JP2004337064A - Chip for gene detection - Google Patents

Chip for gene detection Download PDF

Info

Publication number
JP2004337064A
JP2004337064A JP2003137319A JP2003137319A JP2004337064A JP 2004337064 A JP2004337064 A JP 2004337064A JP 2003137319 A JP2003137319 A JP 2003137319A JP 2003137319 A JP2003137319 A JP 2003137319A JP 2004337064 A JP2004337064 A JP 2004337064A
Authority
JP
Japan
Prior art keywords
gene
detection
reaction
chip
amplification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003137319A
Other languages
Japanese (ja)
Inventor
Hitoshi Sakamoto
斉 坂本
Kenji Ishii
賢治 石井
Eiichi Tamiya
栄一 民谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003137319A priority Critical patent/JP2004337064A/en
Publication of JP2004337064A publication Critical patent/JP2004337064A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an array type chip for gene detection, with which the detection operation of the objective gene is rapidly and economically carried out without using a complicated gene fixation technique and carrying out a hybridization process after gene amplification. <P>SOLUTION: The array type chip for gene detection prevents mutual contamination between specimens, is highly integrated and has excellent operability and economic efficiency by making a reaction mixed phase for carrying out an enzymatic amplification reaction exhibit a liquid, a gel-like or a solid state in amplification and detection of a gene. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、PCR法(Polymerase Chain Reaction法)に代表される遺伝子の酵素的増幅反応による二重鎖DNA増幅反応技術を利用した、複数プライマーによる被検遺伝子の同定をワンチップ上で行えるように改良した遺伝子検出用チップ、及び該検出用チップを用いた遺伝子の検出方法に関する。
【0002】
【従来の技術】
遺伝子の酵素的増幅技術や塩基配列のシーケンス技術の発達により生物の遺伝子レベルでの理解が急速に進み、さらには集積回路技術やコンビナトリアルケミストリー技術、情報科学技術と言った高度技術との融合により、膨大な遺伝情報を一括処理し実用に役立てる動きが盛んになっている。この様な動きの中心をなすものが遺伝子チップ技術(遺伝子マイクロアレー技術)であり、医療、製薬、食品など様々な研究応用分野で期待が高まっている(例えば、特許文献1、2参照)。
【0003】
遺伝子マイクロアレー技術には、半導体工業で使用されるリソグラフ技術を基に、基板上で予め設計されたオリゴDNAプローブを1塩基ずつ合成して行く技術や、別途合成されたDNAプローブや生物由来の遺伝子断片を基板上にインクジェットやプロットピンによりプロットし、固定化してチップを製造する技術がある(例えば、特許文献3、4参照)。この様な技術により製造される遺伝子チップは、集積度が高く、少量の検体試料でも極めて多くの情報を得ることが可能となった。しかしながら、この様なチップでは、相補的な遺伝子同士が一定条件下で水素結合し二重鎖を形成する、所謂ハイブリダイゼーション技術により目的遺伝子を検出することが一般的で、ハイブリダイゼーションに要する時間が長いことや、多種のプローブに対して同時に高い検出精度が得られるようにハイブリダイゼーションの条件設定を行うことが難しいなどの問題を抱えている。さらには、チップ基板にプローブを固定化するこの様なチップの場合、検出部の面積によりプローブ固定量が制限されるため、検出部分が高密度で微細になると各検出部分でのプローブ担持量に限界が生じ絶対量の不足が起こる。そのため、被検サンプル中に類似配列の遺伝子が多量に共存すると目的遺伝子の検出に影響を及ぼし、検出精度の低下を来すという問題も抱えている。また、検出に際しては、試料遺伝子を予め増幅し標識した後、チップへの分注、ハイブリダイゼーション、チップの洗浄、蛍光検出と言った一連の操作が必要であり、全ての操作をチップ上で行うことは原理上難しく、迅速性には一定の限界がある。
【0004】
一方、製造面においては、プローブの固定化に先立ち、プローブ量の増大と被検液中に含まれる挟雑成分の非特異的吸着を防止する基板表面処理などが高度で煩雑なうえ、別途合成したプローブを微少量かつ正確に基板上にスポッティングするプローブの固定化技術に難しさを伴う。これに対して、プローブを基板上で一塩基ずつコンビナトリアルケミストリー的に合成するプローブの調製技術もあるが、高度な技術を要する他、製造に多大な時間を要し、きわめて高価となる欠点を有していた。
【0005】
これに対し、遺伝子プローブなどを固定化せずに目的遺伝子を検出するチップ技術として、遺伝子の酵素的増幅反応技術を基にしたものがある。この様な酵素的増幅反応技術を基にしたチップでは、プローブなどの固定化に要する高度かつ煩雑な製造技術を必要とせず、また、長時間にわたるハイブリダイゼーション操作に伴う精緻な制御技術が不要なことから、低価格でしかも測定を迅速かつ簡便に行い得るチップの製造技術として期待が高い。この様なチップでは、目的遺伝子に対し相補的で特異的な配列を有する数十塩基のプライマーと呼ばれるオリゴDNAと目的遺伝子の部分的二重鎖形成後に、目的遺伝子一重鎖部分の合成を繰り返す方法で目的遺伝子を増幅し、検出する方法が一般的である。
【0006】
