JP2004342237A - Method for manufacturing optical recording medium - Google Patents

Method for manufacturing optical recording medium Download PDF

Info

Publication number
JP2004342237A
JP2004342237A JP2003138032A JP2003138032A JP2004342237A JP 2004342237 A JP2004342237 A JP 2004342237A JP 2003138032 A JP2003138032 A JP 2003138032A JP 2003138032 A JP2003138032 A JP 2003138032A JP 2004342237 A JP2004342237 A JP 2004342237A
Authority
JP
Japan
Prior art keywords
adhesive
substrates
disk
rpm
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003138032A
Other languages
Japanese (ja)
Inventor
Ryohei Miyake
了平 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003138032A priority Critical patent/JP2004342237A/en
Publication of JP2004342237A publication Critical patent/JP2004342237A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Optical Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preventing inclusion of air bubbles when bonding and manufacturing an optical record medium without defects with high yields by solving the conventional problems. <P>SOLUTION: A substrate 2 (a half disk 6) to which an adhesive 4' is supplied is stacked on a substrate 1 (a half disk 8) before the substrates 1, 2 stacked via an adhesive 4 are rotated at a low speed for spreading the adhesive 4' between the substrates 1 and 2, and after that, high-speed rotation is made for removing the adhesive 4' off from between the substrates 1 and 2, thus obtaining the conforming optical recording medium with high yields without including bubbles 12 in an adhesive layer 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、接着剤により基板同士を貼り合わせる構造を有する光学記録媒体の製造方法に関する。
【0002】
【従来の技術】
図3に示すように、近年著しく生産量が伸びているDVD等の映像を記録できる大容量の光学記録媒体(ディスク10と称す)は、第1の記録層としての半透過層5が設けられている基板1と、第2の記録層としての全反射層3が設けられている基板2と、これらの基板1、2を接着する接着剤層4とから構成されている。
【0003】
このディスク10の製造方法は、まず、成型機を用いて、スタンパーとよばれる情報ピットが刻まれた原盤上に、溶融したポリカーボネイト樹脂を射出成形して、透明板上にピットが形成された基板2を製作する。この基板2にスパッタリングにより全反射層3としてアルミ等の膜を成膜してハーフディスク8(図4参照)を形成する。また、同様に製作した他の基板1にスパッタリングにより半透過層5として金等の材料を成膜してハーフディスク6(図4参照)を形成する。そして、これら2枚のハーフディスク6、8を接着剤4’によって所定の間隔を保持しながら貼り合わせる。
【0004】
この貼り合わせ工程を詳述すると、まず、図4(a)に示すように、情報ピットを有する基板2に全反射層3を成膜したハーフディスク8の上に、最終的に接着剤層4になる光硬化性を有する接着剤4’をディスペンサー7で環状に滴下する。接着剤4’としては室温で粘度が400〜600mPasであるものが使用される。この粘度の接着剤4’が使用される理由は、スピナー9(図4(c)参照)などの回転手段による通常の振り切り工程での最大回転数を3000rpm以下とし、かつ許容振り切り時間が3秒以下とすることにより、接着剤層4に要求される厚みである40〜80μmを達成することができるからである。
【0005】
次に、図4(b)に示すように、この環状に滴下した接着剤4’の上に、半透過層5を成膜した基板1からなるハーフディスク6を重ねる。その後、このハーフディスク6、8間に接着剤4’を充填したディスク10を、図5に示すような回転数変化を有する高速で回転するスピナー9で回転し(図4(c)参照)、余分な接着剤4’を振り切って所定の厚みの接着剤層4を形成する。その後、図4(d)に示すように、ランプ11で光(可視光線だけでなく紫外線などの場合も含む)を照射して接着剤4’を硬化させる。
【0006】
貼り合わせ構造を有するディスク10においては貼り合わせ工程は非常に重要な工程である。なぜなら、もし、接着剤層4に気泡が含まれると、その気泡部分から反射膜の腐食が生じ、また、片面2層読み取りのディスク10の場合では、気泡部分の屈折率が異なるためにレーザ光での情報の読み出しができないという問題を生じるからである。このために、接着剤層4に気泡が含まれるディスク10は欠陥ディスクとして除かれる。
【0007】
なお、このような貼り合わせ構造を有する従来の光学記録媒体の製造方法として、特許文献1、2などにも同様な製造方法が開示されている。
