JP2004340762A - Oxidation-reduction current measuring instrument of vibration type - Google Patents

Oxidation-reduction current measuring instrument of vibration type Download PDF

Info

Publication number
JP2004340762A
JP2004340762A JP2003138008A JP2003138008A JP2004340762A JP 2004340762 A JP2004340762 A JP 2004340762A JP 2003138008 A JP2003138008 A JP 2003138008A JP 2003138008 A JP2003138008 A JP 2003138008A JP 2004340762 A JP2004340762 A JP 2004340762A
Authority
JP
Japan
Prior art keywords
strainer
electrode
current measuring
vibration
reduction current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003138008A
Other languages
Japanese (ja)
Other versions
JP4238062B2 (en
Inventor
Satoyuki Ikegaya
智行 池ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2003138008A priority Critical patent/JP4238062B2/en
Publication of JP2004340762A publication Critical patent/JP2004340762A/en
Application granted granted Critical
Publication of JP4238062B2 publication Critical patent/JP4238062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxidation-reduction current measuring instrument of vibration type, which can carry out stable measurements with good reproducibility. <P>SOLUTION: The oxidation-reduction current measuring instrument of vibration type 1, which has a working electrode 20 and a counter electrode 21 and detects the oxidation-reduction current by vibrating at least the working electrode 20 in order to detect concentration values of object components to be measured in test water, is provided with an electrode main body 10 which has a vibratable detecting section 3 including the working electrode 20 and the counter electrode 21; and a strainer 50 which is bonded to the electrode main body so as to surround the detecting section 3 and stores polishing beads in its inside. In addition, at least a bubble removing section 49 by which the inside and the outside of the strainer 50 are in communication with each other, is arranged at a junction 80 between the strainer 50 and the electrode main body 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、一般には、作用極と対極とを有し、少なくとも作用極を振動させることにより酸化還元電流を検出して試料液(検水)中の測定対象成分の濃度を検出する、所謂、ポーラログラフ法を利用した酸化還元電流測定装置に関するものであり、特に、連続測定を可能とした採水、投げ込み式の振動式酸化還元電流測定装置に関するものである。
【0002】
【従来の技術】
従来、例えば検水中の残留塩素濃度を検出するために、所謂、ポーラログラフ法を用いて、残留塩素などの測定対象成分の酸化還元電流を測定することが行われている。
【0003】
斯かる酸化還元電流測定は、例えばプール水や水道水(上水)中の遊離残留塩素濃度測定に利用される。又、例えばカット野菜、果実などの食料品の洗浄、殺菌のために、次亜塩素酸ナトリウムを水道水又は地下水で希釈した塩素濃度の比較的濃い塩素殺菌液(約200mg/L)が用いられるが、この洗浄、殺菌の前後においてシンクなどに入った洗浄、殺菌液の残留塩素を測定するために酸化還元電流測定が利用される。
【0004】
その他、同様の酸化還元電流測定は、検水中の溶存オゾン濃度測定、溶存二酸化塩素濃度測定、亜塩素酸(HClO)イオン濃度測定、過酸化水素濃度測定のために利用することができる。
【0005】
このように検水中の測定対象成分をポーラログラフ法にて測定するためには、検水と、作用極及び対極との間に相対速度を与えることで、作用極表面に活物質を常に供給することを可能とし、安定な検出電流を得る。
【0006】
そこで、例えば残留塩素の濃度検出のために、作用極及び対極を振動させて検水との相対速度を得るようにした酸化還元電流測定装置が種々提案されている。
【0007】
このような酸化還元電流測定装置として、本発明者は、特許文献1に記載される酸化還元電流測定装置を提案した。その概略構成を図9に示す。
【0008】
本例にて、酸化還元電流測定装置200は、電極本体201を備え、電極本体201の下方端に一体に電極支持体203が取り付けられている。電極支持体203は、作用極205と対極206とを有し、作用極205及び対極206を振動させることにより酸化還元電流を検出して検水中の測定対象成分の濃度を検出する。
【0009】
特に、この酸化還元電流測定装置200は、電極支持体203を囲包して採水用の容器210を有し、容器蓋211に電極本体201を保持する、弾性材にて作製された電極固定用部材212が設けられている。
【0010】
従って、酸化還元電流測定装置200は、振動の力点である振動用モータ207の取り付け位置が振動の支点である電極固定用部材212よりも下方に位置し、更に、振動の作用点である作用極205と対極206の位置が振動の力点である振動用モータ207よりも下方に位置している。
【0011】
これにより、特許文献1に記載の酸化還元電流測定装置200は、測定時の電流のハンチングの発生を防止し、電流値の安定性を向上させ、測定値の誤差を最小限とすることができる、といった利点を有している。
【0012】
特許文献1に記載の酸化還元電流測定装置200は、容器210内に検水Sを汲み取り、電極本体201を容器蓋211に電極固定用部材212を介して取り付ける構成とされ、それによって、周囲から検水Sと電極本体201とを遮断することが可能となり、検水Sの流速の影響を受けずに安定した測定が可能とされる。
【0013】
しかしながら、斯かる構成の酸化還元電流測定装置200は、所謂、採水型の測定装置であり、プールや池、或いは食料品の洗浄、殺菌液の入ったシンクなどに電極を直接投入して連続測定することは不可能である。
【0014】
一方、定置型の連続酸化還元電流測定装置は、測定にはフローセル部が必要であり、上記同様プールなどに電極を直接投入して測定することは不可能であるか、或いは、極めて複雑な構成とならざるを得ず、高価となる。
【0015】
又、従来の採水、投げ込み式の酸化還元電流測定装置では、測定を行うに従い、作用極に汚れなどが付着し、感度低下による指示値の変化が生じるため、連続測定は不可能であった。
【0016】
そこで、本発明者は、特願2001−336973号に記載される振動式酸化還元電流測定装置を提案した。この振動式酸化還元電流測定装置は、検水中の残留塩素、溶存オゾン、二酸化塩素、亜塩素酸イオン、過酸化水素濃度の測定に好適に用いるものである。その概略構成を図7に示す。
【0017】
図7に示す振動式酸化還元電流測定装置100は、ホルダー102と、電極支持体(検出部)103と、を備える電極本体101を有する。電極支持体103は、作用極105と対極106とを有し、その上端部の外周に形成されたOリング溝に配置された支持部材としてのOリング104を介して、ホルダー102に対して振動(歳差運動)可能に保持されている。そして、電極支持体103内には、振動モータ107が配置されている。
【0018】
振動式酸化還元電流測定装置100は、更に、電極支持体103を囲包してストレーナ108を有している。ストレーナ108は、周壁及び底壁を有し、上端が開口したコップ形状とされるストレーナ本体108aを有する。ストレーナ本体108aは、その上端周縁部に設けられたフランジ108bを、ホルダー102の下端外周面に取り付けられたリング状のアダプタ109、このアダプタ109に螺合される止めナット110によって挟持することによりホルダー102に取り付けられる。
【0019】
ストレーナ本体108aの周壁及び底壁には、多数の開口部108cが形成され、開口部108cには網108dが取り付けられている。更に、ストレーナ本体108aの内部には、研磨ビーズ111が収納される。ストレーナ108の網108dは、収納した研磨ビーズ111をストレーナ内に保持するためのものであり、従って、網目の大きさは、研磨ビーズ111の直径以下の寸法とされる。検水は、図8中矢印にて模式的に示すように、ストレーナ108の開口部108cから網108dを流動してストレーナ内部へと流入し、又、網108d及び開口部108cを介して流出する。そして、振動モータ107を作動させることにより、電極支持体103は振動(歳差運動)を開始し、作用極105は円運動を行いながら、検水中の測定対象成分、例えば、残留塩素の濃度を測定する。
【0020】
このような構成の振動式酸化還元電流測定装置100では、研磨ビーズ111の入ったストレーナ108を電極支持体103の周りに装着し、研磨ビーズ111の中で少なくとも作用極105を振動(歳差運動)させることで、プールや池、或いは食料品の洗浄、殺菌液の入ったシンクなどへ電極を直接投入しての測定、或いは、ビーカやバケツなどの採水測定において、安定した、即ち、感度低下の少ない、連続測定が可能となる。
【0021】
又、研磨ビーズ111中で作用極105が振動(歳差運動)することで、作用極105の洗浄、研磨が可能となり、作用極105を常に一定の状態に保つことができるため、安定した連続測定が可能であり、同時に電極のメンテナンスを少なくすることができる。
【0022】
【特許文献1】
特開2000−298110号公報
【0023】
【発明が解決しようとする課題】
しかしながら、図7に示した従来の振動式酸化還元電流測定装置100には、以下のような問題があった。
【0024】
上述のように、ストレーナ108の内部の作用極105及び対極106を備える検出部、即ち、電極支持体103に対する液の交換は、図8中矢印にて模式的に示すように、ストレーナ108に取り付けられた網108dを介して行う。
【0025】
しかし、ストレーナ108の内部には研磨ビーズ111があり、ストレーナ108の開口部108cに設けられた網108dは、研磨ビーズ111をストレーナ108の内部に保持するために、その網の目の大きさは研磨ビーズ111の直径以下の寸法とする必要がある。
【0026】
そのため、例えば、プール水、或いはシンクなどに入った食料品の洗浄、殺菌液の残留塩素濃度を測定する際に、対象の所望される測定箇所へと振動式酸化還元電流測定装置100を投げ込み、検水がストレーナ108の開口部108cから網108dを介して流動してストレーナ内部へと流入し、又、網108d及び開口部108cを介して流出するときに、網108dに空気A1が引っかかり、液の交換がスムーズに行われない。特に、網108dの材質がPE、PPなどの樹脂製であると、網108dが疎水性であるため、網目の間に空気A1が引っかかり易い。このように、空気A1が液の交換を阻害し、液の交換が不足すると、ストレーナ108の内部の測定対象成分、即ち、残留塩素や溶存オゾンが測定により消費されて濃度が減少する。その結果、振動式酸化還元電流測定装置100の測定値、例えば、残留塩素や溶存オゾンの測定値の再現性が悪くなることがある。
【0027】
