JP2004337792A - Numerical reaction analysis method allowing for flow state in chemical apparatus, calculation program for executing the method and recording medium with the program recorded thereon - Google Patents

Numerical reaction analysis method allowing for flow state in chemical apparatus, calculation program for executing the method and recording medium with the program recorded thereon Download PDF

Info

Publication number
JP2004337792A
JP2004337792A JP2003139927A JP2003139927A JP2004337792A JP 2004337792 A JP2004337792 A JP 2004337792A JP 2003139927 A JP2003139927 A JP 2003139927A JP 2003139927 A JP2003139927 A JP 2003139927A JP 2004337792 A JP2004337792 A JP 2004337792A
Authority
JP
Japan
Prior art keywords
flow
analysis
model
reaction
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003139927A
Other languages
Japanese (ja)
Inventor
Kiyotsugu Naito
清嗣 内藤
Akihiro Sakamoto
晃大 坂本
Hiroki Kasumi
浩樹 霞
Yoriko Okazaki
自子 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003139927A priority Critical patent/JP2004337792A/en
Publication of JP2004337792A publication Critical patent/JP2004337792A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a numerical reaction analysis method capable of performing reaction analysis allowing for the flow state in a chemical apparatus efficiently and closely to a real phenomenon, and to provide a calculation program for executing the method. <P>SOLUTION: In the numerical reaction analysis method, a three-dimensional fluid model and a compartment model are coupled and solved while interchanging necessary data to each other with respect to the reaction analysis allowing for the flow state in the chemical apparatus. Therein, the three-dimensional fluid model is used for fluid analysis of differential equations dominating flow such as equation of continuity, equation of motion and equation of energy conservation by means of a finite difference method. The compartment model is used for reaction calculation in which the split number of region is reduced to 1/10-1/100 of that in the three-dimensional fluid model without lowering the dimension of an analysis space representing the chemical apparatus. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、化学装置内の流動状態を考慮した反応解析を、より実現象に近く、かつ効率的に解析する数値反応解析方法、その方法を実行させる計算プログラムに関するものである。
【0002】
【従来の技術】
化学装置内の理想流れである完全混合流れや押出し流れでない非理想流れを解析する方法として数値流体解析法がある。数値流体解析分野では、有限差分法を用いて、小さな時間刻みをとり時間発展的に解析を行うことが多い。即ち、化学装置内を表す3次元の解析空間を小さな領域に分割し、この分割した領域に関して連続の式、運動方程式、エネルギー保存式といった流れを支配する微分方程式を差分化して解析を行う(例えば、非特許文献1参照。)。
【0003】
しかし、この場合、安定かつ正確な計算を行うためには、実機スケールでは少なくとも数万個以上の領域分割数が必要になり、計算負荷が高いという問題がある。さらに、反応を考慮する場合、分割したそれぞれの領域に関して反応を表すモデルを組み込むので計算負荷がさらに高くなる。
【0004】
一方、計算負荷が低い非理想流れである化学装置内の流動状態を考慮した反応解析に関して、化学装置内を表す3次元解析空間を1または2次元の解析空間に近似し、それを数個〜数10個の領域で表し、それぞれの領域を完全混合槽とみなし槽間を繋ぐ流量を与えることで流動状態を考慮した反応解析を行う逆混合槽列モデルといったコンパートメントモデルを用いる数値反応解析方法がある(例えば、非特許文献2参照。)。
