Further, the cylindrical magnetic body according to the present invention can be manufactured in any shape such as a polygonal cross-sectional shape such as a hexagonal shape or an octagonal shape, or an elliptical shape.
[0034]
Further, in each of the above-described embodiments, the example in which the cylindrical magnetostrictive element is manufactured by using the magnetostrictive powder as the magnetic powder has been described. After a sintering step 52 and a machining step 53 are performed to produce a cylindrical magnetic body, a cylindrical permanent magnet as a cylindrical magnetic body is formed by further performing a magnetizing step 54 indicated by a broken line in FIG. It can also be manufactured. Further, in each of the above-described embodiments, an example has been described in which the machining step 53 is performed after the transverse magnetic field forming step 51 and the sintering step 52 are performed. However, the machining step 53 may be omitted. Of course.
[0035]
【The invention's effect】
As described above, according to the method of manufacturing a cylindrical magnetic body according to the present invention, a horizontal compact is formed by applying a compression pressure in a thickness direction while applying a magnetic field to a magnetic powder along a length direction. A magnetic field forming step, and a plurality of formed bodies were sintered and integrated in a combined state to produce a cylindrical magnetic body, which was very well oriented along its length direction. A cylindrical magnetic body having magnetic properties can be manufactured. Therefore, by using the magnetostrictive powder as the magnetic powder, a cylindrical magnetostrictive element having a sufficiently large magnetostriction in the length direction can be manufactured.
[0036]
Further, according to the method for manufacturing a cylindrical magnetic body according to the present invention, in the transverse magnetic field forming step, the cross-sectional shape is formed into an arc-shaped formed body, and in the sintering step, the arc-shaped formed body is combined. By producing a cylindrical magnetic body by sintering and integrating, it is possible to produce a cylindrical magnetic body having magnetic properties very well oriented along its length. Therefore, by using the magnetostrictive powder as the magnetic powder, a cylindrical magnetostrictive element having a sufficiently large magnetostriction in the length direction can be manufactured.
[0037]
In addition, according to the method for manufacturing a cylindrical magnetic body and the apparatus for manufacturing a cylindrical magnetic body according to the present invention, in the sintering step, a setter including a pair of support portions arranged in parallel with each other is used. Then, the compact formed by the transverse magnetic field molding is placed between the two support portions of the setter and placed, and in this state, each compact is sintered, and each support of the setter is caused by its own weight. Since the forces in the direction approaching each other from the part act on each other, it is possible to maintain the good contact state of each molded body, and as a result, each molded body is integrated with the joints of each other securely adhered Can be done. Further, according to the cylindrical magnetic body manufacturing apparatus, it can be suitably used for implementing the method for manufacturing the cylindrical magnetic body.
[0038]
Further, according to the method for manufacturing a cylindrical magnetic body and the apparatus for manufacturing a cylindrical magnetic body according to the present invention, in the sintering step, the weight is placed on the upper seam of each compact placed on the setter, By sintering each compact in that state, even when any external force is applied to each compact placed on the setter, the weight suppresses each end face of each compact, so that each compact Can be effectively avoided. Further, this cylindrical magnetic body manufacturing apparatus can also be suitably used for implementing the method for manufacturing the cylindrical magnetic body.
[Brief description of the drawings]
FIG. 1 is a flowchart showing each step for carrying out a method of manufacturing a cylindrical magnetic body according to an embodiment of the present invention.
FIG. 2 is a front sectional view for explaining the configuration of the transverse magnetic field forming apparatus 1.
FIG. 3 is a perspective view of a molded body 11 produced by performing a transverse magnetic field molding step 51.
FIG. 4 is a perspective view of a state in which two molded bodies 11 and 11 are mounted on a setter 2 in a state of being combined in a cylindrical shape.
FIG. 5 is a front view of a state in which the weight plate 3 is placed on a joint at the upper side of each of the molded bodies 11 in FIG.
6 is a perspective view of an intermediate body M produced by performing a sintering step 52 on each of the molded bodies 11 of FIG.
7 is a perspective view of a cylindrical magnetic body 12 manufactured by performing a machining step 53 on the intermediate body M of FIG.
FIG. 8 is a perspective view of a state in which three arc-shaped moldings 31, 31, 31 are combined in a cylindrical shape and placed on a setter 2.
FIG. 9 is a perspective view of a molded body 41 produced by performing a transverse magnetic field molding step 51.
FIG. 10 is a perspective view of a state in which two V-shaped molded bodies 41, 41 are combined in a rectangular tube shape and mounted on a setter 2.
FIG. 11 is a perspective view of the manufactured rectangular cylindrical magnetic body.
FIG. 12 is a front sectional view for explaining a configuration of a transverse magnetic field forming apparatus 61 including a lower punch 62, an upper punch 63, a die 64, and a middle rod 65.
[Explanation of symbols]
1 Transverse magnetic field forming device
2 setters
2a Base
2b Support
3 weight plates
2b Support
11,41 molded body
12 cylindrical magnetic material
42 square cylindrical magnetic material
51 Transverse magnetic field forming process
52 Sintering process

