JP2004340647A - Pattern defect inspection device and image sensor calibration method - Google Patents

Pattern defect inspection device and image sensor calibration method Download PDF

Info

Publication number
JP2004340647A
JP2004340647A JP2003135258A JP2003135258A JP2004340647A JP 2004340647 A JP2004340647 A JP 2004340647A JP 2003135258 A JP2003135258 A JP 2003135258A JP 2003135258 A JP2003135258 A JP 2003135258A JP 2004340647 A JP2004340647 A JP 2004340647A
Authority
JP
Japan
Prior art keywords
image sensor
correction
defect inspection
image
pattern defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003135258A
Other languages
Japanese (ja)
Inventor
Shigeo Otsuki
繁夫 大月
Norio Sakaiya
至男 境谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2003135258A priority Critical patent/JP2004340647A/en
Publication of JP2004340647A publication Critical patent/JP2004340647A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pattern defect inspection device for acquiring sensitivity correction data for an image sensor without lowering the processing capacity of the inspection device, and having high sensitivity and high stability owing to automatic correction by lot or by wafer. <P>SOLUTION: Correction characteristics are acquired by using a mirror piece for sensitivity calibration for the image sensor provided on a moving stage for handling an object under inspection. Each of a plurality of imaging elements of the image sensor is corrected based on the correction characteristics when loading/unloading the object. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウエハ,フォトマスク,プリント基板等の検査対象物体上に形成された複数のパターンの欠陥を検査するのに好適なパターン欠陥検査装置に係り、照明光学系,結像光学系、およびイメージセンサの各撮像素子間の感度バラツキを補正し、明るさムラのない正規化された画像を得るパターン欠陥検査装置およびイメージセンサの校正方法に関する。
【0002】
【従来の技術】
図2は、従来のパターン欠陥検査装置の概略構成を示す構成図である。本装置は照明光源7からの光が照明光学系6を通り、ハーフミラー5で反射し、対物レンズ4を通して検査対象となるウエハ2上を照射する。照射された光はウエハ2上のパターン検出光として再び対物レンズ4およびハーフミラー5,8を通り結像光学系10によりイメージセンサ11上に結像される。一方ハーフミラー8により一部の検出光は自動焦点検出器9に戻り、移動ステージ1の高さを制御する。欠陥情報を含むパターン検出光はイメージセンサ11により光電変換され、AD変換器12によりデジタルデータに変換される。その後あらかじめ計算機16によって求め補正データ記憶部15へ登録しておいた感度の補正データ,画像正規化回路13により明るさムラのない画像を取得し、欠陥判定回路14により欠陥データが得られる。イメージセンサ11としては多数の撮像素子からなる一次元CCD(Charge Coupled Device:電荷結合素子)イメージセンサがある。また最近では検査速度を高速化するべく、複数の1次元イメージセンサを2次元に配列し、各1次元イメージセンサを移動した時に、その移動速度と各一次元センサの出力データを同期させて、隣接する各一次元イメージセンサの出力を加算していき、検査対象物の同一位置を撮像することにより検出光量の増加をはかったTDI(Time Delay Integration:遅延積算)イメージセンサ等が使われている。
【0003】
従来のパターン欠陥検査装置でのイメージセンサの感度補正データ15は、あらかじめウエハ2の代わりにミラーウエハを装置内にロードし実際の検査で使用する光学条件を設定してデータを取得する必要がある。そのためミラーウエハをウエハカセット17から移動ステージ1に搬送しなければならず、補正データ取得後はまた元のウエハカセット17にアンロードする必要がある。このような動作は装置の処理能力を低下させるだけでなく、感度の補正データの再現精度を低下させる要因にもなっていた。また近年の半導体プロセスの微細化に伴い、安定した検査感度を得るためにはロット毎あるいはウエハ毎の補正が望ましいが、前記問題のため数日間または1週間に一度程度の補正データの取得が実用限界となっていた。しかしながら、以上のように従来技術によれば、感度補正データを得るためにその都度ミラーウエハをロード/アンロードしなければならず、装置の処理能力低下が問題となっていた。
【0004】
被検査試料として半導体素子製造用のリソグラフィーマスクのパターンの検査の際に、マスクに補正用パターンを設け、これを撮像して得られた補正用信号に基づいて、撮像信号の補正や焦点の補正を行う技術は知られている(例えば、特許文献1参照)が、ミラーウエハを用いたイメージセンサの感度補正における上記問題点について記載されたものは見当たらない。
【0005】
【特許文献1】
特開2001−281159号公報
【0006】
【発明が解決しようとする課題】
本発明の目的は、パターン欠陥検査装置の処理能力を低下させずにイメージセンサの感度補正データを取得することが可能で、ロット毎あるいはウエハ毎の自動補正により高感度かつ高安定なパターン欠陥検査装置を提供することを課題とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明の実施例は、検査対象物をハンドリングする移動ステージ上に備えられたイメージセンサの感度校正用ミラー片で得た補正情報に基づいて、イメージセンサの複数の撮像素子毎の補正を行うものである。
【0008】
また、当該補正は検査対象物の交換動作と並行して行われるものである。
【0009】
【発明の実施の形態】