この様なDNAチップでは、チップ上で酵素的増幅反応を行うことで、検出の迅速性が更に高まると言う可能性を有するが、複数遺伝子の検出では、多数のプライマーを数十mm角サイズの同一基板上で扱わなければならず、隣接するプライマー間のコンタミネーション防止に高度な操作技術が要求されることとなってしまう。特に実際の検査工程における増幅反応系への検体試料の供給においては、各プライマー間の汚染を防ぐ工程管理は必要不可欠のものであり、DNAチップの集積度を上げるうえでの大きな障害要因となっている。
【0007】
このことから、酵素的増幅反応技術を利用したチップでは、単独配列の増幅反応の有無を検出する、いわゆる単独検出型のチップが一般的であり、複数種の配列を同時並行的に増幅するいはゆる同時多数検出のアレー型チップは未だ実用化されるに至っていない。従って、この様な酵素的増幅反応技術を、目的遺伝子の全体像の検出が必要な検出用チップにも適用できるようにする新技術の開発が強く望まれていた。
【0008】
【特許文献1】
米国特許第5445934号明細書
【特許文献2】
米国特許第5744305号明細書
【特許文献3】
米国特許第5424186号明細書
【特許文献4】
米国特許第5807522号明細書
【0009】
【発明が解決しようとする課題】
上記事情に鑑みてなされた本発明の課題は、煩雑な遺伝子固定化技術を用いずに、かつ、遺伝子増幅後のハイブリダイゼーション工程を行うことなく、迅速に目的遺伝子の検出作業が行える経済的に有利な遺伝子チップを提供することにある。
【0010】
【課題を解決するための手段】
このような、検体分注時や測定操作時に起こりやすいウェル間での相互汚染を防ぐためには、目的遺伝子の酵素的増幅反応を行う温度域においてのみ液状となり、検体分注や測定操作を行う室温域においてはゲル状又は固体状に変化させるような成分を含んだ増幅反応混合液を用いることで課題を解決することが出来る。
即ち、本発明の方法は、検出すべき目的遺伝子に対して相補的な塩基配列を有するプライマーを用いて該遺伝子の増幅量を検出し、該遺伝子の有無を検出する遺伝子チップにおいて、増幅操作を行う際の反応混合相を、温度によって液状、ゲル状、又は固体状に変化させるような成分を含んだ(1)から(11)に示す遺伝子検出用チップおよび該チップを用いた目的遺伝子の検出方法に関する。
(1)検出すべき目的遺伝子に対して相補的な塩基配列を有するプライマーの存在下で被検遺伝子の酵素的増幅反応を行い、その増幅量の多寡によって目的遺伝子であるか否かを判定する遺伝子検出用チップにおいて、酵素的増幅反応を行う反応混合相が、温度によって液状、ゲル状、又は固体状に変化することを特徴とする遺伝子検出用チップ。
(2)反応混合相が、被検遺伝子の酵素的増幅反応を行う40〜100℃の温度範囲で液状を呈する、(1)記載の遺伝子検出用チップ。
(3)反応混合相が、被検遺伝子の酵素的増幅反応を行った後、被検遺伝子の増幅量の多寡を定量する40℃よりも低い温度範囲で、ゲル状、又は固体状を呈する、(1)に記載の遺伝子検出用チップ。
(4)反応混合相を、温度によって液状、ゲル状、又は固体状に変化させる成分として、低温溶融性アガロースを用いた、(1)から(3)の何れかに記載の遺伝子検出用チップ。
(5)反応混合相に含まれる低温溶融性アガロースが0.1から2wt%である、(4)に記載の遺伝子検出用チップ。
(6)被検遺伝子の増幅量の多寡を検出する方法が、遺伝子二重鎖結合性化合物の電気化学的反応に基づく検出方法である、(1)から(5)の何れかに記載の遺伝子検出用チップ。
(7)被検遺伝子の増幅量の多寡を検出する方法が、遺伝子二重鎖結合性化合物の蛍光反応に基づく検出方法である、(1)から(5)の何れかに記載の遺伝子検出用チップ。
(8)被検遺伝子の増幅量の多寡を検出する方法が、遺伝子の酵素的増幅反応時に遺伝子二重鎖分子内に取り込まれる蛍光性化合物の蛍光反応に基づく検出方法である、(1)から(5)の何れかに記載の遺伝子検出用チップ。
(9)測定対象の目的遺伝子が、通性或いは偏性嫌気性の細菌のものである、(1)から(8)の何れかに記載の遺伝子検出用チップ。
(10)遺伝子検出用チップの検出端開口面に被検遺伝子の試料溶液を一括して供給し、予め用意された該検出端空間に被検遺伝子の試料溶液を満した後、検出端部分以外の余分な被検遺伝子の試料溶液を除いて酵素的増幅反応を実施することができる、(1)から(9)の何れかに記載の遺伝子検出用チップ。
(11)(1)から(10)の何れかに記載の遺伝子検出用チップを用いた遺伝子検出方法。
【0011】
具体的には、反応混合相が、目的遺伝子の酵素的増幅反応を行う40〜100℃の温度域では液状を呈し、それ以外の検体試料の分注や検出などを行う40℃よりも低い温度領域ではゲル状又は固体状を呈する反応混合液がウェル内に充填されている遺伝子検出用チップである。また、反応混合液にプライマー類、酵素類、遺伝子増幅用モノマー、マグネシウム塩や緩衝液などの塩類の他、増幅反応に必要なその他の因子、及び状態制御成分としての高分子成分やゲル化剤成分を含む遺伝子検出用チップである。
【0012】
【発明の実施の形態】
本発明における反応混合相の状態制御成分には、酵素的増幅反応を阻害する物質を含まなければどの様な成分でも使用でき、アガロース、ゼラチンなどを例示することがでる。例えばアガロースにあっては、その1%水溶液のゲル又は固化温度が40℃よりも低い低融点アガロースが好適に用いられる。
【0013】
本発明における状態制御成分の添加量は、反応混合液の組成、pH、塩濃度などによってゲル状又は固体状を呈する温度が異なってくるため一概には言えないが、上記したゲル化又は固化温度が40℃よりも低い低融点アガロースの場合、0.1%から2%の範囲が選択され、好ましくは0.1%から1%の範囲が選択される。一方、添加量が0.1%より低い場合、反応混合液がゲル化又は固化せず、一括して試料液を導入する際、ウェル間の液同士が相互に混じり合ってしまう危険性が増大するため、それを回避するにはウェルごとに試料を添加する必要が生じ、著しい操作性の低下を来たす。
また、添加量が2%より高い場合には、増幅反応時の反応効率の低下を来たし検出結果が安定しない。従って、添加量は0.1%から2%の範囲で選択される。
低融点アガロース以外のゲル化剤を単独或いは複数種混合・併用する場合、その個々の濃度は一概に言えないが、測定温度20℃におけるゲル強度が1g/cmから1800g/cmの範囲であればその目的を達する。従来のPCR法などに於いてポリエチレングリコールやゼラチンなどを共存させる手法もあるが、これらは酵素の安定性など増幅反応の補助的な作用を目的にしており、増幅反応液の状態を変化させるほど高濃度に添加した例はない。
【0014】
本発明において増幅反応混合液を保持する容器構造は、ウェル状、チューブ状、スリット状等、増幅反応温度において液体状となった反応液を漏洩することなく保持できる構造を持つものであれば、制限なく使用できる。本発明の具体的な使用形態によれば、微小空間に保持されたプライマーをはじめとする増幅反応溶液の占有部分を除いた空間に検体試料溶液が供給され、その後に、チップ上で増幅反応が実施される。従って、チップ表面に開口部を有する容器構造が適宜配置されたチップが良好に使用できる。
【0015】
酵素増幅反応液の相変化を伴う本発明では、反応液の容量が極端に少ないと反応液粘度などの影響により試料溶液と反応液が充分混合されず、増幅反応が不充分となる。また、反応液の量を極端に多くすると、使用する薬品量が増し、高コストとなってしまう。即ち、本発明に使用される反応容積は、1から50μl程度が適当な範囲と言える。
【0016】
本発明に使用されるチップ材料には、ガラス、シリコン、セラミック、熱硬化性樹脂、熱可塑性樹種、金属などが使用でき、キレート作用を有する物質、酸性物質、塩基性物質や遺伝子結合性の物質など増幅反応を阻害的する物質を溶出せず、プライマー類を強く吸着することも無く、検出時においてはそれ自体蛍光性が無く、蛍光性物質を溶出せず、あるいは、検出の電極電位において変化せず、電気化学的活性種を溶出しないなど、検出反応を阻害しない材質であって、100℃より低い温度で増幅反応液を保持できればどの様なものでも使用できる。
また、プライマー類を吸着する材質を使用した場合でも、表面をコーティング、或いは化学処理して吸着性を失わせることで問題なく使用することが出来る。
【0017】
本発明の特徴は、酵素的増幅反応を行う温度域では液体状、それ以外の、チップ
保存時、検体分注時、及び検出時にはゲル又は固体状となる増幅反応液を使用することであって、増幅反応用プライマーを特別な方法によりチップ基板に固定化することなく、基板上の微小な容積空間に保持することにある。
本発明によれば、複数のプライマーを同一基板上で扱うことが困難であった従来の酵素的遺伝子増幅技術に基づくチップにおいても、予め基板上に構築された複数の微小な容積空間にプライマーをはじめとする増幅反応溶液を保持することが可能となり、微量の検体試料を一括して複数の微小な容積空間に供給することが可能となる。つまり、試料溶液をチップ上の検出端開口面に供給し、該試料溶液が予め用意された検出端上部の容積空間に分配充填され重層化した後、チップ面の余分な試料溶液をこそぎ取る、あるいは、拭き取るなどして除去し、その後、反応液の蒸発を抑えるため、PCR用粘着シート、熱融着シート、又はシリコンゴムシートなどで開口部を覆い、密着させて、増幅反応を行う。
微小空間に保持された増幅反応溶液は、検体試料を供給する際には、ゲル状或いは固体状となっており、近傍の微小空間に保持された他のプライマーを含む増幅反応液と混合、汚染されることが無く、検体試料を容易に一度の操作で供給することが出来る。また、増幅反応を行う際には、該反応液は液体状となり、通常の増幅反応が支障なく成され、担体などにプライマーを固定化したチップに見られる反応効率の著しい低下が無い。さらに、増幅反応を終了した後の検出工程においても、反応液が微小空間に有効に保持され、反応液の漏洩、汚染がなく、高い操作性のもと検出作業が可能となる。
【0018】
本発明に利用される遺伝子二重鎖の検出には、遺伝子二重鎖結合性化合物の電気化学的反応に基づく検出方法、遺伝子二重鎖結合性化合物の蛍光反応に基づく検出方法、或いは、遺伝子の酵素的増幅反応時に遺伝子二重鎖分子内に取り込まれる蛍光性化合物の蛍光反応に基づく検出方法などが利用可能であるが、遺伝子二重鎖の多寡を判別できる方法であればどのような方法でも利用可能である。例えば、このような方法には、エチジュームブロマイド、ヘキスト33258、サイバーグリーン、PicoGreenなどの遺伝子二重鎖結合性化合物、いわゆるインターカレーターによる蛍光強度の差を読み取る方法などがある。また、ヘキスト33258やフェロセン系のインターカレーターなどの電気化学的に活性なインジケーターを用い、遺伝子二重鎖の多寡を測定する方法も利用可能である。
【0019】
本発明のチップを製造する際には、目的遺伝子に相補的なプライマーなどを定量的に含む増幅反応混合液を、単純にチップ上の反応液保持用の微少な容積空間に供給すればよい。プライマーなどが定量的に分散保持されている本発明チップでは、固定化された遺伝子断片と目的遺伝子のハイブリダイゼーションによる検出を行うチップの様に検出時に遺伝子断片プローブの固定化効率などを考慮する必要がなく、簡便に検出結果の解析ができ多くの試料の処理が行える。
本発明のチップは、本来、酵素的遺伝子増幅反応技術を基にしたチップであるため、ハイブリダイゼーション技術を基にしたチップと異なり、ハイブリダイゼーションを行う必要がないため検出に多大の時間を要することもなく、また、複数プローブのハイブリダイゼーションに伴う煩雑な条件設定や効率の差による検出結果の二次的な処理も必要なく、極めて迅速で簡便なチップである。
【0020】
本発明における遺伝子増幅反応には、PCR法、LAMP(Loop−Mediated Isothermal Amplification)法、ICAN(Isothermal and Chimeric primer−initiated Amplification of Nucleic acids)法などが利用でき、目的遺伝子と相補的なプライマーを用い、温度を制御することで遺伝子を増幅する増幅技術であれば、どのような増幅反応でも利用可能である。
【0021】
このように検体の分注作業や検出測定時に起こる反応混合液間の相互汚染を回避できる本発明によれば、従来、単独検出型が一般的であった遺伝子の酵素的増幅反応技術を基にしたチップを複数同時検出可能なアレー型とすることが可能となり、目的遺伝子に特異的な塩基配列を基にしたプライマーによる検出ばかりではなく、目的遺伝子内の複数箇所の塩基配列に対応したプライマーの組み合わせによる変異箇所の検出や多様性の検出にも応用可能となる。
【0022】
【実施例】
以下の実施例及び比較例により、本発明をさらに具体的に説明する。ただし、本発明はこれらの例に限定されるものではない。
実施例1
厚さ5mm、一辺が30mmの正方形をしたポリプロピレン板に、直径2mm、深さ4mmのウェルを中心間の距離が3mmとなる様に25個造成した。
センスプライマーとアンチセンスプライマーには、Bacteroides fragilis、Bacteroides thetaiotaomicron及びPeptostreptococcus asaccharolyticusの3菌種それぞれのの16sリボゾーム遺伝子配列を増幅し得るプライマーの内、組み合わせにより3菌種を識別できる、センスプライマー5種とアンチセンスプライマー5種の合計10種のプライマーを用いた。これらのプライマーを表1の組み合わせで下記の成分の反応液に添加し、図1の配置で10μLずつ分注した。分注に際しては、Taq DNApolymeraseとagaroseを除く成分を混合溶解後にagaroseを添加、98℃にてagaroseの溶解を確認した後45℃に冷却し、これにTaq DNApolymeraseを添加して所定のウェルに分注した。その後、4℃にてゲル化、保存した(チップA)。
反応液成分
10mM Tris−HCl−Buffer(pH8.3)
50mM KCl
1.5mM MgCl
各0.2mM dNTP(dATP、dTTP、dGTP、dCTP)
0.2% agarose
(ゲル化温度が30℃のアマシャム社製ローメルトagarose)
0.25U/10μL Taq DNApolymerase
0.2μM センスプライマー
0.2μM アンチセンスプライマー
【表1】