Claims (10)

長さ方向に沿って磁界を印加しつつ厚み方向に圧縮圧力を印加することにより、複数組み合わせて筒状に形成可能な成形体を磁性粉末を材料として成形する横磁場成形工程と、当該横磁場成形工程によって成形した複数の前記成形体を組み合わせた状態で焼結して一体化することによって前記筒状の磁性体を製造する焼結工程とを実行する筒状磁性体の製造方法。Applying a compressive pressure in the thickness direction while applying a magnetic field along the length direction to form a molded body that can be formed into a cylindrical shape by combining a plurality of the molded bodies using magnetic powder as a material; And a sintering step of producing the cylindrical magnetic body by sintering and integrating the plurality of molded bodies formed in the molding step in a combined state. 前記横磁場成形工程において、前記成形体として前記長さ方向と直交する方向に沿った断面形状が円弧状の成形体を成形し、前記焼結工程において、前記円弧状の成形体を組み合わせた状態で焼結して一体化することによって円筒状の磁性体を製造する請求項1記載の筒状磁性体の製造方法。In the transverse magnetic field forming step, a shaped body having a circular cross section along the direction orthogonal to the length direction is formed as the formed body, and in the sintering step, the arc shaped body is combined. The method for manufacturing a cylindrical magnetic body according to claim 1, wherein the cylindrical magnetic body is manufactured by sintering and integrating. 前記横磁場成形工程において、前記円弧状の成形体として前記断面形状が半円弧状の成形体を成形し、前記焼結工程において、互いに離間して平行に配設された一対の支持部を備えたセッターを用いて、前記横磁場成形工程において成形して前記円筒状に組み合わせた一対の前記成形体をその各合わせ目が同一垂直面上に位置するように前記セッターの前記両支持部間に架け渡して載置し、その状態で前記各成形体を焼結する請求項2記載の筒状磁性体の製造方法。In the transverse magnetic field forming step, the cross-sectional shape is formed as a semi-circular shaped body as the arc-shaped formed body, and in the sintering step, a pair of support portions are provided spaced apart from each other and arranged in parallel. Using the setter, the pair of compacts formed in the transverse magnetic field forming step and combined in the cylindrical shape are formed between the two support portions of the setter so that each joint is located on the same vertical plane. 3. The method for manufacturing a cylindrical magnetic body according to claim 2, wherein the molded bodies are sintered while being bridged and placed. 前記横磁場成形工程において、前記成形体として前記長さ方向と直交する方向に沿った断面形状がV字状の成形体を成形し、前記焼結工程において、互いに離間して平行に配設された一対の支持部を備えたセッターを用いて、前記横磁場成形工程において成形して角筒状に組み合わせた一対の前記成形体をその各合わせ目が同一垂直面上に位置するように前記セッターの前記両支持部間に架け渡して載置し、その状態で前記各成形体を焼結する請求項1記載の筒状磁性体の製造方法。In the transverse magnetic field forming step, a shaped body having a V-shaped cross section along a direction orthogonal to the length direction is formed as the formed body, and in the sintering step, the formed bodies are spaced apart from each other and arranged in parallel. Using a setter provided with a pair of support portions, the setter is formed in the transverse magnetic field forming step so that a pair of the formed bodies combined in a rectangular cylindrical shape are positioned such that their joints are located on the same vertical plane. 2. The method for manufacturing a cylindrical magnetic body according to claim 1, wherein said compacts are sintered and placed between said support portions. 前記焼結工程において、互いに離間して平行に配設された一対の支持部を備えたセッターを用いて、前記横磁場成形工程において成形して前記円筒状に組み合わせた3つの前記成形体をその内の下方に位置する一対の当該成形体が左右対称状態となるように前記セッターの前記両支持部間に架け渡して載置し、その状態で前記各成形体を焼結する請求項2記載の筒状磁性体の製造方法。In the sintering step, using the setter provided with a pair of support parts spaced apart from each other and arranged in parallel, the three compacts formed in the transverse magnetic field forming step and combined in the cylindrical shape are formed. 3. A pair of said moldings located in the lower part of the inside of said setter are laid between said two supporting parts so as to be symmetrical, and each said molding is sintered in that state. A method for producing a cylindrical magnetic body. 前記焼結工程において、前記セッターに載置した前記各成形体における上側の前記合わせ目に重しを載置し、その状態で前記各成形体を焼結する請求項3または4記載の筒状磁性体の製造方法。5. The cylindrical shape according to claim 3, wherein in the sintering step, a weight is placed on the upper joint of each of the compacts placed on the setter, and each compact is sintered in that state. 6. Manufacturing method of magnetic material. 横磁場成形によって成形された断面形状が半円弧状の一対の成形体を円筒状に組み合わせた状態で焼結して一体化することによって当該円筒状の磁性体を製造する際に使用可能に構成され、互いに離間して平行に配設可能な一対の支持部を備え、前記円筒状に組み合わせた前記各成形体をその各合わせ目が同一垂直面上に位置するように前記両支持部間に架け渡して載置可能なセッターを備えている筒状磁性体製造装置。It can be used when manufacturing a cylindrical magnetic body by sintering and integrating a pair of semi-circular shaped bodies formed by transverse magnetic field molding in a state where they are combined into a cylindrical shape. It is provided with a pair of support portions that can be disposed in parallel separated from each other, the molded body combined in the cylindrical shape between the two support portions so that each joint is located on the same vertical plane An apparatus for manufacturing a cylindrical magnetic body, which is provided with a setter that can be placed over a bridge. 横磁場成形によって成形された断面形状がV字状の一対の成形体を角筒状に組み合わせた状態で焼結して一体化することによって当該角筒状の磁性体を製造する際に使用可能に構成され、互いに離間して平行に配設可能な一対の支持部を備え、前記角筒状に組み合わせた前記各成形体をその各合わせ目が同一垂直面上に位置するように前記両支持部間に架け渡して載置可能なセッターを備えている筒状磁性体製造装置。It can be used when manufacturing a rectangular cylindrical magnetic body by sintering and integrating a pair of molded bodies having a V-shaped cross section formed by transverse magnetic field molding into a rectangular cylindrical shape. And a pair of support portions which are spaced apart from each other and which can be disposed in parallel, and the two support members are formed such that the joints of the molded bodies combined in the rectangular cylindrical shape are positioned on the same vertical plane. An apparatus for manufacturing a cylindrical magnetic body, comprising a setter that can be placed and placed between parts. 横磁場成形によって成形された断面形状が円弧状の複数の成形体を円筒状に組み合わせた状態で焼結して一体化することによって当該円筒状の磁性体を製造する際に使用可能に構成され、互いに離間して平行に配設可能な一対の支持部を備え、前記円筒状に組み合わせた前記各成形体をその内の下方に位置する一対の当該成形体が左右対称状態となるように前記両支持部間に架け渡して載置可能なセッターを備えている筒状磁性体製造装置。It is configured to be usable when manufacturing the cylindrical magnetic body by sintering and integrating a plurality of arc-shaped molded bodies formed by transverse magnetic field molding in a state of being combined into a cylindrical shape. A pair of support portions that can be disposed parallel to each other so as to be separated from each other, such that the pair of molded bodies located in the lower part of each of the molded bodies combined in the cylindrical shape is in a symmetrical state. An apparatus for manufacturing a cylindrical magnetic body, comprising a setter that can be placed over both support portions. 前記セッターに載置した前記各成形体における上側の前記合わせ目に載置可能な重しを備えている請求項7または8記載の筒状磁性体製造装置。9. The apparatus for manufacturing a cylindrical magnetic body according to claim 7, further comprising a weight that can be placed on the upper joint of each of the molded bodies placed on the setter.
JP2003140692A 2003-05-19 2003-05-19 Method for manufacturing cylindrical magnetic substance and apparatus for manufacturing cylindrical magnetic substance Withdrawn JP2004342999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003140692A JP2004342999A (en) 2003-05-19 2003-05-19 Method for manufacturing cylindrical magnetic substance and apparatus for manufacturing cylindrical magnetic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003140692A JP2004342999A (en) 2003-05-19 2003-05-19 Method for manufacturing cylindrical magnetic substance and apparatus for manufacturing cylindrical magnetic substance