【0008】
【特許文献1】
特開平10−340488号公報
【0009】
【特許文献2】
特開平11−66644号公報
【0010】
【発明が解決しようとする課題】
上記図4に示す従来のディスク10の製造方法においては、接着剤4’として400〜600mPasの粘度のものを使用する必要があるが、この粘度では、接着剤層4の均一性を確保するために、環状に3cmの量を滴下した場合には自重で、滴下した接着剤4’の裾野が広がり、そのピークがなだらかになる。この状態で、下側のハーフディスク8に上側のハーフディスク6を重ね合わせると、上側のハーフディスク6と接着剤4’のピーク部分との接触が最初から面接触になるために、接着剤4’に気泡12(図4(b)に示す拡大図を参照)を巻き込み易い欠点があり、接着剤層4に気泡12が残ったディスク10は欠陥ディスクになる。このために、従来においては、下側のハーフディスク8上に接着剤4’を環状滴下した後に、基板1、2同士(ハーフディスク6、8同士)を重ね合わせる方法を実施すると、気泡12が接着剤層4に入りやすく、生産歩留まりが悪いという課題を生じていた。
【0011】
本発明は上記従来の課題を解決するもので、貼り合わせ時の気泡の巻き込みを防止できて、欠陥の無い光学記録媒体を高い歩留まり製造できる製造方法を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
上記課題を解決するために本発明は、それぞれ記録層が設けられた基板同士を接着剤により貼り合わせた構造を有する光学記録媒体の製造方法であって、記録層が設けられた一方の基板に接着剤を供給する接着剤供給工程と、接着剤が供給された一方の基板に他方の基板を重ねる重ね工程と、接着剤を介して重ねられた基板を低速回転させて接着剤の基板間での延展を行う延展工程と、この延展工程の後に高速回転させて基板間から接着剤を振り切る振り切り工程とを有することを特徴とする。
【0013】
この方法によれば、貼り合わせ時の気泡の巻き込みを防止できて、欠陥の無い光学記録媒体を高い歩留まり製造できる。
【0014】
【発明の実施の形態】
請求項1記載の発明は、それぞれ記録層が設けられた基板同士を接着剤により貼り合わせた構造を有する光学記録媒体の製造方法であって、記録層が設けられた一方の基板に接着剤を供給する接着剤供給工程と、接着剤が供給された一方の基板に他方の基板を重ねる重ね工程と、接着剤を介して重ねられた基板を低速回転させて接着剤の基板間での延展を行う延展工程と、この延展工程の後に高速回転させて基板間から接着剤を振り切る振り切り工程とを有することを特徴とする。
【0015】
この方法によれば、接着剤を介して基板を重ねた際に、接着剤中に気泡が存在していた場合でも、この後に、まず低速回転させて接着剤の基板間での延展を行った際に、接着剤とともに気泡も外周部に移動し、次に高速回転させて基板間から接着剤を振り切った際に、気泡を含んだ接着剤が振り切られ、これにより、基板間の接着剤から気泡を良好に除去することができる。
【0016】
なお、接着剤としては、光照射を行うと即時に硬化する速効性の光硬化接着剤を用いたり、光照射を行うと暫くしてから硬化する遅効性の光硬化接着剤を用いたりすればよく、また、低速回転時の回転数が50rpm〜3000rpmであり、高速回転時の回転数が6000rpm〜15000rpmであることで良好に気泡を除去することができる。また、接着剤供給工程では、水平に保持された一方の基板上に接着剤を環状に滴下させることで接着剤を供給することが好ましい。
【0017】
以下、本発明に係る光学記録媒体の製造方法を図面に基づき説明する。なお、従来の光学記録媒体の製造方法で用いたものと同様な機能のものには同符号を付す。
【0018】
まず、図1(a)に示すように、回転手段としてのスピナー9上に、第2の記録層としての全反射層3が形成された基板2(すなわちハーフディスク8)を、全反射層3が上方となるようにセットして(セット工程)、その上に、光硬化性を有する接着剤4’を環状に滴下する(図1(b)参照:接着剤供給工程)。この際に接着剤4’は従来よりも多い量、例えば、従来での供給量の数倍の量を滴下する。また、この際に使用する接着剤4’としては従来と同じタイプのものを用いることができる。
【0019】
この後、図1(c)に示すように、接着剤4’が供給されたハーフディスク8の上に、第1の記録層としての半透過層5が形成された基板1(すなわちハーフディスク6)を、半透過層5が下方となる姿勢で重ね合わせる(重ね工程)。この際、環状に滴下して盛り上がった接着剤4’の頂上付近に気泡12が巻き込まれる。このとき、気泡12は接着剤4’の滴下位置の中心付近に環状に存在している。
【0020】
次に、図1(d)に示すように、この状態で、ハーフディスク6、8間に接着剤4’が供給されたディスク10をスピナー9により、まず、3000rpm以下の低速回転数で数秒間回転させ、これにより、接着剤4’を基板1、2間の全面に伸延させて20〜100μmの厚みの接着剤層4を形成する(延展工程)。この際、接着剤4’が伸延して外周部に移動する際に、気泡12も一緒に外周部に移動する。なお、3000rpm以下の低速回転数では、気泡12は、接着剤4’に比べて上下の基板1、2からの抵抗を強く受けるため、ディスク10の外にはじき出されない。ゆえに、3000rpm以下の低速回転数では長時間の回転を行っても、回転を停止させた状態では接着剤層4に気泡12がまだ存在する。
【0021】
したがって、十分に気泡12がディスク10の外周部に移動した後に、図2に示すように、できる限り大きな加速度でスピナー9の回転を上昇させて6000rpm以上の高速回転数でディスク10を回転させて接着剤4’と気泡12とを一挙に接着剤層4から振り切る(図1(e)参照)。この際、3000rpm以下の低速回転から6000rpmの高速回転への切り替えを小さな加速度で行うと、衝撃力が不足して気泡12を完全に接着剤層4から振り切ることができないため、3000rpm以下の低速回転から6000rpmの高速回転への切り替えを大きな加速度で行うことが望ましい。
【0022】
気泡12を振り切った後は必要とする接着剤層4の厚みにするために、高速回転の持続時間を調整する。この回転数変化の状態を図2に示す。
最後に、接着剤層4に気泡12の無い貼り合わせディスク10に対して、ランプにより光照射を行うことで、接着剤4’を硬化させてディスク10を完成させる。
【0023】
ここで、以下に、基板1、2(ハーフディスク6、8)間に接着剤4’を供給した後に、低速回転または高速回転のみ行う比較例1、2と、上記のように低速回転後に高速回転を行う本発明の実施の形態とを述べる。
(比較例1)
従来技術に対応する比較例1として、ポリカーボネイトを射出成形して情報ピットを刻んだ基板2にアルミニウム合金をスパッタリング装置で厚さ60nmに成膜して全反射層3を形成したハーフディスク8を下基板とし、その上に、粘度が460mPasを有する光硬化性の接着剤4’を3cmの量で環状に滴下した後に、ポリカーボネイトを射出成形して情報ピットを刻んだ基板1に金を厚さ15nmにスパッタして半透過層5を形成したハーフディスク6を上基板として重ね、この後に、3000rpmの回転数で4秒間の振り切りを行い、最後にランプで接着剤4’を硬化させた。その結果、平均で50μmの接着剤層4の厚みを有するディスク10を得ることができた。しかし、この方法で1000枚のディスク10を製作したところ、この中の300枚のディスク10に接着剤層4に気泡12が検出されて欠陥ディスクとなった。すなわち、この製造方法による製品歩留まり率は70%であった。
(比較例2)
従来技術に対応する比較例2として、ポリカーボネイトを射出成形して情報ピットを刻んだ基板2にアルミニウム合金をスパッタリング装置で厚さ60nmに成膜して全反射層3を形成したハーフディスク8を下基板とし、その上に、粘度が460mPasを有する光硬化性の接着剤4’を9cmの量で環状に滴下した後に、ポリカーボネイトを射出成形して情報ピットを刻んだ基板1に金を厚さ15nmにスパッタして半透過層5を形成したハーフディスク6を上基板として重ね、この後に、7000rpmの回転数で4秒間の振り切りを行った。その結果、振り切り前は大きな気泡12であったものが、高速回転の衝撃で細かい気泡12に分割されて接着剤層4に残存した。この後、ランプで接着剤4’を硬化させることにより、平均で40μmの接着剤層4の厚みを有するディスク10を得ることができた。この方法で1000枚のディスク10を製作したところ、この中の800枚に接着剤層4に気泡12が検出されて欠陥ディスクとなった。すなわち、この製造方法による製品歩留まり率は20%であった。
(実施の形態)
本発明を用いた実施の形態として、ポリカーボネイトを射出成形して情報ピットを刻んだ基板2にアルミニウム合金をスパッタリング装置で厚さ60nmに成膜して全反射層3を形成したハーフディスク8を下基板とし、その上に、粘度が460mPasを有する光硬化性の接着剤4’を9cmの量で環状に滴下した後に、ポリカーボネイトを射出成形して情報ピットを刻んだ基板1に金を厚さ15nmにスパッタして半透過層5を形成したハーフディスク6を上基板として重ねた。そしてこの後に、まず、1500rpmの低速回転数で2秒間の回転を行って、接着剤層4に巻き込まれた気泡12を外周に移動させた後に、次に7000rpmで2秒間の振り切りを行って、接着剤層4の外周部にある気泡12をディスクの外に余分な接着剤4’とともに排除し、最後に、ランプで接着剤4’を硬化させた。その結果、平均で40μmの接着剤層4の厚みを有するディスク10を得ることができた。この方法で1000枚のディスク10を製作したところ、この中の10枚に接着剤層4に気泡12が検出されて欠陥ディスクとなった。すなわち、この製造方法による製品歩留まり率は99%であった。
【0024】
このように、接着剤4’を介して基板1、2(ハーフディスク6,8)を重ねた際に、接着剤4’中に気泡が存在していた場合でも、この後に、まず低速回転させて接着剤4’の基板1、2間での延展を行うことで、接着剤4とともに気泡12も外周部に移動する。次に高速回転させて基板1、2間から接着剤4’を振り切った際に、気泡12を含んだ接着剤4’が振り切られ、これにより、基板1、2間の接着剤4’から気泡12を良好に除去することができ、最終的に、気泡12のない接着剤層4を有するディスク10(光学記録媒体)を高い歩留まりで得ることができる。
【0025】
なお、接着剤4’としては、光照射を行うと即時に硬化する速効性の光硬化接着剤を用いたり、光照射を行うと暫くしてから硬化する遅効性の光硬化接着剤を用いたりすればよく、速効性の光硬化接着剤を用いる場合には、半透過層5が設けられている基板1側から光を照射させればよい。
【0026】
また、低速回転時の回転数としては50rpm〜3000rpmが適しており、この低速回転時の回転数が50rpmよりも低い場合には、接着剤4’に巻き込まれた気泡12が外周に移動され難く、したがって、最終的に気泡12が接着剤層4に残ってしまう。また、この低速回転時の回転数が3000rpmよりも高い場合には、比較例2で述べたように、回転後に、細かい気泡12が分割されて接着剤層4に残存してしまう傾向があり、この場合にも最終的に気泡12が接着剤層4に残ってしまう。
【0027】
また、高速回転時の回転数としては6000rpm〜15000rpmが適しており、この高速回転時の回転数が6000rpmよりも低い場合には、回転させても基板1、2間から接着剤4’を振り切った際でも、気泡12が完全には振り切られず、気泡12を良好に除去することができない場合が多くなる。また、高速回転時の回転数が15000rpmよりも高い場合には、殆どの接着剤4’が振り切られてしまい、良好な厚みの接着剤層4を形成することができない。
【0028】
なお、上記の実施の形態にいては、接着剤4’を介して基板1、2(ハーフディスク6、8)を重ねた後に、低速回転と高速回転とを1回ずつ行った場合を述べたが、これに限るものではなく、低速回転の前に、さらに低速の回転を行ったり、中速回転や、高速回転よりもさらに高速の回転を行ったりしてもよい。しかしながら、この際には、気泡12が分散したり、接着剤層4の厚みが不足したりしないように制御する必要がある。
【0029】
【発明の効果】
このように本発明によれば、接着剤が供給された一方の基板に他方の基板を重ねた後に、接着剤を介して重ねられた基板を低速回転させて接着剤の基板間での延展を行う延展工程と、この延展工程の後に高速回転させて基板間から接着剤を振り切る振り切り工程とを設けることで、接着剤層に気泡を巻き込むこともなく高い歩留まりで良品の光学記録媒体を得ることができる。
【図面の簡単な説明】
【図1】
(a)〜(e)はそれぞれ本発明の実施の形態にかかるディスク(光学記録媒
体)の製造工程を示す側面図および平面図
【図2】
同ディスク(光学記録媒体)の製造工程における回転数変化状態を示す図
【図3】
ディスク(光学記録媒体)の構成を示す断面図
【図4】
(a)〜(d)はそれぞれ従来のディスク(光学記録媒体)の製造方法を説明
する図で、(a)は側面図および平面図、(b)は側面図および部分拡大側面図
、(c)、(d)は側面図
【図5】
従来のディスク(光学記録媒体)の製造工程における回転数変化状態を示す図
【符号の説明】
1、2 基板
3 全反射層(第2の記録層)
4 接着剤層
4’ 接着剤
5 半透過層(第1の記録層)
6、8 ハーフディスク
7 ディスペンサー
9 スピナー(回転手段)
10 ディスク(光学記録媒体)
12 気泡
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an optical recording medium having a structure in which substrates are bonded with an adhesive.
[0002]
[Prior art]
As shown in FIG. 3, a large-capacity optical recording medium (referred to as a disk 10) capable of recording video such as a DVD, whose production has been remarkably increasing in recent years, is provided with a semi-transmissive layer 5 as a first recording layer. 1, a substrate 2 provided with a total reflection layer 3 as a second recording layer, and an adhesive layer 4 for bonding these substrates 1 and 2.
[0003]
The manufacturing method of the disk 10 is as follows. First, a molten polycarbonate resin is injection-molded on a master on which information pits called stampers are cut using a molding machine, and a substrate having pits formed on a transparent plate is formed. 2 is made. A film such as aluminum is formed as a total reflection layer 3 on the substrate 2 by sputtering to form a half disk 8 (see FIG. 4). Further, a material such as gold is formed as a semi-transmissive layer 5 on another substrate 1 manufactured in the same manner by sputtering to form a half disk 6 (see FIG. 4). Then, these two half disks 6 and 8 are bonded together with an adhesive 4 ′ while maintaining a predetermined interval.
[0004]
The bonding step will be described in detail. First, as shown in FIG. 4A, an adhesive layer 4 is finally formed on a half disk 8 on which a total reflection layer 3 is formed on a substrate 2 having information pits. An adhesive 4 ′ having photocurability is dropped in a ring shape by the dispenser 7. An adhesive having a viscosity of 400 to 600 mPas at room temperature is used as the adhesive 4 '. The reason why the adhesive 4 ′ having this viscosity is used is that the maximum number of rotations in a normal shake-off step by a rotating means such as a spinner 9 (see FIG. 4 (c)) is 3000 rpm or less, and the allowable shake-off time is 3 seconds. This is because the thickness of 40 to 80 μm required for the adhesive layer 4 can be achieved by the following.
[0005]
Next, as shown in FIG. 4B, a half disk 6 composed of the substrate 1 on which the semi-transmissive layer 5 is formed is superposed on the adhesive 4 'dropped in an annular shape. Thereafter, the disk 10 filled with the adhesive 4 ′ between the half disks 6 and 8 is rotated by a high-speed rotating spinner 9 having a rotation speed change as shown in FIG. 5 (see FIG. 4C). Excess adhesive 4 'is shaken off to form adhesive layer 4 having a predetermined thickness. Thereafter, as shown in FIG. 4D, light (including not only visible light but also ultraviolet light) is irradiated by the lamp 11 to cure the adhesive 4 '.