本発明の実施例を、図を用いて詳細に説明する。図1はパターン欠陥検査装置の概略構成を示す構成図である。主な構成は、図2と同様なので、説明は省略する。イメージセンサ11は、一般に1ラインあたり4096画素程度の多素子タイプであり、最近のウエハ検査感度との兼ね合いで0.1〜0.2um/画素程度が一般的なイメージセンサの分解能となっている。すなわち、ウエハ表面の0.1μm〜0.2μm の面積を、1画素あたりでウエハの欠陥を検出するため、一般的な1ラインあたり4096画素程度のイメージセンサでもカバー出来る検査範囲は1mm未満となる。よって、校正用ミラー片3としては数mm角の大きさで十分である。この校正用ミラー片3を例えば移動ステージ1上の空いている場所に実装しておく。校正用ミラー片3の場所としては移動ステージ1上に限らなくても、ウエハ2をロード/アンロードしている間は移動ステージ1がウエハ待機状態なので、移動ステージ1がウエハ待機状態の時にイメージセンサを校正出来る位置ならばどこでもよい。
【0010】
イメージセンサ補正時の実施例を図3を用いて説明する。図3は、パターン欠陥検査装置の概略構成を示す構成図である。移動ステージ1がウエハ待機状態の間に校正用ミラー片3を補正データ取得開始位置へ移動させて、照明光学系6および結像光学系10を、次に検査するウエハの光学条件に設定し、移動ステージ1によりスキャン動作を行い、イメージセンサ11で得たセンサ出力をAD変換器12によってデジタルデータにし、それを計算機16が直接読み取り、計算し、補正データとして補正データ記憶部15へ登録しておく。
【0011】
前記補正動作を照明光源7の光量を変化させた時に、イメージセンサ11で得た全画素に対するセンサ出力と画素番号との関係を図6に示す。図6のように各検出光量a,b,cの時の全画素センサ出力61a,61b,61cは画素番号によりセンサ出力のバラツキがある。これは例えばイメージセンサ11が4096画素という非常に多い素子で構成されているため、素子間の製造バラツキによる特性のバラツキが発生してしまうという原因が挙げられる。そのようなセンサ出力バラツキを補正するために、前記のようにまず補正データを補正データ記憶部15へ登録しておく。
【0012】
図4はイメージセンサの光電変換特性図であり、これが補正データとなる。図6の任意画素62における各検出光量a,b,cの時のセンサ出力63a,63b,63cの補正を説明する。図4の横軸の各検出光量a,b,cの時のセンサ出力として41a,41b,41cが得られる。これらの各センサ出力を仮想線42で結ぶとほぼ一直線の、検出光量に対してセンサ出力がほぼ比例する特性となる。これにより、イメージセンサ11の任意画素のセンサ出力がリニアな領域で変化すると考えられる。したがって、例えば、照明光源7の光量が低下するにしたがいセンサ出力が低下した時や、照明光学系6および結像光学系10等の素子のバラツキがあった時に、この特性を利用してイメージセンサの出力の補正が可能となる。
【0013】
図5は、図4と同じくイメージセンサの光電変換特性図である。図5に示すように、任意のセンサ出力と検出光量とはリニアな領域内であるとして、原点を初めとする正規化直線53により正規化処理をすることが可能となる。したがって、任意のセンサ出力51に対する検出光量は図5から検出光量52となる。このような正規化処理が行われることにより、各画素のセンサ出力のバラツキをなくすことができる。
【0014】
図7は補正動作の手順を示すフローチャートである。まずステップ71で補正条件設定を開始し、ステップ72でイメージセンサ補正データ番号を設定し、ステップ73,74,75で光学条件やウエハの条件を設定し、ステップ76で補正動作を開始する。
【0015】
補正動作を開始したら、ステップ77によりイメージセンサ補正処理を行い、ステップ78で補正データを登録し、ステップ79で補正動作が終了する。
【0016】
図8は、パターン欠陥検査装置に備えられたモニタに表示される補正条件設定の画面の一例である。画面には、イメージセンサ補正データ番号表示部81,光学条件設定1表示部82,光学条件設定2表示部83,ウエハ条件設定表示部84などが表示される。この画面の各表示部に、図7で説明したように、各条件を入力する。
【0017】
入力が終わったら、補正開始ボタン85を押して、補正動作を開始する。各補正条件での補正データは補正データ記憶部15に登録される。図9はモニタに表示されるイメージセンサの補正情報の画面の例である。補正データ登録後、任意のデータを取出したい時に、イメージセンサ補正データ番号表示部91にイメージセンサ補正データ番号を入力することにより、補正データ記憶部15に登録された補正値一覧表92が表示される。
【0018】
このような補正データ登録動作を、ウエハの交換動作、すなわち、ロード/アンロードのタイミングで並行して行えば、従来の技術のように、数日間または一週間に一度程度、ミラーウエハを装置内にロードして補正データを登録する必要がなくなり、処理能力を低下させることなく高精度な感度補正が可能となる。
【0019】
またこれにより、補正データ登録動作と画像の正規化処理について、ウエハ毎、又は光学条件毎に行っても、同様に装置の処理能力を低下させることなく高精度な感度補正が可能となる。
【0020】
また、あらかじめ補正データをウエハ毎に設定することにより、ウエハをロード/アンロードする度に補正データを登録する必要が無いようにすることもでき、また、自動的に補正データ登録動作を行うことも可能である。
【0021】
以上述べたように、従来装置では、検査するウエハとは別にミラーウエハをウエハカセットからロード/アンロードして感度補正データを取得しなければならず、装置の処理能力低下はもとより補正間隔を短くして装置性能を維持することが困難であった。
【0022】
本発明の実施例によれば、パターン欠陥検査装置の処理時間に影響を与えることがなくなり、補正間隔をウエハ毎まで短縮することができるので、高精度な状態を維持しつつ高感度で実検査ができるという効果が期待できる。
【0023】
【発明の効果】
本発明によれば、パターン欠陥検査装置の処理能力を低下させずにイメージセンサの感度補正データを取得することが可能で、ロット毎あるいはウエハ毎の自動補正により高感度かつ高安定なパターン欠陥検査装置を提供することができる。
【図面の簡単な説明】
【図1】パターン欠陥検査装置の概略構成を示す構成図。
【図2】従来のパターン欠陥検査装置の概略構成を示す構成図。
【図3】パターン欠陥検査装置の概略構成を示す構成図。
【図4】イメージセンサの光電変換特性図。
【図5】イメージセンサの光電変換特性図。
【図6】イメージセンサの全画素のセンサ出力と画素番号との関係図。
【図7】補正動作の手順を示すフローチャート。
【図8】モニタに表示される補正条件設定の画面図。
【図9】モニタに表示されるイメージセンサの補正情報の画面図。
【符号の説明】
1…移動ステージ、2…ウエハ、3…校正用ミラー片、4…対物レンズ、5,8…ハーフミラー、6…照明光学系、7…照明光源、9…自動焦点検出器、10…結像光学系、11…イメージセンサ、12…AD変換器、13…正規化回路、14…欠陥判定回路、15…補正データ記憶部、16…計算機、17…ウエハカセット。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pattern defect inspection apparatus suitable for inspecting defects of a plurality of patterns formed on an inspection target object such as a semiconductor wafer, a photomask, and a printed circuit board, and includes an illumination optical system, an imaging optical system, Also, the present invention relates to a pattern defect inspection apparatus that corrects sensitivity variations among image sensors of an image sensor to obtain a normalized image without brightness unevenness, and a method of calibrating an image sensor.