Publications (1)

Publication Number Publication Date
JP2004342999A true JP2004342999A (en) 2004-12-02

Family

ID=33529352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140692A Withdrawn JP2004342999A (en) 2003-05-19 2003-05-19 Method for manufacturing cylindrical magnetic substance and apparatus for manufacturing cylindrical magnetic substance

Country Status (1)

Country Link
JP (1) JP2004342999A (en)

Similar Documents

Publication Publication Date Title
WO2016047593A1 (en) Method for manufacturing rare-earth sintered magnet, and manufacturing device used for said manufacturing method
US20240006100A1 (en) Method of manufacturing permanent magnets
JP4490292B2 (en) Method for manufacturing ring magnet
WO2014174935A1 (en) Mold for manufacturing sintered magnet and method for manufacturing sintered magnet using same
US20060062683A1 (en) Apparatus for manufacturing ring-shaped powder compact and method of manufacturing sintered ring magnet
CN106653266B (en) The manufacturing method of non-planar magnet
JP2004342999A (en) Method for manufacturing cylindrical magnetic substance and apparatus for manufacturing cylindrical magnetic substance
JP3851281B2 (en) Magnetic powder filling apparatus, magnetic powder filling method, and neodymium sintered magnet manufacturing method
JP4132882B2 (en) Manufacturing method of compact by powder metallurgy
JP2004259850A (en) Annular magnet and its manufacturing method
JP2005226108A (en) Method and apparatus for manufacturing ring type sintered magnet
JPH03265102A (en) Diametrical anisotropic cylindrical permanent magnet and manufacture thereof
JP4166169B2 (en) Ring-type sintered magnet and method for manufacturing the same
JP4527436B2 (en) Ring-type sintered magnet and method for manufacturing the same
JP2003236699A (en) Mold apparatus for segment magnet
JPH1055914A (en) Rare earth element sintered magnet
JPH0628215B2 (en) Manufacturing method of radial oriented magnet
CN216016683U (en) PCB vibrating motor
JP2000012359A (en) Magnet and its manufacture
CN110073452A (en) Sintered magnet, motor, sintered magnet for the purposes of motor and the manufacturing method of sintered magnet
JPH08264362A (en) Magnet molding apparatus
JP2003272942A (en) Method of manufacturing permanent magnet
JPH08250357A (en) Manufacturing device and method of thin-walled ring magnet
ES1239636U (en) Device for fixing punches in molds for the manufacture of ceramic tiles. (Machine-translation by Google Translate, not legally binding)
JP2022175693A (en) Preform chip manufacturing device, preform chip, powder magnetic core manufacturing device, powder magnetic core, preform chip manufacturing method, and powder magnetic core manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801