Figure 2004337064
次にBacteroides fragilis、Bacteroides thetaiotaomicron及びPeptostreptococcus
asaccharolyticusをそれぞれ嫌気培養し、その培養菌体懸濁液2mLを遠心分離し、上清を捨てた後、滅菌水0.5mLを加え再懸濁、95℃で5分間加熱した。この処理液を再度遠心分離し、上清を試料液とした。
この試料液を4℃にて保存しておいたチップA上に滴下、全ウェルにのゲル上部を満たす様にゴムへらで引き伸ばした後、ポリプロピレン板上に残った液滴をこそぎ取った。
これを55℃から95℃の間で30サイクルのPCR反応を行った後、ウェル上部にエチジュームブロマイド溶液を滴下、一定時間後の蛍光(15分後、ゲル状、UV315nm)を検出した。
プライマー組み合わせ 1−▲1▼をブランクとし、5−▲5▼をポジティブコントロールとして、蛍光強度の組合せから、遺伝子的に類縁のBacteroides fragilis、Bacteroides thetaiotaomicron及びPeptostreptococcus asaccharolyticusを検出同定することが出来た。
【0023】
実施例2
実施例1における、エチジュームブロマイドをヘキスト33258とし、40×40mm、厚さ0.03mmのポリスチレン製薄板の表裏面に金蒸着を施した後、幅1.5mmに切断した短冊状の金電極と0.1mm銀電極を挿入し、金電極の一方を作用極、他方を対極、銀電極を参照極として、各ウェルにおけるヘキスト33258の電極酸化電流を測定した。プライマー組み合わせ1−▲1▼ウェルを基準とし、電流量減少の差の組合せから、遺伝子的に類縁のBacteroides fragilis、Bacteroides thetaiotaomicron及びPeptostreptococcus asaccharolyticusを検出同定することが出来た。
【0024】
比較例1
実施例1における、agaroseを除いた反応液を使用し、他は同様に行った。菌体培養液由来の試料をウェルに満たす際に、ウェル内の反応液が試料溶液と混じったため、チップ上の余分な液滴を除いた際にウェル内の増幅反応液組成が変化し、検出結果が安定しなかった。また、隣接するウェル間でのプライマー類のコンタミネーションのため、検出の組合せが安定しなかったため、各ウェルごとにマイクロピペットを用い個別に一定量の試料を供給し、PCR反応を行った。Bacteroides fragilis、Bacteroides thetaiotaomicron及びPeptostreptococcus asaccharolyticus の存在を検出確認することは出来たが、試料溶液の一括供給が出来ず、実施例1による検出作業の20倍の手間を要し、検出までに要する時間は5倍であった。
また、増幅反応後のチップからの検出操作では、傾斜、振動等により、しばしば、隣接ウェル間の混合が起こり、試料供給、増幅反応と検出操作をやり直さなければならず、検出操作においても細心の注意が必要となり、操作性が著しく低かった。
【0025】
比較例2
実施例1のagarose添加量を2%とし、さらにゲル化温度が48℃の一般的なagaroseを使用した。ウェル内のゲルの溶融時間に差があり、また、溶融後の粘度が高いためPCR反応が安定せず、検出時にポジティブコントロールの蛍光強度が極端に低い、蛍光強度が実験ごとに大きく変化する、或いは、蛍光の組み合わせパターンが実験ごとに大きく異なるなど、安定した結果が得られなかった。
【0026】
比較例3
ゲル化温度が48℃の一般的なagaroseを用い、Taq−polymeraseの添加温度およびウェルへの分注温度を50℃とした以外は実施例1と同様にして、1.5%の濃度のagaroseを添加しPCR反応を行った。この時のゲル化温度は46℃で、室温に置けるゲル強度は2000g/cm2であった。その後、実施例2と同様に電気化学的な検出を試みたが、PCR反応が不充分であり明確な電気量の差が見られず、検出同定ができなかった。検出に充分な増幅量を得るため、PCR反応の回数を50サイクルとして反応を行ったが、非特異的な増幅反応と思われる増幅が特異的な増幅と同程度となり、同様に電気量の明確な差が見られず、検出同定ができなかった。
【0027】
【発明の効果】
酵素的遺伝子増幅反応に基づく遺伝子検出用チップの集積度が増し、特別な遺伝子固定化方法を必要としない、高迅速性で安価なDNAチップを容易に製造できるようになる。
【図面の簡単な説明】
【図1】本発明の実施例で用いた遺伝子検出用チップのウェルの配置図である。
【符号の説明】各ウェルの反応混合相に含まれる表1に示したセンスプライマーとアンチセンスプライマーの組合せ番号を示す。[0001]
[Industrial applications]
The present invention provides a method for identifying a test gene using a plurality of primers on a single chip using a double-stranded DNA amplification reaction technique based on an enzymatic amplification reaction of a gene represented by a PCR method (Polymerase Chain Reaction method). The present invention relates to an improved gene detection chip and a method for detecting a gene using the detection chip.
[0002]
[Prior art]
With the advancement of gene enzymatic amplification technology and nucleotide sequence sequencing technology, understanding at the genetic level of organisms has rapidly progressed.Furthermore, by integrating with advanced technologies such as integrated circuit technology, combinatorial chemistry technology, and information technology, There is a growing movement to collectively process vast amounts of genetic information for practical use. Gene chip technology (gene microarray technology) is at the center of such movements, and expectations are increasing in various research and application fields such as medicine, pharmaceuticals, and foods (for example, see Patent Documents 1 and 2).
[0003]
Gene microarray technology is based on the lithographic technology used in the semiconductor industry, and is based on the technology of synthesizing oligo DNA probes designed in advance on a substrate, one base at a time. There is a technique in which gene fragments are plotted on a substrate using an inkjet or a plot pin and immobilized to produce a chip (for example, see Patent Documents 3 and 4). Gene chips manufactured by such a technique have a high degree of integration, and can obtain a great deal of information even with a small amount of a sample. However, in such a chip, the target gene is generally detected by a so-called hybridization technique in which complementary genes hydrogen bond under certain conditions to form a double strand, and the time required for hybridization is generally high. There are problems such as a long length and difficulty in setting hybridization conditions so that high detection accuracy can be obtained simultaneously for various types of probes. Furthermore, in the case of such a chip in which the probe is immobilized on the chip substrate, the amount of the probe immobilized is limited by the area of the detection unit. A limit arises and a shortage of absolute quantities occurs. Therefore, if a gene having a similar sequence coexists in a test sample in a large amount, the detection of the target gene is affected, and the detection accuracy is reduced. In addition, upon detection, after amplifying and labeling the sample gene in advance, a series of operations such as dispensing to the chip, hybridization, washing of the chip, and fluorescence detection are necessary, and all operations are performed on the chip. This is difficult in principle, and there is a certain limit to speed.
[0004]
On the production side, on the other hand, prior to immobilization of the probe, increasing the amount of probe and treating the surface of the substrate to prevent nonspecific adsorption of contaminants contained in the test solution are complicated and complicated. The technique of immobilizing a probe, which spots a probe in a minute amount and accurately on a substrate, involves difficulty. On the other hand, there is a probe preparation technology that synthesizes probes in a combinatorial chemistry one base at a time on a substrate.However, in addition to the need for advanced technology, it takes a lot of time to manufacture and is extremely expensive. Was.
[0005]
On the other hand, as a chip technology for detecting a target gene without immobilizing a gene probe or the like, there is a chip technology based on an enzymatic amplification reaction technology of a gene. A chip based on such an enzymatic amplification reaction technique does not require sophisticated and complicated manufacturing techniques required for immobilization of probes and the like, and does not require sophisticated control techniques associated with a long-time hybridization operation. Therefore, it is highly expected as a chip manufacturing technique which can be measured at low cost and quickly and easily. In such a chip, a method of repeating the synthesis of the single-stranded portion of the target gene after forming a partial double strand of an oligo DNA called a primer of several tens of bases having a specific sequence complementary to the target gene and the target gene In general, a method of amplifying and detecting a target gene by using the above method is used.
[0006]
In such a DNA chip, there is a possibility that the speed of detection is further improved by performing an enzymatic amplification reaction on the chip, but in the detection of a plurality of genes, a large number of primers having a size of several tens of mm square are used. It must be handled on the same substrate, and a sophisticated operation technique is required to prevent contamination between adjacent primers. Particularly, in the supply of a sample to the amplification reaction system in the actual test process, process control to prevent contamination between the primers is indispensable, and is a major obstacle to increasing the degree of integration of DNA chips. ing.
[0007]
For this reason, a chip using enzymatic amplification reaction technology is generally a so-called single detection type chip that detects the presence or absence of an amplification reaction of a single sequence, and it is desirable to amplify a plurality of types of sequences simultaneously in parallel. The array type chip for simultaneous simultaneous multiple detection has not yet been put to practical use. Therefore, there has been a strong demand for the development of a new technology that enables such an enzymatic amplification reaction technology to be applied to a detection chip that requires detection of an entire image of a target gene.
[0008]
[Patent Document 1]
US Patent No. 5,445,934 [Patent Document 2]
US Pat. No. 5,744,305 [Patent Document 3]
US Pat. No. 5,424,186 [Patent Document 4]
US Pat. No. 5,807,522
[Problems to be solved by the invention]
An object of the present invention made in view of the above circumstances is to economically perform an operation of detecting a target gene quickly without using a complicated gene immobilization technique and without performing a hybridization step after gene amplification. It is to provide an advantageous gene chip.
[0010]
[Means for Solving the Problems]
In order to prevent such cross-contamination between wells, which is likely to occur during sample dispensing or measurement operation, the liquid becomes liquid only in the temperature range in which the enzymatic amplification reaction of the target gene is performed, and the room temperature at which the sample dispensing and measurement operation is performed. In the region, the problem can be solved by using an amplification reaction mixture containing a component that changes to a gel or a solid.
That is, the method of the present invention uses a primer having a base sequence complementary to the target gene to be detected to detect the amount of amplification of the gene, and performs an amplification operation on a gene chip for detecting the presence or absence of the gene. The chip for gene detection according to any one of (1) to (11), which contains a component that changes the reaction mixture phase to liquid, gel, or solid depending on temperature, and detection of a target gene using the chip. About the method.
(1) The test gene is subjected to an enzymatic amplification reaction in the presence of a primer having a base sequence complementary to the target gene to be detected, and whether or not the gene is the target gene is determined based on the amount of amplification. A gene detection chip, wherein a reaction mixture phase for performing an enzymatic amplification reaction changes to a liquid, gel, or solid state depending on temperature.
(2) The gene detection chip according to (1), wherein the reaction mixed phase exhibits a liquid state in a temperature range of 40 to 100 ° C. in which the enzymatic amplification reaction of the test gene is performed.
(3) After the reaction mixture phase performs the enzymatic amplification reaction of the test gene, the reaction mixture phase exhibits a gel state or a solid state in a temperature range lower than 40 ° C. for quantifying the amount of amplification of the test gene. The chip for gene detection according to (1).
(4) The gene detection chip according to any one of (1) to (3), wherein low-melting agarose is used as a component that changes a reaction mixture phase into a liquid, gel, or solid depending on temperature.
(5) The gene detection chip according to (4), wherein the low-melting agarose contained in the reaction mixture phase is 0.1 to 2 wt%.
(6) The gene according to any one of (1) to (5), wherein the method for detecting the amount of amplification of the test gene is a detection method based on an electrochemical reaction of a gene double-stranded binding compound. Detection chip.
(7) The method for detecting a gene according to any one of (1) to (5), wherein the method for detecting the amount of amplification of the test gene is a detection method based on a fluorescent reaction of a gene double-stranded binding compound. Chips.
(8) The method for detecting the amount of amplification of a test gene is a detection method based on a fluorescent reaction of a fluorescent compound incorporated into a gene double-stranded molecule during a gene enzymatic amplification reaction. The chip for gene detection according to any one of (5).
(9) The gene detection chip according to any one of (1) to (8), wherein the target gene to be measured is a facultative or obligate anaerobic bacterium.
(10) A sample solution of the test gene is supplied collectively to the detection end opening surface of the gene detection chip, and the detection end space prepared in advance is filled with the test solution of the test gene. The gene detection chip according to any one of (1) to (9), wherein the enzymatic amplification reaction can be performed by removing an excess sample solution of the test gene.
(11) A gene detection method using the chip for gene detection according to any one of (1) to (10).
[0011]
Specifically, the reaction mixture phase exhibits a liquid state in a temperature range of 40 to 100 ° C. at which the enzymatic amplification reaction of the target gene is performed, and a temperature lower than 40 ° C. at which other sample samples are dispensed or detected. In the region, the well is filled with a reaction mixture in a gel or solid state, which is a gene detection chip. In addition, primers, enzymes, monomers for gene amplification, salts such as magnesium salts and buffers, other factors necessary for the amplification reaction, and high-molecular components and gelling agents as state-controlling components are added to the reaction mixture. This is a gene detection chip containing components.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
As the state controlling component of the reaction mixture phase in the present invention, any component can be used as long as it does not contain a substance that inhibits the enzymatic amplification reaction, and examples thereof include agarose and gelatin. For example, in the case of agarose, a 1% aqueous solution gel or a low melting point agarose having a solidification temperature lower than 40 ° C. is preferably used.
[0013]
The addition amount of the state controlling component in the present invention cannot be unconditionally determined because the temperature at which a gel or a solid is formed varies depending on the composition, pH, salt concentration, etc. of the reaction mixture, but the above-mentioned gelation or solidification temperature Is lower than 40 ° C., a range of 0.1% to 2% is selected, preferably a range of 0.1% to 1%. On the other hand, if the addition amount is less than 0.1%, the reaction mixture does not gel or solidify, and when the sample solution is introduced collectively, there is an increased risk that the solutions between the wells are mixed with each other. Therefore, in order to avoid this, it is necessary to add a sample to each well, resulting in a significant decrease in operability.
On the other hand, if the addition amount is higher than 2%, the reaction efficiency during the amplification reaction decreases, and the detection result is not stable. Therefore, the amount of addition is selected in the range of 0.1% to 2%.
When used alone or in more mixing and combination of gelling agent other than the low melting point agarose, the individual concentration thereof can not be said categorically, the extent gel strength from 1 g / cm 2 of 1800 g / cm 2 at a measurement temperature of 20 ° C. If it is, it will achieve its purpose. In the conventional PCR method, there is also a method in which polyethylene glycol or gelatin coexists, but these methods are intended to assist the amplification reaction such as enzyme stability, and are intended to change the state of the amplification reaction solution. There is no example of adding at a high concentration.
[0014]
The container structure for holding the amplification reaction mixture in the present invention has a structure that can hold the reaction liquid in a liquid state at the amplification reaction temperature without leaking, such as a well, a tube, and a slit. Can be used without restrictions. According to a specific use form of the present invention, a sample sample solution is supplied to a space excluding a portion occupied by an amplification reaction solution including a primer held in a small space, and thereafter, an amplification reaction is performed on a chip. Will be implemented. Therefore, a chip in which a container structure having an opening on the chip surface is appropriately arranged can be used favorably.
[0015]
In the present invention involving the phase change of the enzyme amplification reaction solution, if the volume of the reaction solution is extremely small, the sample solution and the reaction solution are not sufficiently mixed due to the influence of the reaction solution viscosity and the like, and the amplification reaction becomes insufficient. Further, when the amount of the reaction solution is extremely increased, the amount of chemicals used increases, resulting in high cost. That is, the appropriate range of the reaction volume used in the present invention is about 1 to 50 μl.
[0016]
The chip material used in the present invention can be glass, silicon, ceramic, thermosetting resin, thermoplastic tree, metal, etc., and has a chelating substance, an acidic substance, a basic substance or a gene-binding substance. It does not elute substances that inhibit the amplification reaction, does not elute primers strongly, has no fluorescence per se upon detection, does not elute fluorescent substances, or changes in the electrode potential of detection Any material can be used as long as it does not inhibit the detection reaction, for example, does not elute the electrochemically active species, and can hold the amplification reaction solution at a temperature lower than 100 ° C.
In addition, even when a material that adsorbs primers is used, it can be used without any problem by coating or chemically treating the surface to lose the adsorbability.
[0017]
A feature of the present invention is to use an amplification reaction solution which is liquid in a temperature range in which an enzymatic amplification reaction is performed, and which becomes a gel or solid at the time of chip storage, sample dispensing, and detection. Another object of the present invention is to hold an amplification reaction primer in a minute volume space on a substrate without fixing it to a chip substrate by a special method.
According to the present invention, even in a chip based on the conventional enzymatic gene amplification technology, in which it was difficult to handle a plurality of primers on the same substrate, the primers were placed in a plurality of minute volume spaces previously constructed on the substrate. The first amplification reaction solution can be held, and a small amount of a sample can be supplied to a plurality of minute volumes at once. In other words, the sample solution is supplied to the detection end opening surface on the chip, and the sample solution is distributed and filled in a volume space above the detection end prepared in advance and layered, and then the excess sample solution on the chip surface is scraped off. Alternatively, the opening is covered with a pressure-sensitive adhesive sheet for PCR, a heat-sealing sheet, a silicon rubber sheet, or the like, in order to suppress the evaporation of the reaction solution, and then the amplification reaction is carried out.
When supplying the sample, the amplification reaction solution held in the minute space is in a gel or solid state, mixed with the amplification reaction solution containing other primers held in the nearby minute space, and contaminated. The specimen sample can be easily supplied by one operation without being performed. In addition, when performing an amplification reaction, the reaction solution becomes a liquid state, a normal amplification reaction is performed without any trouble, and there is no remarkable decrease in reaction efficiency seen in a chip having a primer immobilized on a carrier or the like. Further, also in the detection step after the completion of the amplification reaction, the reaction solution is effectively held in the minute space, there is no leakage or contamination of the reaction solution, and the detection operation can be performed with high operability.
[0018]
For detecting the gene duplex used in the present invention, a detection method based on an electrochemical reaction of the gene duplex binding compound, a detection method based on a fluorescence reaction of the gene duplex binding compound, or a gene A detection method based on the fluorescence reaction of a fluorescent compound incorporated into the gene double-stranded molecule during the enzymatic amplification reaction of the DNA can be used, but any method capable of discriminating the amount of the gene double-chain can be used. But it is available. For example, such a method includes a method of reading a difference in fluorescence intensity by a gene double-strand-binding compound such as ethidium bromide, Hoechst 33258, Cyber Green, and PicoGreen, so-called intercalator. In addition, a method of measuring the amount of a gene double chain using an electrochemically active indicator such as Hoechst 33258 or a ferrocene-based intercalator can also be used.
[0019]
When producing the chip of the present invention, the amplification reaction mixture containing quantitatively a primer complementary to the target gene and the like may be simply supplied to a small volume space for holding the reaction solution on the chip. In the chip of the present invention in which primers and the like are quantitatively dispersed and held, it is necessary to consider the immobilization efficiency of the gene fragment probe at the time of detection, such as a chip that performs detection by hybridization between the immobilized gene fragment and the target gene. And the analysis of the detection results is simple and many samples can be processed.
Since the chip of the present invention is originally a chip based on an enzymatic gene amplification reaction technique, unlike a chip based on a hybridization technique, there is no need to perform hybridization, so that a large amount of time is required for detection. It is an extremely quick and simple chip that does not require complicated setting of conditions associated with hybridization of a plurality of probes or secondary processing of detection results due to differences in efficiency.
[0020]
In the gene amplification reaction in the present invention, a PCR method, a LAMP (Loop-Meditated Isolation Amplification) method, an ICAN (Isothermal and Chimeric primer-initialized Amplification of Nucleic Acids) method using a primer which can be used with a primer for the purpose of using a primer for the purpose of using a nucleic acid can be used. Any amplification reaction can be used as long as it is an amplification technique that amplifies a gene by controlling the temperature.
[0021]
According to the present invention, which can avoid cross-contamination between reaction mixture solutions occurring at the time of sample dispensing work and detection measurement as described above, conventionally, a single detection type is generally based on an enzymatic amplification reaction technology of a gene. It is possible to make the array type that can simultaneously detect multiple chips, not only detection using primers based on the base sequence specific to the target gene, but also primers corresponding to multiple base sequences in the target gene. It can also be applied to detection of mutation sites and diversity detection by combination.
[0022]
【Example】
The present invention will be described more specifically with reference to the following Examples and Comparative Examples. However, the present invention is not limited to these examples.
Example 1
Twenty-five wells having a diameter of 2 mm and a depth of 4 mm were formed on a square polypropylene plate having a thickness of 5 mm and a side of 30 mm so that the distance between the centers was 3 mm.
Among the sense primers and antisense primers, three types of primers capable of amplifying the 16s ribosome gene sequence of each of the three bacterial species of Bacteroides fragilis, Bacteroides thetaiotaomicron and Peptostreptococcus asaccharolyticus can be distinguished from the three species by a combination. A total of 10 primers, 5 kinds of antisense primers, were used. These primers were added to the reaction solution of the following components in the combination shown in Table 1, and dispensed at 10 μL each in the arrangement shown in FIG. At the time of dispensing, after mixing and dissolving the components excluding Taq DNA polymerase and agarose, agarose was added.After confirming the dissolution of agarose at 98 ° C., the mixture was cooled to 45 ° C., and Taq DNA polymerase was added thereto and added to a predetermined well. Noted. Thereafter, the mixture was gelled and stored at 4 ° C. (chip A).
Reaction solution component 10 mM Tris-HCl-Buffer (pH 8.3)
50 mM KCl
1.5 mM MgCl 2
0.2 mM dNTP (dATP, dTTP, dGTP, dCTP)
0.2% agarose
(Amersham low melt agarose with a gelation temperature of 30 ° C)
0.25U / 10μL Taq DNA polymerase
0.2 μM sense primer 0.2 μM antisense primer
Figure 2004337064
Next, Bacteroides fragilis, Bacteroides thetaiotaomicron and Peptostreptococcus
Asaccharolyticus was anaerobically cultured, and 2 mL of the cultured bacterial cell suspension was centrifuged. After discarding the supernatant, 0.5 mL of sterilized water was added, resuspended, and heated at 95 ° C. for 5 minutes. This treatment liquid was centrifuged again, and the supernatant was used as a sample liquid.
This sample solution was dropped on chip A stored at 4 ° C., stretched with a rubber spatula so as to fill the gel upper portion in all wells, and the remaining droplets on the polypropylene plate were scraped off.
After performing PCR reaction for 30 cycles between 55 ° C. and 95 ° C., ethidium bromide solution was dropped on the upper part of the well, and fluorescence (15 minutes later, gel, UV 315 nm) was detected after a certain period of time.
Using the primer combination 1- (1) as a blank and 5--5 as a positive control, it was possible to detect and identify genetically related Bacteroides fragilis, Bacteroides thetaiotaomicron and Peptostreptococcus asacharolyticus from the combination of the fluorescence intensities.
[0023]
Example 2
In Example 1, ethidium bromide was used as Hoechst 33258, and a 40 × 40 mm, 0.03 mm-thick polystyrene thin plate was subjected to gold vapor deposition, and then cut into 1.5 mm-wide strip-shaped gold electrodes. A 0.1 mm silver electrode was inserted, and the electrode oxidation current of Hoechst 33258 in each well was measured using one of the gold electrodes as a working electrode, the other as a counter electrode, and the silver electrode as a reference electrode. Based on the primer combination 1- (1) well, the genetically related Bacteroides fragilis, Bacteroides thetaiotaomicron and Peptostreptococcus asacharolyticus could be detected and identified from the combination of the differences in the decrease in the amount of current.
[0024]
Comparative Example 1
The reaction was performed in the same manner as in Example 1 except that agarose was removed. The reaction solution in the well was mixed with the sample solution when the sample from the bacterial cell culture was filled in the well, and the composition of the amplification reaction solution in the well changed when excess liquid droplets on the chip were removed, resulting in detection. The results were not stable. In addition, the combination of detection was not stable due to contamination of primers between adjacent wells. Therefore, a fixed amount of a sample was individually supplied to each well using a micropipette, and a PCR reaction was performed. Although the presence of Bacteroides fragilis, Bacteroides thetaiotaomicron and Peptostreptococcus asaccharolyticus could be detected and confirmed, the batch supply of the sample solution was not possible, and it took 20 times as much time as the detection work according to Example 1 to detect. It was 5 times.
In addition, in the detection operation from the chip after the amplification reaction, mixing between adjacent wells often occurs due to inclination, vibration, etc., and it is necessary to redo the sample supply, the amplification reaction, and the detection operation. Attention was required and the operability was extremely low.
[0025]
Comparative Example 2
The agarose addition amount of Example 1 was set to 2%, and a general agarose having a gelation temperature of 48 ° C. was used. There is a difference in the melting time of the gel in the well, the PCR reaction is not stable due to the high viscosity after melting, the fluorescence intensity of the positive control is extremely low at the time of detection, the fluorescence intensity changes greatly from experiment to experiment, Alternatively, stable results could not be obtained, for example, the combination pattern of the fluorescence was significantly different from experiment to experiment.
[0026]
Comparative Example 3
Agarose having a concentration of 1.5% was used in the same manner as in Example 1 except that a general agarose having a gelling temperature of 48 ° C. was used, and the temperature for adding Taq-polymerase and the temperature for dispensing to a well were set to 50 ° C. Was added to perform a PCR reaction. The gelation temperature at this time was 46 ° C., and the gel strength at room temperature was 2000 g / cm 2. Thereafter, electrochemical detection was attempted in the same manner as in Example 2. However, the PCR reaction was insufficient, no clear difference in the amount of electricity was observed, and detection and identification could not be performed. In order to obtain an amount of amplification sufficient for detection, the reaction was performed with the number of PCR reactions being 50 cycles. However, the amplification considered to be a non-specific amplification reaction was about the same as the specific amplification, and the amount of electricity was similarly determined No significant difference was observed, and detection and identification could not be performed.
[0027]
【The invention's effect】
The degree of integration of a chip for gene detection based on an enzymatic gene amplification reaction is increased, and a highly rapid and inexpensive DNA chip that does not require a special gene immobilization method can be easily manufactured.
[Brief description of the drawings]
FIG. 1 is a layout diagram of wells of a chip for gene detection used in an example of the present invention.
[Description of Symbols] The combination numbers of the sense primer and the antisense primer shown in Table 1 included in the reaction mixture phase of each well are shown.

Claims (11)

検出すべき目的遺伝子に対して相補的な塩基配列を有するプライマーの存在下で被検遺伝子の酵素的増幅反応を行い、その増幅量の多寡によって目的遺伝子であるか否かを判定する遺伝子検出用チップにおいて、酵素的増幅反応を行う反応混合相が、温度によって液状、ゲル状、又は固体状に変化することを特徴とする遺伝子検出用チップ。Performs an enzymatic amplification reaction of a test gene in the presence of a primer having a base sequence complementary to the target gene to be detected, and detects the target gene based on the amount of amplification. A chip for gene detection, wherein a reaction mixture phase for performing an enzymatic amplification reaction changes into a liquid, gel, or solid state depending on temperature. 反応混合相が、被検遺伝子の酵素的増幅反応を行う40〜100℃の温度範囲で液状を呈する、請求項1記載の遺伝子検出用チップ。The gene detection chip according to claim 1, wherein the reaction mixture phase is in a liquid state in a temperature range of 40 to 100C at which the enzymatic amplification reaction of the test gene is performed. 反応混合相が、被検遺伝子の酵素的増幅反応を行った後、被検遺伝子の増幅量の多寡を定量する40℃よりも低い温度範囲で、ゲル状、又は固体状を呈する、請求項1に記載の遺伝子検出用チップ。The reaction mixture phase, after performing an enzymatic amplification reaction of the test gene, exhibits a gel or solid state in a temperature range lower than 40 ° C for quantifying the amount of amplification of the test gene. A chip for gene detection according to item 1. 反応混合相を、温度によって液状、ゲル状、又は固体状に変化させる成分として、低温溶融性アガロースを用いた、請求項1から3の何れかに記載の遺伝子検出用チップ。The gene detection chip according to any one of claims 1 to 3, wherein low-melting agarose is used as a component that changes the reaction mixture phase into a liquid, gel, or solid state depending on temperature. 反応混合相に含まれる低温溶融性アガロースが0.1から2wt%である、請求項4に記載の遺伝子検出用チップ。The gene detection chip according to claim 4, wherein the low-melting agarose contained in the reaction mixture phase is 0.1 to 2 wt%. 被検遺伝子の増幅量の多寡を検出する方法が、遺伝子二重鎖結合性化合物の電気化学的反応に基づく検出方法である、請求項1から5の何れかに記載の遺伝子検出用チップ。The gene detection chip according to any one of claims 1 to 5, wherein the method for detecting the amount of amplification of the test gene is a detection method based on an electrochemical reaction of a gene double-stranded binding compound. 被検遺伝子の増幅量の多寡を検出する方法が、遺伝子二重鎖結合性化合物の蛍光反応に基づく検出方法である、請求項1から5の何れかに記載の遺伝子検出用チップ。The gene detection chip according to any one of claims 1 to 5, wherein the method for detecting the amount of amplification of the test gene is a detection method based on a fluorescent reaction of a gene double-stranded binding compound. 被検遺伝子の増幅量の多寡を検出する方法が、遺伝子の酵素的増幅反応時に遺伝子二重鎖分子内に取り込まれる蛍光性化合物の蛍光反応に基づく検出方法である、請求項1から5の何れかに記載の遺伝子検出用チップ。The method according to any one of claims 1 to 5, wherein the method of detecting the amount of amplification of the test gene is a detection method based on a fluorescent reaction of a fluorescent compound incorporated into the double-stranded molecule of the gene during the enzymatic amplification reaction of the gene. A chip for detecting a gene according to 測定対象の目的遺伝子が、通性或いは偏性嫌気性の細菌のものである、請求項1から8の何れかに記載の遺伝子検出用チップ。The gene detection chip according to any one of claims 1 to 8, wherein the target gene to be measured is a facultative or obligate anaerobic bacterium. 遺伝子検出用チップの検出端開口面に被検遺伝子の試料溶液を一括して供給し、予め用意された該検出端空間に被検遺伝子の試料溶液を満した後、検出端部分以外の余分な被検遺伝子の試料溶液を除いて酵素的増幅反応を実施することができる、請求項1から9の何れかに記載の遺伝子検出用チップ。The sample solution of the test gene is supplied collectively to the detection end opening surface of the gene detection chip, and the sample solution of the test gene is filled in the detection end space prepared in advance. The gene detection chip according to any one of claims 1 to 9, wherein an enzymatic amplification reaction can be performed except for a sample solution of the test gene. 請求項1から10の何れかに記載の遺伝子検出用チップを用いた遺伝子検出方法。A gene detection method using the gene detection chip according to claim 1.
JP2003137319A 2003-05-15 2003-05-15 Chip for gene detection Pending JP2004337064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003137319A JP2004337064A (en) 2003-05-15 2003-05-15 Chip for gene detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003137319A JP2004337064A (en) 2003-05-15 2003-05-15 Chip for gene detection

Publications (1)

Publication Number Publication Date
JP2004337064A true JP2004337064A (en) 2004-12-02

Family

ID=33527010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003137319A Pending JP2004337064A (en) 2003-05-15 2003-05-15 Chip for gene detection

Country Status (1)

Country Link
JP (1) JP2004337064A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101275164B (en) * 2007-03-30 2011-01-26 株式会社日立制作所 Method and apparatus for sample preparation
WO2013080941A1 (en) * 2011-12-01 2013-06-06 三菱レイヨン株式会社 Base for use in amplification of nucleic acid, and nucleic acid amplification method
JP2013198443A (en) * 2012-03-26 2013-10-03 Toshiba Corp Multiple nucleic acid reaction tool, multiple nucleic acid reaction carrier, and multiple nucleic acid reaction method
CN111206081A (en) * 2018-11-21 2020-05-29 思纳福(北京)医疗科技有限公司 Nucleic acid detection microsphere, preparation method, kit and high-throughput nucleic acid detection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101275164B (en) * 2007-03-30 2011-01-26 株式会社日立制作所 Method and apparatus for sample preparation
WO2013080941A1 (en) * 2011-12-01 2013-06-06 三菱レイヨン株式会社 Base for use in amplification of nucleic acid, and nucleic acid amplification method
CN103975053A (en) * 2011-12-01 2014-08-06 三菱丽阳株式会社 Base for use in amplification of nucleic acid, and nucleic acid amplification method
JPWO2013080941A1 (en) * 2011-12-01 2015-04-27 三菱レイヨン株式会社 Nucleic acid amplification substrate and nucleic acid amplification method
JP2017018118A (en) * 2011-12-01 2017-01-26 三菱レイヨン株式会社 Nucleic acid amplification substrate and nucleic acid amplification method
JP2013198443A (en) * 2012-03-26 2013-10-03 Toshiba Corp Multiple nucleic acid reaction tool, multiple nucleic acid reaction carrier, and multiple nucleic acid reaction method
CN111206081A (en) * 2018-11-21 2020-05-29 思纳福(北京)医疗科技有限公司 Nucleic acid detection microsphere, preparation method, kit and high-throughput nucleic acid detection method
CN111206081B (en) * 2018-11-21 2023-06-30 思纳福(苏州)生命科技有限公司 Nucleic acid detection microsphere, preparation method, kit and high-throughput nucleic acid detection method

Similar Documents

Publication Publication Date Title
US8673595B2 (en) Sample analysis method and assay kit used therein
US9404155B2 (en) Alternative nucleic acid sequencing methods
JP6226887B2 (en) Multiplex digital PCR
JP4732450B2 (en) Method for stabilizing assay reagent, reagent container containing stabilized assay reagent and use thereof
US20110028340A1 (en) Polynucleotide analysis using combinatorial pcr
US20200385801A1 (en) Chemical field effect transistor sensor array systems and methods
JP6020164B2 (en) Nucleic acid detection method
AU2002241168A1 (en) Polynucleotide analysis using combinatorial PCR
JP2005505288A (en) Apparatus and method for detecting gene sequences
WO2017083199A1 (en) Multiplex on-array droplet pcr and quantitative pcr
JP2004337064A (en) Chip for gene detection
US20090275028A1 (en) Method of detecting target nucleic acid
EP1645639A2 (en) Multiple array substrates containing control probes
JP2010011791A (en) Method for detecting multiple nucleic acids
JP5532635B2 (en) Gene analysis method and gene analysis kit using nucleic acid-containing liposome
JP4556230B2 (en) Nucleic acid detection container
WO2003048727A2 (en) Identification of rearrangements in nucleic acid molecules
KR20230041808A (en) Methods for Loading Nucleic Acid Molecules on Solid Supports
JP2014060959A (en) Nucleic acid analysis method, and dna chip and assay kit for the method
JP2005333882A (en) Apparatus for detecting nucleic acid
Kharb Scientific Writing Techniques and Project Management in Biotechnology
JP2006189307A (en) Preservation method of dna microarray and kit for bioassay
JP2002000300A (en) Simple method for confirming base sequence

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071205