又、ストレーナ108の内部に気泡が多く残ると、ストレーナ108の上部に空気層A2が生じる。振動式酸化還元電流測定装置100の測定対象たる残留塩素や溶存オゾンは、空気に接触すると、そこから空気中に飛散していく性質がある。そのため、ストレーナ108の内部の残留塩素濃度や溶存オゾン濃度が低下し、周囲との濃度差が生じるため、測定誤差となることがある。又、電極支持体103の振動、或いは装置外部からの衝撃などによってストレーナ108の内部の空気層A2が抜けると、ストレーナ108の内部の残留塩素濃度や溶存オゾン濃度が上昇するため、結果として不安定な測定になることがある。
【0028】
更に、ストレーナ108の内部に空気層A2が多く残った場合、空気層A2が対極106に接触してしまう虞がある。これを避けるために、従来、検出部、即ち、作用極105及び対極106を備える電極支持体103を在る程度長くする必要があり、結果として、振動式酸化還元電流測定装置100の大きさに制限があった。
【0029】
従って、本発明の目的は、一般には、再現性がよく、安定した測定が可能な振動式酸化還元電流測定装置を提供することである。
【0030】
本発明の他の目的は、検出部に対する液の交換をスムーズに行うことができ、検出部近傍と装置周囲とで測定対象の濃度の差が生じることを防止することのできる振動式酸化還元電流測定装置を提供することである。
【0031】
本発明の更に他の目的は、ストレーナの内部に空気層が生じるのを防止して、この空気層が対極に接触するのを防止することができ、可及的に検出部(電極支持体)を短くすることができ、延いては電極本体及びストレーナを含む装置全体を可及的に小型化することを可能とする振動式酸化還元電流測定装置を提供することである。
【0032】
本発明の他の目的は、上記諸目的を達成すると共に、サンプル(検水)中で作用極と対極の振動(歳差運動)させることができ、連続的な採水、投げ込み測定が可能であり、又、研磨ビーズ中での電極の振動(歳差運動)により、作用極の洗浄、研磨が可能であり、作用極の汚れなどによる感度低下を防止し、感度低下のない安定した連続測定が可能である振動式酸化還元電流測定装置を提供することである。
【0033】
【課題を解決するための手段】
上記目的は本発明に係る酸化還元電流測定装置にて達成される。要約すれば、本発明は、作用極と対極とを有し、少なくとも作用極を振動させることにより酸化還元電流を検出して検水中の測定対象成分の濃度を検出する振動式酸化還元電流測定装置において、作用極と対極とを備えた振動可能な検出部を有する電極本体と、前記検出部を囲包するように前記電極本体に接合され、内部に研磨ビーズを収容するストレーナと、を有し、前記ストレーナと前記電極本体との接合部に、前記ストレーナの内部と外部とを連通させる少なくとも1つの気泡抜け部を設けることを特徴とする振動式酸化還元電流測定装置である。
【0034】
本発明の一実施態様によると、前記電極本体と前記ストレーナとは、前記検出部の振動の支点近傍で接合される。又、本発明の一実施態様によると、前記気泡抜け部を通る前記ストレーナの内部から外部への経路の少なくとも一部に、少なくとも一方向において前記研磨ビーズの直径以下の寸法を有する部分を有する。又、好ましい一実施態様によると、前記気泡抜け部は、少なくとも一方向において前記研磨ビーズの直径よりも大きい寸法を有する。
【0035】
本発明の一実施態様によると、前記電極本体と前記ストレーナとは、前記電極本体の外周面に形成された雄ねじと前記ストレーナの上端開口部の内周面に形成された雌ねじとを螺合することで接合され、前記雄ねじ及び/又は雌ねじ部に溝部が形成されると共に、前記ストレーナの周壁に該溝部と連通する通路が形成されて、該溝部及び通路により前記気泡抜け部が形成される。一実施態様では、前記電極本体と前記ストレーナとが接合された際の(i)前記雄ねじ又は雌ねじの先端と前記溝部の壁部との間若しくは前記雄ねじ及び雌ねじに設けられた溝部の壁部間の最大間隔、(ii)前記ストレーナの軸線方向における前記溝部の最大開口幅、及び(iii)前記ストレーナの軸線方向における前記通路の最大深さのいずれか若しくはいくつかは、前記研磨ビーズの直径以下である。又、他の実施態様では、前記電極本体と前記ストレーナとが接合された際の(i)前記雄ねじ又は雌ねじの先端と前記溝部の壁部との間若しくは前記雄ねじ及び雌ねじに設けられた溝部の壁部間の最大間隔、(ii)前記ストレーナの軸線方向における前記溝部の最大開口幅、(iii)前記ストレーナの軸線方向における前記通路の最大深さ、(iv)前記雄ねじ又は雌ねじ部の周方向における前記溝部の幅、(v)前記雄ねじ又は雌ねじの周方向における前記通路の幅のいずれか若しくはいくつかは、前記研磨ビーズの直径より大きい。
【0036】
本発明の一実施態様によると、前記電極本体は更に、前記検出部の振動の支点位置にて前記電極支持体を保持する支持部材を有し、前記検出部は、下方端に前記作用極を備え、該作用極より上方に前記対極を備えると共に、前記支持部材より下方且つ前記作用極より上方位置にて前記検出部の内部に設置され、前記検出部に歳差運動を与える振動モータを有する。
【0037】
本発明の好ましい一実施態様では、前記研磨ビーズは、直径0.1〜3mmとされる。又、本発明の測定対象成分は、残留塩素、溶存オゾン、溶存二酸化塩素、亜塩素酸イオン、又は過酸化水素とすることができる。
【0038】
【発明の実施の形態】
以下、本発明に係る振動式酸化還元電流測定装置を図面に則して更に詳しく説明する。
【0039】
図1に本発明の振動式酸化還元電流測定装置の一実施例を示す。本実施例にて、振動式酸化還元電流測定装置1は、概略円筒形状とされ上端が閉鎖し、下端が開口したホルダー2と、軸線に沿って形成され上端が開口し、下端が閉鎖した中心穴8を備えた検出部としての電極支持体3と、を備える電極本体10を有する。電極支持体3は、その上端が支持部材4を介して振動可能にホルダー2の下端開口部11に保持される。
【0040】
更に説明すると、本実施例にて、ホルダー2は、上部ホルダー2aと下部ホルダー2bとを有し、上部ホルダー2aの下端開口部内周面に形成された雌ねじ部5と、下部ホルダー2bの上端外周面に形成された雄ねじ部6とが螺合することにより上部ホルダー2aと下部ホルダー2bとが一体的に接続されている。又、本実施例では、この接続部を利用して、即ち、上部ホルダー2aと下部ホルダー2bの接合端縁にて挟持して配線用プリント基板7がホルダー2内に設置されている。
【0041】
又、上部ホルダー2aの上端閉鎖部には、ゴムブッシング9を介して電極ケーブル70が取り付けられており、ケーブル70の一端は配線用プリント基板7に接続され、ケーブル70の他端は外部へと延在して測定装置本体(図示せず)の電源回路、測定回路などに接続されている。
【0042】
又、電極支持体3は、本実施例では、上部支持体3aと下部支持体3bとを有し、両支持体3a、3bを一体的に螺合接続することにより構成される。即ち、上部支持体3aと下部支持体3bは、上部支持体3aの下方端開口部内周面に形成された雌ねじ部12と、下部支持体3bの外周面に形成された雄ねじ部13とが螺合することにより上部支持体3aと下部支持体3bとは一体的に接続される。電極支持体3の中心穴8は、上部支持体3aを貫通し、下部支持体3bの軸線方向に沿って下方へと延在し、下部支持体3bの下端部にて閉鎖されている。
【0043】
上部支持体3aの上端部は、下部ホルダー2bの下端に形成された開口部11に挿入される。このとき、上部支持体3aの外周にはOリング溝14が形成され、このOリング溝14に配置された支持部材としてのOリング4により上部支持体3a(即ち、電極支持体3)は、下部ホルダー2b(即ち、ホルダー2)に対して振動(歳差運動)可能に保持される。又、Oリング4は、ホルダー2と電極支持体3との接続部からホルダー2内へと検水が侵入するのを防止する。
【0044】
電極支持体3の下部支持体3bは、本実施例では、上部支持体3aに接続された大径部15と、外径がより小さくされた小径部16と、大径部15と小径部16とを接続する傾斜遷移部17と、にて形成される。従って、下部支持体3bの内部には、下方端が閉鎖された中心穴8によって段状の空間が形成されている。
【0045】
大径部15の外周には、対極21が配置され、小径部16には作用極20が設けられる。これら作用極20及び対極21は、その少なくとも一部は、電極支持体3の外表面に露出し、検水に接触するように構成される。本実施例では、振動式酸化還元電流測定装置1は、残留塩素測定装置とされたので、作用極20としては金又は白金とされ、対極21は、銀又は銀・塩化銀を使用した。
【0046】
本実施例で、作用極20はロッド形状のものを小径部に圧入して取り付けた。所望によっては、接着或いは注型により取り付けることもできる。一方、対極21は、線状電極部材を大径部15の外周面に螺旋状に巻き付けることにより設けた。
【0047】
作用極20及び対極21には、それぞれリード線22、23の一端が接続され、リード線22、23の他端は、中心穴8内を通って、上記配線用プリント基板7に接続される。
【0048】
作用極20と対極21との間には、電源回路(図示せず)から所定の電圧が印加され、その時の電流値を電流計にて測定することにより、検水中の測定対象成分の濃度が求められる。尚、本実施例によると、電極支持体3の中心穴8内には、サーミスタや白金測温体のような温度測定素子24が配置され、リード線25により上記配線用プリント基板7に接続され、そして、ケーブル70を介して測定装置本体に接続されている。
【0049】
本発明によれば、電極支持体3の中心穴8内には、本実施例では、電極支持体3の下部支持体段状空間に位置して振動モータ26が配置される。本実施例では、振動モータ26の振動量は0.5〜2G、回転数は、5000〜15000rpmとした。又、振動モータ26としては、フジマイクロ株式会社製のFM−109K1(商品名)を好適に使用することができる。
【0050】
図示の通り、電極支持体3をホルダー2に取り付けているOリング4が電極支持体3の振動の支点とされ、電極支持体3の力点である振動モータ26は、その位置が、即ち、モータ重心位置が、振動の支点よりH1=10〜40mm(本実施例ではH1=25mm)下方に設定され、更に、電極支持体3の作用点である作用極20が、振動モータ26の重心位置(力点)より更にH2=10〜60mm(本実施例ではH2=20mm)下方に配置されている。本実施例で、巻き線とされる対極21の中心位置は、振動モータ26の重心位置(力点)よりH3=5〜60mm(本実施例ではH3=7mm)だけ下方に配置された。
【0051】
尚、本実施例における電極支持体3の具体的寸法の一例を示せば次の通りであった。
電極支持体3の材質:ABS樹脂
上部支持体3a及び下部支持体3bの外径d1: 14mm
下部支持体3bの小径部16の外径d2: 8mm
上部支持体3aの支点からの長さh0: 20mm
下部支持体3bの大径部15の垂直方向長さh1: 15mm
下部支持体3bの遷移部17の垂直方向長さh2: 4mm
下部支持体3bの小径部16の垂直方向長さh3: 7mm
【0052】
本発明によれば、振動式酸化還元電流測定装置1は、更に、電極支持体3を囲包してストレーナ50を有している。本実施例では、ストレーナ50は、ストレーナ本体30と、ストレーナ保持部40とから成る。勿論、本発明は、この構成に何ら限定されるものではなく、ストレーナ50は、一部材として形成されていてもよい。
【0053】
図2をも参照して、ストレーナ50のストレーナ本体30及びストレーナ保持部40は、金属製或いはプラスチック製とすることができる。プラスチック製とすれば、軽量化、低コスト化を図ることができる。
【0054】
ストレーナ本体30は、本実施例では、上端が開口しており、周囲及び底部に多数の開口部32が設けられた、少なくとも電極支持体3の下部支持体3bに設けられた作用極20を囲包する枠体31として形成される。ストレーナ本体30の多数の開口部33には網34が、接着、溶着などにより取り付けられる。そして、ストレーナ本体30の内部には、研磨ビーズ60が収納される。
【0055】
ストレーナ本体30の網34は、収納した研磨ビーズ60をストレーナ内に保持するためのものであり、従って、網目の大きさは、研磨ビーズ60の直径以下の寸法であればよい。網の材質は、ポリアミド樹脂(ナイロン)、PE(ポリエチレン)、PP(ポリプロピレン)などのプラスチック網とすることができ、又、SUS網などの金属製とすることもできる。
【0056】
研磨ビーズ60としては、直径0.1〜3mmとされる非金属製のビーズであれば任意のものを使用し得るが、本実施例では、直径1mmのアルミナビーズを使用した。ビーズの表面粗さは、中心線平均粗さ(Ra)で、0.1〜100μm、好ましくは、0.5〜50μmである。
【0057】
図3をも参照して、ストレーナ50のストレーナ保持部40は、周壁41を有し、上端及び下端が開口した略円筒形状とされ、内部に貫通穴42を画成している。ストレーナ保持部40の上端開口部43の内周面には雌ねじ45が形成され、ストレーナ保持部40は、この雌ねじ45に、下部ホルダー2bの下端外周面に形成された雄ねじ27を螺合することによってホルダー2、即ち、ホルダー2及び電極支持体3を備える電極本体10に取り付けられる。
【0058】
一方、ストレーナ保持部40の下端開口部44の外周面には雄ねじ46が形成され、この雄ねじ46を、ストレーナ本体30の上端開口部33の内周面に形成された雌ねじ35に螺合することにより、ストレーナ本体30が、ストレーナ保持部40に保持される。こうして、電極支持体3の振動の支点近傍にストレーナ50と電極本体10との接合部80を設けてストレーナ50で電極支持体3を囲包することで、電極支持体3は、ストレーナ50内で振動(歳差運動)することができる。