[0006]
In the disk 10 having the bonding structure, the bonding step is a very important step. This is because if bubbles are contained in the adhesive layer 4, the reflection film is corroded from the bubble portions, and in the case of the disk 10 having a single-sided, dual-layer readout, the refractive index of the bubble portions is different, so that the laser beam This is because a problem arises in that information cannot be read out in the memory. For this reason, the disk 10 in which the adhesive layer 4 contains air bubbles is excluded as a defective disk.
[0007]
As a method of manufacturing a conventional optical recording medium having such a bonding structure, Patent Documents 1 and 2 disclose similar manufacturing methods.
[0008]
[Patent Document 1]
JP-A-10-340488 [0009]
[Patent Document 2]
JP-A-11-66644
[Problems to be solved by the invention]
In the conventional method of manufacturing the disk 10 shown in FIG. 4, it is necessary to use an adhesive having a viscosity of 400 to 600 mPas as the adhesive 4 ′. Meanwhile, when an amount of 3 cm 3 is dropped in an annular shape, the foot of the dropped adhesive 4 ′ is widened by its own weight, and its peak becomes gentle. In this state, when the upper half disk 6 is overlaid on the lower half disk 8, the upper half disk 6 comes into surface contact with the peak portion of the adhesive 4 'from the beginning, so that the adhesive 4 'Has a disadvantage that air bubbles 12 (see the enlarged view shown in FIG. 4B) are easily entrained, and the disk 10 in which the air bubbles 12 remain in the adhesive layer 4 becomes a defective disk. For this reason, conventionally, when the method of superposing the substrates 1 and 2 (the half disks 6 and 8) on each other after annularly dropping the adhesive 4 ′ on the lower half disk 8 is performed, the bubbles 12 are generated. There is a problem that the adhesive layer 4 easily enters the adhesive layer 4 and the production yield is poor.
[0011]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a manufacturing method capable of preventing entrapment of air bubbles at the time of bonding and capable of manufacturing a defect-free optical recording medium at a high yield.
[0012]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention is a method for manufacturing an optical recording medium having a structure in which substrates provided with a recording layer are bonded to each other with an adhesive, wherein one of the substrates provided with the recording layer is An adhesive supply step of supplying an adhesive, a superposition step of superimposing the other substrate on one substrate to which the adhesive is supplied, and a low-speed rotation of the superimposed substrate via the adhesive to allow the adhesive to be interposed between the substrates. And a shaking-off step in which the adhesive is rotated at a high speed to shake off the adhesive between the substrates after the spreading step.
[0013]
According to this method, entrapment of bubbles at the time of bonding can be prevented, and a defect-free optical recording medium can be manufactured with high yield.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 is a method for manufacturing an optical recording medium having a structure in which substrates provided with recording layers are bonded to each other with an adhesive, wherein the adhesive is applied to one substrate provided with the recording layer. An adhesive supply step of supplying, an overlapping step of overlaying the other substrate on one substrate to which the adhesive has been supplied, and spreading the adhesive between the substrates by rotating the laminated substrate at a low speed via the adhesive. It is characterized by comprising a spreading step to be performed, and a shaking-off step in which after the spreading step, the adhesive is rotated at high speed to shake off the adhesive from between the substrates.
[0015]
According to this method, even when bubbles were present in the adhesive when the substrates were stacked via the adhesive, after that, the adhesive was first spread at a low speed to spread between the substrates. At this time, the bubbles move to the outer peripheral portion together with the adhesive, and then when the adhesive is shaken off from between the substrates by rotating at a high speed, the adhesive containing the bubbles is shaken off, whereby the adhesive between the substrates is removed from the adhesive between the substrates. Bubbles can be removed satisfactorily.
[0016]
In addition, as the adhesive, if a light-curing adhesive that cures immediately after light irradiation is used, or a light-curing adhesive that cures after a while after light irradiation is used, Also, when the rotation speed at low speed rotation is 50 rpm to 3000 rpm and the rotation speed at high speed rotation is 6000 rpm to 15000 rpm, bubbles can be removed well. In the adhesive supply step, it is preferable to supply the adhesive by dropping the adhesive in an annular shape on one of the horizontally held substrates.
[0017]
Hereinafter, a method for manufacturing an optical recording medium according to the present invention will be described with reference to the drawings. Note that the same reference numerals are given to those having the same functions as those used in the conventional optical recording medium manufacturing method.
[0018]
First, as shown in FIG. 1A, a substrate 2 (that is, a half disk 8) having a total reflection layer 3 as a second recording layer formed on a spinner 9 as a rotating means is put on the total reflection layer 3. Is set upward (setting step), and an adhesive 4 ′ having photocurability is dropped in an annular shape thereon (see FIG. 1 (b): adhesive supplying step). At this time, the adhesive 4 'is dropped in an amount larger than the conventional amount, for example, an amount several times the conventional supply amount. Further, as the adhesive 4 'used at this time, the same type as the conventional one can be used.
