JP2004335461A - High pressure discharge lamp - Google Patents

High pressure discharge lamp Download PDF

Info

Publication number
JP2004335461A
JP2004335461A JP2004123075A JP2004123075A JP2004335461A JP 2004335461 A JP2004335461 A JP 2004335461A JP 2004123075 A JP2004123075 A JP 2004123075A JP 2004123075 A JP2004123075 A JP 2004123075A JP 2004335461 A JP2004335461 A JP 2004335461A
Authority
JP
Japan
Prior art keywords
arc tube
thermal stress
tube
discharge lamp
pressure discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004123075A
Other languages
Japanese (ja)
Other versions
JP4294535B2 (en
Inventor
Makoto Kai
誠 甲斐
Atsushi Uchiho
篤志 打保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004123075A priority Critical patent/JP4294535B2/en
Publication of JP2004335461A publication Critical patent/JP2004335461A/en
Application granted granted Critical
Publication of JP4294535B2 publication Critical patent/JP4294535B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To alleviate thermal stress generated in an arc tube under a condition of a high operation pressure of about several tens of atmospheric pressure and horizontal lighting. <P>SOLUTION: This high pressure discharge lamp has a supporting structure for supporting an arc tube 1 so as to restrain displacement toward the direction crossing the axial line at right angle. By a temperature change at the time of switching a lighting state to a light-out state, thermal stress is generated by a pair of thermal stress generating members 15, 16. This thermal stress acts as a force oriented downward in a perpendicular direction relative to side tubes 1b, 1c of the arc tube 1 of which the axial line L is arranged in a posture extending in a horizontal direction and as a force oriented outward relative to the arc tube 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は高圧放電ランプに関する。特に、本発明は高天井、店舗、街路などの照明に好適に使用される高圧放電ランプに関する。   The invention relates to a high-pressure discharge lamp. In particular, the present invention relates to a high-pressure discharge lamp suitably used for lighting high ceilings, stores, streets, and the like.

従来、高天井、店舗、街路などに使用される高圧放電ランプは、石英ガラスあるいはセラミック材料で作製された発光管、外管、及び外管内で発光管を支持する導電材料で作製されたワイヤーフレームを備えている(例えば、特許文献1参照)。この種の高圧放電ランプの発光管は、点灯中は非常に高温になるため、発光管に発生する熱応力を緩和することが発光管破損防止の重要なポイントとなる。特許文献1には、点灯中に発生する発光管の熱膨張による応力をワイヤーフレームの一端に設けたコイルに逃がす構造が開示されている。   Conventionally, high-pressure discharge lamps used for high ceilings, shops, streets, etc. are made of quartz glass or a ceramic tube, an outer tube, and a wire frame made of a conductive material that supports the arc tube in the outer tube. (For example, see Patent Document 1). Since the luminous tube of this type of high-pressure discharge lamp becomes extremely hot during operation, it is important to alleviate the thermal stress generated in the luminous tube to prevent damage to the luminous tube. Patent Document 1 discloses a structure in which stress caused by thermal expansion of an arc tube generated during lighting is released to a coil provided at one end of a wire frame.

また、同様に発光管破損防止を目的として、点灯中に発光管表面に発生する引張応力を緩和するために、あらかじめ発光管材料に圧縮応力を潜在させておく先行技術も存在する(例えば、特許文献2、及び特許文献3参照)。これらの技術は、あらかじめ潜在させた圧縮応力によって点灯中に発生する引張応力が相殺され、その結果ランプの破損が防止されるというものである。   Similarly, for the purpose of preventing the arc tube from being damaged, there is a prior art in which a compressive stress is previously made latent in the arc tube material in order to alleviate the tensile stress generated on the arc tube surface during lighting (for example, Patent Reference 2 and Patent Document 3). In these techniques, a tensile stress generated during operation is canceled by a compressive stress that is latent in advance, and as a result, damage to the lamp is prevented.

近時、高圧放電ランプに求められる点灯条件が変化している。大別すると、二つの条件がある。一つはこれら高圧放電ランプ、特にメタルハライドランプにおいて一層の高効率化が求められている中で、発光効率向上のため発光管内の動作圧を従来の数気圧(5〜9気圧程度)から10数気圧(10〜15気圧程度)へと増加させる必要が出てきたことである。動作圧を増加させるにはいくつかの方法が考えられる。例えば、発光管形状を小型化し、管壁負荷を増加させ、発光管温度を従来以上に上昇させ封入金属の蒸発を促進する方法が一般的である。もう一つは、ランプの点灯姿勢である。従来は垂直点灯での使用が比較的多かったが、照明器具のデザイン的な観点、特に省スペース化を実現させるために水平点灯での使用も増加してきている。   Recently, lighting conditions required for high-pressure discharge lamps have changed. Broadly, there are two conditions. One is that while these high-pressure discharge lamps, particularly metal halide lamps, are required to have higher efficiency, the operating pressure in the arc tube is increased from several atmospheric pressures (about 5 to 9 atmospheric pressures) to 10 or more in order to improve luminous efficiency. It is necessary to increase the pressure to the atmospheric pressure (about 10 to 15 atm). There are several ways to increase the operating pressure. For example, it is common to reduce the shape of the arc tube, increase the tube wall load, raise the arc tube temperature more than before, and promote the evaporation of the encapsulated metal. The other is the lighting posture of the lamp. Conventionally, use in vertical lighting has been relatively large, but use in horizontal lighting has also been increasing in order to realize a design viewpoint of lighting fixtures, particularly, space saving.

しかし、前記従来の技術はいずれも、数気圧の動作圧でかつ垂直点灯という条件下で、点灯中に発光管に発生する熱応力を緩和するものである。10数気圧程度の高動作圧かつ水平点灯という条件下で発光管に発生する熱応力に対する対策は提供されていない。   However, all of the above-mentioned conventional techniques reduce the thermal stress generated in the arc tube during lighting under the condition of operating pressure of several atmospheres and vertical lighting. No measures are provided for the thermal stress generated in the arc tube under the condition of high operating pressure of about 10 atm and horizontal lighting.

米国特許第6,326,721号U.S. Patent No. 6,326,721 特開平2−301957号公報JP-A-2-301957 特開昭60−225159号公報JP-A-60-225159

本発明は、高圧放電ランプの発光管に発生する熱応力を緩和することを課題とする。特に、本発明は、数十気圧程度の高動作圧かつ水平点灯という条件下で発光管に発生する熱応力を緩和し、それによって高圧放電ランプの破損を防止することを課題とする。   SUMMARY OF THE INVENTION It is an object of the present invention to alleviate thermal stress generated in an arc tube of a high-pressure discharge lamp. In particular, it is an object of the present invention to reduce thermal stress generated in an arc tube under conditions of high operating pressure of about several tens of atmospheres and horizontal lighting, thereby preventing damage to a high pressure discharge lamp.