【0005】
しかし、コンパートメントモデルでは領域分割、領域間の流量、混相流の場合はそれを構成する相の体積分率などを経験的に決めざるを得ず、さらに反応に伴い見かけ密度、粘度及び表面張力が変化し流動状態が変化する場合の解析は困難である。
【0006】
このように、従来の解析方法では、数値流体解析法に反応を表すモデルを組み込んだモデルか、または化学装置内を表す解析空間の次元を落としたコンパートメントモデルのいずれか一方を使用して解析を行っており、実現象に近く、かつ効率的に解析を進めることが難しいという問題点があった。
【0007】
【非特許文献1】
標宣男,鈴木正昭,石黒美佐子,寺坂晴夫共著,「数値流体力学−複雑流れのモデルと数値解析−」,株式会社朝倉書店,1994年9月10日,p.104−196
【0008】
【非特許文献2】
化学工学会編,「改定六版 化学工学便覧」,丸善株式会社,平成11年2月25日,p.628−632
【0009】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、化学装置内の流動状態を考慮した反応解析をより実現象に近く、かつ効率的に解析を進めることができる数値反応解析方法及び該方法を実行するためのプログラムを提供することである。
【0010】
【課題を解決するための手段】
本発明は、化学装置内の流動状態を考慮した反応解析に関して、3次元流動モデル及びコンパートメントモデルのいずれか一方を使用するのではなく、流動に関しては連続の式、運動方程式、エネルギー保存式といった流れを支配する微分方程式を有限差分法で流体解析する3次元流動モデル、反応に関しては化学装置内を表す解析空間の次元を落とさず領域分割数を3次元流動モデルより10分の1〜100分の1に少なくしたコンパートメントモデルの2種類のモデルを連成して使用する数値反応解析方法である。さらに、本発明は、該解析方法を実行するためのプログラム及び該プログラムを記録した媒体である。
【0011】
【発明の実施の形態】
次に本発明の実施例について図面を参照して詳細に説明する。
【0012】
本発明では、まず、密度、粘度及び表面張力といった流体の物性値をもとに、化学装置内を数万個以上の領域に分割したそれぞれの領域について、連続の式、運動方程式、エネルギー保存式といった流れを支配する微分方程式を有限差分法で計算する3次元流動モデルにより流体解析を行い、流量、圧力、温度、及び混相流の場合はさらにそれを構成する相の体積分率などの物理量を求める。流れ場の計算が終わった後、3次元流動モデルで得られた出力データを、化学装置内を表す解析空間の次元を落とさず領域分割数を3次元流動モデルより10分の1〜100分の1に少なくした反応計算に使用するコンパートメントモデルで使えるように、例えば平均をとるなどしてデータ変換を行う。
【0013】
次に、変換した流量、圧力、温度、及び混相流の場合はさらにそれを構成する相の体積分率などの反応計算を行うのに必要なデータを、コンパートメントモデルへの入力データとして、コンパートメントモデル側へ渡し、コンパートメントモデルで反応計算を行う。そして、反応計算が終わった後、コンパートメントモデルで得られた濃度、反応速度、反応熱及びそれらをもとに求めた見かけ密度、粘度及び表面張力などの出力データを次の刻み時間後の流れ場を計算する3次元流動モデルの入力データとして渡す。
【0014】
こうして、連続の式、運動方程式、エネルギー保存式といった流れを支配する微分方程式を有限差分法で計算して流体解析する3次元流動モデルと領域分割数を3次元流動モデルより10分の1〜100分の1に少なくした反応計算に使用するコンパートメントモデルの2つのモデルの間で必要なデータを相互に交換しながら、2種類のモデルを連成して解き、化学装置内の流動状態を考慮した反応解析を行う。
【0015】
ここで、コンパートメントモデルで得られた濃度、反応速度、反応熱をもとに求めた見かけ密度、粘度及び表面張力の変化が十分小さく、反応に伴う流動の変化が無視できる場合は、流動モデルからコンパートメントモデルへ1回データを受け渡して計算を実行することにより、数値反応解析を終了することもできる。
【0016】
図1を参照すると、本発明を適用した化学装置内の流動状態を考慮した反応解析を行う計算プログラムの1例は、入力装置1、解析条件入力部2、解析計算部3、解析結果表示部4、表示装置5とから構成されている。ここで、解析条件入力部2は領域分割設定手段2−1、解析条件設定手段2−2とを有し、解析計算部3は流動状態解析計算部3−1、反応解析計算部3−2とを有している。なお、Aはファイルである。
【0017】
解析条件入力部2は、ユーザが入力装置1を通じて3次元流動モデルとコンパートメントモデル、それぞれの領域分割の生成条件と解析をするために必要な解析条件の設定とを行う部分である。領域分割設定手段2−1によって、ユーザは化学装置形状を表す解析領域内にx,y,z方向の座標軸を定め、その座標軸を用いてまず3次元流動モデルのそれぞれの分割領域の座標を求める。次に、3次元流動モデルで行った領域分割をもとに、3次元流動モデル用に分割した領域を、例えば、上下左右で一まとめにすることによって、化学装置内を表す解析空間の次元を落とさず領域分割数を3次元流動モデルより10分の1〜100分の1に少なくしたコンパートメントモデルで用いる分割領域を生成させ、それぞれの分割領域の座標を求める。
【0018】
図2を参照すると、3次元流動モデルとコンパートメントモデルにおいて実線で囲まれた領域が、それぞれ3次元流動モデルと化学装置内を表す解析空間の次元を落とさないコンパートメントモデルを使用するために分割した領域である。化学装置内を表す解析空間の次元を落とさないコンパートメントモデル用に分割した領域は、3次元流動モデル用に分割した領域を、例えば、上下左右で一まとめにして構成したものである。その関係をコンパートメントモデル用に分割した領域の模式図において、コンパートメントモデル用に分割した領域を実線で、3次元流動モデル用に分割した領域を破線で示して表している。
【0019】
また、解析条件設定手段2−2によって、ユーザは解析をするために必要な境界条件、初期条件、時間刻み幅Δt、密度、粘度及び表面張力といった物性値や気液混相流の場合は気泡径などのデータを用意する。
【0020】
解析計算部3は、3次元流動モデルとコンパートメントモデルにより物理量を求める部分である。流動状態解析計算部3−1は、連続の式、運動方程式、エネルギー保存式といった流れを支配する微分方程式を差分化して時間積分を行い、指定した時刻での流量、圧力、温度、及び混相流の場合はさらにそれを構成する相の体積分率などの物理量を求める部分である。反応解析計算部3−2は、流動状態解析計算部3−1で求めた物理量を入力データとして、反応計算に使用するコンパートメントモデルの時間積分を行い、指定した時刻での濃度、反応速度、反応熱、及びそれらをもとに求めた見かけ密度、粘度及び表面張力などの物理量を求める部分である。また、解析結果が、入力データで出力指定時刻になっているとき、求めた物理量をファイルAに出力する。
【0021】
解析結果表示部4は、解析計算部3で計算されたファイルAにある物理量のデータを読み込んで、グラフや表の形式で表示装置5に表示する部分である。
【0022】
図3は、図1で示した解析処理の流れを示すフローチャートであり、以下、各図を参照して本実施例の動作を説明する。
【0023】
まず、ユーザは、入力装置1から解析条件入力部2の領域分割設定手段2−1を起動し、化学装置内を表す解析領域上にx,y,z軸を定めてかつ化学装置内を表す解析領域の分割を行う。次にユーザは入力装置1から解析条件入力部2の解析条件設定手段2−2を起動して境界条件、初期条件、時間刻み幅Δt、密度、粘度及び表面張力といった物性値や気液混相流の場合は気泡径などの解析に必要な入力データを与える。
【0024】
以上のように解析条件入力部2の処理が終わると、解析計算部3が動作を始め、以下に示す処理を実行する。
【0025】
S1:解析条件入力部2で作成された3次元流動モデルの分割領域の座標データ、密度、粘度、表面張力といった流体の物性値、流量、圧力及び温度などの初期条件、境界条件及び時間刻み幅Δtのデータを読み込み、3次元流動モデルの時間積分を行い、解析時間t=Δtの流量、圧力、温度、及び混相流の場合はさらにそれを構成する相の体積分率といった物理量を求める。
【0026】
S2:S1で3次元流動モデルにより求めた流量、圧力、温度、及び混相流の場合はさらにそれを構成する相の体積分率といった物理量を、コンパートメントモデルの入力データとして変換する。
【0027】
例えば、コンパートメントモデルの入力データであるコンパートメントモデル用に分割した面での流量は、それを構成する3次元流動モデルの各分割面についてそれぞれ求められた流量を積算することで算出され、また、コンパートメントモデル用に分割した領域内の圧力、温度、及び混相流の場合はさらにそれを構成する相の体積分率は、それを構成する3次元流動モデルの各分割領域内についてそれぞれ求められた値の平均をとることで算出される。
【0028】
S3:解析条件入力部2で作成されたコンパートメントモデルの分割領域の座標データ、コンパートメントモデルの入力データとしてS2で求めた流量、圧力、温度、及び混相流の場合はさらにそれを構成する相の体積分率といった物理量と時間刻み幅Δtのデータを読み込み、コンパートメントモデルの時間積分を行い、解析時間t=Δtの濃度、反応速度及び反応熱といった物理量を求める。
【0029】
S4:S3で求めた濃度、反応速度及び反応熱といった物理量をもとに3次元流動モデルの新しい入力データとなる見かけ密度、粘度及び表面張力といった物理量を計算する。
【0030】
S5:今回の解析時刻が入力データで指定されたファイル出力指定時間ならば、流量、圧力、温度、混相流の場合はそれを構成する相の体積分率、濃度及び反応速度などの物理量をファイルAに出力する。
【0031】
S6:解析時刻が入力データで指定された時刻に達したならば、解析表示部4に制御を移す。
【0032】
S7:解析時刻を進めてS1に戻り、前計算で求めた流量、圧力、温度、及び混相流の場合はさらにそれを構成する相の体積分率といった物理量を次の計算の初期値として用いて、新しい解析時刻での計算を同様に行う。即ち、S1からS6の処理を反復して、nステップの値からn+1ステップの値を順次に求める(解析時間t=n×Δt,n=1,2,…)。
【0033】
解析表示部4では、ファイルAに出力された流量、圧力、温度、混相流の場合はそれを構成する相の体積分率、濃度及び反応速度などの物理量のデータに基づいて、グラフや表を作成して表示装置5に表示する。例えば、入力データで指定した時刻での流線、濃度の濃度等高線を計算し、流線図、等高図を表示する。
【0034】
【発明の効果】
以上説明したように本発明は、化学装置内の流動状態を考慮した反応解析に関し、流れ場を正確に解析できる3次元流動モデルと、領域分割数が3次元流動モデルより少なく計算負荷が低い反応計算に使用するコンパートメントモデルの2種類のモデルを連成して解くので、より実現象に近く、かつ効率的な数値反応解析を行うことができる。
【0035】
また、3次元流動モデルからコンパートメントモデルへ流量、混相流の場合はそれを構成する相の体積分率といった物理量で必要なデータを受け渡して解くことで経験的にそれらを決定する必要がなくなり、より正確な数値反応解析も可能となる。
【図面の簡単な説明】
【図1】本発明を適用した化学装置内の流動状態を考慮した反応解析を行う計算プログラムの1例を示すブロック図である。
【図2】上記実施例の3次元流動モデルとコンパートメントモデルの領域分割の1例を示す模式図である
【図3】解析計算部の処理例を示すフローチャートである。
【符号の説明】
1…入力装置
2…解析条件入力部
2−1…領域分割設定手段
2−2…解析条件設定手段
3…解析計算部
3−1…流動状態解析計算部
3−2…反応解析計算部
4…解析結果表示部
5…表示装置
A…ファイル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a numerical reaction analysis method for analyzing a reaction analysis in consideration of a flow state in a chemical apparatus more closely to a real phenomenon and efficiently, and a calculation program for executing the method.
[0002]
[Prior art]
As a method of analyzing a perfect mixed flow which is an ideal flow in a chemical apparatus and a non-ideal flow which is not an extrusion flow, there is a computational fluid analysis method. In the field of computational fluid dynamics, a finite difference method is often used to analyze in a time-evolution manner with small steps. That is, the three-dimensional analysis space representing the inside of the chemical apparatus is divided into small regions, and differential equations governing the flow such as a continuous equation, a kinetic equation, and an energy conservation equation are subjected to analysis with respect to the divided areas (for example, , Non-Patent Document 1.).
[0003]
However, in this case, in order to perform a stable and accurate calculation, at least tens of thousands of area divisions are required on a real machine scale, and there is a problem that a calculation load is high. Furthermore, when considering the reaction, a model representing the reaction is incorporated in each of the divided regions, so that the calculation load is further increased.
[0004]
On the other hand, regarding the reaction analysis taking into account the flow state in the chemical device, which is a non-ideal flow with a low calculation load, the three-dimensional analysis space representing the inside of the chemical device is approximated to a one- or two-dimensional analysis space, and several to three or more are obtained. A numerical reaction analysis method using a compartment model such as an inverse mixing tank array model in which each area is represented by several tens of areas, and each area is regarded as a complete mixing tank, and a flow analysis connecting flow between the tanks is given to perform a reaction analysis in consideration of a flow state. (For example, see Non-Patent Document 2).
[0005]
However, in the compartment model, it is necessary to empirically determine the area division, the flow rate between the areas, and in the case of multiphase flow, the volume fraction of the constituent phases, etc., and the apparent density, viscosity, and surface tension accompanying the reaction are further reduced. It is difficult to analyze when the flow state changes.
[0006]
As described above, in the conventional analysis method, the analysis is performed using either a model in which a model representing a reaction is incorporated into the CFD analysis or a compartment model in which the dimension of an analysis space representing the inside of a chemical device is reduced. However, there is a problem that it is difficult to carry out the analysis efficiently because it is close to a real phenomenon.
[0007]
[Non-patent document 1]
Nobuo Shibetsu, Masaaki Suzuki, Misako Ishiguro and Haruo Terasaka, "Computational Fluid Dynamics-Model and Numerical Analysis of Complex Flows", Asakura Shoten Co., Ltd., September 10, 1994, p. 104-196
[0008]
[Non-patent document 2]
Chemical Engineering Society, “Revised Sixth Edition Chemical Engineering Handbook”, Maruzen Co., Ltd., February 25, 1999, p. 628-632
[0009]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a numerical reaction analysis method capable of performing a reaction analysis in consideration of a flow state in a chemical device closer to a real phenomenon, and an efficient analysis, and a method for executing the method. To provide a program.
[0010]
[Means for Solving the Problems]
The present invention does not use any one of a three-dimensional flow model and a compartment model for a reaction analysis in consideration of a flow state in a chemical apparatus, but uses a flow equation such as a continuous equation, a kinetic equation, and an energy conservation equation for a flow. Three-dimensional flow model for fluid analysis of the differential equation governing by the finite difference method. For the reaction, the number of domain divisions is reduced to 1/10 to 100 minutes of the three-dimensional flow model without reducing the dimension of the analysis space representing the inside of the chemical apparatus. This is a numerical response analysis method in which two types of compartment models reduced to one are used in combination. Further, the present invention is a program for executing the analysis method and a medium recording the program.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
[0012]
In the present invention, first, based on the physical properties of the fluid such as density, viscosity, and surface tension, a continuous equation, a kinetic equation, and an energy conservation equation for each area obtained by dividing the chemical device into tens of thousands of areas. Fluid analysis is performed by a three-dimensional flow model that calculates the differential equation governing the flow by the finite difference method, and in the case of flow, pressure, temperature, and in the case of multiphase flow, physical quantities such as the volume fraction of the phases that compose it are Ask. After the calculation of the flow field is completed, the output data obtained by the three-dimensional flow model is used to reduce the dimension of the analysis space representing the inside of the chemical device to 10 to 100 minutes from the three-dimensional flow model. Data conversion is performed, for example, by averaging, so that it can be used in the compartment model used for the reaction calculation reduced to one.
[0013]
Next, the data necessary for performing reaction calculations such as the converted flow rate, pressure, temperature, and, in the case of a multiphase flow, the volume fraction of the phases constituting the multiphase flow, are used as input data to the compartment model, and the compartment model Hand over to the side and calculate the reaction with the compartment model. After the reaction calculation is completed, the output data such as the concentration, reaction rate, heat of reaction and apparent density, viscosity and surface tension obtained based on them are obtained from the compartment model. Is passed as the input data of the three-dimensional flow model for calculating.
[0014]
In this way, the three-dimensional flow model for calculating the fluid by analyzing the differential equations governing the flow such as the continuous equation, the equation of motion, and the energy conservation equation by the finite difference method, and the number of divided regions is 1/10 to 100 of that of the three-dimensional flow model. While exchanging necessary data between two models of the compartment model used for the reaction calculation, which was reduced to one part, the two models were coupled and solved, and the flow state in the chemical equipment was considered. Perform reaction analysis.
[0015]
If the changes in the apparent density, viscosity, and surface tension obtained based on the concentration, reaction rate, and heat of reaction obtained from the compartment model are sufficiently small and the change in flow accompanying the reaction can be ignored, The numerical response analysis can be terminated by transferring the data once to the compartment model and executing the calculation.
[0016]
Referring to FIG. 1, an example of a calculation program for performing a reaction analysis in consideration of a flow state in a chemical device to which the present invention is applied includes an input device 1, an analysis condition input unit 2, an analysis calculation unit 3, and an analysis result display unit. And a display device 5. Here, the analysis condition input unit 2 includes a region division setting unit 2-1 and an analysis condition setting unit 2-2, and the analysis calculation unit 3 includes a flow state analysis calculation unit 3-1 and a reaction analysis calculation unit 3-2. And A is a file.
[0017]
The analysis condition input unit 2 is a part for the user to set the three-dimensional flow model and the compartment model, the generation conditions of each area division, and the analysis conditions necessary for analysis through the input device 1. The user sets coordinate axes in the x, y, and z directions in the analysis area representing the shape of the chemical apparatus by the area division setting means 2-1, and first obtains the coordinates of each of the divided areas of the three-dimensional flow model using the coordinate axes. . Next, based on the region division performed by the three-dimensional flow model, the regions divided for the three-dimensional flow model are integrated, for example, vertically, horizontally, and so as to reduce the dimension of the analysis space representing the inside of the chemical apparatus. A divided region used in a compartment model in which the number of divided regions is not reduced and the number of divided regions is reduced to one tenth to one hundredth of that of the three-dimensional flow model is generated, and the coordinates of each divided region are obtained.
[0018]
Referring to FIG. 2, regions surrounded by solid lines in the three-dimensional flow model and the compartment model are regions divided to use the three-dimensional flow model and a compartment model that does not reduce the dimension of the analysis space representing the inside of the chemical apparatus, respectively. It is. The region divided for the compartment model that does not reduce the dimension of the analysis space representing the inside of the chemical device is, for example, a region that is divided for the three-dimensional flow model and is integrated in the upper, lower, left, and right directions. In the schematic diagram of the area divided for the compartment model, the area divided for the compartment model is indicated by a solid line, and the area divided for the three-dimensional flow model is indicated by a broken line.
[0019]
In addition, the analysis condition setting means 2-2 allows the user to specify the boundary conditions, initial conditions, time step width Δt, physical properties such as density, viscosity and surface tension necessary for the analysis, and the bubble diameter in the case of gas-liquid multiphase flow. Prepare data such as.
[0020]
The analysis calculation unit 3 is a unit for obtaining a physical quantity using a three-dimensional flow model and a compartment model. The flow state analysis calculation unit 3-1 performs time integration by differentiating a differential equation governing flow such as a continuous equation, a motion equation, and an energy conservation equation, and performs flow integration, flow rate, pressure, temperature, and multiphase flow at a specified time. In the case of (1), this is a part for further calculating a physical quantity such as a volume fraction of a phase constituting the phase. The reaction analysis calculation unit 3-2 performs the time integration of the compartment model used for the reaction calculation using the physical quantity obtained by the flow state analysis calculation unit 3-1 as input data, and performs the concentration, the reaction speed, and the reaction at the designated time. This is a part for calculating heat and physical quantities such as apparent density, viscosity and surface tension obtained based on the heat. Further, when the analysis result indicates the output designated time in the input data, the obtained physical quantity is output to the file A.
[0021]
The analysis result display unit 4 is a unit that reads data of physical quantities in the file A calculated by the analysis calculation unit 3 and displays the data on the display device 5 in the form of a graph or a table.
[0022]
FIG. 3 is a flowchart showing the flow of the analysis processing shown in FIG. 1. Hereinafter, the operation of this embodiment will be described with reference to the drawings.
[0023]
First, the user activates the region division setting means 2-1 of the analysis condition input unit 2 from the input device 1, defines the x, y, and z axes on the analysis region representing the inside of the chemical device and represents the inside of the chemical device. The analysis area is divided. Next, the user activates the analysis condition setting means 2-2 of the analysis condition input unit 2 from the input device 1 to execute physical condition values such as boundary conditions, initial conditions, time step width Δt, density, viscosity and surface tension, and gas-liquid multiphase flow. In the case of, input data necessary for analysis such as bubble diameter is given.
[0024]
When the processing of the analysis condition input unit 2 is completed as described above, the analysis calculation unit 3 starts operating and executes the following processing.
[0025]
S1: Coordinate data of the divided region of the three-dimensional flow model created by the analysis condition input unit 2, physical properties of the fluid such as density, viscosity and surface tension, initial conditions such as flow rate, pressure and temperature, boundary conditions and time interval. The data of Δt is read, time integration of the three-dimensional flow model is performed, and a physical quantity such as a flow rate, a pressure, a temperature, and, in the case of a multiphase flow, a volume fraction of a phase constituting the analysis time t = Δt is obtained.
[0026]
S2: The physical quantities such as the flow rate, the pressure, the temperature, and, in the case of the multiphase flow, the volume fraction of the phases constituting the multiphase flow obtained in S1 are converted as input data of the compartment model.
[0027]
For example, the flow rate on the surface divided for the compartment model, which is the input data of the compartment model, is calculated by integrating the flow rates obtained for each of the divided surfaces of the three-dimensional flow model constituting the compartment model. In the case of the pressure, temperature, and multiphase flow in the region divided for the model, the volume fraction of the constituent phase is further calculated as the value obtained for each of the divided regions of the three-dimensional flow model constituting the flow. It is calculated by taking the average.
[0028]
S3: The coordinate data of the divided area of the compartment model created by the analysis condition input unit 2, the flow rate, the pressure, the temperature obtained in S2 as the input data of the compartment model, and, in the case of the multiphase flow, the volume of the phase constituting it. The data of the physical quantity such as the fraction and the data of the time interval Δt are read, the time integration of the compartment model is performed, and the physical quantity such as the concentration, the reaction speed and the reaction heat at the analysis time t = Δt is obtained.
[0029]
S4: Calculate physical quantities such as apparent density, viscosity and surface tension, which are new input data of the three-dimensional flow model, based on the physical quantities such as the concentration, the reaction rate and the heat of reaction obtained in S3.
[0030]
S5: If the current analysis time is the file output specified time specified by the input data, the flow rate, pressure, temperature, and in the case of a multiphase flow, physical quantities such as the volume fraction, the concentration, and the reaction speed of the constituent phase are filed. Output to A.
[0031]
S6: When the analysis time reaches the time specified by the input data, the control is transferred to the analysis display unit 4.
[0032]
S7: Advance the analysis time and return to S1, using physical quantities such as the flow rate, pressure, temperature, and, in the case of a multiphase flow, the volume fraction of the phase constituting the multiphase flow as initial values for the next calculation. The calculation at the new analysis time is performed in the same manner. That is, the processing of S1 to S6 is repeated to sequentially obtain the value of the (n + 1) th step from the value of the nth step (analysis time t = n × Δt, n = 1, 2,...).
[0033]
The analysis display unit 4 displays graphs and tables based on physical quantity data such as the flow rate, pressure, temperature, and, in the case of a multiphase flow, the volume fraction, concentration, and reaction rate of the phases constituting the multiphase flow, in the analysis display unit 4. It is created and displayed on the display device 5. For example, a streamline at a time designated by the input data and a density contour line of the density are calculated, and the streamline diagram and the contour diagram are displayed.
[0034]
【The invention's effect】
As described above, the present invention relates to a reaction analysis in consideration of a flow state in a chemical device, and relates to a three-dimensional flow model capable of accurately analyzing a flow field, and a reaction having a smaller number of regions than the three-dimensional flow model and having a lower calculation load. Since the two types of compartment models used for the calculation are coupled and solved, it is possible to perform an efficient numerical response analysis closer to a real phenomenon.
[0035]
In addition, it is not necessary to determine them empirically by passing necessary data in terms of physical quantities such as the flow rate from the three-dimensional flow model to the compartment model and, in the case of multiphase flow, the volume fraction of the constituent phases, and solving it. Accurate numerical response analysis is also possible.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an example of a calculation program for performing a reaction analysis in consideration of a flow state in a chemical device to which the present invention is applied.
FIG. 2 is a schematic diagram illustrating an example of region division of a three-dimensional flow model and a compartment model according to the embodiment. FIG. 3 is a flowchart illustrating a processing example of an analysis calculation unit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Input device 2 ... Analysis condition input part 2-1 ... Area division setting means 2-2 ... Analysis condition setting means 3 ... Analysis calculation part 3-1 ... Flow state analysis calculation part 3-2 ... Reaction analysis calculation part 4 ... Analysis result display section 5 Display device A File

Claims (4)

化学装置内の流動状態を考慮した反応解析に関し、3次元流動モデルで求めた流量、圧力、温度、及び混相流の場合はさらにそれを構成する相の体積分率のデータから必要なデータを、化学装置内を表す解析空間の次元を落とさず領域分割数を3次元流動モデルより10分の1〜100分の1に少なくしたコンパートメントモデルへ受け渡して反応解析することを特徴とする、3次元流動モデルとコンパートメントモデルの2種類のモデルを連成した数値反応解析方法。Regarding the reaction analysis considering the flow state in the chemical device, the necessary data from the data of the flow rate, pressure, temperature, and, in the case of multiphase flow, the volume fraction of the phases constituting it, obtained by the three-dimensional flow model, The three-dimensional flow is characterized in that it is transferred to a compartment model in which the number of area divisions is reduced to one tenth to one-hundredth of the three-dimensional flow model without reducing the dimension of the analysis space representing the inside of the chemical apparatus, and the reaction analysis is performed. A numerical response analysis method that combines two types of models, a model and a compartment model. 前記3次元流動モデルとコンパートメントモデルとの連成において、さらにコンパートメントモデルで得られた濃度、反応速度、反応熱及びそれらをもとに求めた見かけ密度、粘度及び表面張力のデータを3次元流動モデルに受け渡すステップを含み、必要なデータを前記2つのモデル間で相互に交換しながら解くことを特徴とする請求項1記載の数値反応解析方法。In the coupling between the three-dimensional flow model and the compartment model, the data of the concentration, reaction rate, heat of reaction, and apparent density, viscosity, and surface tension obtained based on the three-dimensional flow model are further obtained. 2. A numerical response analysis method according to claim 1, further comprising the step of: passing necessary data to each other while exchanging the data between the two models. 3次元流動モデルの分割領域の座標データ、流体の密度、粘度、表面張力のデータ、流量、圧力及び温度の初期条件、境界条件及び時間刻み幅Δtのデータを読み込み、3次元流動モデルの時間積分を行い、解析時間t=Δtにおける流量、圧力、温度、及び混相流の場合はさらにそれを構成する相の体積分率を求めるステップ1と、
前記3次元流動モデルにより求めた流量、圧力、温度、及び混相流の場合はさらにそれを構成する相の体積分率を、コンパートメントモデルの入力データとして変換するステップ2と、
コンパートメントモデルの分割領域の座標データ、コンパートメントモデルの入力データとして前記ステップ2で求めた流量、圧力、温度、及び混相流の場合はさらにそれを構成する相の体積分率と時間刻み幅Δtのデータを読み込み、コンパートメントモデルの時間積分を行い、解析時間t=Δtにおける濃度、反応速度及び反応熱を求めるステップ3と、
前記ステップ3で求めた濃度、反応速度及び反応熱をもとに3次元流動モデルの新しい入力データとなる見かけ密度、粘度及び表面張力を計算するステップ4と、
解析時刻を進めて前記ステップ1に戻り、前計算で求めた流量、圧力、温度、及び混相流の場合はさらにそれを構成する相の体積分率を次の計算の初期値として用いて、新しい解析時刻での計算を前記と同様に行うことをコンピュータに実行させる、数値反応解析のプログラム。
The coordinate data of the divided area of the three-dimensional flow model, the data of the density, viscosity, and surface tension of the fluid, the initial conditions of the flow rate, the pressure and the temperature, the boundary conditions, and the data of the time step Δt are read, and the time integration of the three-dimensional flow model is performed. Step 1 for determining the flow rate, pressure, temperature, and, in the case of a multiphase flow, the volume fraction of the phases constituting the flow at the analysis time t = Δt,
Step 2 of converting the flow rate, pressure, temperature, and, in the case of a multiphase flow, the volume fraction of the phases constituting the three-dimensional flow model as input data of the compartment model,
In the case of the flow rate, pressure, temperature, and multiphase flow obtained in step 2 as the coordinate data of the divided area of the compartment model and the input data of the compartment model, data of the volume fraction of the phase constituting the multiphase flow and the time interval Δt. And performing a time integration of the compartment model to obtain a concentration, a reaction rate and a heat of reaction at an analysis time t = Δt;
A step 4 of calculating an apparent density, a viscosity and a surface tension, which are new input data of the three-dimensional flow model, based on the concentration, the reaction rate and the reaction heat obtained in the step 3;
The analysis time is advanced and the process returns to the step 1. In the case of the flow rate, pressure, temperature, and multiphase flow obtained in the previous calculation, the volume fraction of the phase constituting the flow is used as an initial value for the next calculation, and a new calculation is performed. A numerical response analysis program for causing a computer to perform calculation at the analysis time in the same manner as described above.
請求項3記載のプログラムを記録した媒体。A medium on which the program according to claim 3 is recorded.
JP2003139927A 2003-05-19 2003-05-19 Numerical reaction analysis method allowing for flow state in chemical apparatus, calculation program for executing the method and recording medium with the program recorded thereon Pending JP2004337792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003139927A JP2004337792A (en) 2003-05-19 2003-05-19 Numerical reaction analysis method allowing for flow state in chemical apparatus, calculation program for executing the method and recording medium with the program recorded thereon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003139927A JP2004337792A (en) 2003-05-19 2003-05-19 Numerical reaction analysis method allowing for flow state in chemical apparatus, calculation program for executing the method and recording medium with the program recorded thereon

Publications (1)

Publication Number Publication Date
JP2004337792A true JP2004337792A (en) 2004-12-02

Family

ID=33528802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003139927A Pending JP2004337792A (en) 2003-05-19 2003-05-19 Numerical reaction analysis method allowing for flow state in chemical apparatus, calculation program for executing the method and recording medium with the program recorded thereon

Country Status (1)

Country Link
JP (1) JP2004337792A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037296A1 (en) * 2013-09-11 2015-03-19 株式会社日立製作所 System analysis device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037296A1 (en) * 2013-09-11 2015-03-19 株式会社日立製作所 System analysis device

Similar Documents

Publication Publication Date Title
Cifani et al. A comparison between the surface compression method and an interface reconstruction method for the VOF approach
Bazilevs et al. Isogeometric analysis using T-splines
Yu et al. DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method
Rokicki Adjoint lattice Boltzmann for topology optimization on multi-GPU architecture
Szewc et al. Simulations of single bubbles rising through viscous liquids using smoothed particle hydrodynamics
Pacheco et al. Numerical simulations of heat transfer and fluid flow problems using an immersed-boundary finite-volume method on nonstaggered grids
Le et al. Counter-extrapolation method for conjugate interfaces in computational heat and mass transfer
CN113569450B (en) Method for estimating and controlling suspension and residence of liquid drops
De Rosis et al. Central-moment lattice Boltzmann schemes with fixed and moving immersed boundaries
JP2012216173A (en) Thermal hydraulic simulation program, thermal hydraulic simulating device, and method for thermal hydraulic simulation
Coronado et al. Four-field Galerkin/least-squares formulation for viscoelastic fluids
Tang et al. Tracking of immiscible interfaces in multiple-material mixing processes
US20110238394A1 (en) Method and recording medium of a hybrid approach to multiple fluid simulation using volume fraction
Küng et al. Comparison of passive scalar transport models coupled with the Lattice Boltzmann method
Rubino A streamline derivative POD-ROM for advection-diffusion-reaction equations
Arote et al. An improved compressive volume of fluid scheme for capturing sharp interfaces using hybridization
Lutsko Approximate solution of the Enskog equation far from equilibrium
JP2004337792A (en) Numerical reaction analysis method allowing for flow state in chemical apparatus, calculation program for executing the method and recording medium with the program recorded thereon
JPH11232250A (en) Method and device for analyzing limit element in three-dimensional flow, manufacture of molding and medium recording analytical method program
JP5749079B2 (en) Two-phase heat flow analysis apparatus and two-phase heat flow analysis method
Shrestha et al. Finite-volume versus streaming-based lattice Boltzmann algorithm for fluid-dynamics simulations: A one-to-one accuracy and performance study
Li et al. An efficient lattice Boltzmann model for steady convection–diffusion equation
DeVincentis et al. Application of flux limiters to passive scalar advection for the lattice Boltzmann method
JP4324548B2 (en) Heat analysis apparatus for heat exchanger, heat analysis method for heat exchanger, and program for causing computer to execute the method
JP5235573B2 (en) Strength analysis method, strength analysis apparatus, and strength analysis program