[0019]
Thereafter, as shown in FIG. 1C, on the half disk 8 to which the adhesive 4 'has been supplied, the substrate 1 on which the semi-transmissive layer 5 as the first recording layer is formed (that is, the half disk 6). ) Are overlapped with the semi-transmissive layer 5 facing downward (overlapping step). At this time, air bubbles 12 are trapped near the top of the adhesive 4 ′ that has dropped and raised in an annular shape. At this time, the bubbles 12 are annularly present near the center of the dropping position of the adhesive 4 '.
[0020]
Next, as shown in FIG. 1D, in this state, the disk 10 to which the adhesive 4 'has been supplied between the half disks 6 and 8 is first rotated by the spinner 9 at a low speed of 3000 rpm or less for several seconds. Then, the adhesive 4 ′ is extended over the entire surface between the substrates 1 and 2 to form the adhesive layer 4 having a thickness of 20 to 100 μm (spreading step). At this time, when the adhesive 4 'extends and moves to the outer peripheral portion, the bubbles 12 also move to the outer peripheral portion. At a low rotation speed of 3000 rpm or less, the air bubbles 12 are strongly ejected from the upper and lower substrates 1 and 2 as compared to the adhesive 4 ', and are not repelled out of the disk 10. Therefore, even if the rotation is performed for a long time at a low rotation speed of 3000 rpm or less, the bubbles 12 still exist in the adhesive layer 4 when the rotation is stopped.
[0021]
Therefore, after the bubbles 12 have sufficiently moved to the outer peripheral portion of the disk 10, as shown in FIG. 2, the rotation of the spinner 9 is increased with the greatest possible acceleration, and the disk 10 is rotated at a high speed of 6000 rpm or more. The adhesive 4 ′ and the bubbles 12 are swept away from the adhesive layer 4 at once (see FIG. 1E). At this time, if the switching from the low-speed rotation of 3000 rpm or less to the high-speed rotation of 6000 rpm is performed with a small acceleration, the impact force is insufficient and the bubbles 12 cannot be completely shaken off from the adhesive layer 4, so the low-speed rotation of 3000 rpm or less It is desirable that the switching from the high-speed rotation to the high-speed rotation of 6000 rpm be performed with a large acceleration.
[0022]
After the bubbles 12 have been shaken off, the duration of the high-speed rotation is adjusted in order to obtain the required thickness of the adhesive layer 4. FIG. 2 shows the state of the change in the rotational speed.
Lastly, the bonded disk 10 having no air bubbles 12 in the adhesive layer 4 is irradiated with light by a lamp to cure the adhesive 4 ′ and complete the disk 10.
[0023]
Here, Comparative Examples 1 and 2 in which only the low-speed rotation or the high-speed rotation is performed after the adhesive 4 ′ is supplied between the substrates 1 and 2 (half disks 6 and 8) and the high-speed rotation after the low-speed rotation as described above An embodiment of the present invention that performs rotation will be described.
(Comparative Example 1)
As Comparative Example 1 corresponding to the prior art, a half disk 8 in which a total reflection layer 3 was formed by depositing an aluminum alloy to a thickness of 60 nm by a sputtering apparatus on a substrate 2 on which information pits were formed by injection molding polycarbonate was formed. A substrate, on which a photocurable adhesive 4 ′ having a viscosity of 460 mPas is dropped in an annular amount of 3 cm 3 , and then polycarbonate is injection-molded to form an information pit. A half disk 6 on which a semi-transmissive layer 5 was formed by sputtering to a thickness of 15 nm was overlaid as an upper substrate. Thereafter, the film was shaken off at a rotation speed of 3000 rpm for 4 seconds, and finally, the adhesive 4 ′ was cured by a lamp. As a result, a disk 10 having an average thickness of the adhesive layer 4 of 50 μm was obtained. However, when 1,000 disks 10 were manufactured by this method, air bubbles 12 were detected in the adhesive layer 4 of 300 disks 10 among them, and the disk became a defective disk. That is, the product yield rate by this manufacturing method was 70%.
(Comparative Example 2)
As Comparative Example 2 corresponding to the prior art, a half disk 8 in which a total reflection layer 3 was formed by forming a 60 nm-thick aluminum alloy on a substrate 2 on which information pits had been formed by injection molding polycarbonate was formed by sputtering. A substrate, on which a photocurable adhesive 4 ′ having a viscosity of 460 mPas is dropped in an annular amount of 9 cm 3 , and then polycarbonate is injection-molded to form an information pit. A half disk 6 on which a semi-transmissive layer 5 was formed by sputtering to a thickness of 15 nm was overlaid as an upper substrate, and thereafter, shaking off was performed at 7000 rpm for 4 seconds. As a result, large bubbles 12 before shaking-off were divided into fine bubbles 12 by the impact of high-speed rotation and remained in the adhesive layer 4. Thereafter, by curing the adhesive 4 ′ with a lamp, a disk 10 having an average thickness of the adhesive layer 4 of 40 μm could be obtained. When 1,000 disks 10 were manufactured by this method, air bubbles 12 were detected in the adhesive layer 4 in 800 of them, and the disks became defective. That is, the product yield by this manufacturing method was 20%.
(Embodiment)
As an embodiment using the present invention, a half disk 8 in which a total reflection layer 3 is formed by depositing an aluminum alloy to a thickness of 60 nm by a sputtering apparatus on a substrate 2 on which information pits are cut by injection molding polycarbonate is formed. A substrate, on which a photocurable adhesive 4 ′ having a viscosity of 460 mPas is dropped in an annular amount of 9 cm 3 , and then polycarbonate is injection-molded to form an information pit. A half disk 6 on which a semi-transmissive layer 5 was formed by sputtering to a thickness of 15 nm was stacked as an upper substrate. Then, after this, first, rotation is performed at a low speed of 1500 rpm for 2 seconds to move the bubbles 12 entrained in the adhesive layer 4 to the outer periphery, and then shake off at 7000 rpm for 2 seconds. The air bubbles 12 on the outer peripheral portion of the adhesive layer 4 were removed together with the extra adhesive 4 ′ outside the disk, and finally, the adhesive 4 ′ was cured with a lamp. As a result, a disk 10 having an average thickness of the adhesive layer 4 of 40 μm was obtained. When 1,000 disks 10 were manufactured by this method, bubbles 12 were detected in the adhesive layer 4 in 10 of them, and the disks became defective disks. That is, the product yield rate by this manufacturing method was 99%.
[0024]
As described above, even when air bubbles are present in the adhesive 4 'when the substrates 1 and 2 (half disks 6, 8) are stacked via the adhesive 4', the substrate is first rotated at a low speed. By spreading the adhesive 4 ′ between the substrates 1 and 2, the bubbles 12 move to the outer peripheral portion together with the adhesive 4 ′. Next, when the adhesive 4 ′ is spun off from the space between the substrates 1 and 2 by high-speed rotation, the adhesive 4 ′ containing the air bubbles 12 is shaken off. 12 can be removed satisfactorily, and finally, a disk 10 (optical recording medium) having the adhesive layer 4 without bubbles 12 can be obtained with a high yield.
[0025]
As the adhesive 4 ′, a fast-acting light-curing adhesive that cures immediately upon irradiation with light, or a slow-acting light-curing adhesive that cures after a short time after irradiation with light, When a fast-acting light-curing adhesive is used, light may be irradiated from the substrate 1 side on which the semi-transmissive layer 5 is provided.
[0026]
Also, the rotation speed at the time of low-speed rotation is suitably 50 rpm to 3000 rpm, and when the rotation speed at the time of low-speed rotation is lower than 50 rpm, the bubbles 12 entrained in the adhesive 4 ′ are hard to move to the outer periphery. Therefore, the bubbles 12 eventually remain in the adhesive layer 4. When the rotation speed during the low-speed rotation is higher than 3000 rpm, fine bubbles 12 tend to be divided and remain in the adhesive layer 4 after rotation, as described in Comparative Example 2. In this case as well, the bubbles 12 eventually remain in the adhesive layer 4.
[0027]
The rotation speed at the time of high-speed rotation is preferably 6000 rpm to 15000 rpm, and when the rotation speed at the time of high-speed rotation is lower than 6000 rpm, the adhesive 4 ′ is shaken off between the substrates 1 and 2 even when the rotation is performed. Even in such a case, the air bubbles 12 are not completely shaken off, and the air bubbles 12 cannot be removed well in many cases. On the other hand, when the rotation speed at the time of high-speed rotation is higher than 15000 rpm, most of the adhesive 4 ′ is shaken off, and the adhesive layer 4 having a good thickness cannot be formed.
[0028]
In the above embodiment, the case where the low-speed rotation and the high-speed rotation are performed once each after the substrates 1 and 2 (half disks 6 and 8) are stacked via the adhesive 4 'has been described. However, the present invention is not limited to this, and it is also possible to perform lower-speed rotation before medium-speed rotation, medium-speed rotation, or higher-speed rotation than high-speed rotation. However, in this case, it is necessary to control so that the bubbles 12 are not dispersed and the thickness of the adhesive layer 4 is not insufficient.
[0029]
【The invention's effect】
Thus, according to the present invention, after the other substrate is overlaid on one substrate to which the adhesive is supplied, the laminated substrate is rotated at a low speed via the adhesive to spread the adhesive between the substrates. Providing a good optical recording medium with a high yield without entrapping air bubbles in the adhesive layer by providing a spreading step to be performed and a shaking-off step in which the adhesive is rotated between the substrates by rotating at a high speed after the spreading step. Can be.
[Brief description of the drawings]
FIG.
2 (a) to 2 (e) are a side view and a plan view, respectively, showing a manufacturing process of a disk (optical recording medium) according to an embodiment of the present invention.
FIG. 3 is a diagram showing a rotation speed change state in a manufacturing process of the disk (optical recording medium).
FIG. 4 is a sectional view showing the configuration of a disk (optical recording medium).
(A)-(d) is a figure explaining the manufacturing method of the conventional disk (optical recording medium), respectively, (a) is a side view and a top view, (b) is a side view and a partial enlarged side view, (c) ) And (d) are side views [FIG. 5]
FIG. 3 is a diagram showing a change in the number of rotations in a manufacturing process of a conventional disk (optical recording medium).
1, 2 substrate 3 total reflection layer (second recording layer)
4 adhesive layer 4 'adhesive 5 semi-permeable layer (first recording layer)
6, 8 half disk 7 dispenser 9 spinner (rotating means)
10 disks (optical recording media)
12 bubbles

Claims (5)

それぞれ記録層が設けられた基板同士を接着剤により貼り合わせた構造を有する光学記録媒体の製造方法であって、記録層が設けられた一方の基板に接着剤を供給する接着剤供給工程と、接着剤が供給された一方の基板に他方の基板を重ねる重ね工程と、接着剤を介して重ねられた基板を低速回転させて接着剤の基板間での延展を行う延展工程と、この延展工程の後に高速回転させて基板間から接着剤を振り切る振り切り工程とを有することを特徴とする光学記録媒体の製造方法。A method for manufacturing an optical recording medium having a structure in which substrates provided with recording layers are bonded to each other with an adhesive, and an adhesive supply step of supplying an adhesive to one of the substrates provided with the recording layers, A laminating step of laminating the other substrate on one of the substrates supplied with the adhesive, a laminating step of rotating the laminated substrate via the adhesive at a low speed, and extending the adhesive between the substrates; And a high-speed rotation step to shake off the adhesive from between the substrates after the step (c). 接着剤として、光照射を行うと即時に硬化する速効性の光硬化接着剤を用いることを特徴とする請求項1に記載の光学記録媒体の製造方法。The method for producing an optical recording medium according to claim 1, wherein a fast-acting light-curing adhesive that cures immediately upon irradiation with light is used as the adhesive. 接着剤として、光照射を行うと暫くしてから硬化する遅効性の光硬化接着剤を用いることを特徴とする請求項1に記載の光学記録媒体の製造方法。The method for producing an optical recording medium according to claim 1, wherein a slow-acting light-curing adhesive that cures after a while after light irradiation is used as the adhesive. 低速回転時の回転数が50rpm〜3000rpmであり、高速回転時の回転数が6000rpm〜15000rpmであることを特徴とする請求項1〜3の何れかに記載の光学記録媒体の製造方法。The method according to any one of claims 1 to 3, wherein the number of revolutions at low speed rotation is 50 rpm to 3000 rpm, and the number of revolutions at high speed rotation is 6000 rpm to 15000 rpm. 接着剤供給工程では、水平に保持された一方の基板上に接着剤が環状に滴下されることで接着剤が供給されることを特徴とする請求項1〜4の何れかに記載の光学記録媒体の製造方法。5. The optical recording according to claim 1, wherein in the adhesive supply step, the adhesive is supplied by dropping the adhesive in an annular shape on one of the substrates held horizontally. 6. The method of manufacturing the medium.
JP2003138032A 2003-05-16 2003-05-16 Method for manufacturing optical recording medium Pending JP2004342237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003138032A JP2004342237A (en) 2003-05-16 2003-05-16 Method for manufacturing optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003138032A JP2004342237A (en) 2003-05-16 2003-05-16 Method for manufacturing optical recording medium

Publications (1)

Publication Number Publication Date
JP2004342237A true JP2004342237A (en) 2004-12-02

Family

ID=33527509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003138032A Pending JP2004342237A (en) 2003-05-16 2003-05-16 Method for manufacturing optical recording medium

Country Status (1)

Country Link
JP (1) JP2004342237A (en)

Similar Documents

Publication Publication Date Title
JP4338688B2 (en) Manufacturing method of optical information recording medium
JP3635588B2 (en) Optical disc manufacturing method and multilayer optical disc
JP2001523372A (en) Optical memory device and manufacturing method thereof
JPWO2006106735A1 (en) Multilayer information recording medium, manufacturing apparatus thereof, and manufacturing method thereof
JP2003067986A (en) Optical recording disk manufacturing stamper, forming method of information recording region and light transmissive layer, and optical recording medium
JP2003281791A (en) Single-sided two layered optical disk and method and device for manufacturing the same
JPH09115191A (en) Optical information recording medium and its production
JP2004342237A (en) Method for manufacturing optical recording medium
JPH0997452A (en) Production of multilayered optical recording medium
JP3955867B2 (en) Manufacturing method of optical information recording medium
JP5108434B2 (en) Optical recording medium manufacturing method and manufacturing apparatus
KR100962743B1 (en) Optical recording medium and production method therefor
WO2002103691A1 (en) Optical recording medium and production method thereof
CN1163881C (en) Manufacture of CD with several record layers
JP4112423B2 (en) Method for producing multilayer optical information recording medium
JP2003022578A (en) Method for manufacturing optical recording medium
JP2004362693A (en) Optical disk and optical disk manufacturing method
TWI294125B (en) Manufacturing method of cover layer of optical information storage media
JP4433632B2 (en) Manufacturing method of optical recording medium
JPH09245387A (en) Production equipment for information recording disk and production of information recording disk
JP3726254B2 (en) Information recording medium manufacturing method
JPH10320851A (en) Manufacture of optical laminated disk and its manufacturing device
JPH052782A (en) Production of base body for optical recording disk and device for executing this process
JP2004164726A (en) Manufacturing method for optical record medium and optical recording medium
JP4039131B2 (en) Manufacturing method of multilayer optical disk