[0002]
[Prior art]
FIG. 2 is a configuration diagram showing a schematic configuration of a conventional pattern defect inspection apparatus. In this apparatus, light from an illumination light source 7 passes through an illumination optical system 6, is reflected by a half mirror 5, and irradiates the wafer 2 to be inspected through an objective lens 4. The irradiated light passes through the objective lens 4 and the half mirrors 5 and 8 again to form an image on the image sensor 11 by the imaging optical system 10 as pattern detection light on the wafer 2. On the other hand, a part of the detection light is returned to the automatic focus detector 9 by the half mirror 8 and controls the height of the moving stage 1. The pattern detection light including the defect information is photoelectrically converted by the image sensor 11 and converted into digital data by the AD converter 12. Thereafter, sensitivity correction data obtained in advance by the computer 16 and registered in the correction data storage unit 15, an image without brightness unevenness by the image normalization circuit 13 is obtained, and defect data is obtained by the defect determination circuit 14. As the image sensor 11, there is a one-dimensional CCD (Charge Coupled Device) image sensor including a large number of image pickup devices. Also, recently, in order to increase the inspection speed, a plurality of one-dimensional image sensors are arranged two-dimensionally, and when each one-dimensional image sensor is moved, the moving speed is synchronized with the output data of each one-dimensional sensor. A TDI (Time Delay Integration) image sensor or the like is used in which outputs of adjacent one-dimensional image sensors are added to increase the amount of detected light by imaging the same position of the inspection object. .
[0003]
As for the sensitivity correction data 15 of the image sensor in the conventional pattern defect inspection apparatus, it is necessary to load a mirror wafer instead of the wafer 2 into the apparatus in advance and set the optical conditions to be used in the actual inspection and acquire the data. . Therefore, the mirror wafer must be transferred from the wafer cassette 17 to the moving stage 1, and after acquiring the correction data, it is necessary to unload the original wafer cassette 17 again. Such an operation not only reduces the processing capability of the apparatus, but also causes a reduction in the accuracy of reproducing sensitivity correction data. In addition, with the recent miniaturization of semiconductor processes, it is desirable to perform correction for each lot or each wafer in order to obtain stable inspection sensitivity. However, due to the above problem, it is practical to obtain correction data about once every several days or once a week. Had reached its limit. However, as described above, according to the related art, the mirror wafer has to be loaded / unloaded each time to obtain the sensitivity correction data, and there has been a problem that the processing capability of the apparatus has been reduced.
[0004]
When inspecting a pattern of a lithography mask for manufacturing a semiconductor device as a sample to be inspected, a correction pattern is provided on the mask, and based on a correction signal obtained by imaging the correction pattern, correction of an imaging signal and correction of focus are performed. Is known (for example, see Patent Document 1), but there is no document describing the above problem in sensitivity correction of an image sensor using a mirror wafer.
[0005]
[Patent Document 1]
JP 2001-281159 A
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION It is an object of the present invention to obtain sensitivity correction data of an image sensor without deteriorating the processing capability of a pattern defect inspection apparatus, and to perform highly sensitive and stable pattern defect inspection by automatic correction for each lot or wafer. It is an object to provide a device.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, an embodiment of the present invention provides a method for capturing a plurality of images of an image sensor based on correction information obtained by a sensitivity calibration mirror piece of an image sensor provided on a moving stage that handles an inspection object. The correction is performed for each element.
[0008]
The correction is performed in parallel with the exchange operation of the inspection object.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram showing a schematic configuration of a pattern defect inspection apparatus. The main configuration is the same as that of FIG. The image sensor 11 is generally a multi-element type of about 4096 pixels per line, and the resolution of a general image sensor is about 0.1 to 0.2 μm / pixel in consideration of recent wafer inspection sensitivity. . That is, an area of 0.1μm 2 ~0.2μm 2 of the wafer surface, 1 for detecting defects of the wafer per pixel, common first inspection range even cover it with the image sensor 4096 about pixels per line than 1mm It becomes. Therefore, a size of several mm square is sufficient for the calibration mirror piece 3. The calibration mirror piece 3 is mounted, for example, in an empty place on the moving stage 1. The location of the calibration mirror piece 3 is not limited to the position on the moving stage 1, but the image is taken when the moving stage 1 is in the wafer waiting state because the moving stage 1 is in the wafer waiting state while the wafer 2 is being loaded / unloaded. Any position can be used as long as the sensor can be calibrated.
[0010]
An embodiment at the time of image sensor correction will be described with reference to FIG. FIG. 3 is a configuration diagram showing a schematic configuration of the pattern defect inspection apparatus. While the moving stage 1 is in the wafer standby state, the calibration mirror piece 3 is moved to the correction data acquisition start position, and the illumination optical system 6 and the imaging optical system 10 are set to the optical conditions of the wafer to be inspected next, The scanning operation is performed by the moving stage 1, and the sensor output obtained by the image sensor 11 is converted into digital data by the AD converter 12, which is directly read and calculated by the computer 16, and registered in the correction data storage unit 15 as correction data. deep.
[0011]
FIG. 6 shows a relationship between sensor outputs and pixel numbers for all pixels obtained by the image sensor 11 when the light amount of the illumination light source 7 is changed in the correction operation. As shown in FIG. 6, the sensor outputs 61a, 61b, and 61c of all the pixels at the detected light amounts a, b, and c have variations in sensor outputs depending on the pixel numbers. This is because, for example, since the image sensor 11 is configured with a very large number of elements of 4096 pixels, variations in characteristics due to manufacturing variations among the elements occur. In order to correct such sensor output variations, correction data is first registered in the correction data storage unit 15 as described above.
[0012]
FIG. 4 is a photoelectric conversion characteristic diagram of the image sensor, which serves as correction data. The correction of the sensor outputs 63a, 63b, 63c at the respective detected light amounts a, b, c in the arbitrary pixel 62 in FIG. 6 will be described. Sensor outputs 41a, 41b, and 41c are obtained at the respective detected light amounts a, b, and c on the horizontal axis in FIG. When these sensor outputs are connected by a virtual line 42, the characteristics are substantially straight, and the sensor output is almost proportional to the detected light amount. Thus, it is considered that the sensor output of an arbitrary pixel of the image sensor 11 changes in a linear region. Therefore, for example, when the sensor output decreases as the light amount of the illumination light source 7 decreases, or when there are variations in elements such as the illumination optical system 6 and the imaging optical system 10, the image sensor can utilize this characteristic. Output can be corrected.
[0013]
FIG. 5 is a diagram showing the photoelectric conversion characteristics of the image sensor as in FIG. As shown in FIG. 5, assuming that an arbitrary sensor output and a detected light amount are within a linear region, it is possible to perform a normalization process using a normalization straight line 53 including the origin. Therefore, the detected light amount for an arbitrary sensor output 51 is the detected light amount 52 from FIG. By performing such normalization processing, it is possible to eliminate variations in the sensor output of each pixel.
[0014]
FIG. 7 is a flowchart showing the procedure of the correction operation. First, correction condition setting is started in step 71, an image sensor correction data number is set in step 72, optical conditions and wafer conditions are set in steps 73, 74, and 75, and a correction operation is started in step 76.
[0015]
When the correction operation is started, an image sensor correction process is performed in step 77, correction data is registered in step 78, and the correction operation ends in step 79.
[0016]
FIG. 8 is an example of a correction condition setting screen displayed on a monitor provided in the pattern defect inspection apparatus. On the screen, an image sensor correction data number display section 81, an optical condition setting 1 display section 82, an optical condition setting 2 display section 83, a wafer condition setting display section 84, and the like are displayed. Each condition is input to each display section of this screen as described with reference to FIG.
[0017]
When the input is completed, the correction start button 85 is pressed to start the correction operation. The correction data under each correction condition is registered in the correction data storage unit 15. FIG. 9 is an example of a screen of the correction information of the image sensor displayed on the monitor. After the correction data is registered, when the user wants to take out any data, the user inputs the image sensor correction data number into the image sensor correction data number display section 91, and the correction value list 92 registered in the correction data storage section 15 is displayed. You.
[0018]
If such correction data registration operation is performed in parallel with the wafer exchange operation, that is, at the timing of loading / unloading, the mirror wafer is placed in the apparatus about once every several days or once a week as in the conventional technology. And the need to register correction data, thereby enabling highly accurate sensitivity correction without lowering the processing capability.
[0019]
Further, even when the correction data registration operation and the image normalization process are performed for each wafer or for each optical condition, high-precision sensitivity correction can be similarly performed without lowering the processing capability of the apparatus.
[0020]
In addition, by setting correction data for each wafer in advance, it is not necessary to register the correction data every time a wafer is loaded / unloaded, and the correction data registration operation can be automatically performed. Is also possible.
[0021]
As described above, in the conventional apparatus, the sensitivity correction data must be obtained by loading / unloading the mirror wafer from the wafer cassette separately from the wafer to be inspected. Therefore, it was difficult to maintain the performance of the apparatus.
[0022]
According to the embodiment of the present invention, the processing time of the pattern defect inspection apparatus is not affected, and the correction interval can be shortened to every wafer, so that the actual inspection can be performed with high sensitivity while maintaining a high accuracy state. The effect that can be expected can be expected.
[0023]
【The invention's effect】
According to the present invention, it is possible to acquire sensitivity correction data of an image sensor without lowering the processing capability of a pattern defect inspection apparatus, and to perform highly sensitive and highly stable pattern defect inspection by automatic correction for each lot or wafer. An apparatus can be provided.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a schematic configuration of a pattern defect inspection apparatus.
FIG. 2 is a configuration diagram showing a schematic configuration of a conventional pattern defect inspection apparatus.
FIG. 3 is a configuration diagram showing a schematic configuration of a pattern defect inspection apparatus.
FIG. 4 is a diagram showing photoelectric conversion characteristics of an image sensor.
FIG. 5 is a photoelectric conversion characteristic diagram of the image sensor.
FIG. 6 is a diagram showing a relationship between sensor outputs of all pixels of an image sensor and pixel numbers.
FIG. 7 is a flowchart illustrating a procedure of a correction operation.
FIG. 8 is a screen view of a correction condition setting displayed on a monitor.
FIG. 9 is a screen view of image sensor correction information displayed on a monitor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Moving stage, 2 ... Wafer, 3 ... Calibration mirror piece, 4 ... Objective lens, 5, 8 ... Half mirror, 6 ... Illumination optical system, 7 ... Illumination light source, 9 ... Automatic focus detector, 10 ... Image formation Optical system, 11 image sensor, 12 AD converter, 13 normalization circuit, 14 defect determination circuit, 15 correction data storage unit, 16 computer, 17 wafer cassette.

Claims (9)

検査対象物に光を照射し、イメージセンサで光学像を取得して、検査対象物のパターンの欠陥を検出するパターン欠陥検査装置において、前記検査対象物をハンドリングする移動ステージ上に前記イメージセンサの感度校正用ミラー片を備えたことを特徴とするパターン欠陥検査装置。In a pattern defect inspection apparatus that irradiates light to an inspection target, acquires an optical image with an image sensor, and detects a defect in a pattern of the inspection target, the image sensor is mounted on a moving stage that handles the inspection target. A pattern defect inspection device comprising a sensitivity calibration mirror piece. 請求項1において、前記イメージセンサは複数の撮像素子を有し、前記感度校正用ミラー片で得た補正情報に基づいて、前記イメージセンサの各撮像素子毎の補正を行うことを特徴とするパターン欠陥検査装置。2. The pattern according to claim 1, wherein the image sensor has a plurality of image sensors, and performs correction for each image sensor of the image sensor based on correction information obtained by the sensitivity calibration mirror piece. Defect inspection equipment. 請求項2において、前記イメージセンサの各撮像素子毎の補正は、前記検査対象物の交換動作と並行して行われることを特徴とするパターン欠陥検査装置。3. The pattern defect inspection apparatus according to claim 2, wherein the correction for each image sensor of the image sensor is performed in parallel with the operation of replacing the inspection object. 請求項3において、前記補正は予め指定された時間間隔で自動的に実行されることを特徴とするパターン欠陥検査装置。4. The pattern defect inspection device according to claim 3, wherein the correction is automatically performed at a predetermined time interval. 請求項1において、前記イメージセンサの感度校正は、照明光学系および結像光学系の照度分布による明るさムラと、前記補正情報とに基づいて行われることを特徴とするパターン欠陥検査装置。2. The pattern defect inspection apparatus according to claim 1, wherein the sensitivity calibration of the image sensor is performed based on brightness unevenness due to illuminance distribution of an illumination optical system and an imaging optical system, and the correction information. 検査対象物に光を照射し、イメージセンサで光学像を取得して、検査対象物のパターンの欠陥を検出するパターン欠陥検査装置のイメージセンサの校正方法であって、前記検査対象物をハンドリングする移動ステージ上に備えられたイメージセンサの感度校正用ミラー片で得た補正情報に基づいて、前記イメージセンサの複数の撮像素子毎の補正を行うことを特徴とするイメージセンサの校正方法。A method for calibrating an image sensor of a pattern defect inspection apparatus that irradiates light to an inspection target, acquires an optical image with an image sensor, and detects a defect in a pattern of the inspection target, and handles the inspection target. A method for calibrating an image sensor, comprising: performing a correction for each of a plurality of image sensors of the image sensor based on correction information obtained by a sensitivity calibration mirror piece of the image sensor provided on a moving stage. 請求項6において、前記イメージセンサの各撮像素子毎の補正は、前記検査対象物の交換動作と並行して行われることを特徴とするイメージセンサの校正方法。7. The method according to claim 6, wherein the correction for each image sensor of the image sensor is performed in parallel with the operation of replacing the inspection object. 請求項6において、前記補正は予め指定された時間間隔で自動的に実行されることを特徴とするイメージセンサの校正方法。7. The method according to claim 6, wherein the correction is automatically performed at a predetermined time interval. 請求項6において、前記イメージセンサの複数の撮像素子毎の補正は、照明光学系および結像光学系の照度分布による明るさムラと、前記補正情報とに基づいて行われることを特徴とするイメージセンサの校正方法。7. The image according to claim 6, wherein the correction for each of the plurality of imaging elements of the image sensor is performed based on brightness unevenness due to illuminance distribution of an illumination optical system and an imaging optical system, and the correction information. How to calibrate the sensor.
JP2003135258A 2003-05-14 2003-05-14 Pattern defect inspection device and image sensor calibration method Pending JP2004340647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003135258A JP2004340647A (en) 2003-05-14 2003-05-14 Pattern defect inspection device and image sensor calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003135258A JP2004340647A (en) 2003-05-14 2003-05-14 Pattern defect inspection device and image sensor calibration method

Publications (1)

Publication Number Publication Date
JP2004340647A true JP2004340647A (en) 2004-12-02

Family

ID=33525566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003135258A Pending JP2004340647A (en) 2003-05-14 2003-05-14 Pattern defect inspection device and image sensor calibration method

Country Status (1)

Country Link
JP (1) JP2004340647A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157638A (en) * 2006-12-20 2008-07-10 Hitachi High-Technologies Corp Surface flaw inspection device of sample, and flaw detection method using the same
JP2008298623A (en) * 2007-05-31 2008-12-11 Hitachi High-Technologies Corp Inspection device and method
JP2011179947A (en) * 2010-03-01 2011-09-15 Hitachi High-Technologies Corp Device and method for surface inspection
JP2011209087A (en) * 2010-03-30 2011-10-20 Hitachi High-Technologies Corp Defect inspection apparatus, method of inspecting defect, and inspection system
US20120268742A1 (en) * 2009-07-23 2012-10-25 Hisashi Hatano Apparatus and method for inspecting pattern defect
JP2017072393A (en) * 2015-10-05 2017-04-13 株式会社ニューフレアテクノロジー Inspection device and inspection method
JP2018104838A (en) * 2016-12-26 2018-07-05 株式会社PSM International Quality measurement method and quality measurement device for long-length sheet material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157638A (en) * 2006-12-20 2008-07-10 Hitachi High-Technologies Corp Surface flaw inspection device of sample, and flaw detection method using the same
JP4638864B2 (en) * 2006-12-20 2011-02-23 株式会社日立ハイテクノロジーズ Sample surface defect inspection system
JP2008298623A (en) * 2007-05-31 2008-12-11 Hitachi High-Technologies Corp Inspection device and method
US20120268742A1 (en) * 2009-07-23 2012-10-25 Hisashi Hatano Apparatus and method for inspecting pattern defect
US9182359B2 (en) * 2009-07-23 2015-11-10 Hitachi High-Technologies Corporation Apparatus and method for inspecting pattern defect
JP2011179947A (en) * 2010-03-01 2011-09-15 Hitachi High-Technologies Corp Device and method for surface inspection
JP2011209087A (en) * 2010-03-30 2011-10-20 Hitachi High-Technologies Corp Defect inspection apparatus, method of inspecting defect, and inspection system
JP2017072393A (en) * 2015-10-05 2017-04-13 株式会社ニューフレアテクノロジー Inspection device and inspection method
JP2018104838A (en) * 2016-12-26 2018-07-05 株式会社PSM International Quality measurement method and quality measurement device for long-length sheet material

Similar Documents

Publication Publication Date Title
JP4537467B2 (en) Sample inspection apparatus and sample inspection method
JP2009300426A (en) Reticle defect inspection device and reticle defect inspection method
TWI667530B (en) Inspection method and inspection device
US20090129664A1 (en) Pattern inspection apparatus and method
JP6310263B2 (en) Inspection device
JP2007178144A (en) Pattern inspection system, pattern inspection method, sample to be inspected, and method for managing sample to be inspected
JP6502230B2 (en) Inspection apparatus and inspection method
JP2015145922A (en) Mask inspection apparatus, and mask inspection method
WO2021135044A1 (en) Defect inspection apparatus and method
JP5178781B2 (en) Sensor output data correction device and sensor output data correction method
JP2004340647A (en) Pattern defect inspection device and image sensor calibration method
JP5075946B2 (en) Pattern inspection apparatus and pattern inspection method
JP5684628B2 (en) Pattern inspection apparatus and pattern inspection method
JP2004144610A (en) Wafer defect inspection apparatus
WO2008023806A1 (en) Sensitivity correction method and imaging device
JP2006275780A (en) Pattern inspection method
JP4554661B2 (en) Pattern inspection apparatus, pattern inspection method, and program
JP3865156B2 (en) Image comparison apparatus, wafer inspection apparatus and wafer inspection system using the same
JP4634478B2 (en) Sample inspection apparatus and sample inspection method
TW201514479A (en) Defect viewing device and defect viewing method
JP4364348B2 (en) Imaging circuit and spatial compensation method
KR101130209B1 (en) Substrate inspecting apparatus and method for inspecting a substrate using the same
JP2007027844A (en) Imaging apparatus having pixel defect complementary function
JP2017129385A (en) Mask inspection method and mask inspection device
JP2010127787A (en) Generation method of standard image

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050928

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

RD02 Notification of acceptance of power of attorney

Effective date: 20060511

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060511

A977 Report on retrieval

Effective date: 20080219

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Effective date: 20080425

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310