本発明の第1の態様は、発光部と、この発光部内で互いに対向するように配置された一対の電極と、前記発光部の両端から前記電極を結ぶ軸線方向に延びる一対の側管部とを有する発光管と、少なくとも前記軸線と直交する方向への変位を規制するように前記発光管を支持する支持構造と、それぞれ基端側が前記支持構造で支持される一方、先端側が前記発光管の側管部に連結され、点灯状態から消灯状態への切り換え時の温度変化によって熱応力を発生し、この熱応力は前記軸線が水平方向に延びる姿勢に配置された前記発光管の前記側管部に対して鉛直方向下向き、かつ発光管に対して外向きの力として作用する一対の熱応力発生部材とを備える高圧放電ランプを提供する。   According to a first aspect of the present invention, there is provided a light emitting unit, a pair of electrodes arranged to face each other in the light emitting unit, and a pair of side tube portions extending in an axial direction connecting the electrodes from both ends of the light emitting unit. And a support structure that supports the arc tube so as to regulate at least displacement in a direction orthogonal to the axis, and a base end side of the arc tube is supported by the support structure, while a tip end of the arc tube is A thermal stress is generated by a temperature change at the time of switching from the on state to the off state, and the thermal stress is connected to the side tube part, and the thermal stress is generated by the side tube part of the arc tube arranged in a posture in which the axis extends in the horizontal direction. A high-pressure discharge lamp comprising a pair of thermal stress generating members that act vertically as a force on the arc tube and that acts outward on the arc tube.

10数気圧程度の高動作圧であって、かつ水平点灯という条件下では、点灯状態から消灯状態への切り換え時の温度変化により、発光部の鉛直方向上部に最大の熱応力が生じる。この熱応力の向きは引張である。熱応力発生部材の発生する熱応力は、発光管の側管部に対して鉛直方向下向き、かつ発光管に対して外向きの力として作用するので、最大の引張応力が作用する発光管の鉛直方向上部には圧縮応力が作用する。従って、熱応力発生部材を設けることにより点灯状態から消灯状態への切り換え時に発光管に作用する熱応力を緩和し、発光管のひび割れや破損を防止し、高圧放電ランプの長寿命化を図ることができる。   Under a high operating pressure of about 10 atm and a condition of horizontal lighting, a maximum thermal stress is generated in a vertically upper part of the light emitting unit due to a temperature change at the time of switching from a lighting state to a lighting state. The direction of this thermal stress is tensile. The thermal stress generated by the thermal stress generating member acts as a downward force on the side tube portion of the arc tube and an outward force on the arc tube, so that the vertical stress of the arc tube on which the maximum tensile stress acts is applied. A compressive stress acts on the upper part in the direction. Therefore, by providing a thermal stress generating member, the thermal stress acting on the arc tube at the time of switching from the lighting state to the extinguishing state is alleviated, cracking and breakage of the arc tube are prevented, and the life of the high pressure discharge lamp is extended. Can be.

具体的には、高圧放電ランプは、それぞれ前記側管部と前記熱応力発生部材の先端側を連結する一対の連結部材を備える。   Specifically, the high-pressure discharge lamp includes a pair of connecting members that connect the side tube portion and the distal end side of the thermal stress generating member.

さらに具体的には、前記連結部材は前記側管部の外周面を取り囲む環状部と、この環状部から前記側管部に対して離れる方向に延び、かつ前記熱応力発生部材の先端側が固定された固定部とを備える。環状部を側管部にかしめることで側管部に連結部材を固定してもよい。この場合、前記側管部の外周面には前記環状部が嵌め込まれる溝を形成してもよい。   More specifically, the connecting member has an annular portion surrounding the outer peripheral surface of the side tube portion, extends in a direction away from the annular portion with respect to the side tube portion, and a distal end side of the thermal stress generating member is fixed. Fixed part. The connecting member may be fixed to the side tube by caulking the annular portion to the side tube. In this case, a groove into which the annular portion is fitted may be formed on the outer peripheral surface of the side tube portion.

前記電極は前記軸線方向に延びて前記側管部を介して発光管の外部に突出し、前記支持構造が、前記電極を支持し、かつ点灯回路に電気的に接続するワイヤーフレームを備える場合、一対の熱応力発生部材の基端をワイヤーフレームから側管部に向けて延びる一対の支軸に固定してもよい。   In a case where the electrode extends in the axial direction and projects outside the arc tube through the side tube portion, and the support structure includes a wire frame that supports the electrode and is electrically connected to a lighting circuit, The base end of the thermal stress generating member may be fixed to a pair of support shafts extending from the wire frame toward the side tube portion.

熱応力発生部材は、バイメタルや所望の線膨張係数を有する単一の金属材料からなる。   The thermal stress generating member is made of a bimetal or a single metal material having a desired coefficient of linear expansion.

本発明は、発光管がセラミック材料からなる場合に好適に適用されるが、発光管は石英などの他の材料からなるものでもよい。   The present invention is suitably applied when the arc tube is made of a ceramic material, but the arc tube may be made of another material such as quartz.

発光部内に封入される発光物質の点灯時の圧力、すなわち動作圧が10MPa以上である場合に、本発明が好適に適用される。   The present invention is preferably applied when the pressure at the time of lighting of the light emitting substance sealed in the light emitting portion, that is, the operating pressure is 10 MPa or more.

高圧放電ランプは、発光管を囲む外管をさらに備えてもよい。   The high-pressure discharge lamp may further include an outer tube surrounding the arc tube.

本発明の第2の態様は、発光部を有する発光管と、点灯状態から消灯状態への切り換え時の温度変化によって熱応力を発生し、この熱応力が前記発光部の上部に圧縮応力を生じさせる熱応力発生部材とを備える高圧放電ランプを提供する。   According to a second aspect of the present invention, a thermal stress is generated by an arc tube having a light emitting portion and a temperature change at the time of switching from a lighting state to a light-off state, and the thermal stress generates a compressive stress at an upper portion of the light emitting portion. A high-pressure discharge lamp comprising:

本発明の高圧放電ランプでは、熱応力発生部材を設けることにより、特に10数気圧程度の高動作圧であって、かつ水平点灯という条件下における点灯状態から消灯状態への切り換え時に発光管に作用する熱応力を緩和し、発光管のひび割れや破損を防止し、高圧放電ランプの長寿命化を図ることができる。   In the high-pressure discharge lamp of the present invention, the provision of the thermal stress generating member allows the high-pressure discharge lamp to operate on the arc tube when switching from the on state to the off state under the condition of a high operating pressure, especially about 10 atm, and horizontal lighting. This can reduce thermal stress, prevent cracking or breakage of the arc tube, and extend the life of the high-pressure discharge lamp.

本発明者は、高動作圧で水平点灯という条件で高圧放電ランプを使用すると、点灯状態から消灯状態に切り換えた直後に発光管にひび割れなどの破損が生じやすいことを見い出し、さらに以下に詳述するようにこの破損を引き起こす熱応力を分析した。本発明はかかる分析で得られた新たな知見に基づくものである。ランプ始動時すなわち消灯状態から点灯状態への切り換え時の圧力及び温度上昇は封入金属の蒸発に追随するので十分緩やかである。しかし、高動作圧かつ水平点灯という条件下では、消灯直後ないしは点灯状態から消灯状態への切り換え時に急速な温度降下がある。   The present inventor has found that when a high-pressure discharge lamp is used under conditions of high operating pressure and horizontal lighting, cracks and the like are likely to occur in the arc tube immediately after switching from the lighting state to the off state, and further described in detail below. The thermal stress causing this failure was analyzed as follows. The present invention is based on new findings obtained by such analysis. The pressure and temperature rise at the time of starting the lamp, that is, at the time of switching from the extinguished state to the lit state, is sufficiently slow because it follows evaporation of the encapsulated metal. However, under the conditions of high operating pressure and horizontal lighting, there is a rapid temperature drop immediately after turning off or when switching from the lighting state to the lighting state.

図1は、高圧放電ランプの一種であるメタルハライドランプの発光管1の安定点灯中の温度分布を示す。発光管1はアルミナ(Al2O3)を主原料としたセラミック材料からなる。発光部1aの内部には水銀とハロゲン化金属を含む封入金属及びバッファガスとしての希ガスが封入されている。動作圧は10〜15Paである。また、発光管1はその内部に配置された一対の電極2A,2Bを結ぶ仮想直線ないしは軸線Lが略水平方向に延びる点灯姿勢(水平点灯)をとっている。発光管1は水平方向に延びる軸線Lの方向には熱膨張できるが、軸線Lと直交する方向(鉛直方向を含む)の変位は規制されるように支持されている。   FIG. 1 shows a temperature distribution during stable lighting of an arc tube 1 of a metal halide lamp, which is a kind of high-pressure discharge lamp. The arc tube 1 is made of a ceramic material whose main material is alumina (Al2O3). A sealed metal containing mercury and a metal halide and a rare gas as a buffer gas are sealed inside the light emitting portion 1a. The operating pressure is 10-15 Pa. Further, the arc tube 1 has a lighting posture (horizontal lighting) in which a virtual straight line or axis L connecting the pair of electrodes 2A and 2B disposed inside extends substantially in the horizontal direction. The arc tube 1 can thermally expand in the direction of the axis L extending in the horizontal direction, but is supported such that displacement in the direction perpendicular to the axis L (including the vertical direction) is restricted.

図1において、等温線Tで仕切られた各領域に付されたドットの密度が高い程、その領域が高温であることを示している。供給される電力の一部が熱エネルギーとして消費されることにより、発光部1aの内部は1,100℃近い高温に加熱される。また、点灯姿勢が水平であるために、発光管1の上部と下部とでは100℃近い温度差が生じる。具体的には、点t1で示す発光管1の内壁面上部における温度は約1070℃であるのに対して、発光部1aの内壁面下部における温度は約930℃である。発光部1a内の温度差は、発光部1a内に多量の封入金属が充填されることによる高温高圧状態での対流現象の結果として生じている。従って、発光部1a内の点灯時の圧力が高いほど温度差が大きくなる。   In FIG. 1, the higher the density of dots assigned to each area partitioned by the isotherm T, the higher the area is. As a part of the supplied electric power is consumed as heat energy, the inside of the light emitting unit 1a is heated to a high temperature of about 1,100 ° C. Further, since the lighting posture is horizontal, a temperature difference of about 100 ° C. occurs between the upper part and the lower part of the arc tube 1. Specifically, the temperature at the upper part of the inner wall surface of the arc tube 1 indicated by the point t1 is about 1070 ° C., while the temperature at the lower part of the inner wall surface of the light emitting part 1a is about 930 ° C. The temperature difference in the light emitting portion 1a is generated as a result of a convection phenomenon in a high-temperature and high-pressure state due to a large amount of metal being filled in the light emitting portion 1a. Therefore, the higher the pressure at the time of lighting in the light emitting section 1a, the greater the temperature difference.

図2は、このような高温高圧状態で点灯している発光部1aにおいて消灯時に発生する各部応力を、有限要素法を利用してシミュレーションした計算結果を示す。具体的には、図2は、図1に示した温度分布が実際の消灯直後の温度下降推移の実測値を模擬した条件に沿って変化し、室温に戻った状態における発光管1の各部に発生している熱応力の分布を示している。図2において、等応力線Pで仕切られた各領域に付されたドットの密度が高い程、熱応力が大きいことを示している。図2から明らかなように、発光管1の各部の中で最も強い引張応力が発生する部分は内壁面上部である。内壁面最上部の点p1では引張応力が最大(111MPa)であり、下部に移るに従って引張応力の値は減少する。例えば、内壁面中央部の点p2の引張応力は30MPaである。また、内壁の下部側では圧縮応力が生じている。例えば、内壁面最下部の点p3では−40MPaの圧縮応力が生じている。図3において矢印M1,M2で示すように、引張応力は側管部1b,1c方向(軸線Lの方向)に発生している。これは、実際のランプ強度試験において発光管が破損する部位と対応している。   FIG. 2 shows a calculation result obtained by simulating, using the finite element method, various stresses generated in the light emitting section 1a which is turned on in such a high temperature and high pressure state when the light is turned off. Specifically, FIG. 2 shows that the temperature distribution shown in FIG. 1 changes according to the condition simulating the actual measured value of the temperature decrease immediately after the light is actually turned off, and the respective parts of the arc tube 1 return to room temperature. The distribution of the generated thermal stress is shown. In FIG. 2, it is shown that the higher the density of the dots assigned to each area partitioned by the equal stress line P, the higher the thermal stress. As is clear from FIG. 2, the part where the strongest tensile stress occurs in each part of the arc tube 1 is the upper part of the inner wall surface. At the point p1 at the uppermost portion of the inner wall surface, the tensile stress is the maximum (111 MPa), and the value of the tensile stress decreases as moving to the lower portion. For example, the tensile stress at point p2 at the center of the inner wall surface is 30 MPa. Also, a compressive stress is generated on the lower side of the inner wall. For example, a compressive stress of −40 MPa is generated at a point p3 at the lowermost portion of the inner wall surface. As shown by arrows M1 and M2 in FIG. 3, tensile stress is generated in the direction of the side pipes 1b and 1c (the direction of the axis L). This corresponds to a part where the arc tube is broken in an actual lamp strength test.

以上のように、高動作圧かつ水平点灯という条件で高圧放電ランプを使用すると、点灯状態から消灯状態への切り換え時に発光管の上部に引張方向の大きな熱応力が生じ、この熱応力が発光管の破損を引き起こすことが分かった。   As described above, when a high-pressure discharge lamp is used under the conditions of high operating pressure and horizontal lighting, a large thermal stress in the tensile direction occurs at the upper part of the arc tube when switching from the lighting state to the extinguishing state, and this thermal stress is Was found to cause damage.

次に、添付図面を参照して本発明の実施形態を説明する。図3は、本発明の実施形態に係る高圧放電ランプであるメタルハライドランプを示す。発光管1は、細長い中空管状の発光部1aと、発光部1aの両端から延在した一対の側管部1b,1cと、先端を発光部1aの内部に先端を露出させた一対の電極2A,2Bとを有する。側管部1b,1cは電極2A,2Bを結ぶ仮想直線ないしは軸線Lに沿って延びている。本実施形態では、発光部1a及び側管部1b,1cはアルミナ(Al2O3)を主原料としたセラミック材料で構成される。電極2A,2Bの基端は側管部1b,1cの細管部1dを貫通して発光管1外部に導出されている。発光管1を囲むように外管21が設けられている。   Next, an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 3 shows a metal halide lamp which is a high-pressure discharge lamp according to an embodiment of the present invention. The light emitting tube 1 has an elongated hollow tubular light emitting portion 1a, a pair of side tube portions 1b and 1c extending from both ends of the light emitting portion 1a, and a pair of electrodes 2A whose tips are exposed inside the light emitting portion 1a. , 2B. The side tubes 1b and 1c extend along a virtual straight line or axis L connecting the electrodes 2A and 2B. In the present embodiment, the light emitting portion 1a and the side tube portions 1b and 1c are made of a ceramic material whose main raw material is alumina (Al2O3). The base ends of the electrodes 2A, 2B pass through the thin tube portion 1d of the side tube portions 1b, 1c and are led out of the arc tube 1. An outer tube 21 is provided so as to surround the arc tube 1.

電気的接続構造を説明すると、図において右側の電極2Aの基端は支持部材3に接続され、左側の電極2Bの基端は可変形部材4に接続されている。さらに支持部材3はワイヤーフレーム5に接続され、可変形部材4はワイヤーフレーム6に接続されている。ワイヤーフレーム5,6は口金7を介して図示しない外部点灯回路に接続されている。   Describing the electrical connection structure, the base of the right electrode 2A is connected to the support member 3 and the base of the left electrode 2B is connected to the deformable member 4 in the figure. Further, the support member 3 is connected to a wire frame 5, and the deformable member 4 is connected to a wire frame 6. The wire frames 5 and 6 are connected via a base 7 to an external lighting circuit (not shown).

発光部1a内部には発光材料である水銀、ハロゲン化金属などの封入金属ならびにバッファガスとしての希ガスなどが封入されている。点灯中の発光部1a内の圧力すなわち動作圧は、10〜15MPaである。また、点灯姿勢は水平である。詳細には、このメタルハライドランプは一対の電極2A,2Bを結ぶ軸線Lが略水平方向となるような点灯姿勢をとっている。   The light-emitting portion 1a is filled with a light-emitting material such as mercury or a metal halide such as a metal halide and a rare gas as a buffer gas. The pressure in the light emitting section 1a during lighting, that is, the operating pressure is 10 to 15 MPa. The lighting posture is horizontal. Specifically, the metal halide lamp has a lighting posture such that an axis L connecting the pair of electrodes 2A and 2B is substantially horizontal.

次に、発光管1の支持構造について説明する。一方のワイヤーフレーム5は口金7から発光管1の下側を通って水平方向に延び、その先端は外管21のくぼみ部21aに固定されている。他方のワイヤーフレーム6は口金7から水平方向に延び、その先端は発光管1の側管部1c付近に位置している。また、ワイヤーフレーム6の先端は発光管1よりも上方に位置している。右側の電極2Aの基端側がワイヤーフレーム5で機械的に支持され、左側の電極2Bの基端側がワイヤーフレーム6で機械的に支持されている。   Next, a support structure of the arc tube 1 will be described. One of the wire frames 5 extends horizontally from the base 7 through the lower side of the arc tube 1, and the tip thereof is fixed to a concave portion 21 a of the outer tube 21. The other wire frame 6 extends in the horizontal direction from the base 7, and its tip is located near the side tube portion 1 c of the arc tube 1. The tip of the wire frame 6 is located above the arc tube 1. The proximal end of the right electrode 2A is mechanically supported by the wire frame 5, and the proximal end of the left electrode 2B is mechanically supported by the wire frame 6.

一般に、ランプ安定点灯時は冷間時に比較して発光管1は熱膨張により膨張している。この発光管1の熱膨張は水平方向(軸線Lの方向)で最も大きい。発光管1はこの点灯中の熱膨張により発光管1に生じる応力を緩和するよう支持されている。まず、図において左側の電極2Bの基端側に対応して、それぞれ鉛直方向に延びる可変形部材4及び支持部材8を設けている。可変形部材4は導電性材料からなる撚り線のように、導電性を有しかつ比較的自由に変形する材料からなる。可変形部材4は上端が連結点21でワイヤーフレーム6に溶接され、下端が連結点22で電極2Bの基端側に溶接されている。支軸部材8は、上端が連結点17でワイヤーフレーム6に溶接され、下端にリング状部8aを備えている。電極2Bの基端側はリング状部8aに挿通されているが、リング状部8aに対して固定はされていない。一方、図において右側の電極2Aの基端側に対応して、鉛直方向に延びる支持部材3が設けられている。支持部材3は下端側が連結点20でワイヤーフレーム5に溶接されている。電極2Aの基端側は連結点10で支持部材3に溶接されている。左側の電極2Bがリング状部8aに挿通され、かつ可変形部材4が変形可能であるので、電極2Bは軸線Lの方向に変位できる。しかし、電極2Bの水平方向と直交する方向(鉛直方向を含む)の変位はリング状部8aにより規制される。一方、右側の電極2Aは支持部材3に固定されているので、軸線Lの方向及びそれと直交する方向の変位が規制される。よって、発光管1は軸線Lに沿って水平方向に膨張することができ、この膨張により発生する応力が緩和されるが、水平方向と直交する方向への変位は規制される。   In general, when the lamp is stably turned on, the arc tube 1 expands due to thermal expansion compared to when the lamp is cold. The thermal expansion of the arc tube 1 is greatest in the horizontal direction (the direction of the axis L). The arc tube 1 is supported so as to relieve stress generated in the arc tube 1 due to thermal expansion during lighting. First, a deformable member 4 and a support member 8 extending in the vertical direction are provided corresponding to the base end side of the left electrode 2B in the figure. The deformable member 4 is made of a material having conductivity and deforming relatively freely, such as a stranded wire made of a conductive material. The upper end of the deformable member 4 is welded to the wire frame 6 at the connection point 21, and the lower end is welded to the base end side of the electrode 2 </ b> B at the connection point 22. The support member 8 has an upper end welded to the wire frame 6 at a connection point 17 and has a ring-shaped portion 8a at a lower end. The base end of the electrode 2B is inserted into the ring-shaped portion 8a, but is not fixed to the ring-shaped portion 8a. On the other hand, a support member 3 extending in the vertical direction is provided corresponding to the base end side of the right electrode 2A in the figure. The lower end of the support member 3 is welded to the wire frame 5 at the connection point 20. The base end of the electrode 2A is welded to the support member 3 at a connection point 10. Since the left electrode 2B is inserted into the ring-shaped portion 8a and the deformable member 4 is deformable, the electrode 2B can be displaced in the direction of the axis L. However, the displacement of the electrode 2B in the direction orthogonal to the horizontal direction (including the vertical direction) is restricted by the ring-shaped portion 8a. On the other hand, since the right electrode 2A is fixed to the support member 3, the displacement in the direction of the axis L and the direction orthogonal thereto is restricted. Therefore, the arc tube 1 can expand in the horizontal direction along the axis L, and the stress generated by the expansion is reduced, but the displacement in the direction orthogonal to the horizontal direction is restricted.

発光管1を梁とみなすと、図6に示すように右側の端部は支持部材3に固定された固定端であり、左側の端部はリング状部8aにより軸線と直交する方向の変位のみが規制された回転端である。   Assuming that the arc tube 1 is a beam, the right end is a fixed end fixed to the support member 3 as shown in FIG. 6, and the left end is only displaced in the direction perpendicular to the axis by the ring-shaped portion 8a. Is a regulated rotating end.

次に、前述の消灯時に発光管1に発生する熱応力を緩和するための構造について図3から図5を参照して説明する。   Next, a structure for alleviating the thermal stress generated in the arc tube 1 at the time of turning off the light will be described with reference to FIGS.

それぞれ鉛直方向上向に延びる支持軸11,12がワイヤーフレーム5に連結されている。支持軸11は図において右側の側管部1bの下側に配置されており、下端が連結点20でワイヤーフレーム5に溶接され、上端が側管部1bに対して間隔をあけて対向している。一方、支持軸12は図において左側の側管部1cの下側に配置されており、下端が連結点19でワイヤーフレーム5に溶接され、上端が側管部1cに対して間隔をあけて対向している。   Support shafts 11 and 12 extending vertically upward are connected to the wire frame 5. The support shaft 11 is arranged below the right side tube portion 1b in the drawing, and the lower end is welded to the wire frame 5 at the connection point 20 and the upper end faces the side tube portion 1b with a space therebetween. I have. On the other hand, the support shaft 12 is disposed below the left side tube portion 1c in the figure, the lower end is welded to the wire frame 5 at the connection point 19, and the upper end faces the side tube portion 1c with a space therebetween. are doing.

側管部1b,1cには、それぞれ止め具ないしは連結部材13,14が取り付けられている。図4を参照すると、連結部材14はバンド状の金属板を成形してなり、側管部1cの外周面に巻き付けて装着した環状部14aと、この環状部14aから下向きに延びる固定部14bとを備えている。環状部14aは側管部1cに対して斜めに巻き付けられており、環状部14aの側管部1cの上部に対する接触位置14cは、環状部14aの側管部1cの下部に対する接触位置14dよりも内側、すなわち発光部1a側に位置している。環状部14aは側管部1cに対して容易にずれないように装着されており、接触位置14d,14cは動かない。連結部材13の材質、形状、及び側管部1bに対する取り付け姿勢は連結部14と同様である。   Stoppers or connecting members 13 and 14 are attached to the side tube portions 1b and 1c, respectively. Referring to FIG. 4, the connecting member 14 is formed by molding a band-shaped metal plate, and has an annular portion 14 a wound around the outer peripheral surface of the side tube portion 1 c and mounted, and a fixed portion 14 b extending downward from the annular portion 14 a. It has. The annular portion 14a is obliquely wound around the side tube portion 1c, and the contact position 14c of the annular portion 14a with the upper portion of the side tube portion 1c is larger than the contact position 14d of the annular portion 14a with the lower portion of the side tube portion 1c. It is located inside, that is, on the light emitting unit 1a side. The annular portion 14a is mounted so as not to be easily shifted with respect to the side tube portion 1c, and the contact positions 14d and 14c do not move. The material and shape of the connecting member 13 and the mounting posture with respect to the side tube portion 1b are the same as those of the connecting portion 14.

支持軸11,12と連結部材13,14は熱応力発生部材としてのバイメタル15,16により連結されている。図5を参照すると、バイメタル16は基端側が支持軸12に溶接され、先端側が連結部材14の固定部14bに溶接されている。バイメタル16は、熱膨張率の高い合金材料からなる板材(高熱膨張板材31)と熱膨張率の低い合金材料からなる板材(低熱膨張板材32)とを貼り合わせたものであり熱変形効果を有する。すなわち、温度が上昇すると高熱膨張板材31が低熱膨張板材32よりも大きく変形することにより、低熱膨張部材32側に湾曲する。本実施形態では、低熱膨張板材32が高熱膨張部材31よりも鉛直方向上方、すなわち発光管1側に位置するようにバイメタル16を配置している。また、安定点灯中の発光管1からの放射熱によって図5において実線Aで示すように低熱膨張部材32側に湾曲するように、高熱膨張板材31と低熱膨張部材32の材質、形状、及び寸法を選択し、かつ支持軸12及び連結部材14に対して固定している。支持軸11と連結部材13を連結するバイメタル15の構造及び取付姿勢もバイメタル16と同様である。   The support shafts 11 and 12 and the connecting members 13 and 14 are connected by bimetals 15 and 16 as thermal stress generating members. Referring to FIG. 5, the bimetal 16 has a base end welded to the support shaft 12 and a distal end welded to the fixing portion 14 b of the connecting member 14. The bimetal 16 is obtained by laminating a plate made of an alloy material having a high coefficient of thermal expansion (high thermal expansion plate 31) and a plate made of an alloy material having a low coefficient of thermal expansion (low thermal expansion plate 32), and has a thermal deformation effect. . That is, when the temperature rises, the high thermal expansion plate 31 deforms more than the low thermal expansion plate 32, so that the high thermal expansion plate 31 bends toward the low thermal expansion member 32 side. In the present embodiment, the bimetal 16 is arranged so that the low thermal expansion plate 32 is positioned vertically above the high thermal expansion member 31, that is, on the arc tube 1 side. The material, shape, and dimensions of the high thermal expansion plate member 31 and the low thermal expansion member 32 are such that the radiant heat from the arc tube 1 during stable lighting curves toward the low thermal expansion member 32 as shown by a solid line A in FIG. And fixed to the support shaft 12 and the connecting member 14. The structure and mounting posture of the bimetal 15 that connects the support shaft 11 and the connecting member 13 are the same as those of the bimetal 16.

本実施形態のメタルハライドランプは、点灯動作圧が高圧(10〜15MPa)で、かつ点灯姿勢は水平であるので、図1及び図2を参照して説明したように、点灯状態から消灯状態への切り換え時に発光管1aの上部に引張方向の大きな熱応力が生じる。この熱応力は図6において点線で概略的に示すように、発光部1aを鉛直方向上向に突出する弓なり状に変形させようとする変形力として発光管1に作用する。   Since the lighting operation pressure of the metal halide lamp of the present embodiment is high (10 to 15 MPa) and the lighting posture is horizontal, as described with reference to FIG. 1 and FIG. At the time of switching, a large thermal stress occurs in the upper part of the arc tube 1a in the tensile direction. This thermal stress acts on the arc tube 1 as a deforming force for deforming the light emitting portion 1a into a bow shape protruding vertically upward, as schematically indicated by a dotted line in FIG.

一方、メタルハライドランプの消灯直後は発光管1からの放射熱が急減に減少して温度が低下するので、バイメタル15,16の高熱膨張板材32が急速に縮み始める。図5を再度参照すると、仮にバイメタル16が連結部材14に溶接されていないならば、温度低下によりバイメタル16は点線Bで示す直線形状に急速に変形する。しかし、実際にはバイメタル16の両端は支持軸12と連結部材14に溶接されることで変位が拘束されているので、バイメタル16は実線Aで示す形状からほとんど変化せず、熱応力が生じる。このバイメタル16に生じた熱応力は、連結部材14を介して発光管1の側管部1cに対して矢印Yで示す力として作用する。図3を併せて参照すると、前述した消灯直後の温度低下によりバイメタル15にも熱応力が生じ、この熱応力は連結部材13を介して発光管1の側管部1bに対して矢印Xで示す力として作用する。これらバイメタル15,16に生じる熱応力により側管部1b,1cに作用する力X,Yの向きは、斜め下向き、詳細には側管部1b,1cに対して鉛直方向下向き、かつ側管部1b,1cに対して外向き(発光部1aから離れる向き)である。従って、図6において一点鎖線で概略的に示すように、これらの力X,Yは発光部1aを鉛直方向下向きに突出する弓なり状に変形させようとする変形力として発光管1に作用し、発光管1の内壁面の上部に圧縮応力を生じさせる。換言すれば、力X,Yは、点灯状態から消灯状態への切り換え時に発光管1に生じる熱応力による発光管1の変形(図6の点線)とは逆向きの変形を発光管1に生じさせる。従って、連結部材13,14を介してバイメタル15,16から発光管1に作用する力X,Yにより、発光管1の消灯直後に発光部1aの内壁面に発生する引張方向の熱応力、特に発光部1aの内壁面最上部(図2の位置t1参照)の熱応力が効果的に緩和される。   On the other hand, immediately after the metal halide lamp is turned off, the radiant heat from the arc tube 1 rapidly decreases and the temperature decreases, so that the high thermal expansion plate 32 of the bimetals 15 and 16 starts to shrink rapidly. Referring again to FIG. 5, if the bimetal 16 is not welded to the connecting member 14, the bimetal 16 rapidly deforms to a linear shape indicated by a dotted line B due to a decrease in temperature. However, in practice, both ends of the bimetal 16 are welded to the support shaft 12 and the connecting member 14 so that the displacement is restrained. Therefore, the bimetal 16 hardly changes from the shape indicated by the solid line A, and a thermal stress is generated. The thermal stress generated in the bimetal 16 acts on the side tube portion 1c of the arc tube 1 via the connecting member 14 as a force indicated by an arrow Y. Referring also to FIG. 3, thermal stress also occurs in the bimetal 15 due to the above-described temperature drop immediately after the light is turned off, and this thermal stress is indicated by an arrow X with respect to the side tube portion 1 b of the arc tube 1 via the connecting member 13. Acts as a force. The directions of the forces X and Y acting on the side tube portions 1b and 1c due to the thermal stress generated in the bimetals 15 and 16 are obliquely downward, more specifically, vertically downward with respect to the side tube portions 1b and 1c, and the side tube portions. 1b, 1c is outward (direction away from the light emitting unit 1a). Therefore, as schematically shown by a dashed line in FIG. 6, these forces X and Y act on the arc tube 1 as a deformation force for deforming the light emitting portion 1a into a bow shape protruding vertically downward, A compressive stress is generated on the upper part of the inner wall surface of the arc tube 1. In other words, the forces X and Y cause the arc tube 1 to deform in the opposite direction to the deformation (dotted line in FIG. 6) of the arc tube 1 due to the thermal stress generated in the arc tube 1 when switching from the on state to the off state. Let it. Therefore, due to the forces X and Y acting on the arc tube 1 from the bimetals 15 and 16 via the connecting members 13 and 14, thermal stress in the tensile direction generated on the inner wall surface of the light emitting portion 1a immediately after the arc tube 1 is turned off, especially Thermal stress at the uppermost portion of the inner wall surface of the light emitting portion 1a (see position t1 in FIG. 2) is effectively reduced.

図7A,7Bは連結部材の他の例を示す。連結部材13の環状部13aは側管部1bにかしめてあり、環状部13aの内面全体が連結部材13の外周面に密着している。また、固定部13bの下端を折り返し、折り返した部分をバイメタル15の上面に溶接している。環状部13aを側管部1bにかしめることで連結部材13が側管部1bに対して強固に固定されているので、消灯時にバイメタル15に発生する熱応力が連結部材13を介して確実に発光管1に伝播する。他方の連結部材14(図3参照)を同様の構造にしてもよい。   7A and 7B show another example of the connecting member. The annular portion 13a of the connecting member 13 is caulked to the side tube portion 1b, and the entire inner surface of the annular portion 13a is in close contact with the outer peripheral surface of the connecting member 13. The lower end of the fixing portion 13b is folded back, and the folded portion is welded to the upper surface of the bimetal 15. Since the connecting member 13 is firmly fixed to the side tube portion 1b by caulking the annular portion 13a to the side tube portion 1b, the thermal stress generated in the bimetal 15 at the time of turning off the light is reliably transmitted through the connecting member 13. The light propagates to the arc tube 1. The other connecting member 14 (see FIG. 3) may have a similar structure.

図8A,8Bは連結部材のさらに他の例を示す。側管部1bの外周面には環状の溝1dが形成されており、この溝1dに連結部材13の環状部13aが嵌め込まれている。環状部13aは側管部1bにかしめてある。環状部13aを溝1dに嵌め込むことにより、側管部1bに対する環状部13aの軸線L方向の位置がずれるのをより確実に防止できるので、バイメタル15の熱応力がより確実に発光管1に伝播する。他方の連結部材14(図3参照)を同様の構造にしてもよい。   8A and 8B show still another example of the connecting member. An annular groove 1d is formed on the outer peripheral surface of the side tube portion 1b, and the annular portion 13a of the connecting member 13 is fitted into the groove 1d. The annular portion 13a is caulked to the side tube portion 1b. By fitting the annular portion 13a into the groove 1d, the position of the annular portion 13a in the direction of the axis L with respect to the side tube portion 1b can be more reliably prevented from shifting, so that the thermal stress of the bimetal 15 can be more reliably applied to the arc tube 1. Propagate. The other connecting member 14 (see FIG. 3) may have a similar structure.

前記構成による発光部1aの鉛直方向上部の引張応力の緩和は、発光部1a内が高圧になるほど効果的に作用する。特に、発光部1aの点灯時の内圧が10MPa(約10気圧)以上の場合に効果的である。点灯時に発光部1aが10MPa以上になる封入物としては、PrI3,CsI,NaIの混合物を発光部1a内に封入すればよい。   The relaxation of the tensile stress in the vertically upper part of the light emitting unit 1a by the above-described structure works more effectively as the pressure inside the light emitting unit 1a becomes higher. In particular, it is effective when the internal pressure at the time of lighting of the light emitting section 1a is 10 MPa (about 10 atm) or more. As a filling material in which the light emitting portion 1a becomes 10 MPa or more during lighting, a mixture of PrI3, CsI, and NaI may be sealed in the light emitting portion 1a.

前記構成による発光部1aの引張応力の緩和の効果を充分に発揮するために、いくつか設計上の考慮に入れておくべきポイントがある。一つ目は、ワイヤーフレーム5,6、支持部材3,8、及び支持軸11,12の強度である。バイメタル15,16の発生する熱応力を発光部1aの引張方向の熱応力を緩和する力X,Yとして有効に作用させるためには、その周辺のワイヤーフレーム5,6、支持部材3,8、及び支持軸11,12は容易に変形しない材料、形状、及び寸法とする必要がある。導電性の金属材料としてステンレス鋼を使用する場合には、直径は0.5mm以上が望ましい。同様に、連結点10,17〜20も支持のための部材群が容易にぶれないよう強固な溶接が必要となるのは言うまでもない。   In order to sufficiently exhibit the effect of relaxing the tensile stress of the light emitting portion 1a by the above configuration, there are some points to be considered in design. The first is the strength of the wire frames 5 and 6, the support members 3 and 8, and the support shafts 11 and 12. In order to effectively use the thermal stress generated by the bimetals 15 and 16 as the forces X and Y for relaxing the thermal stress in the tensile direction of the light emitting portion 1a, the surrounding wire frames 5, 6 and the supporting members 3, 8, In addition, the support shafts 11 and 12 need to be made of a material, a shape, and a dimension that do not easily deform. When stainless steel is used as the conductive metal material, the diameter is desirably 0.5 mm or more. Similarly, it is needless to say that the connection points 10, 17 to 20 also need to be firmly welded so that the supporting member group is not easily displaced.

二つ目はバイメタル15,16の冷却速度である。発光管1を構成するアルミナや石英は、支持軸11,12やバイメタル15,16などを構成する金属材料と比較して比熱は高く、熱伝導率は低い。従って、発光管1を点灯状態から消灯状態に切り換えた時の冷却速度は、バイメタル15,16のほうが発光管1よりも充分速い。しかし、より万全を期すための方策として、支持軸11,12に冷却フィンのような表面積を増加させる構造を設けて支持軸11,12からの放熱を促進し、それによって消灯直後のバイメタル13,14の冷却速度を速めてもよい。   The second is a cooling rate of the bimetals 15 and 16. Alumina and quartz constituting the arc tube 1 have higher specific heat and lower thermal conductivity than metal materials constituting the support shafts 11 and 12 and the bimetals 15 and 16. Therefore, the bimetals 15 and 16 have a sufficiently higher cooling rate when the arc tube 1 is switched from the on state to the off state. However, as a measure for more thoroughness, a structure for increasing the surface area, such as cooling fins, is provided on the support shafts 11 and 12 to promote heat radiation from the support shafts 11 and 12, and thereby the bimetals 13 and 12 immediately after the lights are turned off. The cooling rate of 14 may be increased.

また、前記実施形態はバイメタル装着専用の支持軸11,12を備えるが、ランプ内のスペースが充分得られない場合などは、発光管1の支持部材3、8でバイメタル15,16を支持してもよい。   In the above-described embodiment, the supporting shafts 11 and 12 are provided exclusively for mounting the bimetal. However, when sufficient space in the lamp cannot be obtained, the bimetals 15 and 16 are supported by the supporting members 3 and 8 of the arc tube 1. Is also good.

さらに、前記実施形態においては、温度変化に応じて熱応力を発生する熱応力発生部材としてバイメタルを採用しているが、発光管の形状や、発光管に付与する必要がある圧縮応力の大きさや方向によっては、熱応力発生部材を所要の膨張係数の単一の金属材料で構成してもよい。すなわち、熱応力発生部材は、発光部1aの温度変化に応じて熱応力を発生し、その熱応力が発光部1aに発生する熱応力を緩和する方向の力として作用するものであればよい。   Furthermore, in the above-described embodiment, a bimetal is employed as a thermal stress generating member that generates thermal stress in accordance with a change in temperature, but the shape of the arc tube, the magnitude of the compressive stress that needs to be applied to the arc tube, and the like. Depending on the direction, the thermal stress generating member may be made of a single metal material having a required expansion coefficient. That is, the thermal stress generating member may be any member that generates a thermal stress in accordance with the temperature change of the light emitting portion 1a and acts as a force in a direction in which the thermal stress reduces the thermal stress generated in the light emitting portion 1a.

さらにまた、前記実施形態では発光管1材料としてセラミック材料を用いているが、石英ガラスなど一般的な他の発光管1の材料を用いた場合にも本発明を適用可能であることは言うまでもない。ただし、一般に膨張係数の大きいセラミックスを発光管1に使用した場合にはひび割れ等の破損が生じる可能性が比較的高いので、本発明は発光管1の材料がセラミックである場合に好適に適用される。   Furthermore, in the above-described embodiment, a ceramic material is used as the material of the arc tube 1. However, it is needless to say that the present invention can be applied to a case where another general material of the arc tube 1 such as quartz glass is used. . However, in general, when a ceramic having a large expansion coefficient is used for the arc tube 1, there is a relatively high possibility that breakage such as cracks will occur. Therefore, the present invention is suitably applied when the material of the arc tube 1 is ceramic. You.

点灯中の発光管の温度分布を示す概略図;Schematic diagram showing the temperature distribution of the arc tube during lighting; 消灯直後の発光管の応力分布を示す概略図;Schematic diagram showing the stress distribution of the arc tube immediately after turning off the light; 本発明の実施形態に係る高圧放電ランプを模式的に示す図;The figure which shows typically the high pressure discharge lamp which concerns on embodiment of this invention; 連結部材を示す図3の部分拡大図;FIG. 3 is a partially enlarged view of FIG. 3 showing a connecting member; バイメタルの構造及び機能を説明するための部分拡大図;A partially enlarged view for explaining the structure and function of the bimetal; 光管の支持を概念的に説明するための図;Diagram for conceptually explaining light tube support; 連結部材の他の例を示す部分拡大斜視図;A partially enlarged perspective view showing another example of the connecting member; 図7AのVII−VII線での断面図;FIG. 7A is a sectional view taken along line VII-VII of FIG. 7A; 連結部材のさらに他の例を示す部分拡大斜視図;A partially enlarged perspective view showing still another example of the connecting member; 図8AのVIII−VIII線での断面図である。It is sectional drawing in the VIII-VIII line of FIG. 8A.

符号の説明Explanation of reference numerals

1 発光管
1a 発光部
1b,1c 側管部
1c 細管部
2A,2B 電極
3 支持部材
4 可変形部材
5,6 ワイヤーフレーム
7 口金
8 支軸部材
8a リング状部
13,14 連結部材
13a,14a 環状部
15,16 バイメタル
21 外管
31 高熱膨張板材
32 低熱膨張板材
L 軸線
REFERENCE SIGNS LIST 1 arc tube 1a light emitting portion 1b, 1c side tube portion 1c thin tube portion 2A, 2B electrode 3 support member 4 deformable member 5, 6 wire frame 7 base 8 support shaft member 8a ring-shaped portion 13, 14 connecting member 13a, 14a annular Part 15, 16 Bimetal 21 Outer tube 31 High thermal expansion plate 32 Low thermal expansion plate L Axis

Claims (11)

発光部と、この発光部内で互いに対向するように配置された一対の電極と、前記発光部の両端から前記電極を結ぶ軸線方向に延びる一対の側管部とを有する発光管と、
少なくとも前記軸線と直交する方向への変位を規制するように前記発光管を支持する支持構造と、
それぞれ基端側が前記支持構造で支持される一方、先端側が前記発光管の側管部に連結され、点灯状態から消灯状態への切り換え時の温度変化によって熱応力を発生し、この熱応力は前記軸線が水平方向に延びる姿勢に配置された前記発光管の前記側管部に対して鉛直方向下向き、かつ発光管に対して外向きの力として作用する一対の熱応力発生部材と
を備える高圧放電ランプ。
A light-emitting tube having a light-emitting portion, a pair of electrodes arranged to face each other within the light-emitting portion, and a pair of side tube portions extending in the axial direction connecting the electrodes from both ends of the light-emitting portion,
A support structure that supports the arc tube so as to regulate at least displacement in a direction perpendicular to the axis,
The base end side is supported by the support structure, while the tip end side is connected to the side tube portion of the arc tube, and generates a thermal stress due to a temperature change at the time of switching from an on state to an off state. A pair of thermal stress-generating members that act vertically as downward force on the side tube portion of the arc tube and that act as an outward force on the arc tube, the axis of the arc tube being arranged in a posture extending in the horizontal direction. lamp.
それぞれ前記側管部と前記熱応力発生部材の先端側を連結する一対の連結部材をさらに備える請求項1に記載の高圧放電ランプ。   The high-pressure discharge lamp according to claim 1, further comprising a pair of connecting members that connect the side tube portion and a distal end side of the thermal stress generating member. 前記連結部材は、前記側管部の外周面を取り囲む環状部と、この環状部から前記側管部に対して離れる方向に延び、かつ前記熱応力発生部材の先端側が固定された固定部とを備える請求項2に記載の高圧放電ランプ。   The connecting member includes an annular portion surrounding the outer peripheral surface of the side tube portion, and a fixed portion extending in a direction away from the annular portion with respect to the side tube portion, and a distal end side of the thermal stress generating member being fixed. The high-pressure discharge lamp according to claim 2, further comprising: 前記連結部材は、前記環状部を前記側管部にかしめることで前記側管部に固定されている請求項3に記載の高圧放電ランプ。   The high-pressure discharge lamp according to claim 3, wherein the connecting member is fixed to the side tube by caulking the annular portion to the side tube. 前記側管部の外周面には前記環状部が嵌め込まれる溝が形成されている請求項4に記載の高圧放電ランプ。   The high-pressure discharge lamp according to claim 4, wherein a groove into which the annular portion is fitted is formed on an outer peripheral surface of the side tube portion. 前記電極は前記軸線方向に延びて前記側管部を介して発光管の外部に突出し、
前記支持構造は、前記電極を支持し、かつ点灯回路に電気的に接続するワイヤーフレームを備え、
前記一対の熱応力発生部材の基端は前記ワイヤーフレームから前記側管部に向けて延びる一対の支軸に固定されている請求項1に記載の高圧放電ランプ。
The electrode extends in the axial direction and projects outside the arc tube through the side tube portion,
The support structure includes a wire frame that supports the electrodes and electrically connects to a lighting circuit,
The high-pressure discharge lamp according to claim 1, wherein base ends of the pair of thermal stress generating members are fixed to a pair of support shafts extending from the wire frame toward the side tube portion.
前記熱応力発生部材はバイメタルからなる請求項1に記載の高圧放電ランプ。   The high-pressure discharge lamp according to claim 1, wherein the thermal stress generating member is made of a bimetal. 前記発光管はセラミック材料で構成されている請求項1に記載の高圧放電ランプ。   The high pressure discharge lamp according to claim 1, wherein the arc tube is made of a ceramic material. 前記発光部内に発光物質が封入され、かつ
点灯時の前記発光物質の圧力が10MPa以上である請求項1に記載の高圧放電ランプ。
The high-pressure discharge lamp according to claim 1, wherein a light-emitting substance is sealed in the light-emitting portion, and a pressure of the light-emitting substance at the time of lighting is 10 MPa or more.
前記発光管を囲む外管をさらに備える請求項1に記載の高圧放電ランプ。   The high-pressure discharge lamp according to claim 1, further comprising an outer tube surrounding the arc tube. 発光部を有する発光管と、
点灯状態から消灯状態への切り換え時の温度変化によって熱応力を発生し、この熱応力が前記発光部の上部に圧縮応力を生じさせる熱応力発生部材と
を備える高圧放電ランプ。
An arc tube having a light emitting section;
A high-pressure discharge lamp comprising: a thermal stress generating member that generates thermal stress due to a temperature change at the time of switching from the on state to the off state, and the thermal stress generates a compressive stress on the upper part of the light emitting unit.
JP2004123075A 2003-04-17 2004-04-19 High pressure discharge lamp Expired - Fee Related JP4294535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004123075A JP4294535B2 (en) 2003-04-17 2004-04-19 High pressure discharge lamp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003112351 2003-04-17
JP2004123075A JP4294535B2 (en) 2003-04-17 2004-04-19 High pressure discharge lamp

Publications (2)

Publication Number Publication Date
JP2004335461A true JP2004335461A (en) 2004-11-25
JP4294535B2 JP4294535B2 (en) 2009-07-15

Family

ID=33513233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004123075A Expired - Fee Related JP4294535B2 (en) 2003-04-17 2004-04-19 High pressure discharge lamp

Country Status (1)

Country Link
JP (1) JP4294535B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013506941A (en) * 2009-09-30 2013-02-28 オスラム ゲーエムベーハー High pressure discharge lamp with starting aid
WO2014097779A1 (en) * 2012-12-19 2014-06-26 岩崎電気株式会社 Ceramic metal halide lamp

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013506941A (en) * 2009-09-30 2013-02-28 オスラム ゲーエムベーハー High pressure discharge lamp with starting aid
US8860308B2 (en) 2009-09-30 2014-10-14 Osram Ag High-pressure discharge lamp having a starting aid
WO2014097779A1 (en) * 2012-12-19 2014-06-26 岩崎電気株式会社 Ceramic metal halide lamp

Also Published As

Publication number Publication date
JP4294535B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
US5698947A (en) High pressure sodium lamp
US6703769B2 (en) Short-arc type discharge lamp having ventillation apertures at the bottom of the bases
JPH10106491A (en) High-pressure metal vapor discharge lamp
WO2006001166A1 (en) Metal halide lamp and lighting apparatus using the same
WO2008110967A1 (en) Low power discharge lamp with high efficacy
JP3177230B2 (en) Metal vapor discharge lamp
US7164226B2 (en) High-pressure discharge lamp
US5769530A (en) Compact fluorescent lamp with extended legs for providing a cold spot
JP4294535B2 (en) High pressure discharge lamp
US20090295290A1 (en) Metal lead-through structure and lamp with metal lead-through
JP5010919B2 (en) Discharge lamp
JP2005183248A (en) Metal-halide lamp and illumination device using above
JP2002056813A (en) Metallic vapor discharge lamp
US5466988A (en) High pressure discharge lamp having improved convection regulating means
JP4301892B2 (en) Metal vapor discharge lamp and lighting device
JP2007273373A (en) Metal halide lamp and lighting system
JP2007533087A (en) High pressure discharge lamp
JP5856380B2 (en) Short arc type discharge lamp
JP2008071761A (en) Metal halide lamp, and illumination device using it
US8450932B2 (en) High pressure sodium lamp
JP2007220679A (en) High intensity discharge light-emitting tube equipped with glass heat-shield
JP2005183164A (en) Arc tube for discharge lamp apparatus
JP4879383B2 (en) Discharge lamp
JP2006024570A (en) Compact fluorescent lamp
KR20090015914A (en) High-pressure gas discharge lamp having electrode rods with crack-initiating means

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061206

A621 Written request for application examination

Effective date: 20070116

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20081224

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090408

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120417

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees