JP2004339203A - METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID - Google Patents
METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID Download PDFInfo
- Publication number
- JP2004339203A JP2004339203A JP2004118688A JP2004118688A JP2004339203A JP 2004339203 A JP2004339203 A JP 2004339203A JP 2004118688 A JP2004118688 A JP 2004118688A JP 2004118688 A JP2004118688 A JP 2004118688A JP 2004339203 A JP2004339203 A JP 2004339203A
- Authority
- JP
- Japan
- Prior art keywords
- carboxylic acid
- sulfate
- acid
- unsaturated carboxylic
- formaldehyde
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 0 COC(C(*)=NN=C)=O Chemical compound COC(C(*)=NN=C)=O 0.000 description 1
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
本発明は、カルボン酸とホルムアルデヒドまたはホルムアルデヒド前駆体とを反応させるα,β−不飽和カルボン酸の製造方法に関する。得られるα,β−不飽和カルボン酸のうち、アクリル酸やメタクリル酸は、アクリレート系樹脂モノマーの原料として重要な化合物である。 The present invention relates to a method for producing an α, β-unsaturated carboxylic acid by reacting a carboxylic acid with formaldehyde or a formaldehyde precursor. Among the α, β-unsaturated carboxylic acids obtained, acrylic acid and methacrylic acid are important compounds as raw materials for acrylate resin monomers.
α,β−不飽和カルボン酸の中でも特に重要なメタクリル酸は、従来、アセトンと青酸を反応させてアセトンシアノヒドリンを経由するルートにより広く生産されている。ただし、この製法では極めて毒性の高い青酸を使用しており、また硫酸アンモニウム等の廃棄物が大量に副生するといった問題点があった。また、イソブテンの酸化によりメタクロレインを得て、さらに酸化させるといった方法でも生産されている。しかし、多管式の極めて大型の反応器を必要とするといった問題点があった。 Methacrylic acid, which is particularly important among α, β-unsaturated carboxylic acids, has conventionally been produced widely by reacting acetone and hydrocyanic acid and passing through acetone cyanohydrin. However, this production method uses a very toxic hydrocyanic acid and has a problem that a large amount of waste such as ammonium sulfate is by-produced. It is also produced by a method of obtaining methacrolein by oxidizing isobutene and further oxidizing it. However, there is a problem that a multi-tube type very large reactor is required.
これに対し、カルボン酸とホルムアルデヒドまたはホルムアルデヒド前駆体を反応させて、α,β−不飽和カルボン酸を製造する方法が提案されている。例えば、ニオブの酸化物を含む触媒を使用することにより、ホルムアルデヒドまたはホルムアルデヒド前駆体とカルボン酸、カルボン酸エステル、無水カルボン酸とを接触させるα,β−不飽和カルボン酸またはそのエステルの製造方法が記載されている(特許文献1参照)。しかし、この方法では吸湿しやすく取り扱いにくいフッ化ニオブを使用するなど触媒調製が煩雑であった。また、使用するフッ化ニオブは高価であり、コスト面でも実用的とは言いがたい方法であった。 On the other hand, a method has been proposed in which a carboxylic acid is reacted with formaldehyde or a formaldehyde precursor to produce an α, β-unsaturated carboxylic acid. For example, a method for producing an α, β-unsaturated carboxylic acid or an ester thereof by contacting formaldehyde or a formaldehyde precursor with a carboxylic acid, a carboxylic acid ester, or a carboxylic anhydride by using a catalyst containing an oxide of niobium is disclosed. (See Patent Document 1). However, in this method, preparation of the catalyst was complicated, for example, using niobium fluoride which is easily absorbed and difficult to handle. Also, the niobium fluoride used is expensive and is not practical in terms of cost.
一方、酸強度がpKa≦−3.0の酸点を有する固体触媒にイオウ酸化物を存在させた触媒を用いたアクリル酸またはメタクリル酸の製造方法も提案されている(特許文献2参照)。しかし、金属硫酸塩についての記載はなく、触媒調製も煩雑なものであった。 On the other hand, a method for producing acrylic acid or methacrylic acid using a catalyst in which a sulfur oxide is present in a solid catalyst having an acid point with an acid strength of pKa ≦ −3.0 has also been proposed (see Patent Document 2). However, there is no description about metal sulfate, and preparation of the catalyst was complicated.
その他、触媒として例えば、アルカリ金属とジルコニウム等の調節剤元素を含む多孔質高表面積シリカを用いる方法(特許文献3参照)および、シリカ−セシウム−タングステンと、銀などの金属との複合酸化物を用いる方法(特許文献4参照)などが提案されているが、これらも触媒調製が煩雑であり、実用的な方法とは言いがたいものであった。 In addition, for example, a method using a porous high surface area silica containing an alkali metal and a regulator element such as zirconium (see Patent Document 3) as a catalyst or a composite oxide of silica-cesium-tungsten and a metal such as silver is used. Although a method of using the compound (see Patent Document 4) has been proposed, the preparation of the catalyst is complicated, and it is hardly a practical method.
本発明は、簡便に調製可能な触媒を用いて、カルボン酸とホルムアルデヒドまたはホルムアルデヒド前駆体とを反応させ、α,β−不飽和カルボン酸を効率よく製造する方法を提供しようとするものである。 An object of the present invention is to provide a method for efficiently producing an α, β-unsaturated carboxylic acid by reacting a carboxylic acid with formaldehyde or a formaldehyde precursor using a catalyst that can be easily prepared.
そこで本発明者らは、カルボン酸とホルムアルデヒドまたはホルムアルデヒド前駆体とを反応させてα,β−不飽和カルボン酸を製造する方法について鋭意検討した結果、簡便に調製可能な金属硫酸塩を触媒として用いることによって、効率よく反応が進行することを見出し、本発明に至った。
すなわち、本発明は、式(1)
(式中、Rは水素原子、アルキル基、アリール基、アラルキル基、アルケニル基またはアルキニル基を表す。)
で示されるカルボン酸とホルムアルデヒドまたはホルムアルデヒド前駆体とを金属硫酸塩の存在下に反応させることを特徴とする式(2)
(式中、Rは前記と同じ意味を表す。)
で示されるα,β−不飽和カルボン酸の製造方法を提供するものである。
Therefore, the present inventors have conducted intensive studies on a method of producing an α, β-unsaturated carboxylic acid by reacting a carboxylic acid with formaldehyde or a formaldehyde precursor, and as a result, using a metal sulfate which can be easily prepared as a catalyst. As a result, the present inventors have found that the reaction proceeds efficiently, leading to the present invention.
That is, the present invention relates to formula (1)
(In the formula, R represents a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, an alkenyl group, or an alkynyl group.)
Wherein a carboxylic acid represented by the formula (1) is reacted with formaldehyde or a formaldehyde precursor in the presence of a metal sulfate.
(In the formula, R represents the same meaning as described above.)
The present invention provides a method for producing an α, β-unsaturated carboxylic acid represented by the formula:
本発明によれば、カルボン酸とホルムアルデヒドまたはホルムアルデヒド前駆体からα,β−不飽和カルボン酸を製造する方法において、入手が比較的容易な金属硫酸塩から簡便に調製できる触媒を用いて、効率よく実施することが可能となり、その工業的価値は大きい。 According to the present invention, in a method for producing an α, β-unsaturated carboxylic acid from a carboxylic acid and formaldehyde or a formaldehyde precursor, a catalyst which can be easily prepared from a metal sulfate which is relatively easily available is efficiently used. It can be implemented and its industrial value is great.
以下、本発明について詳細に説明する。
本発明で用いられる式(1)で示されるカルボン酸(以下、カルボン酸(1)と称す。)おいて、Rが水素原子の場合に対応するカルボン酸は酢酸である。
Hereinafter, the present invention will be described in detail.
In the carboxylic acid represented by the formula (1) used in the present invention (hereinafter, referred to as carboxylic acid (1)), when R is a hydrogen atom, the corresponding carboxylic acid is acetic acid.
Rがアルキル基である場合において、アルキル基の炭素数は1〜10の範囲である。かかるカルボン酸(1)としては、プロピオン酸、酪酸、吉草酸、3−メチルブタン酸、カプロン酸、ヘプタン酸、カプリル酸、ノナン酸、カプリン酸、ウンデカン酸等が挙げられる When R is an alkyl group, the alkyl group has 1 to 10 carbon atoms. Examples of the carboxylic acid (1) include propionic acid, butyric acid, valeric acid, 3-methylbutanoic acid, caproic acid, heptanoic acid, caprylic acid, nonanoic acid, capric acid, undecanoic acid and the like.
Rがアリール基である場合において、アリール基の炭素数は6〜10の範囲である。かかるカルボン酸(1)としては、フェニル酢酸、p−トルイル酢酸、ナフチル酢酸等が挙げられる When R is an aryl group, the aryl group has 6 to 10 carbon atoms. Examples of the carboxylic acid (1) include phenylacetic acid, p-toluylacetic acid, and naphthylacetic acid.
Rがアラルキル基である場合において、アラルキル基の炭素数は7〜10の範囲である。かかるカルボン酸(1)としては3−フェニルプロピオン酸等が挙げられる。 When R is an aralkyl group, the aralkyl group has 7 to 10 carbon atoms. Examples of the carboxylic acid (1) include 3-phenylpropionic acid.
Rがアルケニル基である場合において、アルケニル基の炭素数は2〜10の範囲である。かかるカルボン酸(1)としては、ビニル酢酸、4−ペンテン酸、10−ウンデセン酸等が挙げられる。 When R is an alkenyl group, the alkenyl group has 2 to 10 carbon atoms. Examples of the carboxylic acid (1) include vinyl acetic acid, 4-pentenoic acid, and 10-undecenoic acid.
Rがアルキニル基である場合において、アルキニル基の炭素数は2〜10の範囲である。かかるカルボン酸(1)としては、3−ブチン酸、3−ペンチン酸、3−ヘキシン酸等が挙げられる。 When R is an alkynyl group, the alkynyl group has 2 to 10 carbon atoms. Examples of the carboxylic acid (1) include 3-butyric acid, 3-pentynic acid, and 3-hexynic acid.
カルボン酸(1)としては、酢酸、プロピオン酸が好ましく、さらに好ましくはプロピオン酸が挙げられる。 As the carboxylic acid (1), acetic acid and propionic acid are preferable, and propionic acid is more preferable.
本発明で使用されるホルムアルデヒドは、種々の形態で用いることができる。ホルマリンのような水溶液で供給することも、ホルムアルデヒド100%で供給することもできるが、ホルムアルデヒド100%で供給することが難しい場合は、ホルムアルデヒド前駆体を用いることができる。ホルムアルデヒド前駆体は、反応系中で容易に分解してホルムアルデヒドを与える化合物であれば特に限定されない。ホルムアルデヒド前駆体の具体例としては、トリオキサン、パラホルムアルデヒド等が挙げられるが、トリオキサンが好ましい。これらは有機または無機の媒体で希釈して使用することもできる。 The formaldehyde used in the present invention can be used in various forms. Although it can be supplied with an aqueous solution such as formalin or with 100% formaldehyde, when it is difficult to supply with 100% formaldehyde, a formaldehyde precursor can be used. The formaldehyde precursor is not particularly limited as long as it is a compound which easily decomposes in the reaction system to give formaldehyde. Specific examples of the formaldehyde precursor include trioxane and paraformaldehyde, and trioxane is preferred. These can be used after being diluted with an organic or inorganic medium.
ホルムアルデヒドまたはホルムアルデヒド前駆体の供給量は、ホルムアルデヒド換算で、使用するカルボン酸に対し通常0.01〜10モル倍である。好ましくは0.03〜3モル倍であり、さらに好ましくは0.1〜1モル倍程度である。 The supply amount of formaldehyde or formaldehyde precursor is usually 0.01 to 10 moles, in terms of formaldehyde, based on the carboxylic acid used. It is preferably 0.03 to 3 times by mole, and more preferably about 0.1 to 1 times by mole.
カルボン酸(1)とホルムアルデヒドまたはホルムアルデヒド前駆体とを反応させて製造されるα,β−不飽和カルボン酸は、式(2)で示されるものである。Rが水素原子の場合、つまり原料カルボン酸が酢酸のときは、得られる式(2)で示されるα,β−不飽和カルボン酸(以下、α,β−不飽和カルボン酸(2)と称す。)はアクリル酸であり、Rがメチル基、つまり原料カルボン酸がプロピオン酸のときは、α,β−不飽和カルボン酸(2)はメタクリル酸となる。 The α, β-unsaturated carboxylic acid produced by reacting the carboxylic acid (1) with formaldehyde or a formaldehyde precursor is represented by the formula (2). When R is a hydrogen atom, that is, when the starting carboxylic acid is acetic acid, the resulting α, β-unsaturated carboxylic acid represented by the formula (2) (hereinafter referred to as α, β-unsaturated carboxylic acid (2)) ) Is acrylic acid, and when R is a methyl group, that is, when the starting carboxylic acid is propionic acid, the α, β-unsaturated carboxylic acid (2) is methacrylic acid.
本発明において、金属硫酸塩は触媒として作用する。
本発明に用いられる金属硫酸塩は、金属と硫酸イオンを含むものであれば特に限定されず、硫酸バナジルのようなオキシ金属硫酸塩も含むものである。金属硫酸塩の具体例としては、例えば、硫酸ニッケル、硫酸コバルト(II)および硫酸コバルト(III)などの硫酸コバルト、硫酸鉄(II)および硫酸鉄(III)などの硫酸鉄、硫酸アルミニウム、硫酸バナジル、硫酸銅(I)および硫酸銅(II)などの硫酸銅、硫酸クロム(II)および硫酸クロム(III)などの硫酸クロム、硫酸マンガン(II)および硫酸マンガン(III)などの硫酸マンガン、硫酸ジルコニウム、硫酸亜鉛、硫酸銀、硫酸パラジウム、硫酸インジウム、硫酸ニッケルアンモニウム等が挙げられる。この中で、硫酸ニッケル、硫酸コバルト、硫酸アルミニウム、硫酸鉄、硫酸バナジルが好ましく、硫酸ニッケルがさらに好ましい。これらは、単独であっても混合物であっても複合化されていてもよいし、結晶水を含んでいてもよい。また、シリカやアルミナ等の担体に担持して用いることも可能である。
In the present invention, the metal sulfate acts as a catalyst.
The metal sulfate used in the present invention is not particularly limited as long as it contains a metal and sulfate ions, and also includes an oxymetal sulfate such as vanadyl sulfate. Specific examples of metal sulfates include, for example, cobalt sulfate such as nickel sulfate, cobalt (II) sulfate and cobalt (III) sulfate, iron sulfate such as iron (II) sulfate and iron (III) sulfate, aluminum sulfate, and sulfuric acid. Vanadyl, copper sulfate such as copper (I) sulfate and copper (II) sulfate, chromium sulfate such as chromium (II) sulfate and chromium (III) sulfate, manganese sulfate such as manganese (II) sulfate and manganese (III) sulfate, Zirconium sulfate, zinc sulfate, silver sulfate, palladium sulfate, indium sulfate, nickel ammonium sulfate and the like. Among these, nickel sulfate, cobalt sulfate, aluminum sulfate, iron sulfate, and vanadyl sulfate are preferred, and nickel sulfate is more preferred. These may be used alone, in a mixture or in a complex, and may contain water of crystallization. Moreover, it is also possible to use it by supporting it on a carrier such as silica or alumina.
触媒の調製方法は特に限定されないが、焼成などの簡便な方法で調製してもよい。金属硫酸塩は一般には水和物の形で入手しやすいため、水和物を焼成する調製方法が好ましい。 Although the method for preparing the catalyst is not particularly limited, it may be prepared by a simple method such as calcination. Since the metal sulfate is generally easily available in the form of a hydrate, a preparation method in which the hydrate is calcined is preferred.
焼成により触媒を調製する場合の焼成温度は、一般には50℃〜1000℃の範囲であり、好ましくは100℃〜500℃の範囲であり、より好ましくは150℃〜450℃であり、さらに好ましくは200℃〜400℃程度の範囲である。 The calcination temperature when preparing the catalyst by calcination is generally in the range of 50 ° C to 1000 ° C, preferably in the range of 100 ° C to 500 ° C, more preferably in the range of 150 ° C to 450 ° C, further preferably It is in the range of about 200 ° C to 400 ° C.
本反応は連続式でも回分式でも実施できるが、工業的には連続式が好ましい。 This reaction can be carried out by a continuous system or a batch system, but the continuous system is industrially preferable.
連続式で反応を行うときの原料カルボン酸の供給量は、一般に触媒1gあたり0.1g/hr〜100g/hrの範囲であり、好ましくは0.3g/hr〜20g/hr程度の範囲である。 When the reaction is carried out in a continuous manner, the feed amount of the starting carboxylic acid is generally in the range of 0.1 g / hr to 100 g / hr, preferably in the range of about 0.3 g / hr to 20 g / hr, per 1 g of the catalyst. .
本反応において、カルボン酸(1)とホルムアルデヒドまたはホルムアルデヒド前駆体の他に、不活性ガスも供給することができる。不活性ガスとしては窒素、ヘリウム、アルゴン等が挙げられるが、価格の面から窒素が通常使用される。 In this reaction, an inert gas can be supplied in addition to the carboxylic acid (1) and formaldehyde or a formaldehyde precursor. Examples of the inert gas include nitrogen, helium, argon and the like, and nitrogen is usually used in terms of cost.
反応温度は、低すぎると反応速度が遅く、高すぎると副反応が起こりやすくなるため、150℃〜500℃の範囲で反応を行うことが好ましい。より好ましくは200℃〜400℃の範囲であり、さらに好ましくは250℃〜350℃程度の範囲である。 If the reaction temperature is too low, the reaction rate is slow, and if it is too high, side reactions are likely to occur. Therefore, it is preferable to carry out the reaction in the range of 150 ° C to 500 ° C. The temperature is more preferably in the range of 200 ° C to 400 ° C, and still more preferably in the range of about 250 ° C to 350 ° C.
反応圧力は、特に制限はないが、あまり高すぎると設備費が高額になるため、通常はゲージ圧で0 MPa(0 MPaは、大気圧を意味する。)〜10MPaの範囲で実施する。より好ましくは0.05MPa〜1MPa程度の範囲である。 The reaction pressure is not particularly limited. However, if the reaction pressure is too high, the equipment cost becomes high. Therefore, the reaction is usually carried out at a gauge pressure of 0 MPa (0 MPa means atmospheric pressure) to 10 MPa. More preferably, it is in the range of about 0.05 MPa to 1 MPa.
反応終了後の反応混合物は、α,β−不飽和カルボン酸(2)、未反応の原料、その他の不純物を含むこともある。この反応混合物から、それぞれの用途に必要な純度までα,β−不飽和カルボン酸を精製してもよく、その方法は特に限定されず、蒸留、抽出等の一般的な方法が適用できる。 The reaction mixture after completion of the reaction may contain α, β-unsaturated carboxylic acid (2), unreacted raw materials, and other impurities. From the reaction mixture, the α, β-unsaturated carboxylic acid may be purified to a purity required for each application, and the method is not particularly limited, and a general method such as distillation and extraction can be applied.
以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
実施例1
蒸発皿に乗せた硫酸ニッケル6水和物(NiSO4・6H2O、ナカライテスク製、特級)30gを350℃に昇温したマッフル炉に投入、350℃で5時間保持した。得られた黄色固体を成型し、12〜24meshの大きさのものを篩い分けして取り出した。
本成型品5gを内径1/2インチのSUS管で製作した反応管に入れた。また、反応管の上流に配置した気化管には石英粒(和光純薬製、20〜28mesh)を詰めた。
300℃に加熱した気化管及び反応管に、プロピオン酸(関東化学製、特級)とトリオキサン(関東化学製、特級)の混合液(トリオキサン20gをプロピオン酸230g中に溶解したものを使用)を0.1ml/minの流量で、窒素を82ml/minの流量で導入した。反応管内圧は、反応管の下流に設けた背圧弁によりゲージ圧で2kg/cm2(0.2MPa相当)に保持した。
送液開始より2時間後から4時間後に捕集された反応液をガスクロマトグラフィーにより定量分析したところ、プロピオン酸に対するメタクリル酸の収率は11%であり、トリオキサンに対するメタクリル酸の収率(生成メタクリル酸のモル数を導入トリオキサンのホルムアルデヒド換算モル数で除した値、以下同じ。)は47%であった。
Example 1
30 g of nickel sulfate hexahydrate (NiSO4.6H2O, manufactured by Nacalai Tesque, special grade) placed on an evaporating dish was charged into a muffle furnace heated to 350 ° C, and kept at 350 ° C for 5 hours. The obtained yellow solid was molded, and one having a size of 12 to 24 mesh was sieved and taken out.
5 g of the molded product was placed in a reaction tube made of a SUS tube having an inner diameter of 1/2 inch. In addition, a vaporization tube arranged upstream of the reaction tube was filled with quartz grains (manufactured by Wako Pure Chemical Industries, 20 to 28 mesh).
A mixed solution of propionic acid (Kanto Chemical, special grade) and trioxane (Kanto Chemical, special grade) (20 g of trioxane dissolved in 230 g of propionic acid was used) was placed in a vaporizing tube and a reaction tube heated to 300 ° C. Nitrogen was introduced at a flow rate of 82 ml / min at a flow rate of 0.1 ml / min. The internal pressure of the reaction tube was maintained at a gauge pressure of 2 kg / cm 2 (corresponding to 0.2 MPa) by a back pressure valve provided downstream of the reaction tube.
The reaction liquid collected 2 to 4 hours after the start of the liquid feeding was quantitatively analyzed by gas chromatography. The yield of methacrylic acid with respect to propionic acid was 11%, and the yield of methacrylic acid with respect to trioxane (production The value obtained by dividing the number of moles of methacrylic acid by the number of moles of the introduced trioxane in terms of formaldehyde, the same applies hereinafter) was 47%.
実施例2
触媒調製時に硫酸ニッケル6水和物を室温でマッフル炉に入れてから350℃まで昇温して5時間保持した以外は、実施例1と同様に反応を行った結果、プロピオン酸に対するメタクリル酸の収率は9%であり、トリオキサンに対するメタクリル酸の収率は40%であった。
Example 2
A reaction was carried out in the same manner as in Example 1 except that nickel sulfate hexahydrate was placed in a muffle furnace at room temperature and then heated to 350 ° C. and held for 5 hours during catalyst preparation. As a result, methacrylic acid was converted to propionic acid. The yield was 9%, and the yield of methacrylic acid based on trioxane was 40%.
実施例3
触媒調製時にマッフル炉の温度を300℃まで昇温、保持した以外は実施例2と同様に反応を行った結果、プロピオン酸に対するメタクリル酸の収率は11%であり、トリオキサンに対するメタクリル酸の収率は49%であった。
Example 3
The reaction was carried out in the same manner as in Example 2 except that the temperature of the muffle furnace was raised to 300 ° C. during the preparation of the catalyst, and as a result, the yield of methacrylic acid relative to propionic acid was 11%, and the yield of methacrylic acid relative to trioxane was 11%. The rate was 49%.
実施例4
触媒調製時に硫酸ニッケル6水和物を室温でマッフル炉に入れてから400℃まで昇温、保持した以外は実施例1と同様に反応を行った結果、プロピオン酸に対するメタクリル酸の収率は8%であり、トリオキサンに対するメタクリル酸の収率は37%であった。
Example 4
The reaction was carried out in the same manner as in Example 1 except that nickel sulfate hexahydrate was placed in a muffle furnace at room temperature during the preparation of the catalyst, and then heated and maintained at 400 ° C. As a result, the yield of methacrylic acid relative to propionic acid was 8%. %, And the yield of methacrylic acid based on trioxane was 37%.
実施例5
硫酸ニッケル6水和物15gと硫酸コバルト7水和物(CoSO4・7H2O)1.8gをイオン交換水200gに溶解した後、エバポレーターで50℃減圧下に乾固した。得られた固体を350℃に昇温したマッフル炉に投入、350℃で5時間保持した。得られた固体を成型し、12〜24meshの大きさのものを篩い分けして取り出した。
上記で調製した触媒を使用した以外は実施例1と同様に反応を行った結果、プロピオン酸に対するメタクリル酸の収率は7%であり、トリオキサンに対するメタクリル酸の収率は32%であった。
Example 5
After dissolving 15 g of nickel sulfate hexahydrate and 1.8 g of cobalt sulfate heptahydrate (CoSO4.7H2O) in 200 g of ion-exchanged water, the mixture was evaporated to dryness at 50 ° C. under reduced pressure using an evaporator. The obtained solid was put into a muffle furnace heated to 350 ° C., and kept at 350 ° C. for 5 hours. The obtained solid was molded, and one having a size of 12 to 24 mesh was sieved and taken out.
The reaction was conducted in the same manner as in Example 1 except that the catalyst prepared above was used. As a result, the yield of methacrylic acid with respect to propionic acid was 7%, and the yield of methacrylic acid with respect to trioxane was 32%.
実施例6
蒸発皿に乗せた硫酸ニッケル6水和物30gを300℃に昇温したマッフル炉に投入、300℃で5時間保持した。得られた黄色固体を成型し、12〜24meshの大きさのものを篩い分けして取り出した。
本成型品5gを内径3/4インチのSUS管で製作した反応管に入れた。反応管の上流には気化管は配置しなかった。
300℃に加熱した反応管に、プロピオン酸とトリオキサンの混合液(トリオキサン20gをプロピオン酸230g中に溶解したものを使用)を0.2ml/minの流量で、窒素を123ml/minの流量で導入した。反応管内圧は、反応管の下流に設けた背圧弁によりゲージ圧で2kg/cm2(0.2MPa相当)に保持した。
送液開始より1時間後から3時間後に捕集された反応液をガスクロマトグラフィーにより定量分析したところ、プロピオン酸に対するメタクリル酸の収率は12%であり、トリオキサンに対するメタクリル酸の収率は54%であった。
Example 6
30 g of nickel sulfate hexahydrate put on the evaporating dish was put into a muffle furnace heated to 300 ° C., and kept at 300 ° C. for 5 hours. The obtained yellow solid was molded, and one having a size of 12 to 24 mesh was sieved and taken out.
5 g of the molded product was placed in a reaction tube made of a SUS tube having an inner diameter of 3/4 inch. No vaporization tube was placed upstream of the reaction tube.
A mixture of propionic acid and trioxane (using 20 g of trioxane dissolved in 230 g of propionic acid) was introduced into the reaction tube heated to 300 ° C. at a flow rate of 0.2 ml / min, and nitrogen was introduced at a flow rate of 123 ml / min. did. The internal pressure of the reaction tube was maintained at a gauge pressure of 2 kg / cm 2 (corresponding to 0.2 MPa) by a back pressure valve provided downstream of the reaction tube.
After 1 hour to 3 hours from the start of the liquid feeding, the collected reaction solution was quantitatively analyzed by gas chromatography. The yield of methacrylic acid with respect to propionic acid was 12%, and the yield of methacrylic acid with respect to trioxane was 54%. %Met.
実施例7
触媒調製時に硫酸ニッケル6水和物30gを250℃に昇温したマッフル炉に投入、250℃に5時間保持した以外は実施例6と同様に反応を行った結果、プロピオン酸に対するメタクリル酸の収率は12%であり、トリオキサンに対するメタクリル酸の収率は54%であった。
Example 7
At the time of catalyst preparation, 30 g of nickel sulfate hexahydrate was put into a muffle furnace heated to 250 ° C., and the reaction was carried out in the same manner as in Example 6 except that the temperature was kept at 250 ° C. for 5 hours. As a result, the yield of methacrylic acid relative to propionic acid was determined. The yield was 12%, and the yield of methacrylic acid based on trioxane was 54%.
実施例8
蒸発皿に乗せた硫酸ニッケル6水和物30gを350℃に昇温したマッフル炉に投入、350℃で5時間保持した。得られた黄色固体を成型し、12〜24meshの大きさのものを篩い分けして取り出した。
本成型品5gを内径3/4インチのSUS管で製作した反応管に入れた。反応管の上流には気化管は配置しなかった。
330℃に加熱した反応管に、プロピオン酸とトリオキサンの混合液(トリオキサン20gをプロピオン酸230g中に溶解したものを使用)を0.2ml/minの流量で、窒素を82ml/minの流量で導入した。反応管内圧は、反応管の下流に設けた背圧弁によりゲージ圧で2kg/cm2(0.2MPa相当)に保持した。
送液開始より1時間後から3時間後に捕集された反応液をガスクロマトグラフィーにより定量分析したところ、プロピオン酸に対するメタクリル酸の収率は8%であり、トリオキサンに対するメタクリル酸の収率は35%であった。
Example 8
30 g of nickel sulfate hexahydrate placed on the evaporating dish was put into a muffle furnace heated to 350 ° C., and kept at 350 ° C. for 5 hours. The obtained yellow solid was molded, and one having a size of 12 to 24 mesh was sieved and taken out.
5 g of the molded product was placed in a reaction tube made of a SUS tube having an inner diameter of 3/4 inch. No vaporization tube was placed upstream of the reaction tube.
A mixture of propionic acid and trioxane (using 20 g of trioxane dissolved in 230 g of propionic acid) is introduced into the reaction tube heated to 330 ° C. at a flow rate of 0.2 ml / min, and nitrogen is introduced at a flow rate of 82 ml / min. did. The internal pressure of the reaction tube was maintained at a gauge pressure of 2 kg / cm 2 (corresponding to 0.2 MPa) by a back pressure valve provided downstream of the reaction tube.
After 1 hour to 3 hours from the start of the liquid feeding, the collected reaction solution was quantitatively analyzed by gas chromatography. The yield of methacrylic acid with respect to propionic acid was 8%, and the yield of methacrylic acid with respect to trioxane was 35%. %Met.
比較例
コロイダルシリカ(日産化学製、40wt%−SiO2含有)38.2g中にフッ化ニオブ(アルドリッチ製)12.1gを徐々に添加し、1時間室温で攪拌して熟成させた。水を蒸発させ乾固して得られた白色固体を300℃で4時間、450℃で6時間焼成した。得られた白色固体を成型、12〜24meshの大きさのものを篩い分けして取り出した。
本成型品5gを内径3/4インチのSUS管で製作した反応管に入れ、石英ウールで触媒をおさえた後石英粒を40g導入した。また、反応管の上流に配置した気化管には石英粒を詰めた。300℃に加熱した気化管及び反応管に、プロピオン酸(関東化学製、特級)とトリオキサン(関東化学製、特級)の混合液(トリオキサン20gをプロピオン酸230g中に溶解したものを使用)を0.1ml/minの流量で、窒素を82ml/minの流量で導入した。反応管内圧は、反応管の下流に設けた背圧弁によりゲージ圧で2kg/cm2(0.2MPa相当)に保持した。
送液開始より2時間後から4時間後に捕集された反応液をガスクロマトグラフィーにより定量分析したところ、プロピオン酸に対するメタクリル酸の収率は6%であり、トリオキサンに対するメタクリル酸の収率は27%であった。
Comparative Example 12.1 g of niobium fluoride (manufactured by Aldrich) was gradually added to 38.2 g of colloidal silica (manufactured by Nissan Chemical Co., containing 40 wt% -SiO2), and the mixture was aged by stirring at room temperature for 1 hour. The white solid obtained by evaporating water to dryness was calcined at 300 ° C. for 4 hours and at 450 ° C. for 6 hours. The obtained white solid was molded, and the one having a size of 12 to 24 mesh was sieved and taken out.
5 g of the molded product was put into a reaction tube made of a SUS tube having an inner diameter of 3/4 inch, and after holding the catalyst with quartz wool, 40 g of quartz grains were introduced. In addition, a vaporization tube arranged upstream of the reaction tube was filled with quartz grains. A mixed solution of propionic acid (Kanto Chemical, special grade) and trioxane (Kanto Chemical, special grade) (20 g of trioxane dissolved in 230 g of propionic acid was used) was placed in a vaporizing tube and a reaction tube heated to 300 ° C. Nitrogen was introduced at a flow rate of 82 ml / min at a flow rate of 0.1 ml / min. The internal pressure of the reaction tube was maintained at a gauge pressure of 2 kg / cm 2 (corresponding to 0.2 MPa) by a back pressure valve provided downstream of the reaction tube.
The reaction liquid collected 2 hours to 4 hours after the start of the liquid sending was quantitatively analyzed by gas chromatography. The yield of methacrylic acid with respect to propionic acid was 6%, and the yield of methacrylic acid with respect to trioxane was 27%. %Met.
Claims (5)
(式中、Rは水素原子、アルキル基、アリール基、アラルキル基、アルケニル基またはアルキニル基を表す。)
で示されるカルボン酸とホルムアルデヒドまたはホルムアルデヒド前駆体とを金属硫酸塩の存在下に反応させることを特徴とする式(2)
(式中、Rは前記と同じ意味を表す。)
で示されるα,β−不飽和カルボン酸の製造方法。 Equation (1)
(In the formula, R represents a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, an alkenyl group, or an alkynyl group.)
Wherein a carboxylic acid represented by the formula (1) is reacted with formaldehyde or a formaldehyde precursor in the presence of a metal sulfate.
(In the formula, R represents the same meaning as described above.)
A method for producing an α, β-unsaturated carboxylic acid represented by the formula:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004118688A JP4576867B2 (en) | 2003-04-23 | 2004-04-14 | Process for producing α, β-unsaturated carboxylic acid |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003118058 | 2003-04-23 | ||
JP2004118688A JP4576867B2 (en) | 2003-04-23 | 2004-04-14 | Process for producing α, β-unsaturated carboxylic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004339203A true JP2004339203A (en) | 2004-12-02 |
JP4576867B2 JP4576867B2 (en) | 2010-11-10 |
Family
ID=33543154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004118688A Expired - Fee Related JP4576867B2 (en) | 2003-04-23 | 2004-04-14 | Process for producing α, β-unsaturated carboxylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4576867B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0517392A (en) * | 1991-03-29 | 1993-01-26 | Nippon Synthetic Chem Ind Co Ltd:The | Production of acrylic acid |
-
2004
- 2004-04-14 JP JP2004118688A patent/JP4576867B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0517392A (en) * | 1991-03-29 | 1993-01-26 | Nippon Synthetic Chem Ind Co Ltd:The | Production of acrylic acid |
Also Published As
Publication number | Publication date |
---|---|
JP4576867B2 (en) | 2010-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2016515645A (en) | Method for producing methyl methacrylate | |
JP2010510276A (en) | Process for the preparation of carboxylic acid amides by hydrolysis of carboxylic nitriles in the presence of catalysts containing manganese dioxide | |
JP6506281B2 (en) | Preparation of methyl acrylate via oxidative esterification process | |
KR20160035591A (en) | Preparation of methyl methacrylate via an oxidative esterification process | |
EP3212608B1 (en) | Oxidative esterification process for making methyl methacrylate | |
KR20160035589A (en) | Preparation of methyl methacrylate via an oxidative esterification process | |
EP3553048A1 (en) | Method for producing -caprolactam | |
JP4576867B2 (en) | Process for producing α, β-unsaturated carboxylic acid | |
JP2005511738A (en) | Production method of succinonitrile | |
JP6525380B2 (en) | Oxidative esterification catalyst | |
JPS63101348A (en) | Production of 1,1-diester | |
JP2005213182A (en) | METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID | |
CN108473403A (en) | The manufacturing method of α, α-difluoro acetaldehyde | |
WO2018199292A1 (en) | Recovered-carbon-dioxide purifying method and methionine manufacturing method including recovered-carbon-dioxide purifying step | |
JP2002293774A (en) | Method for producing 5-(meth)acryloyloxy-2,6- norbornanecarbolactone | |
RU2687751C2 (en) | Method of producing esters of alpha-hydroxycarboxylic acids in gas phase | |
CN112624905B (en) | Preparation method of novel tricyclodecanediol, product and application thereof | |
JPH1017524A (en) | Purification of (meth)acrylic acid | |
JP3543408B2 (en) | Method for producing α-ketone acid ester | |
JP4815876B2 (en) | Process for producing α, β-unsaturated carboxylic acid and ester | |
JPH07196573A (en) | Production of acetophenone | |
JP2007308457A (en) | Manufacturing method of 2-methyl-2-adamantanol and magnesium chloride salt thereof | |
GB2077723A (en) | Process for the production of acrylamide | |
JP2006001857A (en) | METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID AND ITS ESTER | |
JPH07258164A (en) | Production of alpha-ketonic acid ester |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20070112 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20080130 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20080513 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090929 |
|
A521 | Written amendment |
Effective date: 20091120 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Effective date: 20100525 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100625 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20100727 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100809 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20130903 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20130903 |
|
LAPS | Cancellation because of no payment of annual fees |