【0059】
本発明の一つの特徴とするところは、検出部たる電極支持体3の振動の支点の近傍におけるストレーナ50と電極本体10との接合部80に、少なくとも1つの気泡抜け部49を設けたことである。
【0060】
即ち、本実施例では、ストレーナ保持部40の下部ホルダ2bとの螺合部の雌ねじ部45に溝部47を加工し、又この溝部47から周壁41を通して外部へと連通する通路48を加工することで、ストレーナ保持部40の内部、即ち、貫通穴42と、ストレーナ保持部40の外部とを連通させる気泡抜け部49を形成する。これにより、この気泡抜け部49を通して、ストレーナ50の内部の気泡を、ストレーナ50の外に抜くことができる。
【0061】
ここで、好ましくは、気泡抜け部49は、ストレーナ50の内部から外部への経路の少なくとも一部に、少なくとも一方向において研磨ビーズ60の直径以下の寸法を有する部分(ビーズ移動阻止部)を有するようにする。限定されるものではないが、本実施例の構成では、
(i)下部ホルダ2bとストレーナ保持部40とが組み合わされた際の、下部ホルダ2bの雄ねじ27の先端(最外縁部)と、ストレーナ保持部40の雌ねじ部45に加工した溝部47との隙間寸法D1(ここでは、溝部47は、ストレーナ保持部40の半径方向に向かって凸の弧状凹部として形成しているため、下部ホルダ2bの雄ねじ27の先端と、ストレーナ保持部40の雌ねじ部45に加工した溝部47との間の最大寸法D1)、
(ii)ストレーナ保持部40の上端開口部43からストレーナ保持部の軸線方向下方に長さD2で延在する溝部47が、下部ホルダ2bとストレーナ保持部40とを組み合わせた際にストレーナ保持部40の内部に対して開口する、ストレーナ保持部40の軸線方向の開口幅D3(ここでは、溝部47は、ストレーナ保持部40の上端開口部43の端部から、ストレーナ保持部40の軸線方向下方に、ストレーナ保持部40の内周面に設けられた雌ねじ部45の同方向の幅を超えて延在する)、
(iii)ストレーナ保持部40の上端開口部43の周縁部(周壁)に設けられた通路48の、ストレーナ保持部40の上部開口部43の端部からの、ストレーナ保持部40の軸線方向の深さD4、
のいずれか若しくはいくつか(全てでもよい)を、研磨ビーズ60の直径以下の寸法とすることで、下部ホルダ2bにストレーナ保持部40を螺合した際に、下部ホルダ2bの雄ねじ27の先端と溝部47の壁との間で研磨ビーズ60の通過を阻むことができる。
【0062】
このように、ストレーナ保持部40に加工する溝部47、通路48の寸法設定によって、研磨ビーズ60の直径以下の寸法を有するビーズ移動阻止部を形成することで、寸法精度を出し易いなどの利点があるが、本発明はこれに限定されるものではなく、気泡抜け部49を通るストレーナ50の内部から外部への経路にあれば、例えば、該経路の入口に当たる、下部ホルダー2bの外周面28とストレーナ保持部40の内周面42a(図3(b))との間隔などの設定により、ビーズ移動阻止部を形成してもよい。
【0063】
一方、好ましくは、気泡抜け部49は、液の交換性、気泡抜けを良くするために、少なくとも一方向において研磨ビーズ60の直径よりも大きい寸法を有するようにする。限定されるものではないが、本実施例の構成では、
(i)上記隙間寸法D1、
(ii)上記開口幅D3、
(iii)上記深さD4、
(iv)溝部47の、ストレーナ保持部40の雌ねじ部45の周方向の受け入れ幅(或いは、略ストレーナ保持部40の軸線方向に略直交する方向の幅)W1、
(v)通路48の、略円筒形状のストレーナ保持部40の軸線方向に略直交する方向の幅(或いは、略ストレーナ保持部40の周方向の幅)W2、
のいずれか若しくはいくつか(全てでもよい)を研磨ビーズ60の直径より大きくすることにより、液の交換性、気泡抜けを良くして、ストレーナ50の内部の空気を効果的にストレーナ50の外部に出すことができる。
【0064】
更に液の交換性、気泡抜けを良くするために、これらの寸法をより大きくすることによって、気泡抜け部49の有効面積を容易に増やすことができる。他の制約に鑑みて許容されるのであれば、上記隙間寸法D1、開口幅D3、深さD4は、好ましくは1mm以上、より好ましくは2.5mm以上、更に好ましくは3mm以上とする。又、同様に、他の制約に鑑みて許容されるのであれば、溝部47の受け入れ幅W1、通路48の幅W2は、より好ましくは5mm以上、更に好ましくは12mm以上とする。通路48の幅W2は、受け入れ幅W1と略同一としてもよいが、W1より広くてもよい。
【0065】
気泡抜け部49は、限定されるものではないが、エンドミル、キリなどで容易に加工できるため、当業者には容易に理解されるように、寸法精度も出し易い。本実施例では、溝部47、通路48は、それぞれエンドミルで加工した。
【0066】
本実施例では、ストレーナ保持部40の周に沿って4箇所の気泡抜け部49を設けたが、本発明はこれに限定されるものではなく、気泡抜け部49の数を増やすことも可能であり、これによっても、気泡抜け部49の有効面積を容易に増やし、ストレーナ50の内部の空気を効果的にストレーナ50の外部に出すことができる。
【0067】
尚、ストレーナ保持部40の雌ねじ部45に溝部47を設ける代わりに、或いはこれに加えて、下部ホルダ2bとストレーナ保持部40とを接合した状態におけるストレーナ保持部40の通路48(或いは通路48及び溝部47)に対応する下部ホルダー2bの雄ねじ部27の位置に、上記同様の溝部を設けることも可能である。下部ホルダー2bの雄ねじ27に溝部を設ける場合には、ストレーナ保持部40の雌ねじ部45の先端とこの溝部の壁部との最大隙間寸法、或いは雄ねじ部27、雌ねじ部45の両方に溝部が形成される場合には、溝部の壁部間の最大間隔が、上記最大隙間寸法D1に相当し、これはを上記同様に設定すればよい。
【0068】
尚、本実施例における溝部47及び通路48から成る気泡抜け部49の具体的寸法の一例を示せば次の通りであった。但し、研磨ビーズ60は、直径1mmのアルミナビーズである。下記の通り、本例では、通路48の深さD4が、研磨ビーズ60の直径以下であり、ビーズ移動阻止部を形成する。
ストレーナ保持部40の材質:PVC(ポリ塩化ビニル)
ストレーナ保持部40の貫通穴42の内径d3: 23mm
ストレーナ保持部40の周壁41の外径d4: 30mm
接合状態における雄ねじ27の先端と
溝部47の壁面との隙間寸法D1: 2mm
ストレーナ保持部40の一端からの溝部47の長さD2: 8mm
接合状態におけるストレーナ保持部40
の軸線方向の溝部47の開口幅D3: 2mm
通路48の深さD4: 1mm
溝部47の受け入れ幅W1: 7mm
通路48の幅W2: 8mm
【0069】
但し、ストレーナ50を確実に電極本体10、即ち、電極支持体3を振動可能に保持したホルダー2に接合する必要があるので、ストレーナ50、延いては、振動式酸化還元電流測定装置1の全体的な寸法、電極本体10とストレーナ保持部40との接合部80の強度の確保などとの関係で、1つの溝部47の受け入れ幅W1、ストレーナ50に設ける溝部47の受け入れ幅W1の総長さ、気泡抜け部49の数は制限されるであろう。
【0070】
例えば、上記具体的なストレーナ保持部40の一例(内径d3:23mm、外径d4:30mm)の場合、受け入れ幅W1は、8mm以下であることが好ましく、より好ましくは7mm以下とする。複数の溝部47の受け入れ幅の総長さは、32mm以下であることが好ましく、より好ましくは28mm以下とする。又、同様に、接合強度、並びに液交換性、気泡抜けの良さなどの観点から、気泡抜け部49は、ストレーナ50の上端開口部の周囲に沿って、均等に配置することが好ましい。
【0071】
ところで、研磨ビーズ60は、図4(A)に示すように、ストレーナ50内にて作用極20が隠れる程度でよく、下部支持体3bの遷移部17の位置程度までの量が適当であり、図4(B)に示すように、遷移部17を越えて大径部15まで収容し、対極21に達するのは多すぎる。又、図4(C)に示すように、作用極20にまで達しないのは少なすぎて好ましくない。
【0072】
次に、上記構成の本発明の振動式酸化還元電流測定装置1の作動について説明する。
【0073】
本発明の振動式酸化還元電流測定装置1にて、例えば、プール水、或いはシンクなどに入った食料品の洗浄、殺菌液の残留塩素濃度を測定する場合には、先ず、研磨ビーズ60を収容したストレーナ50を振動式酸化還元電流測定装置1に装着する。勿論、本実施例では、下部ホルダ2bに取り付けられたストレーナ保持部40に、研磨ビーズ60を収容したストレーナ本体30を装着してもよい。次いで、この振動式酸化還元電流測定装置1を、対象の所望される測定箇所へと投入する。
【0074】
そして、図5中の矢印にて模式的に示すように、検水がストレーナ50のストレーナ本体30の開口部33から網34を流動してストレーナ内部へと流入し、ストレーナ保持部40の気泡抜け部49を介して流出する。本実施例によれば、上述のように、ストレーナ保持部40の上端開口部43に気泡抜け部49が設けられているので、極めてスムーズに液交換が行われる。又、このときストレーナ50の内部に気泡が存在しても、この気泡抜け部49を通してストレーナ50の外部に抜ける。
【0075】
この状態で、振動モータ26を作動させる。これにより、振動モータ26が組み込まれた電極支持体3は、Oリング4を支点として振動(歳差運動)を開始する。
【0076】
電極支持体3は安定した振動(歳差運動)を行うことが必要であり、上述のように、振動量0.5〜2.0G、回転数5000〜15000rpmの一定の回転数で振動(歳差運動)することが好ましい。これにより、作用極20は円運動を行いながら、検水の残留塩素濃度を測定する。
【0077】
電極支持体3が振動(歳差運動)することにより、ストレーナ50内の検水の撹拌が起こり、ストレーナ50内における研磨ビーズ60中の液の交換が促進される。
【0078】
更に、電極支持体3が振動(歳差運動)することにより、ストレーナ50内の研磨ビーズ60により作用極20のみが研磨され、又洗浄される。
【0079】
このように、研磨ビーズ60の入ったストレーナ50を電極支持体3の周りに装着し、研磨ビーズ60の中で少なくとも作用極20を振動(歳差運動)させることで、プールや池、或いは食料品の洗浄、殺菌液の入ったシンクなどへ電極を直接投入しての測定、或いは、ビーカやバケツなどの採水測定において、安定した、即ち、感度低下の少ない、連続測定が可能となる。
【0080】
そして、本発明によれば、気泡抜け部49を設けたことにより、気泡抜けの効率が良くなり、ストレーナ50の内部の液交換効率が向上し、残留塩素を測定した際の再現性が良くなる。
【0081】
同時に、気泡がストレーナ50の内部に残らないので、ストレーナ50の内部に空気層が生じることはなく、その結果、指示値の安定性が向上する。つまり、気泡抜け部49は、ストレーナ50と電極本体10との接合部80、即ち、ストレーナ50の内部空間の上方端部に配置されているため、この接合部80の近傍でストレーナ50内に空気層ができない。このため、残留塩素が空気に接触することで空気中に飛散し、その結果残留塩素濃度が低下して周囲との濃度差が生じ、測定誤差となったり、電極支持体3の振動若しくは装置外部からの衝撃などでストレーナ50の内部の空気層が抜けて残留塩素濃度が上昇して測定が不安定になったりすることはない。
【0082】
又、対極21にストレーナ50の内部の空気層が接触することがなくなるため、検出部、即ち、作用極20及び対極21を備える電極支持体3を可及的に短くすることが可能となり、結果として、振動式酸化還元電流測定装置1を可及的に小型化することができる。例えば、図5に示す本実施例の振動式酸化還元電流測定装置1の検出部、即ち、電極支持体3の長さLは、図6に示す振動式振動式酸化還元電流測定装置1’の同部位の長さL’のように、可及的に短くすることができる。
【0083】
又、上述のように、研磨ビーズ60中で作用極20が振動(歳差運動)することで、作用極20の洗浄、研磨が可能となり、作用極20を常に一定の状態に保つことができるため、安定した連続測定が可能であり、同時に電極のメンテナンスを少なくすることができる。
【0084】
更に、プールや池、或いは食料品の洗浄、殺菌液の入ったシンクなどへ電極を直接投入して測定する場合においては、浸漬水深を任意に変化させることで、測定したいポイントでの連続測定も可能である。
【0085】
本発明の振動式酸化還元電流測定装置は、上記したプール水、水道水(上水)、塩素殺菌液による食料品(カット野菜など)の洗浄・殺菌の前後の洗浄・殺菌液中などの残留塩素濃度測定に限定されるものではなく、その他に、
(1)水道水(上水)、半導体製造プロセス(ICチップの洗浄など)の洗浄水中などの溶存オゾン濃度測定。
(2)プール水、食料品(カット野菜など)の洗浄、殺菌液若しくは漂白剤中などの溶
存二酸化塩素(ClO)濃度測定。
(3)プール水中などの亜塩素酸(HClO)イオン濃度測定。
(4)パルプ、繊維の漂白、半導体の洗浄、廃水処理、食品、容器の殺菌などにおける過酸化水素の濃度測定。
などのために利用することができる。作用極20及び対極21の材料、及び対極21を基準として作用極20に印加する電圧は、上記各目的のために適宜選択することができ、表1に示す通りである。
【0086】
【表1】

Figure 2004340762
【0087】
本実施例に従った振動式酸化還元電流測定装置の作用効果を確認する実験を行った。この実験例では、上記実施例にて説明した図1に示す構成の装置を用いて行った。本実験例では、作用極20を金(Au)電極、対極21を銀−塩化銀(Ag−AgCl)電極とし、測定時に対極20を基準として作用極に対し−100mVの電圧を印加した。そして、上記構成の装置を、検水として、食料品の洗浄、殺菌液をオーバーフローさせた容器に浸漬して残留塩素の連続測定を行った。液温17〜20℃であった。又、使用した研磨ビーズは、直径1mmのアルミナビーズ(Ra=10μm)であった。同時に、比較例として、気泡抜け部49を設けない振動式酸化還元電流測定装置(その他の構成は本実施例のものと同一)で、同条件の実験を行った。結果を表2に示す。
【0088】
【表2】
Figure 2004340762
【0089】
表2から明白なように、ストレーナ50に気泡抜け部49を設けることによって、これを設けていない比較例の振動式酸化還元電流測定装置と比較して、再現性のよい、安定した測定を行うことが可能となった。
【0090】
尚、本発明者の更なる検討によると、溶存オゾン、溶存二酸化塩素、亜塩素酸イオン、過酸化水素の濃度測定においても、それぞれ実施例1にて記載した極構成及び表1の印加電圧条件の下に、各測定対象成分に対して検出電流値の範囲は異なるが、同様の実験を行ったが、上述したと同様の効果を得ることができた。
【0091】
【発明の効果】
以上説明したように、本発明は、作用極と対極とを有し、少なくとも作用極を振動させることにより酸化還元電流を検出して検水中の測定対象成分の濃度を検出する振動式酸化還元電流測定装置は、作用極と対極とを備えた検出部を振動可能にホルダーに保持した電極本体と、検出部を囲包して配置され、内部に研磨ビーズを収容するストレーナと、を有し、ストレーナと前記電極本体との接合部に、ストレーナの内部と外部とを連通させる少なくとも1つの気泡抜け部を有する構成とされるので、
(1)再現性がよく、安定した測定が可能である。
(2)検出部に対する液の交換をスムーズに行うことができ、検出近傍と装置周囲とで測定対象の濃度の差が生じることを防止することができる。
(3)ストレーナ内部に空気層が生じるのを防止して、この空気層が対極に接触するのを防止することができ、可及的に検出部(電極支持体)を短くすることができ、延いては電極本体及びストレーナを含む装置全体を可及的に小型化することが可能である。
(4)上記諸効果を達成すると共に、サンプル(検水)中で作用極と対極の振動(歳差運動)させることができ、連続的な採水、投げ込み測定が可能であり、又、研磨ビーズ中での電極の振動(歳差運動)により、作用極の洗浄、研磨が可能であり、作用極の汚れなどによる感度低下を防止し、感度低下のない安定した連続測定が可能である。
といった効果を奏し得る。
【図面の簡単な説明】
【図1】本発明に係る振動式酸化還元電流測定装置の一実施例の概略構成を示す断面図である。
【図2】ストレーナの一実施例を示す斜視図である。
【図3】ストレーナ保持部の一実施例を示す(a)平面図、(b)断面図である。
【図4】ストレーナ内における研磨ビーズの量と作用極との関係を説明する図である。
【図5】図1の振動式酸化還元電流測定装置におけるストレーナ内の液の交換を模式的に示す部分断面図である。
【図6】本発明に係る振動式酸化還元電流測定装置の他の実施例の概略構成を示す部分断面図である。
【図7】従来の振動式酸化還元電流測定装置の一例の概略構成を示す断面図である。
【図8】図7の振動式酸化還元電流測定装置におけるストレーナ内の液の交換を模式的に示す部分断面図である。
【図9】従来の酸化還元電流測定装置の概略構成を示す断面図である。
【符号の説明】
1 酸化還元電流測定装置
2 ホルダー
3 電極支持体(検出部)
3a 上部支持体
3b 下部支持体
4 支持部材(Oリング)
10 電極本体
20 作用極
21 対極
26 振動モータ
30 ストレーナ本体
33 開口部
34 網
40 ストレーナ保持部
45 雌ねじ部
47 溝部
48 通路
49 気泡抜け部
50 ストレーナ
60 研磨ビーズ[0001]
BACKGROUND OF THE INVENTION
The present invention generally has a working electrode and a counter electrode, and detects the concentration of the measurement target component in the sample solution (sample water) by detecting at least the oxidation-reduction current by vibrating the working electrode. The present invention relates to an oxidation-reduction current measuring device using a polarographic method, and more particularly, to a water sampling and throwing-type vibration-type oxidation-reduction current measuring device capable of continuous measurement.
[0002]
[Prior art]
Conventionally, for example, in order to detect a residual chlorine concentration in a test water, a so-called polarographic method is used to measure a redox current of a measurement target component such as residual chlorine.
[0003]
Such oxidation-reduction current measurement is used, for example, for measurement of free residual chlorine concentration in pool water or tap water (water). Further, for example, for cleaning and sterilizing foodstuffs such as cut vegetables and fruits, a relatively concentrated chlorine sterilizing solution (about 200 mg / L) obtained by diluting sodium hypochlorite with tap water or groundwater is used. However, the oxidation-reduction current measurement is used to measure the residual chlorine in the sterilizing solution and the cleaning that has entered the sink before and after the cleaning and sterilization.
[0004]
In addition, the same oxidation-reduction current measurement includes dissolved ozone concentration measurement, dissolved chlorine dioxide concentration measurement, chlorous acid (HClO) in the sample water. 2 ) It can be used for ion concentration measurement and hydrogen peroxide concentration measurement.
[0005]
In this way, in order to measure the measurement target component in the test water by the polarographic method, the active material is always supplied to the surface of the working electrode by giving a relative speed between the test water and the working electrode and the counter electrode. To obtain a stable detection current.
[0006]
In view of this, for example, various oxidation-reduction current measuring apparatuses have been proposed in which the working electrode and the counter electrode are vibrated to obtain the relative speed with the test water in order to detect the residual chlorine concentration.
[0007]
As such a redox current measuring device, the present inventor has proposed a redox current measuring device described in Patent Document 1. The schematic configuration is shown in FIG.
[0008]
In this example, the oxidation-reduction current measuring apparatus 200 includes an electrode main body 201, and an electrode support 203 is integrally attached to the lower end of the electrode main body 201. The electrode support 203 has a working electrode 205 and a counter electrode 206, and detects the oxidation-reduction current by vibrating the working electrode 205 and the counter electrode 206 to detect the concentration of the measurement target component in the test water.
[0009]
In particular, the oxidation-reduction current measuring apparatus 200 includes an electrode support 203 that has a container 210 for collecting water, and holds an electrode main body 201 on a container lid 211. A member 212 is provided.
[0010]
Therefore, in the oxidation-reduction current measuring apparatus 200, the mounting position of the vibration motor 207, which is a vibration power point, is located below the electrode fixing member 212, which is a vibration fulcrum, and further, the working electrode, which is a vibration action point. The positions of 205 and the counter electrode 206 are located below the vibration motor 207, which is the point of vibration.
[0011]
As a result, the oxidation-reduction current measuring apparatus 200 described in Patent Document 1 can prevent the occurrence of current hunting during measurement, improve the stability of the current value, and minimize the error in the measured value. And so on.
[0012]
The oxidation-reduction current measuring apparatus 200 described in Patent Document 1 is configured to draw the test water S into the container 210 and attach the electrode body 201 to the container lid 211 via the electrode fixing member 212, thereby The test water S and the electrode body 201 can be shut off, and stable measurement can be performed without being affected by the flow rate of the test water S.
[0013]
However, the oxidation-reduction current measuring device 200 having such a configuration is a so-called water-collecting type measuring device, in which electrodes are directly inserted into a pool, a pond, a food product, a sink containing a sterilizing solution, or the like. It is impossible to measure.
[0014]
On the other hand, a stationary type continuous oxidation-reduction current measuring device requires a flow cell part for measurement, and it is impossible to measure by directly putting an electrode into a pool or the like as described above, or an extremely complicated configuration. Inevitably, it becomes expensive.
[0015]
Also, with conventional water sampling and throw-in type redox current measuring devices, as the measurement is performed, dirt or the like adheres to the working electrode, and the indicated value changes due to a decrease in sensitivity, so continuous measurement is impossible. .
[0016]
Therefore, the present inventor has proposed a vibration type oxidation-reduction current measuring apparatus described in Japanese Patent Application No. 2001-336773. This vibration-type oxidation-reduction current measuring apparatus is suitably used for measuring residual chlorine, dissolved ozone, chlorine dioxide, chlorite ions, and hydrogen peroxide concentrations in test water. The schematic configuration is shown in FIG.
[0017]
The vibration type oxidation-reduction current measuring apparatus 100 shown in FIG. 7 includes an electrode main body 101 including a holder 102 and an electrode support (detection unit) 103. The electrode support 103 has a working electrode 105 and a counter electrode 106, and vibrates with respect to the holder 102 via an O-ring 104 as a support member disposed in an O-ring groove formed on the outer periphery of the upper end portion thereof. (Precession exercise) is held possible. A vibration motor 107 is disposed in the electrode support 103.
[0018]
The vibration type oxidation-reduction current measuring apparatus 100 further includes a strainer 108 that surrounds the electrode support 103. The strainer 108 includes a strainer body 108a having a peripheral wall and a bottom wall and having a cup shape with an open upper end. The strainer main body 108a is formed by holding a flange 108b provided at the upper peripheral edge of the strainer main body 108a by a ring-shaped adapter 109 attached to the outer peripheral surface of the lower end of the holder 102, and a lock nut 110 screwed to the adapter 109. 102.
[0019]
A large number of openings 108c are formed in the peripheral wall and bottom wall of the strainer body 108a, and a mesh 108d is attached to the opening 108c. Further, abrasive beads 111 are accommodated in the strainer body 108a. The mesh 108 d of the strainer 108 is for holding the stored abrasive beads 111 in the strainer, and therefore the size of the mesh is set to a dimension equal to or smaller than the diameter of the abrasive beads 111. As shown schematically by arrows in FIG. 8, the sample water flows through the mesh 108d from the opening 108c of the strainer 108 and flows into the strainer, and flows out through the mesh 108d and the opening 108c. . Then, by operating the vibration motor 107, the electrode support 103 starts to vibrate (precession motion), and the working electrode 105 performs the circular motion, while measuring the concentration of the measurement target component in the test water, for example, residual chlorine. taking measurement.
[0020]
In the vibration type oxidation-reduction current measuring apparatus 100 having such a configuration, the strainer 108 containing the polishing beads 111 is mounted around the electrode support 103, and at least the working electrode 105 is vibrated (precessionally) in the polishing beads 111. ), It is stable in measuring pools, ponds, washing food, sinking a sterilized solution, etc., or measuring water in beakers, buckets, etc. Continuous measurement with little decrease is possible.
[0021]
Further, the working electrode 105 vibrates (precesses) in the polishing bead 111, so that the working electrode 105 can be cleaned and polished, and the working electrode 105 can always be kept in a constant state. Measurement is possible, and at the same time, electrode maintenance can be reduced.
[0022]
[Patent Document 1]
JP 2000-298110 A
[0023]
[Problems to be solved by the invention]
However, the conventional vibration-type redox current measuring apparatus 100 shown in FIG. 7 has the following problems.
[0024]
As described above, the detection unit including the working electrode 105 and the counter electrode 106 inside the strainer 108, that is, the replacement of the liquid with respect to the electrode support 103 is attached to the strainer 108 as schematically indicated by an arrow in FIG. 8. Via the network 108d.
[0025]
However, there are abrasive beads 111 inside the strainer 108, and the mesh 108d provided in the opening 108c of the strainer 108 has a mesh size of the mesh in order to hold the abrasive beads 111 inside the strainer 108. It is necessary to make the dimensions smaller than the diameter of the abrasive beads 111.
[0026]
Therefore, for example, when measuring the residual chlorine concentration in the sterilizing liquid, cleaning the foodstuff that has entered the pool water or the sink, the vibratory oxidation-reduction current measuring device 100 is thrown into the desired measurement location of the object, When the test water flows from the opening 108c of the strainer 108 through the mesh 108d and flows into the inside of the strainer, and when it flows out through the mesh 108d and the opening 108c, the air A1 is caught by the mesh 108d, and the liquid Is not smoothly exchanged. In particular, when the mesh 108d is made of a resin such as PE or PP, the mesh 108d is hydrophobic, so the air A1 is easily trapped between the meshes. As described above, when the air A1 hinders the exchange of the liquid and the exchange of the liquid is insufficient, the components to be measured inside the strainer 108, that is, residual chlorine and dissolved ozone are consumed by the measurement and the concentration decreases. As a result, the reproducibility of the measured value of the vibration type oxidation-reduction current measuring apparatus 100, for example, the measured value of residual chlorine or dissolved ozone may be deteriorated.
[0027]
In addition, when many bubbles remain in the strainer 108, an air layer A <b> 2 is generated on the upper portion of the strainer 108. Residual chlorine or dissolved ozone, which is a measurement target of the vibration type oxidation-reduction current measuring apparatus 100, has a property of scattering into the air from contact with the air. For this reason, the residual chlorine concentration or dissolved ozone concentration inside the strainer 108 decreases, and a difference in concentration from the surroundings may occur, which may result in a measurement error. In addition, if the air layer A2 inside the strainer 108 escapes due to vibration of the electrode support 103 or impact from the outside of the apparatus, the residual chlorine concentration or dissolved ozone concentration inside the strainer 108 increases, resulting in instability. Measurement may be difficult.
[0028]
Furthermore, when a large amount of the air layer A2 remains in the strainer 108, the air layer A2 may come into contact with the counter electrode 106. In order to avoid this, conventionally, it is necessary to lengthen the detection unit, that is, the electrode support 103 including the working electrode 105 and the counter electrode 106, and as a result, the size of the vibration type oxidation-reduction current measuring apparatus 100 is increased. There were restrictions.
[0029]
Accordingly, an object of the present invention is to provide a vibration-type oxidation-reduction current measuring device that generally has good reproducibility and enables stable measurement.
[0030]
Another object of the present invention is to provide a vibrating redox current capable of smoothly exchanging liquid with respect to the detection unit and preventing the difference in concentration of the measurement target between the vicinity of the detection unit and the surroundings of the apparatus. It is to provide a measuring device.
[0031]
Still another object of the present invention is to prevent an air layer from forming inside the strainer and to prevent the air layer from coming into contact with the counter electrode. It is possible to provide a vibration type oxidation-reduction current measuring apparatus that can reduce the overall size of the apparatus including the electrode main body and the strainer as much as possible.
[0032]
Another object of the present invention is to achieve the above-mentioned objects and to allow the working electrode and the counter electrode to vibrate (precession) in the sample (sample water), enabling continuous sampling and throwing measurement. Yes, the working electrode can be cleaned and polished by vibration (precession) of the electrode in the abrasive beads, and the sensitivity can be prevented from being deteriorated due to contamination of the working electrode. It is an object to provide an oscillating redox current measuring apparatus capable of
[0033]
[Means for Solving the Problems]
The above object is achieved by the oxidation-reduction current measuring apparatus according to the present invention. In summary, the present invention is a vibration type redox current measuring apparatus having a working electrode and a counter electrode, and detecting the redox current by vibrating at least the working electrode to detect the concentration of the component to be measured in the test water. An electrode body having a vibration-capable detection unit having a working electrode and a counter electrode, and a strainer that is joined to the electrode body so as to surround the detection unit and accommodates abrasive beads therein. The vibration-type oxidation-reduction current measuring device is characterized in that at least one bubble escape portion that communicates the inside and the outside of the strainer is provided at a joint portion between the strainer and the electrode body.
[0034]
According to an embodiment of the present invention, the electrode body and the strainer are joined in the vicinity of a fulcrum of vibration of the detection unit. Further, according to an embodiment of the present invention, at least a part of the path from the inside of the strainer to the outside passing through the bubble escape portion has a portion having a dimension equal to or smaller than the diameter of the abrasive beads in at least one direction. According to a preferred embodiment, the bubble removal part has a dimension larger than the diameter of the abrasive bead in at least one direction.
[0035]
According to an embodiment of the present invention, the electrode main body and the strainer screw together a male screw formed on the outer peripheral surface of the electrode main body and a female screw formed on the inner peripheral surface of the upper end opening of the strainer. Thus, a groove portion is formed in the male screw and / or the female screw portion, and a passage communicating with the groove portion is formed in the peripheral wall of the strainer, and the bubble missing portion is formed by the groove portion and the passage. In one embodiment, when the electrode main body and the strainer are joined together (i) between the tip of the male screw or female screw and the wall of the groove, or between the walls of the groove provided in the male screw and the female screw. (Ii) the maximum opening width of the groove in the axial direction of the strainer, and (iii) the maximum depth of the passage in the axial direction of the strainer is less than or equal to the diameter of the abrasive beads. It is. In another embodiment, when the electrode main body and the strainer are joined, (i) between the tip of the male screw or female screw and the wall of the groove, or the groove provided in the male screw and female screw. (Ii) the maximum opening width of the groove in the axial direction of the strainer, (iii) the maximum depth of the passage in the axial direction of the strainer, and (iv) the circumferential direction of the male screw or female screw portion. (V) any or some of the widths of the passages in the circumferential direction of the external thread or internal thread are larger than the diameter of the abrasive beads.
[0036]
According to an embodiment of the present invention, the electrode body further includes a support member that holds the electrode support at a vibration fulcrum position of the detection unit, and the detection unit includes the working electrode at a lower end. A vibration motor that is installed in the detection unit at a position below the support member and above the working electrode and that gives precession to the detection unit. .
[0037]
In a preferred embodiment of the present invention, the abrasive beads have a diameter of 0.1 to 3 mm. In addition, the measurement target component of the present invention can be residual chlorine, dissolved ozone, dissolved chlorine dioxide, chlorite ion, or hydrogen peroxide.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the vibration type oxidation-reduction current measuring apparatus according to the present invention will be described in more detail with reference to the drawings.
[0039]
FIG. 1 shows an embodiment of the vibration type oxidation-reduction current measuring apparatus of the present invention. In this embodiment, the vibration-type oxidation-reduction current measuring apparatus 1 has a substantially cylindrical shape, the upper end is closed, the lower end is opened, the holder 2 is formed along the axis, the upper end is opened, and the lower end is closed. An electrode body 10 including an electrode support 3 as a detection unit including the holes 8 is provided. The electrode support 3 is held at the lower end opening 11 of the holder 2 so that the upper end of the electrode support 3 can vibrate via the support member 4.
[0040]
More specifically, in this embodiment, the holder 2 has an upper holder 2a and a lower holder 2b, an internal thread portion 5 formed on the inner peripheral surface of the lower end opening of the upper holder 2a, and the upper end outer periphery of the lower holder 2b. The upper holder 2a and the lower holder 2b are integrally connected by screwing the male screw portion 6 formed on the surface. Further, in this embodiment, the printed circuit board 7 for wiring is installed in the holder 2 by using this connecting portion, that is, sandwiched by the joining edge of the upper holder 2a and the lower holder 2b.
[0041]
An electrode cable 70 is attached to the upper end closing portion of the upper holder 2a via a rubber bushing 9. One end of the cable 70 is connected to the printed circuit board 7 for wiring, and the other end of the cable 70 is connected to the outside. It extends and is connected to a power supply circuit, a measurement circuit, and the like of a measurement apparatus main body (not shown).
[0042]
In addition, in this embodiment, the electrode support 3 includes an upper support 3a and a lower support 3b, and is configured by integrally screwing and connecting both the supports 3a and 3b. In other words, the upper support 3a and the lower support 3b are formed by screwing a female screw portion 12 formed on the inner peripheral surface of the lower end opening of the upper support 3a and a male screw portion 13 formed on the outer peripheral surface of the lower support 3b. By combining, the upper support 3a and the lower support 3b are integrally connected. The center hole 8 of the electrode support 3 penetrates the upper support 3a, extends downward along the axial direction of the lower support 3b, and is closed at the lower end of the lower support 3b.
[0043]
The upper end of the upper support 3a is inserted into the opening 11 formed at the lower end of the lower holder 2b. At this time, an O-ring groove 14 is formed on the outer periphery of the upper support 3a, and the upper support 3a (that is, the electrode support 3) is formed by the O-ring 4 as a support member disposed in the O-ring groove 14. The lower holder 2b (that is, the holder 2) is held so as to be able to vibrate (precession). The O-ring 4 prevents water from entering the holder 2 from the connection portion between the holder 2 and the electrode support 3.
[0044]
In this embodiment, the lower support 3b of the electrode support 3 includes a large diameter portion 15 connected to the upper support 3a, a small diameter portion 16 having a smaller outer diameter, a large diameter portion 15 and a small diameter portion 16. And an inclined transition portion 17 connecting the two. Therefore, a stepped space is formed in the lower support 3b by the center hole 8 whose lower end is closed.
[0045]
A counter electrode 21 is disposed on the outer periphery of the large diameter portion 15, and a working electrode 20 is provided on the small diameter portion 16. At least a part of the working electrode 20 and the counter electrode 21 is exposed on the outer surface of the electrode support 3 and is configured to come into contact with the test water. In this embodiment, the vibration type oxidation-reduction current measuring device 1 is a residual chlorine measuring device, so that the working electrode 20 is gold or platinum, and the counter electrode 21 is silver or silver / silver chloride.
[0046]
In this embodiment, the working electrode 20 is a rod-shaped one that is press-fitted and attached to the small diameter portion. If desired, it can also be attached by gluing or casting. On the other hand, the counter electrode 21 was provided by spirally winding a linear electrode member around the outer peripheral surface of the large diameter portion 15.
[0047]
One end of each of the lead wires 22 and 23 is connected to the working electrode 20 and the counter electrode 21, and the other ends of the lead wires 22 and 23 are connected to the printed circuit board 7 for wiring through the center hole 8.
[0048]
A predetermined voltage is applied between the working electrode 20 and the counter electrode 21 from a power supply circuit (not shown), and the current value at that time is measured with an ammeter, so that the concentration of the measurement target component in the test water is determined. Desired. According to this embodiment, a temperature measuring element 24 such as a thermistor or a platinum thermometer is disposed in the center hole 8 of the electrode support 3 and is connected to the printed circuit board 7 for wiring by a lead wire 25. And, it is connected to the measuring apparatus main body via a cable 70.
[0049]
According to the present invention, in the center hole 8 of the electrode support 3, the vibration motor 26 is disposed in the lower support stepped space of the electrode support 3 in the present embodiment. In this embodiment, the vibration amount of the vibration motor 26 is 0.5 to 2 G, and the rotation speed is 5000 to 15000 rpm. Further, as the vibration motor 26, FM-109K1 (trade name) manufactured by Fuji Micro Corporation can be suitably used.
[0050]
As shown in the figure, an O-ring 4 that attaches the electrode support 3 to the holder 2 is used as a fulcrum of vibration of the electrode support 3, and the position of the vibration motor 26 that is the power point of the electrode support 3 is that of the motor. The position of the center of gravity is set below H1 = 10 to 40 mm (H1 = 25 mm in the present embodiment) below the fulcrum of vibration, and the working electrode 20 that is the working point of the electrode support 3 is positioned at the center of gravity of the vibration motor 26 ( It is arranged below H2 = 10 to 60 mm (in this embodiment, H2 = 20 mm) further than the force point. In this embodiment, the center position of the counter electrode 21 that is a winding is disposed below the center of gravity (power point) of the vibration motor 26 by H3 = 5 to 60 mm (H3 = 7 mm in this embodiment).
[0051]
In addition, it was as follows if an example of the specific dimension of the electrode support body 3 in a present Example was shown.
Material of electrode support 3: ABS resin
Outer diameter d1: 14 mm of the upper support 3a and the lower support 3b
Outer diameter d2 of the small diameter portion 16 of the lower support 3b: 8 mm
Length h0 from the fulcrum of the upper support 3a: 20 mm
Vertical length h1: 15 mm of the large diameter portion 15 of the lower support 3b
Vertical length h2 of the transition part 17 of the lower support 3b: 4 mm
Vertical length h3 of the small diameter portion 16 of the lower support 3b: 7 mm
[0052]
According to the present invention, the vibration type oxidation-reduction current measuring apparatus 1 further includes the strainer 50 surrounding the electrode support 3. In this embodiment, the strainer 50 includes a strainer main body 30 and a strainer holding portion 40. Of course, the present invention is not limited to this configuration, and the strainer 50 may be formed as a single member.
[0053]
Referring also to FIG. 2, the strainer main body 30 and the strainer holding portion 40 of the strainer 50 can be made of metal or plastic. If it is made of plastic, weight reduction and cost reduction can be achieved.
[0054]
In this embodiment, the strainer body 30 is open at the top and surrounds the working electrode 20 provided at least on the lower support 3b of the electrode support 3 provided with a large number of openings 32 around and at the bottom. It is formed as a wrapping frame 31. A net 34 is attached to a large number of openings 33 of the strainer body 30 by adhesion, welding or the like. The abrasive beads 60 are accommodated in the strainer body 30.
[0055]
The mesh 34 of the strainer body 30 is for holding the accommodated abrasive beads 60 in the strainer. Therefore, the mesh size may be a dimension equal to or smaller than the diameter of the abrasive beads 60. The material of the net can be a plastic net such as polyamide resin (nylon), PE (polyethylene), PP (polypropylene), or can be made of metal such as a SUS net.
[0056]
As the polishing beads 60, any non-metallic beads having a diameter of 0.1 to 3 mm can be used. In this embodiment, alumina beads having a diameter of 1 mm were used. The surface roughness of the beads is a center line average roughness (Ra) of 0.1 to 100 μm, preferably 0.5 to 50 μm.
[0057]
Referring also to FIG. 3, the strainer holding portion 40 of the strainer 50 has a peripheral wall 41, has a substantially cylindrical shape with an upper end and a lower end opened, and defines a through hole 42 inside. A female screw 45 is formed on the inner peripheral surface of the upper end opening 43 of the strainer holding portion 40, and the strainer holding portion 40 is screwed into the female screw 45 with a male screw 27 formed on the lower end outer peripheral surface of the lower holder 2b. Is attached to the holder 2, that is, the electrode body 10 including the holder 2 and the electrode support 3.
[0058]
On the other hand, a male screw 46 is formed on the outer peripheral surface of the lower end opening 44 of the strainer holding portion 40, and this male screw 46 is screwed into a female screw 35 formed on the inner peripheral surface of the upper end opening 33 of the strainer body 30. Thus, the strainer body 30 is held by the strainer holding portion 40. Thus, by providing the joint 80 between the strainer 50 and the electrode body 10 in the vicinity of the fulcrum of vibration of the electrode support 3 and surrounding the electrode support 3 with the strainer 50, the electrode support 3 is moved within the strainer 50. Can vibrate (precession).
[0059]
One feature of the present invention is that at least one bubble removal portion 49 is provided at the joint 80 between the strainer 50 and the electrode main body 10 in the vicinity of the fulcrum of vibration of the electrode support 3 serving as the detection portion. is there.
[0060]
That is, in this embodiment, the groove portion 47 is processed in the female thread portion 45 of the strainer holding portion 40 and the lower holder 2b, and the passage 48 communicating from the groove portion 47 to the outside through the peripheral wall 41 is processed. Thus, a bubble removal portion 49 is formed which communicates the inside of the strainer holding portion 40, that is, the through hole 42 and the outside of the strainer holding portion 40. Thereby, the air bubbles inside the strainer 50 can be drawn out of the strainer 50 through the air bubble removal portion 49.
[0061]
Here, preferably, the bubble removal part 49 has a part (bead movement prevention part) having a dimension equal to or smaller than the diameter of the abrasive beads 60 in at least one direction in at least a part of the path from the inside of the strainer 50 to the outside. Like that. Although not limited, in the configuration of this embodiment,
(I) A gap between the tip (outermost edge portion) of the male screw 27 of the lower holder 2b and the groove portion 47 formed in the female screw portion 45 of the strainer holding portion 40 when the lower holder 2b and the strainer holding portion 40 are combined. Dimension D1 (here, the groove portion 47 is formed as an arcuate concave portion that protrudes in the radial direction of the strainer holding portion 40, so that the tip of the male screw 27 of the lower holder 2b and the female screw portion 45 of the strainer holding portion 40 The maximum dimension D1) between the processed groove 47,
(Ii) When the groove portion 47 extending from the upper end opening 43 of the strainer holding portion 40 by the length D2 downward in the axial direction of the strainer holding portion is combined with the lower holder 2b and the strainer holding portion 40, the strainer holding portion 40 The opening width D3 in the axial direction of the strainer holding portion 40 that is open to the inside of the inside (here, the groove portion 47 extends from the end of the upper end opening 43 of the strainer holding portion 40 downward in the axial direction of the strainer holding portion 40. , Extending beyond the width in the same direction of the female screw portion 45 provided on the inner peripheral surface of the strainer holding portion 40),
(Iii) Depth in the axial direction of the strainer holding part 40 from the end of the upper opening 43 of the strainer holding part 40 of the passage 48 provided in the peripheral part (circumferential wall) of the upper end opening part 43 of the strainer holding part 40 D4,
Any or some of them (or all of them) may be of a size smaller than the diameter of the abrasive beads 60, so that when the strainer holding portion 40 is screwed into the lower holder 2b, the tip of the male screw 27 of the lower holder 2b It is possible to prevent the abrasive beads 60 from passing between the walls of the groove portion 47.
[0062]
As described above, by forming the bead movement blocking portion having a dimension equal to or smaller than the diameter of the polishing bead 60 by setting the dimensions of the groove portion 47 and the passage 48 processed into the strainer holding portion 40, there is an advantage that it is easy to obtain dimensional accuracy. However, the present invention is not limited to this, and if there is a path from the inside to the outside of the strainer 50 that passes through the bubble removal part 49, for example, the outer peripheral surface 28 of the lower holder 2 b that hits the inlet of the path You may form a bead movement prevention part by setting, such as a space | interval with the internal peripheral surface 42a (FIG.3 (b)) of the strainer holding | maintenance part 40. FIG.
[0063]
On the other hand, preferably, the bubble removal part 49 has a dimension larger than the diameter of the abrasive bead 60 in at least one direction in order to improve liquid exchange and bubble removal. Although not limited, in the configuration of this embodiment,
(I) the gap dimension D1,
(Ii) the opening width D3,
(Iii) the depth D4,
(Iv) The receiving width of the groove portion 47 in the circumferential direction of the female thread portion 45 of the strainer holding portion 40 (or the width in the direction substantially perpendicular to the axial direction of the strainer holding portion 40) W1,
(V) the width of the passage 48 in the direction substantially orthogonal to the axial direction of the substantially cylindrical strainer holding portion 40 (or the width in the circumferential direction of the strainer holding portion 40) W2.
Any or some of them (or all of them) may be made larger than the diameter of the abrasive beads 60 to improve liquid exchange and air bubble removal, and to effectively bring the air inside the strainer 50 to the outside of the strainer 50. Can be put out.
[0064]
Furthermore, in order to improve liquid exchange and bubble removal, the effective area of the bubble removal portion 49 can be easily increased by increasing these dimensions. If allowed in view of other restrictions, the gap dimension D1, the opening width D3, and the depth D4 are preferably 1 mm or more, more preferably 2.5 mm or more, and further preferably 3 mm or more. Similarly, if allowed in view of other restrictions, the receiving width W1 of the groove 47 and the width W2 of the passage 48 are more preferably 5 mm or more, and even more preferably 12 mm or more. The width W2 of the passage 48 may be substantially the same as the receiving width W1, but may be wider than W1.
[0065]
The bubble removal portion 49 is not limited, but can be easily processed with an end mill, a drill, or the like, and therefore, it is easy to obtain dimensional accuracy as will be readily understood by those skilled in the art. In this embodiment, the groove 47 and the passage 48 are each processed by an end mill.
[0066]
In the present embodiment, four bubble escape portions 49 are provided along the circumference of the strainer holding portion 40. However, the present invention is not limited to this, and the number of bubble escape portions 49 can be increased. With this, the effective area of the bubble removal part 49 can be easily increased, and the air inside the strainer 50 can be effectively discharged to the outside of the strainer 50.
[0067]
Instead of or in addition to providing the groove portion 47 in the female thread portion 45 of the strainer holding portion 40, the passage 48 (or the passage 48 and the passage 48 and the passage 48 and the strainer holding portion 40 in a state where the lower holder 2b and the strainer holding portion 40 are joined). It is also possible to provide a groove similar to the above at the position of the male thread 27 of the lower holder 2b corresponding to the groove 47). When the groove portion is provided in the male screw 27 of the lower holder 2b, the maximum gap dimension between the tip of the female screw portion 45 of the strainer holding portion 40 and the wall portion of the groove portion, or the groove portion is formed in both the male screw portion 27 and the female screw portion 45. In this case, the maximum distance between the wall portions of the groove portion corresponds to the maximum gap dimension D1, and this may be set in the same manner as described above.
[0068]
An example of the specific dimensions of the bubble removal part 49 including the groove part 47 and the passage 48 in the present embodiment is as follows. However, the polishing beads 60 are alumina beads having a diameter of 1 mm. As described below, in this example, the depth D4 of the passage 48 is equal to or less than the diameter of the polishing bead 60, and forms a bead movement blocking portion.
Material of strainer holder 40: PVC (polyvinyl chloride)
Inner diameter d3 of through hole 42 of strainer holding part 40: 23 mm
Outer diameter d4 of the peripheral wall 41 of the strainer holding part 40: 30 mm
The tip of the male screw 27 in the joined state;
Gap dimension D1: 2 mm with the wall surface of groove 47
Length D2 of groove 47 from one end of strainer holding part 40: 8 mm
Strainer holding part 40 in the joined state
Opening width D3 of the groove 47 in the axial direction of
Depth D4 of passage 48: 1 mm
Receiving width W1 of groove 47: 7 mm
Width W2 of passage 48: 8 mm
[0069]
However, since it is necessary to securely join the strainer 50 to the electrode body 10, that is, the holder 2 that holds the electrode support 3 so as to be able to vibrate, the strainer 50 and thus the vibration-type oxidation-reduction current measuring device 1 as a whole. The overall width of the receiving width W1 of one groove portion 47, the receiving width W1 of the groove portion 47 provided in the strainer 50, in relation to the general dimensions, ensuring the strength of the joint portion 80 between the electrode body 10 and the strainer holding portion 40, The number of bubble voids 49 will be limited.
[0070]
For example, in the case of an example of the specific strainer holding portion 40 (inner diameter d3: 23 mm, outer diameter d4: 30 mm), the receiving width W1 is preferably 8 mm or less, and more preferably 7 mm or less. The total length of the receiving widths of the plurality of grooves 47 is preferably 32 mm or less, more preferably 28 mm or less. Similarly, from the viewpoints of bonding strength, liquid exchangeability, good bubble removal, and the like, it is preferable that the bubble removal portions 49 are evenly arranged along the periphery of the upper end opening of the strainer 50.
[0071]
By the way, as shown in FIG. 4 (A), the polishing bead 60 may be such that the working electrode 20 is hidden in the strainer 50, and the amount up to the position of the transition portion 17 of the lower support 3b is appropriate. As shown in FIG. 4B, it is too many to accommodate the large diameter portion 15 beyond the transition portion 17 and reach the counter electrode 21. Further, as shown in FIG. 4C, it is not preferable that the working electrode 20 is not reached too much.
[0072]
Next, the operation of the vibration type oxidation-reduction current measuring apparatus 1 of the present invention having the above configuration will be described.
[0073]
When the vibratory oxidation-reduction current measuring apparatus 1 according to the present invention measures the residual chlorine concentration of a sterilizing solution or cleaning of foodstuffs in a pool water or a sink, for example, first, the abrasive beads 60 are accommodated. The strainer 50 is attached to the vibration type oxidation-reduction current measuring apparatus 1. Of course, in this embodiment, the strainer body 30 containing the abrasive beads 60 may be attached to the strainer holding portion 40 attached to the lower holder 2b. Next, the vibration type oxidation-reduction current measuring device 1 is put into a target desired measurement location.
[0074]
Then, as schematically shown by the arrows in FIG. 5, the sample water flows through the mesh 34 from the opening 33 of the strainer body 30 of the strainer 50 and flows into the inside of the strainer. It flows out through the part 49. According to the present embodiment, as described above, since the bubble removal portion 49 is provided in the upper end opening 43 of the strainer holding portion 40, the liquid exchange is performed extremely smoothly. At this time, even if bubbles are present inside the strainer 50, the bubbles escape to the outside of the strainer 50 through the bubble removal portion 49.
[0075]
In this state, the vibration motor 26 is operated. Thereby, the electrode support body 3 incorporating the vibration motor 26 starts vibration (precession) with the O-ring 4 as a fulcrum.
[0076]
The electrode support 3 is required to perform stable vibration (precession). As described above, the electrode support 3 vibrates at a constant rotational speed of 0.5 to 2.0 G and a rotational speed of 5000 to 15000 rpm (year-old). It is preferable to perform differential motion. As a result, the working electrode 20 measures the residual chlorine concentration of the test water while performing a circular motion.
[0077]
When the electrode support 3 vibrates (precession), the sample water in the strainer 50 is stirred, and the exchange of the liquid in the polishing beads 60 in the strainer 50 is promoted.
[0078]
Furthermore, when the electrode support 3 vibrates (precesses), only the working electrode 20 is polished and cleaned by the polishing beads 60 in the strainer 50.
[0079]
In this manner, the strainer 50 containing the abrasive beads 60 is mounted around the electrode support 3 and at least the working electrode 20 is vibrated (precessed) in the abrasive beads 60, thereby allowing a pool, pond, or food. In the measurement of products, the measurement by directly putting an electrode into a sink containing a sterilizing solution, or the measurement of water sampled from a beaker or a bucket, stable measurement, that is, low sensitivity reduction, is possible.
[0080]
According to the present invention, by providing the bubble removal portion 49, the bubble removal efficiency is improved, the liquid exchange efficiency inside the strainer 50 is improved, and the reproducibility when the residual chlorine is measured is improved. .
[0081]
At the same time, since no bubbles remain inside the strainer 50, no air layer is generated inside the strainer 50, and as a result, the stability of the indicated value is improved. That is, since the bubble removal part 49 is disposed at the joint 80 between the strainer 50 and the electrode body 10, that is, at the upper end of the internal space of the strainer 50, air is introduced into the strainer 50 near the joint 80. Can't layer. For this reason, residual chlorine is scattered in the air when it comes into contact with the air, resulting in a decrease in residual chlorine concentration, resulting in a difference in concentration from the surroundings, resulting in measurement errors, vibrations of the electrode support 3 or the outside of the apparatus. The air layer inside the strainer 50 does not escape due to an impact from the inside, and the residual chlorine concentration does not increase and the measurement does not become unstable.
[0082]
Further, since the air layer inside the strainer 50 does not come into contact with the counter electrode 21, the detection unit, that is, the electrode support 3 including the working electrode 20 and the counter electrode 21 can be made as short as possible. As a result, the vibration type oxidation-reduction current measuring apparatus 1 can be miniaturized as much as possible. For example, the detection unit of the vibration type oxidation / reduction current measuring apparatus 1 of the present embodiment shown in FIG. 5, that is, the length L of the electrode support 3 is the same as that of the vibration type vibrational oxidation / reduction current measuring apparatus 1 ′ shown in FIG. Like the length L ′ of the same part, it can be made as short as possible.
[0083]
Further, as described above, the working electrode 20 vibrates (precesses) in the polishing bead 60, so that the working electrode 20 can be cleaned and polished, and the working electrode 20 can always be kept in a constant state. Therefore, stable continuous measurement is possible, and at the same time, electrode maintenance can be reduced.
[0084]
In addition, when measuring by directly putting an electrode into a pool or pond, washing food, a sink containing sterilizing liquid, etc., continuous measurement at the point to be measured can be performed by arbitrarily changing the immersion water depth. Is possible.
[0085]
The vibration type oxidation-reduction current measuring apparatus of the present invention is the residue in the cleaning / sterilizing liquid before and after cleaning / sterilizing food products (cut vegetables, etc.) with the above-described pool water, tap water (clean water), and chlorine sterilizing liquid. It is not limited to chlorine concentration measurement.
(1) Measurement of dissolved ozone concentration in tap water (clean water), cleaning water of semiconductor manufacturing processes (IC chip cleaning, etc.).
(2) Pool water, cleaning of foodstuffs (cut vegetables, etc.), dissolution in sterilizing solution or bleaching agent
Chlorine dioxide (ClO 2 ) Concentration measurement.
(3) Chlorous acid (HClO) in pool water 2 ) Ion concentration measurement.
(4) Measurement of hydrogen peroxide concentration in pulp, fiber bleaching, semiconductor cleaning, wastewater treatment, food and container sterilization.
Can be used for such as. The material of the working electrode 20 and the counter electrode 21 and the voltage applied to the working electrode 20 with reference to the counter electrode 21 can be appropriately selected for each of the above purposes, and are as shown in Table 1.
[0086]
[Table 1]
Figure 2004340762
[0087]
An experiment was conducted to confirm the effect of the vibration type oxidation-reduction current measuring apparatus according to the present example. In this experimental example, the apparatus having the configuration shown in FIG. 1 described in the above embodiment was used. In this experimental example, the working electrode 20 was a gold (Au) electrode, the counter electrode 21 was a silver-silver chloride (Ag-AgCl) electrode, and a voltage of -100 mV was applied to the working electrode with respect to the counter electrode 20 during measurement. And the apparatus of the said structure was immersed in the container which overflowed the washing | cleaning of foodstuffs and the disinfection liquid as test water, and the continuous chlorine was measured. The liquid temperature was 17 to 20 ° C. The abrasive beads used were alumina beads having a diameter of 1 mm (Ra = 10 μm). At the same time, as a comparative example, an experiment under the same conditions was performed using a vibration-type oxidation-reduction current measuring apparatus (other configurations are the same as those of the present example) in which the bubble removal portion 49 is not provided. The results are shown in Table 2.
[0088]
[Table 2]
Figure 2004340762
[0089]
As is apparent from Table 2, by providing the bubble removal part 49 in the strainer 50, a reproducible and stable measurement is performed as compared with the vibration type oxidation-reduction current measuring apparatus of the comparative example in which this is not provided. It became possible.
[0090]
In addition, according to further examination by the inventor, the concentration of dissolved ozone, dissolved chlorine dioxide, chlorite ion, and hydrogen peroxide were measured in the electrode configuration described in Example 1 and the applied voltage conditions in Table 1, respectively. Although the range of the detection current value is different for each measurement target component, the same experiment was performed, but the same effect as described above could be obtained.
[0091]
【The invention's effect】
As described above, the present invention has a working electrode and a counter electrode, and at least the working electrode is vibrated to detect the redox current and detect the concentration of the component to be measured in the test water. The measuring apparatus includes an electrode body that holds a detection unit including a working electrode and a counter electrode in a holder so that the detection unit can vibrate, and a strainer that is disposed so as to surround the detection unit and accommodates abrasive beads therein. Since the joint between the strainer and the electrode body is configured to have at least one bubble removal portion that allows the inside and outside of the strainer to communicate with each other,
(1) Good reproducibility and stable measurement.
(2) The liquid can be exchanged smoothly with respect to the detection unit, and it is possible to prevent a difference in concentration of the measurement object between the vicinity of detection and the periphery of the apparatus.
(3) It is possible to prevent an air layer from forming inside the strainer, to prevent the air layer from coming into contact with the counter electrode, and to shorten the detection unit (electrode support) as much as possible. As a result, the entire apparatus including the electrode body and the strainer can be miniaturized as much as possible.
(4) In addition to achieving the above effects, the working electrode and counter electrode can be vibrated (precession) in the sample (sample water), enabling continuous water sampling and throwing measurement, and polishing. The working electrode can be cleaned and polished by the vibration (precession) of the electrode in the beads, and the sensitivity can be prevented from being lowered due to contamination of the working electrode, and stable continuous measurement can be performed without the sensitivity being lowered.
Such effects can be achieved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a schematic configuration of an embodiment of a vibration type oxidation-reduction current measuring apparatus according to the present invention.
FIG. 2 is a perspective view showing an embodiment of a strainer.
FIG. 3A is a plan view and FIG. 3B is a cross-sectional view showing an embodiment of a strainer holding portion.
FIG. 4 is a diagram for explaining the relationship between the amount of abrasive beads in the strainer and the working electrode.
FIG. 5 is a partial cross-sectional view schematically showing replacement of the liquid in the strainer in the vibration type oxidation-reduction current measuring apparatus of FIG. 1;
FIG. 6 is a partial cross-sectional view showing a schematic configuration of another embodiment of the vibration type oxidation-reduction current measuring apparatus according to the present invention.
FIG. 7 is a cross-sectional view showing a schematic configuration of an example of a conventional vibration type redox current measuring apparatus.
8 is a partial cross-sectional view schematically showing replacement of the liquid in the strainer in the vibration type oxidation-reduction current measuring apparatus of FIG.
FIG. 9 is a cross-sectional view showing a schematic configuration of a conventional oxidation-reduction current measuring apparatus.
[Explanation of symbols]
1 Redox current measuring device
2 Holder
3 Electrode support (detector)
3a Upper support
3b Lower support
4 Support member (O-ring)
10 Electrode body
20 Working electrode
21 Counter electrode
26 Vibration motor
30 Strainer body
33 opening
34 Net
40 Strainer holder
45 Female thread
47 Groove
48 passage
49 Bubble missing part
50 strainer
60 abrasive beads

Claims (10)

作用極と対極とを有し、少なくとも作用極を振動させることにより酸化還元電流を検出して検水中の測定対象成分の濃度を検出する振動式酸化還元電流測定装置において、
作用極と対極とを備えた振動可能な検出部を有する電極本体と、
前記検出部を囲包するように前記電極本体に接合され、内部に研磨ビーズを収容するストレーナと、
を有し、
前記ストレーナと前記電極本体との接合部に、前記ストレーナの内部と外部とを連通させる少なくとも1つの気泡抜け部を設けることを特徴とする振動式酸化還元電流測定装置。
In an oscillating redox current measuring device that has a working electrode and a counter electrode, detects the redox current by vibrating at least the working electrode, and detects the concentration of the component to be measured in the test water.
An electrode body having a detecting unit capable of vibration with a working electrode and a counter electrode;
A strainer that is joined to the electrode body so as to surround the detection unit, and contains abrasive beads therein;
Have
An oscillating oxidation-reduction current measuring apparatus, wherein at least one bubble escape portion that communicates the inside and the outside of the strainer is provided at a joint portion between the strainer and the electrode body.
前記電極本体と前記ストレーナとは、前記検出部の振動の支点近傍で接合されることを特徴とする請求項1の振動式酸化還元電流測定装置。The vibration type oxidation-reduction current measuring apparatus according to claim 1, wherein the electrode body and the strainer are joined in the vicinity of a vibration fulcrum of the detection unit. 前記気泡抜け部を通る前記ストレーナの内部から外部への経路の少なくとも一部に、少なくとも一方向において前記研磨ビーズの直径以下の寸法を有する部分を有することを特徴とする請求項1又は2の振動式酸化還元電流測定装置。3. The vibration according to claim 1, wherein at least a part of a path from the inside to the outside of the strainer passing through the bubble escape portion has a portion having a dimension equal to or smaller than the diameter of the abrasive beads in at least one direction. Type redox current measuring device. 前記気泡抜け部は、少なくとも一方向において前記研磨ビーズの直径よりも大きい寸法を有することを特徴とする請求項1、2又は3の振動式酸化還元電流測定装置。4. The vibration type oxidation-reduction current measuring apparatus according to claim 1, wherein the bubble removal part has a dimension larger than the diameter of the polishing bead in at least one direction. 前記電極本体と前記ストレーナとは、前記電極本体の外周面に形成された雄ねじと前記ストレーナの上端開口部の内周面に形成された雌ねじとを螺合することで接合され、前記雄ねじ及び/又は雌ねじ部に溝部が形成されると共に、前記ストレーナの周壁に該溝部と連通する通路が形成されて、該溝部及び通路により前記気泡抜け部が形成されることを特徴とする請求項1〜4のいずれかの項に記載の振動式酸化還元電流測定装置。The electrode body and the strainer are joined by screwing a male screw formed on the outer peripheral surface of the electrode main body and a female screw formed on the inner peripheral surface of the upper end opening of the strainer, and the male screw and / or Alternatively, a groove portion is formed in the female screw portion, a passage communicating with the groove portion is formed in a peripheral wall of the strainer, and the bubble removal portion is formed by the groove portion and the passage. The vibration type oxidation-reduction current measuring device according to any one of the above. 前記電極本体と前記ストレーナとが接合された際の(i)前記雄ねじ又は雌ねじの先端と前記溝部の壁部との間若しくは前記雄ねじ及び雌ねじに設けられた溝部の壁部間の最大間隔、(ii)前記ストレーナの軸線方向における前記溝部の最大開口幅、及び(iii)前記ストレーナの軸線方向における前記通路の最大深さのいずれか若しくはいくつかは、前記研磨ビーズの直径以下であることを特徴とする請求項5の振動式酸化還元電流測定装置。(I) when the electrode main body and the strainer are joined together, the maximum distance between the tip of the male screw or the female screw and the wall of the groove or the wall of the groove provided in the male screw and the female screw; Either or some of ii) the maximum opening width of the groove portion in the axial direction of the strainer and (iii) the maximum depth of the passage in the axial direction of the strainer is less than or equal to the diameter of the abrasive beads. The vibration type oxidation-reduction current measuring device according to claim 5. 前記電極本体と前記ストレーナとが接合された際の(i)前記雄ねじ又は雌ねじの先端と前記溝部の壁部との間若しくは前記雄ねじ及び雌ねじに設けられた溝部の壁部間の最大間隔、(ii)前記ストレーナの軸線方向における前記溝部の最大開口幅、(iii)前記ストレーナの軸線方向における前記通路の最大深さ、(iv)前記雄ねじ又は雌ねじ部の周方向における前記溝部の幅、(v)前記雄ねじ又は雌ねじの周方向における前記通路の幅のいずれか若しくはいくつかは、前記研磨ビーズの直径より大きいことを特徴とする請求項5又は6の振動式酸化還元電流測定装置。(I) when the electrode main body and the strainer are joined together, the maximum distance between the tip of the male screw or the female screw and the wall of the groove or the wall of the groove provided in the male screw and the female screw; ii) the maximum opening width of the groove portion in the axial direction of the strainer; (iii) the maximum depth of the passage in the axial direction of the strainer; (iv) the width of the groove portion in the circumferential direction of the male screw or the female screw portion; 7. The vibration-type oxidation-reduction current measuring device according to claim 5, wherein any or some of the widths of the passages in the circumferential direction of the male screw or the female screw are larger than the diameter of the abrasive beads. 前記電極本体は更に、前記検出部の振動の支点位置にて前記電極支持体を保持する支持部材を有し、前記検出部は、下方端に前記作用極を備え、該作用極より上方に前記対極を備えると共に、前記支持部材より下方且つ前記作用極より上方位置にて前記検出部の内部に設置され、前記検出部に歳差運動を与える振動モータを有することを特徴とする請求項1〜7のいずれかの項に記載の振動式酸化還元電流測定装置。The electrode body further includes a support member that holds the electrode support at a vibration fulcrum position of the detection unit, and the detection unit includes the working electrode at a lower end, and the above-described working electrode is located above the working electrode. 2. A vibration motor that includes a counter electrode and is installed inside the detection unit at a position below the support member and above the working electrode, and imparts precession to the detection unit. 8. The vibration type oxidation-reduction current measuring device according to any one of items 7. 前記研磨ビーズは、直径0.1〜3mmとされることを特徴とする請求項1〜8のいずれかの項に記載の振動式酸化還元電流測定装置。The vibration-type oxidation-reduction current measuring apparatus according to claim 1, wherein the abrasive beads have a diameter of 0.1 to 3 mm. 測定対象成分は、残留塩素、溶存オゾン、溶存二酸化塩素、亜塩素酸イオン、又は過酸化水素であることを特徴とする請求項1〜9のいずれかの項に記載の振動式酸化還元電流測定装置。The measurement target component is residual chlorine, dissolved ozone, dissolved chlorine dioxide, chlorite ion, or hydrogen peroxide, and the vibration type oxidation-reduction current measurement according to any one of claims 1 to 9 apparatus.
JP2003138008A 2003-05-15 2003-05-15 Vibrating redox current measuring device Expired - Fee Related JP4238062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003138008A JP4238062B2 (en) 2003-05-15 2003-05-15 Vibrating redox current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003138008A JP4238062B2 (en) 2003-05-15 2003-05-15 Vibrating redox current measuring device

Publications (2)

Publication Number Publication Date
JP2004340762A true JP2004340762A (en) 2004-12-02
JP4238062B2 JP4238062B2 (en) 2009-03-11

Family

ID=33527496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003138008A Expired - Fee Related JP4238062B2 (en) 2003-05-15 2003-05-15 Vibrating redox current measuring device

Country Status (1)

Country Link
JP (1) JP4238062B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916986A (en) * 2019-04-15 2019-06-21 国弘环保仪器(昆山)有限公司 Self-cleaning digital residual chlorine sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630764U (en) * 1992-09-29 1994-04-22 電気化学計器株式会社 Rotating electrode analyzer
JPH1082761A (en) * 1996-09-05 1998-03-31 Merusu Giken:Kk Method and apparatus for measuring residual chlorine, and probe for detecting residual chlorine
JP2000298110A (en) * 1999-02-08 2000-10-24 Toa Electronics Ltd Oxidation-reduction current measuring device
JP2001235446A (en) * 2000-02-24 2001-08-31 Hitachi Ltd Residual chlorine meter
JP2003139740A (en) * 2001-11-01 2003-05-14 Dkk Toa Corp Oxidation-reduction current measuring instrument of vibration type

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630764U (en) * 1992-09-29 1994-04-22 電気化学計器株式会社 Rotating electrode analyzer
JPH1082761A (en) * 1996-09-05 1998-03-31 Merusu Giken:Kk Method and apparatus for measuring residual chlorine, and probe for detecting residual chlorine
JP2000298110A (en) * 1999-02-08 2000-10-24 Toa Electronics Ltd Oxidation-reduction current measuring device
JP2001235446A (en) * 2000-02-24 2001-08-31 Hitachi Ltd Residual chlorine meter
JP2003139740A (en) * 2001-11-01 2003-05-14 Dkk Toa Corp Oxidation-reduction current measuring instrument of vibration type

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916986A (en) * 2019-04-15 2019-06-21 国弘环保仪器(昆山)有限公司 Self-cleaning digital residual chlorine sensor

Also Published As

Publication number Publication date
JP4238062B2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
JP6856867B2 (en) Reagent-free free residual chlorine measuring device and reagent-free free residual chlorine measuring method
JP4463405B2 (en) Sensor for redox current measuring device and redox current measuring device
TWI713084B (en) 30nm in-line lpc testing and cleaning of semiconductor processing equipment
JP6372302B2 (en) Free residual chlorine measuring device
JP6304677B2 (en) Residual chlorine measuring device and residual chlorine measuring method
JP4238062B2 (en) Vibrating redox current measuring device
JP3929753B2 (en) Vibrating redox current measuring device
NZ563464A (en) Instrument for use in fluid with mixing element also serving to sense parameter of fluid and not physically connected to driving means
CN110072641A (en) Ultrasonic cleaner and the automatic analysing apparatus for having used the ultrasonic cleaner
JP3863566B2 (en) Method and apparatus for calculating biological oxygen demand of wastewater
JP7177341B2 (en) Reagentless residual chlorine measuring device and reagentless residual chlorine measuring method
JP2000298110A (en) Oxidation-reduction current measuring device
JP4603782B2 (en) Residual chlorine measuring device
JP4041793B2 (en) Residual chlorine measuring device
JP4307055B2 (en) Electrolytic current measuring device and electrolytic current measuring method
JPH10185871A (en) Method for cleaning electrode of residual chlorine meter, and residual chlorine meter
JP7093005B2 (en) Reagent-free total effective chlorine measuring device and its calibration method and reagent-free total effective chlorine measuring method
JP2005091098A (en) Hemocyte counter
JP2004223466A (en) Cleaning device
JP2005181279A (en) Apparatus for measuring residual chlorine, and electrode unit
JP2004144662A (en) Apparatus and method for measuring oxidation-reduction current
JP2011047685A (en) Apparatus and method for measuring ph or concentration
JP3958616B2 (en) Redox current measuring method and measuring apparatus
JP2005308534A (en) Residual chlorine measuring instrument
JP2002250711A (en) Residual chlorine meter and liquid sterilizer using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081219

R150 Certificate of patent or registration of utility model

Ref document number: 4238062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees