JP2004335423A - Manufacturing method of lamp - Google Patents

Manufacturing method of lamp Download PDF

Info

Publication number
JP2004335423A
JP2004335423A JP2003133645A JP2003133645A JP2004335423A JP 2004335423 A JP2004335423 A JP 2004335423A JP 2003133645 A JP2003133645 A JP 2003133645A JP 2003133645 A JP2003133645 A JP 2003133645A JP 2004335423 A JP2004335423 A JP 2004335423A
Authority
JP
Japan
Prior art keywords
sealed
sealing
electrode
container
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003133645A
Other languages
Japanese (ja)
Other versions
JP4091473B2 (en
Inventor
Minoru Nishibori
稔 西堀
Mitsuru Yamazaki
満 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Truweal Inc
Original Assignee
Truweal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Truweal Inc filed Critical Truweal Inc
Priority to JP2003133645A priority Critical patent/JP4091473B2/en
Publication of JP2004335423A publication Critical patent/JP2004335423A/en
Application granted granted Critical
Publication of JP4091473B2 publication Critical patent/JP4091473B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a high-pressure lamp for easily improving lamp performance in accordance with miniaturization. <P>SOLUTION: After inserting electrode (filament) mounts (5), (6) and (10) into a sealing vessel (1) in a working vessel (G) set in a non-oxidizing atmosphere as shown in figure, both opening ends (2b), (3b) of the sealing vessel (1) are fused and closed, and next, a prescribed buried portions (5s), (6s) are buried into a first and a second sealing positions (2a), (3a), respectively. Therefore, impurities etc. are blocked from the sealing vessel (1) etc. during an assembly, and small-sized high-pressure lamps (A) or (B) (not shown) excellent in lamp performance can be produced in a well-arranged manner and with ease. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、懐中電灯等の一般照明機器、胃カメラ等の各種医療機器の光学系、小形投影ディスプレイシステム等の光学機器、更には自動車のヘッドライト等の光源に使用される比較的小形の放電灯やハロゲンランプの製造方法に関する。
【0002】
【従来の技術】
一般に、例えばメタルハライドランプ等の高圧放電ランプやハロゲンランプにおいては、ランプ効率(ルーメン/消費電力)、ランプ寿命、演色性、輝度等のランプ特性の改良を推し進めているが、そのなかで、常に考慮しなければならない問題がある。具体的には、ランプ製造がすべて大気中で行われると、不純物の排除が完全になされず、発光管部や封体内部に混入した極微量の不純物に起因する黒化や失透による短寿命化、或いはこれらの現象に起因する発光管の破裂等を招くおそれがある。
【0003】
特に各種医療機器の光学系等で使用される35ボルト、10ワット程度の小形の高圧ランプにおいては、一層の小形化が推進されており、その場合、僅かな不純物であってもランプパーツが汚染される否かによってランプ特性が大きく左右される。
【0004】
ところで、従来、既にランプの組み立て作業の一部をアルゴンガスで満たされたグローブボックス等の作業容器内で行うようにした技術が案出されている。例えば特開平2−220327号公報等では、筒形石英ガラス製封体容器の第1封止管部に第1電極マウントを挿入し、その封体容器の第1封止管部の所定部位を大気中でアルゴンガスを流しつつシュリンク封止した後、これをグローブボックス内に搬入し、グローブボックス内にてこの封体容器内に必要ガスや必要物質を封入し、更に第2の封止管部内に第2の電極マウントを挿入し、次いで封体容器における第2の封止管部側の開口端部をグローブボックス内にてシュリンク閉塞し、続いてこれを大気中に取り出し、発光管部を冷却しつつ大気中にて第2の封止管部の所定部位をシュリンク封止し、最後に不要部分を切除する方法が開示されている。
【0005】
【先行特許文献】
【特開平2−220327号公報】
【0006】
【発明が解決しようとする課題】
しかし、上記従来の高圧ランプの製造方法では、アルゴンガスを流しつつではあるが、第一封止を大気中で行うので極微量の異物の混入や酸化物の発生或いは封体容器の分解によるOH基の発生があり、なお、不純物混入防止の面において不十分であった。本発明は、上記事情に鑑みてなされたものであり、小形化に対応してランプ性能の向上を容易に実現できるチップレスランプの製造方法を提供することを課題とする。
【0007】
【課題を解決するための手段】
「請求項1」のランプの製造方法は、
(イ)発光管部(1a)の両側に第1及び第2封止管部(2)(3)が延びている状態の封体容器(1)を形成するステップと、
(ロ)通電部材(T1)(T2)に電極棒(5a)が接続されている第1、2電極マウント(5)(6)を該電極棒(5a)(6a)の内端が発光管部(1a)内に臨出し且つ対向する状態で封体容器(1)の第1及び第2封止管部(2)(3)内に挿入し且つ発光管部(1)内に必要物質(7)(8)と必要ガスを封入し、第1,2封止管部(2)(3)側の開口端部(2b)(3b)を溶着・閉塞するステップと、
(ハ)両開口端部(2b)(3b)が封止された封体容器(1)における第1及び第2封止管部(2)(3)の第1及び第2封止箇所(2a)(3a)をそれぞれ加熱して、第1及び第2電極マウント(5)(6)の第1及び第2被埋設部分(5s)(6s)を第1及び第2封止箇所(2a)(3a)にそれぞれ埋入するステップとを備え、
前記(イ)〜(ロ)のステップのうちの少なくとも(ロ)のステップを非酸化性雰囲気に設定されている作業容器(G)内で実行する事を特徴とする。
【0008】
「請求項2」は両口タイプの高圧放電ランプ(A)の製造方法に関し、
(イ)発光管部(1a)の両側に第1及び第2封止管部(2)(3)が延びている状態の封体容器(1)を形成するステップと、
(ロ)通電部材(T1)に電極棒(5a)が接続されている第1電極マウント(5)を、該電極棒(5a)の内端が発光管部(1a)内に臨出する状態で封体容器(1)の第1封止管部(2)内に挿入するステップと、
(ハ)第1電極マウント(5)が挿入された封体容器(1)の第1封止管部(2)側の開口端部(2b)を溶着・閉塞するステップと、
(ニ)通電部材(T2)に電極棒(6a)が接続されている第2電極マウント(6)を、該電極棒(6a)の内端が発光管部(1a)内に臨出する状態で封体容器(1)の第2封止用管部(3)内に挿入すると共に更に発光管部(1a)内に必要物質(7)(8)及び必要ガスを封入するステップと、
(ホ)第2電極マウント(6)が挿入された封体容器(1)の第2封止管部(3)側の開口端部(3b)を溶着・閉塞するステップと、
(ヘ)両開口端部(2b)(3b)が封止された封体容器(1)における第1及び第2封止管部(2)(3)の第1及び第2封止箇所(2a)(3a)をそれぞれ加熱して、第1及び第2電極マウント(5)(6)の第1及び第2被埋設部分(5s)(6s)を第1及び第2封止箇所(2a)(3a)にそれぞれ埋入するステップとを備え、
前記(イ)〜(へ)のステップのうちの少なくとも(ロ)〜(ホ)のステップを非酸化性雰囲気に設定されている作業容器(G)内で実行する事を特徴とするものである。
【0009】
「請求項3」は両口タイプの高圧放電ランプ(A)の他の製造方法に関し、
(イ)発光管部(1a)の両側に第1及び第2封止管部(2)(3)が延びており、第1封止管部(2)の端部が閉塞された状態の封体容器(1)を形成するステップと、
(ロ)通電部材(T1)に電極棒(5a)が接続されている第1電極マウント(5)を、第2封止管部(3)の開口端部(3b)から該電極棒(5a)の内端が発光管部(1a)内に臨出する状態で封体容器(1)の第1封止用管部(2)内に挿入するステップと、
(ハ)通電部材(T2)に電極棒(6a)が接続されている第2電極マウント(6)を、該電極棒(6a)の内端が発光管部(1a)内に臨出する状態で封体容器(1)の第2封止用管部(3)内に挿入すると共に発光管部(1a)内に必要物質(7)(8)及び必要ガスを封入するステップと、
(ニ)第2電極マウント(6)が挿入された封体容器(1)の第2封止管部(3)側の開口端部(3b)を溶着・閉塞するステップと、
(ホ)両開口端部(2b)(3b)が封止された封体容器(1)における第1及び第2封止管部(2)(3)の第1及び第2封止箇所(2a)(3a)をそれぞれ加熱して、第1及び第2電極マウント(5)(6)の第1及び第2被埋設部分(5s)(6s)を第1及び第2封止箇所(2a)(3a)にそれぞれ埋入するステップとを備え、
前記(イ)〜(ホ)のステップのうちの少なくとも(ロ)〜(ニ)のステップを非酸化性雰囲気に設定されている作業容器(G)内で実行する事を特徴とするものである。
【0010】
「請求項4」は両口タイプの高圧ハロゲンランプ(B)の製造方法に関し、
(イ)フィラメント(10a)の両側に第1及び第2通電部材(T1)(T2)が接続されているフィラメントマウント(10)を封体容器(1)内に挿入するステップと、
(ロ)フィラメントマウント(10)が挿入された封体容器(1)内の第1封止管部(2)側の開口端部(2b)を溶着・閉塞するステップと、
(ハ)封体容器(1)内に必要ガスを封入するステップと、
(ニ)フィラメントマウント(10)が挿入され且つ必要ガスが封入された封体容器(1)の第2封止管部(3)側の開口端部(3b)を溶着・閉塞するステップと、
(ホ)両開口端部(2b)(3b)が封止された封体容器(1)における第1及び第2封止管部(2)(3)の第1及び第2封止箇所(2a)(3a)をそれぞれ加熱して、フィラメントマウント(10)における第1及び第2被埋設部分(5s)(6s)を第1及び第2封止箇所(2a)(3a)にそれぞれ埋入するステップとを備え、
前記(イ)〜(ホ)のステップのうちの少なくとも(イ)〜(ニ)のステップを非酸化性雰囲気に設定されている作業容器(G)内で実行する事を特徴とするものである。
【0011】
「請求項5」は「請求項4」を限定したもので、「(イ)のステップにおいて、封体容器(1)の第1封止管部(2)が閉塞され、第2封止管部(3)が開口しており、フィラメントマウント(10)を第2封止管部(3)の開口端部(3b)から挿入する」ことを特徴とする。
【0012】
これら製造方法によれば、大気中での所定形状の封体容器(1)の形成後に非酸化性雰囲気に設定されている作業容器(G)内に封体容器(1)及び電極(フィラメント)マウント(5)(6)(10)が搬入され、この非酸化性雰囲気内にてこれら第1及び第2電極マウント(フィラメント)マウント(5)(6)(10)の封体容器(1)内への挿入、必要物質(7)(8)や必要ガスの封入、封体容器(1)の両開口端部(2b)(3b)の溶着・閉塞がなされる。つまり、非酸化性雰囲気の作業容器(G)内で組み付けや密封作業が行われるため、封体容器(1)内に空気中の酸素或いは不純物が侵入するという事もなくなり、高圧点灯時の黒化や失透の発生が防止され、ランプ性能の向上を図りつつ、小形化の推進に対応可能となる。
【0013】
更に、熱容量の小さい封体容器(1)の両開口端部(2b)(3b)の溶着・閉塞作業を非酸化性雰囲気の作業容器(G)内で済ませた後で、大熱容量を必要とする第1及び第2封止箇所(2a)(3a)の封止を大気中で行うように作業を分離したから、作業容器(G)内での作業性がよくなる。
【0014】
ここで、被埋設部分(5s)(6s)の例としては、電極マウント(5)(6)の場合は、図5に示すように、電極棒(5a)(6a)の外端部から金属箔(5b)(6b)を経て外部リード棒(5c)(6c)の内端部までに至る部位であり、又、フィラメントマウント(10)の場合は、図10に示すように、フィラメント(10a)の両端のリード部材(5e)(6e)の外端から金属箔(5b)(6b)を経て外部リード棒(5c)(6c)の内端に至る部位である。
【0015】
なお、請求項1〜3の高圧放電ランプの場合、第1電極マウント挿入以降の封体容器(1)を水平姿勢にさせ、必要物質(7)(8)が発光管部(1a)内に位置するような状態で実行してもよいし、封体容器(1)の第1開口端部(2b)を閉塞した後(或いは、第1開口端部(2b)が最初から閉塞されておれば、最初から)垂直状態で作業を行い、少なくとも最後の第2被埋設部分(6s)の封止前において、必要物質(7)(8)が発光管部(1a)内に位置するように移動させ、然る後、第2被埋設部分(6s)の封止を行うようにしてもよい。
【0016】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する説明する。図9は、本発明の一実施形態にかかる高圧ランプの製造方法により製作された高圧放電ランプ(A)を示す断面図である。図9において、封体容器(1)は、略球状の発光管部(1a)と、この発光管部(1a)の両端から延びる第1及び第2封止箇所(2a)(3a)とからなる。この封体容器(1)内には、発光管部(1a)内に各内端が臨出して対向する電極棒(5a)(6a)が配設されている。
【0017】
封体容器(1)における第1及び第2封止箇所(2a)(3a)は、シュリンク或いはピンチシールにより形成されるもので、第1及び第2封止箇所(2a)(3a)内に第1及び第2通電部材(T1)(T2)における金属箔(5b)(6b)を含む被埋設部分(5s)(6s)がそれぞれ埋入されている。
【0018】
金属箔(5b)(6b)の内端には、発光管部(1a)内に延びる一対の対向電極棒(5a)(6a)の外端が接続されており、金属箔(5b)(6b)の外端には、外部に延びる外部リード棒(5c)(6c)の端部が接続されている。
【0019】
発光管部(1a)内には、必要ガスの他に、メタルハライド(7)[及び必要に応じて水銀(8)]が封入されている。前記メタルハライド(7)としては、例えばナトリウム・スカンジウム系のものがあり、必要ガスである希ガスとしては、キセノンガスやアルゴンガス或いはクリプトンガスなどがある。
【0020】
このように形成された両口タイプの高圧放電ランプ(A)はそのまま或いは図示しないリフレクタに装着されて使用され、点灯時の色温度が5,000〜8,000K、内圧が数10気圧〜数100 気圧に達し白っぽい光を放つ。
【0021】
次に、両口タイプの高圧放電ランプ(A)の製造手順を説明する。図1に示すように、例えば直径が3mm程度の石英ガラス管(M)を所定の長さでカットし、続いて図2に示すようにバーナ(R)で石英ガラス管(M)の所定箇所を回転させつつ加熱し、型(D)で加熱部分を変形させ、直径5mm程度の略回転楕円体或いは球状の発光管部(1a)を成形する。これにより、発光管部(1a)の両端に第1及び第2封止用管部(2)(3)が延びている封体容器(1)が成形される。発光管部(1a)と第1、2封止用管部(2)(3)の境界部分は一般的にはくびれている。
【0022】
このようにして大気中で形成された封体容器(1)は、前記一連の加工により表面に付着・侵入した可能性がある水分を含む微小なコンタミネーション除去のため、一般的には組み立て前に石英ガラスの失透直前の温度、例えば1050℃、真空中で数〜10数時間加熱して吸蔵ガスを放出させる。前記熱処理は、作業容器(G)内或いは作業容器(G)外にて適時に行われる。
【0023】
本実施形態における第1、2電極マウント(5)(6)は、金属箔(5b)(6b)の内端に電極棒(5a)(6a)が接続され、外端には外部リード棒(5c)(6c)が接続されている。そして外部リード棒(5c)(6c)は、第1、2封止用管部(2)(3)内に挿入された時、第1、2電極マウント(5)(6)が第1、2封止用管部(2)(3)の所定部位に固定できるように、略C字形ないしはジグザグ形、或いはこの例のように略U字形に屈曲されている。前記屈曲部分(5d)(6d)の幅は、第1、2封止用管部(2)(3)の内径より若干大きく形成されており、挿入時に屈曲部分(5d)(6d)の弾性拡開力が第1、2封止用管部(2)(3)の内周面に作用するようになっている。
【0024】
又、第1、2電極マウント(5)(6)の第1、2封止用管部(2)(3)内への挿入時に第1、2電極マウント(5)(6)の電極棒(5a)(6a)が封体容器(1)の中心線に対応するように第1、2電極マウント(5)(6)の金属箔(5b)(6b)、電極棒(5a)(6a)及び外部リード棒(5c)(6c)が一直線となるように接続されている。なお、第1及び第2 電極マウント(5)(6)の各パーツは、洗浄及び熱処理された後、大気中で組み立てられてそれぞれ第1及び第2電極マウント(5)(6)となる。
【0025】
このように製作された封体容器(1)や第1及び第2電極マウント(5)(6)はまず1050〜1,100℃で数10時間、高温真空処理が行われ、OH基の除去が行われる。そして、非酸化性雰囲気(通常はアルゴン雰囲気)に設定されている作業容器(G)に搬入する前に、作業容器(G)に連続して設置されているアンチチェンバ(図示せず)に処理済みの封体容器(1)や第1及び第2電極マウント(5)(6)及び充填材料(7)(8)[例えば、ナトリウム・スカンジウム系、NaI−ScI系+Hg粒]を導入し、ここで脱空気が行われ、然る後、非酸化性雰囲気に設定されている作業容器(G)内に搬入し、これら電極マウント(5)(6)や充填材料(7)(8)の封体容器(1)への組み付けを行う。作業容器(G)とは、例えばアルゴンガスが満たされたグローブボックス等が使用され、その内部の気圧は大気圧以上、例えば1気圧より若干高く設定され、外気が作業容器(G)内に流入しないようにしている。
【0026】
このようにして封体容器(1)や第1及び第2電極マウント(5)(6)及び充填材料(7)(8)を作業容器(G)内に搬入した後、まず、図3に示すように、第1電極マウント(5)を封体容器(1)における第1封止用管部(2)内の所定箇所に挿入し、この封体容器(1)の他方の開口端部(3b)を排気台(H)に接続する。
【0027】
第1封止用管部(2)内の所定位置に挿入された第1電極マウント(5)は、その外部リード棒(5c)の屈曲部分(5d)の拡開弾性力により封体容器(51)内の管軸上に正確に位置決め保持される。
【0028】
第1電極マウント(5)を封体容器(1)内に挿入した後、この封体容器(1)の一方の開口端部(2b)をレーザ或いはこの例のようなプラズマバーナ(P)により非酸化性雰囲気内で加熱して該開口端部(2b)を図4に示すように加熱軟化させ、内部を減圧状態にした封体容器(1)の表面張力にて半球状に閉塞する。なお、第1電極マウント(5)の封体容器(1)への挿入は、作業容器(G)内で行われるので、第1電極マウント(5)にコンタミネーションの付着がなく、第1電極マウント(5)の挿入後に直ぐに前記端部閉塞作業が行われる(図4参照)。
【0029】
この後、図5に示すように、封体容器(1)を排気台(H)から一旦取り外し、該封体容器(1)の他方の開口から発光管部(1a)内に充填物であるメタルハライド(7)[及び必要に応じて水銀粒(8)]を封入し、更に第2電極マウント(6)を封体容器(1)における第2封止管部(3)内に挿入する。第2電極マウント(6)もその外部リード棒(5c)の屈曲部分(6d)の弾性拡開力により所定位置に精確に保持され、左右の電極棒(5a)(6a)が所定の間隔を持って対向する。必要物質(7)(8)と第2電極マウント(6)の挿入はいずれが先であっても構わない。
【0030】
そしてこの場合、第1電極マウント挿入以降の作業において、封体容器(1)を水平姿勢にさせ、必要物質(7)(8)が発光管部(1a)内に位置するような状態で実行してもよいし、封体容器(1)の第1開口端部(2b)を閉塞した後(或いは、第1開口端部(2b)が最初から閉塞されておれば、最初から)垂直状態で作業を行い、少なくとも最後の第2被埋設部分(6s)の封止前において、必要物質(7)(8)が発光管部(1a)内に位置するように移動させ、然る後、第2被埋設部分(6s)の封止を行うようにしてもよい。
【0031】
なお、メタルハライド(7)[及び必要に応じて水銀粒(8)]は、予め空気と遮断されたアンプル内に封入されており、封体容器(1)への封入時に作業容器(G)内で開封されるので、不純物に汚染されるおそれはない。
【0032】
次いで、第2電極マウント(6)等が挿入された封体容器(1)を再び図6に示すように、排気台(12)に支持させる。この状態で図示しない真空ポンプを作動し、排気台(H)を通して封体容器(1)内の真空引きを行う事により、封体容器(1)内に存在しているアルゴンガスを吸引・排気する。そして、外部からキセノンガス、或いは新たなアルゴンガス又はクリプトンガス等必要ガスを排気台(H)を介して封体容器(1)内に供給して封止時に1気圧以下で封入させる。
【0033】
この後、封体容器(1)の他方の開口端部(3b)をレーザ或いはこの例のようなプラズマバーナ(P)により加熱して該開口端部(3b)を図7に示すように加熱軟化させ表面張力によりシュリンクさせてこの部分を閉塞する。
【0034】
このように作業容器(G)内で第1及び第2電極マウント(6)や充填物質等が挿入され、両開口端部(2b)(3b)が溶着・閉塞された封体容器(1)は、内部が不純物で汚染される心配が一切なく、ランプ性能を良好に維持しつつ、小形化の推進に対応可能となる。
【0035】
この段階で封体容器(1)の両開口端部(2b)(3b)を閉塞してあるので、封体容器(1)を作業容器(G)から搬出して以降の作業を大気中で行うことができる。勿論、以降の作業を引き続いて作業容器(G)内で行ってもよい。
【0036】
具体的には、図8に示すように、封体容器(1)における第1及び第2封止箇所(2a)(3a)の加熱封止を行う。まず、遮蔽板(S)を発光管部(1a)と封止箇所(2a)(3a)との間にそれぞれ配置し、発光管部(1a)の部位に対して液体窒素(N)を吹きかけて、加熱されたときに充填物(7)(8)が蒸発するのを防ぐ。この状態で、第1電極マウント(5)の略金属箔(5b)の部位である第1被埋設部分(5s)に対応する第1封止箇所(2a)を通常のバーナのような加熱手段(L)により加熱し、第1封止箇所(2a)を収縮させて或いはピンチシールにて圧縮することにより、第1被埋設部分(5s)を第1封止箇所(2a)に埋入してシールする。更に同様にして第2封止箇所(3a)を同様にして加熱し、この第2封止箇所(3a)を収縮させ或いはピンチシールにて圧縮することにより、第2被埋設部分(6s)を第2封止箇所(3a)に埋入してシールする。
【0037】
なお、この埋入シールステップでは、封体容器(1)を垂直に保持するとともに、第1封止箇所(2a)を液体窒素中に浸漬した状態で第2封止箇所(3a)を加熱するようにしてもよい。
【0038】
封体容器(1)の封止作業が終了すれば、封体容器(1)における所定箇所を、例えばレーザあるいはダイヤモンドカッター等を使用してカットすることにより、図9に示す所望の高圧放電ランプ(A)が製作される。
【0039】
なお、前記両口タイプの高圧放電ランプ(A)の製造方法において、他の方法として、第1封止管部(2)の端部が閉塞された封体容器(1)をステップ(イ)にて形成してもよい。なお、前記実施例に拘わらず、通電部材(T1)(T2)に電極棒(5a)が接続されている第1、2電極マウント(5)(6)を該電極棒(5a)(6a)の内端が発光管部(1a)内に臨出し且つ対向する状態で封体容器(1)の第1及び第2封止管部(2)(3)内に挿入し且つ発光管部(1)内に必要物質(7)(8)と必要ガスを封入し、第1,2封止管部(2)(3)側の開口端部(2b)(3b)を溶着・閉塞するステップでは、封止工程以外の工程の順序は何れが先であってもよく順序は問わない。
【0040】
次に、本発明の第2の実施形態を図面に基づいて説明する。図14は、両口タイプの高圧ハロゲンランプ(B)を示し、図9の高圧放電ランプと同一もしくは相当部位には、同一符号を付してそれらの説明を省略する。図14において、フィラメントマウント(10)は、通常のハロゲンランプに使用されるものと同一であり、フィラメント(10a)と、このフィラメント(10a)の両端に接続されたリード部材(5e)(6e)と、リード部材(5e)(6e)の外端に接続された金属箔(5b)(6b)と、金属箔(5b)(6b)の外端に接続された外部リード棒(5c)(6c)とから構成されており、封体容器(1)内の所定位置に固定されている。
【0041】
封体容器(1)の発光管部(1a)は、第1及び第2封止管部(2)(3)と同径の円筒形のままであり、その内部には、必要ガスとしてハロゲンガスが封入されている。
【0042】
次に、両口タイプの高圧ハロゲンタイプ(B)の製造手順を説明する。封体容器(1)の成形は、図1の石英ガラス管(M)から所定の長さにカットしたもので構成されており、フィラメントマウント(10)の組み込み前に、石英ガラスの失透直前の温度、例えば1050℃で真空中で数〜10数時間加熱して吸蔵ガスを放出させておく。
【0043】
一方、フィラメント(10a)、リード部材(5e)(6e)、金属箔(5b)(6b)及び外部リード棒(5c)(6c)も、不純物除去のためにアルカリ或いは酸等の薬液で洗浄・乾燥、更には真空加熱処理が行われる。
【0044】
封体容器(1)及びフィラメントマウント(10)を図10に示すように、作業容器(G)内に搬入し、フィラメントマウント(10)を封体容器(1)内の所定位置に挿入する。そして、封体容器(1)の他方の開口端部(3b)を排気台(H)に接続する。この状態で封体容器(1)の一方の開口端部(2b)をレーザ或いはこの例のようなプラズマバーナ(P)により加熱して該開口端部(2b)を図11に示すように溶着して閉塞する。そしてこの場合、前述同様マウント挿入以降の作業において、封体容器(1)を水平姿勢にさせた状態で実行してもよい。
【0045】
この後、封体容器(1)内を真空引きする事によりアルゴンガスを排出してから排気台(H)から必要ガス(例えば、封止時に1気圧以下にてキセノンガス、アルゴンガスあるいはクリプトンガス等)を封入する。次いで、封体容器(1)の他方の開口端部(3b)をレーザ或いはこの例のようなプラズマバーナ(P)により加熱して該開口端部(2b)を図12に示すように溶着して閉塞する。
【0046】
この場合も、作業容器(G)内でフィラメントマウント(10)を封体容器(1)に組み込み、封体容器(1)の両開口端部(2b)(3b)を溶着・閉塞するので、封体容器(1)内に空気や不純物等が侵入するおそれがなく、小形化に対応してランプ性能を良好に発揮させることが可能となる。
【0047】
この後、封体容器(1)の両端は閉塞されているので、大気中に持ち出して処理しても内部に微量不純物が混入する恐れがないので、作業容器(G)から取り出され、大気中で作業されることになる。勿論、作業容器(G)で作業を行うことも可能である。図13に示すように、大気中にてフィラメントマウント(10)の第1被埋設部分(5s)に対応する第1封止箇所(2a)を通常のバーナ等の加熱手段(L)により加熱し、第1封止箇所(2a)を収縮させて或いはピンチシールに圧縮することにより、第1被埋設部分(5s)を第1封止箇所(2a)に埋入してシールする。
【0048】
更に第2封止箇所(3a)を同様にして加熱し、この第2封止箇所(3a)を収縮させて或いはピンチシールに圧縮することにより、第2被埋設部分(6s)を第2封止箇所(3a)に埋入してシールする。
【0049】
封止作業が終了すれば、封体容器(1)における所定箇所を前述同様カットすることにより、図14に示す所望の高圧ハロゲンランプ(B)が作成される。なお、図10〜13の実施例では縦向きに封体容器(1)を設定しているが、横向き水平状態で上記作業を行うことも可能である。
【0050】
【発明の効果】
以上のように、本発明によれば、非酸化性雰囲気に設定された作業容器内で封体容器に電極(フィラメント)マウント等を挿入し、封体容器の両方の開口端部を溶着・閉塞するようにしたので、ランプ組立中に封体容器等のパーツが空気や不純物等で汚染されるおそれがなく、ランプ性能に優れたチップレスの小形高圧ランプを提供できる。
【図面の簡単な説明】
【図1】本発明の一実施形態における高圧放電ランプの製造に使用される石英ガラス管のカット状態を示す断面図である。
【図2】図1の石英ガラス管の加工状態を示す断面図である。
【図3】作業容器内で第1電極マウントを封体容器に挿入した状態を示す断面図である。
【図4】封体容器の一方の開口端部を溶着・閉塞した状態を示す断面図である。
【図5】封体容器を排気台から取り外して第2電極マウント等を挿入した状態を示す断面図である。
【図6】封体容器の他方の開口端部を溶着・閉塞する状態を示す断面図である。
【図7】他方の開口端部が溶着・閉塞された封体容器を示す断面図である。
【図8】両方の開口端部が閉塞された後の封体容器の所定部位を加熱封止した状態を示す断面図である。
【図9】封体容器の所定部分を切り離して得られた高圧放電ランプを示す断面図である。
【図10】本発明の他の実施形態において、作業容器内でフィラメントマウントを封体容器に挿入した状態を示す断面図である。
【図11】フィラメントマウントが挿入された封体容器の一方の開口端部を溶着・閉塞した状態を示す断面図である。
【図12】フィラメントマウントが挿入された封体容器の他方の開口端部を溶着・閉塞した状態を示す断面図である。
【図13】両方の開口端部が閉塞された後の封体容器の所定部位を加熱封止した状態を示す断面図である。
【図14】封体容器の所定部分を切り離して得られた高圧ハロゲンランプを示す断面図である。
【符号の説明】
(1) ・・・・・封体容器
(1a)・・・・・発光管部
(2) ・・・・・第1封止用管部
(3) ・・・・・第2封止用管部
(2a)・・・・・第1封止箇所
(3a)・・・・・第2封止箇所
(2b)(3b)・・・封体容器の開口端部
(5) ・・・・・第1電極マウント
(6) ・・・・・第2電極マウント
(5a)(6a)・・・電極棒
(5s)(6s)・・・被埋設部分
(7)(8)・・・・充填物質
(10)・・・・・フィラメントマウント
(A)(B)・・・・高圧ランプ
(G) ・・・・・作業容器
(T1)(T2)・・・通電部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a general lighting device such as a flashlight, an optical system of various medical devices such as a gastroscope, an optical device such as a small projection display system, and a relatively small light source used as a light source such as a headlight of an automobile. The present invention relates to a method for manufacturing an electric lamp or a halogen lamp.
[0002]
[Prior art]
In general, for high-pressure discharge lamps such as metal halide lamps and halogen lamps, improvements in lamp characteristics such as lamp efficiency (lumen / power consumption), lamp life, color rendering, luminance, etc. are being promoted. There are issues that must be addressed. Specifically, if all lamps are manufactured in the atmosphere, the impurities cannot be completely eliminated, and the short life due to blackening and devitrification caused by the trace amount of impurities mixed into the arc tube and the inside of the envelope Or rupture of the arc tube due to these phenomena.
[0003]
In particular, small high-pressure lamps of about 35 volts and 10 watts used in optical systems of various medical devices are being further miniaturized. In this case, even small impurities may contaminate lamp parts. The lamp characteristics greatly depend on whether or not it is performed.
[0004]
By the way, conventionally, a technique has been devised in which a part of the lamp assembling operation is already performed in a working container such as a glove box filled with argon gas. For example, in JP-A-2-220327, a first electrode mount is inserted into a first sealing tube portion of a cylindrical quartz glass envelope container, and a predetermined portion of the first sealing tube portion of the envelope container is closed. After shrink-sealing while flowing argon gas in the atmosphere, it is carried into a glove box, and the necessary gas and necessary substance are sealed in this sealed container in the glove box. The second electrode mount is inserted into the portion, and then the opening end of the sealing container on the side of the second sealing tube is shrink-closed in the glove box. A method is disclosed in which a predetermined portion of a second sealing tube is shrink-sealed in the atmosphere while cooling, and an unnecessary portion is finally cut off.
[0005]
[Prior Patent Documents]
[JP-A-2-220327]
[0006]
[Problems to be solved by the invention]
However, in the conventional method for manufacturing a high-pressure lamp, although the argon gas is flowing, the first sealing is performed in the atmosphere, so that a very small amount of foreign matter is mixed in, the generation of oxides or the decomposition of the sealing container causes OH. There was generation of a group, which was insufficient in terms of preventing impurity contamination. The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method of manufacturing a chipless lamp that can easily realize improvement in lamp performance in response to downsizing.
[0007]
[Means for Solving the Problems]
The method of manufacturing a lamp according to claim 1 is
(A) forming a sealed container (1) in which the first and second sealed tube portions (2) and (3) extend on both sides of the arc tube portion (1a);
(B) The first and second electrode mounts (5) and (6) in which the electrode rods (5a) are connected to the current-carrying members (T1) and (T2) are mounted on the inner ends of the electrode rods (5a) and (6a). The necessary substances which are inserted into the first and second sealing tube parts (2) and (3) of the enclosure container (1) in a state of facing and facing the part (1a) and inside the arc tube part (1) (7) A step of sealing the (8) and the required gas, and welding and closing the opening end portions (2b) and (3b) on the first and second sealing tube portions (2) and (3) side;
(C) The first and second sealed portions (1) of the first and second sealed pipe portions (2) and (3) in the envelope container (1) in which both open end portions (2b) and (3b) are sealed. 2a) and (3a), respectively, to heat the first and second buried portions (5s) and (6s) of the first and second electrode mounts (5) and (6) to the first and second sealing portions (2a). And (3a) respectively embedding;
At least (B) of the steps (A) to (B) is performed in a working container (G) set in a non-oxidizing atmosphere.
[0008]
Claim 2 relates to a method for manufacturing a two-port type high-pressure discharge lamp (A).
(A) forming a sealed container (1) in which the first and second sealed tube portions (2) and (3) extend on both sides of the arc tube portion (1a);
(B) The first electrode mount (5) in which the electrode bar (5a) is connected to the current-carrying member (T1) is in a state in which the inner end of the electrode bar (5a) projects into the arc tube part (1a). Inserting into the first sealing tube portion (2) of the sealing container (1) with
(C) welding and closing an open end (2b) on the first sealing tube portion (2) side of the envelope (1) into which the first electrode mount (5) is inserted;
(D) The second electrode mount (6) in which the electrode rod (6a) is connected to the current-carrying member (T2), with the inner end of the electrode rod (6a) protruding into the arc tube part (1a). And inserting the necessary substances (7) and (8) and the necessary gas into the arc tube part (1a) while inserting it into the second sealing tube part (3) of the envelope container (1).
(E) welding and closing the opening end (3b) on the side of the second sealing tube (3) of the envelope (1) into which the second electrode mount (6) is inserted;
(F) The first and second sealed portions (1) of the first and second sealed pipe portions (2) and (3) in the envelope container (1) in which both open end portions (2b) and (3b) are sealed. 2a) and (3a), respectively, to heat the first and second buried portions (5s) and (6s) of the first and second electrode mounts (5) and (6) to the first and second sealing portions (2a). And (3a) respectively embedding;
It is characterized in that at least steps (b) to (e) of the steps (a) to (f) are performed in a working vessel (G) set in a non-oxidizing atmosphere. .
[0009]
"Claim 3" relates to another manufacturing method of the double-headed high-pressure discharge lamp (A).
(A) The first and second sealed tube portions (2) and (3) extend on both sides of the arc tube portion (1a), and the end of the first sealed tube portion (2) is closed. Forming an envelope container (1);
(B) The first electrode mount (5) in which the electrode rod (5a) is connected to the current-carrying member (T1) is moved from the open end (3b) of the second sealing tube (3) to the electrode rod (5a). ) Is inserted into the first sealing tube (2) of the envelope (1) with the inner end of the tube protruding into the arc tube (1a);
(C) The second electrode mount (6) in which the electrode bar (6a) is connected to the current-carrying member (T2) with the inner end of the electrode bar (6a) protruding into the arc tube part (1a). Inserting the necessary substances (7) and (8) and the necessary gas into the arc tube part (1a) while inserting the member into the second sealing tube part (3) of the envelope container (1) with;
(D) welding and closing the opening end (3b) on the side of the second sealing tube (3) of the enclosure (1) into which the second electrode mount (6) is inserted;
(E) The first and second sealed portions (1) of the first and second sealed pipe portions (2) and (3) in the envelope container (1) in which both open end portions (2b) and (3b) are sealed. 2a) and (3a), respectively, to heat the first and second buried portions (5s) and (6s) of the first and second electrode mounts (5) and (6) to the first and second sealing portions (2a). And (3a) respectively embedding;
It is characterized in that at least steps (b) to (d) of the steps (a) to (e) are executed in a working vessel (G) set in a non-oxidizing atmosphere. .
[0010]
Claim 4 relates to a method for producing a double-necked high-pressure halogen lamp (B).
(A) inserting a filament mount (10) in which first and second current-carrying members (T1) and (T2) are connected to both sides of a filament (10a) into an envelope (1);
(B) welding and closing the open end (2b) on the first sealing tube (2) side in the envelope (1) into which the filament mount (10) is inserted;
(C) enclosing the required gas in the enclosure (1);
(D) welding and closing an opening end (3b) on the second sealing tube (3) side of the envelope (1) into which the filament mount (10) is inserted and the required gas is sealed;
(E) The first and second sealed portions (1) of the first and second sealed pipe portions (2) and (3) in the envelope container (1) in which both open end portions (2b) and (3b) are sealed. 2a) and (3a) are respectively heated to embed the first and second buried portions (5s) and (6s) of the filament mount (10) in the first and second sealing portions (2a) and (3a), respectively. And the step of
At least steps (a) to (d) of the steps (a) to (e) are performed in a working container (G) set in a non-oxidizing atmosphere. .
[0011]
"Claim 5" is a limitation of "Claim 4". In the step (A), the first sealing tube portion (2) of the envelope container (1) is closed and the second sealing tube is closed. The section (3) is open, and the filament mount (10) is inserted from the open end (3b) of the second sealing tube section (3). "
[0012]
According to these manufacturing methods, the envelope (1) and the electrode (filament) are placed in the working container (G) set in a non-oxidizing atmosphere after the formation of the envelope (1) having a predetermined shape in the atmosphere. The mounts (5), (6), and (10) are carried in, and the container (1) of the first and second electrode mounts (filaments) mounts (5), (6), and (10) is loaded in the non-oxidizing atmosphere. It is inserted into the inside, necessary substances (7) and (8) and necessary gas are sealed, and both open ends (2b) and (3b) of the envelope container (1) are welded and closed. That is, since the assembling and sealing operations are performed in the working container (G) in a non-oxidizing atmosphere, oxygen or impurities in the air do not enter the sealing container (1), and the black when the high-pressure lighting is performed. It is possible to prevent downsizing and devitrification and to cope with the promotion of downsizing while improving lamp performance.
[0013]
Further, after the welding / closing work of both open ends (2b) and (3b) of the envelope container (1) having a small heat capacity is completed in the working container (G) in a non-oxidizing atmosphere, a large heat capacity is required. Since the work is separated so that the first and second sealing portions (2a) and (3a) are sealed in the atmosphere, the workability in the working container (G) is improved.
[0014]
Here, as an example of the buried portion (5s) (6s), in the case of the electrode mounts (5) and (6), as shown in FIG. This is a portion extending to the inner ends of the external lead rods (5c) and (6c) via the foils (5b) and (6b). In the case of the filament mount (10), as shown in FIG. ) From the outer ends of the lead members (5e) (6e) at both ends to the inner ends of the outer lead rods (5c) (6c) via the metal foils (5b) (6b).
[0015]
In the case of the high-pressure discharge lamp according to claims 1 to 3, the envelope (1) after the insertion of the first electrode mount is placed in a horizontal position, and the necessary substances (7) and (8) are placed in the arc tube part (1a). It may be performed in such a state that it is positioned, or after the first open end (2b) of the envelope container (1) is closed (or the first open end (2b) is closed from the beginning). The work is performed in a vertical state (from the beginning, for example) so that the necessary substances (7) and (8) are located in the arc tube part (1a) at least before sealing the last second buried part (6s). The second buried portion (6s) may be sealed after that.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 9 is a cross-sectional view showing a high-pressure discharge lamp (A) manufactured by the method for manufacturing a high-pressure lamp according to one embodiment of the present invention. In FIG. 9, the envelope container (1) includes a substantially spherical arc tube portion (1a) and first and second sealing portions (2a) (3a) extending from both ends of the arc tube portion (1a). Become. In the envelope (1), opposed electrode rods (5a) and (6a) are provided in the arc tube part (1a), each inner end of which is exposed.
[0017]
The first and second sealing portions (2a) and (3a) in the envelope container (1) are formed by shrinking or pinch sealing, and are formed in the first and second sealing portions (2a) and (3a). The buried portions (5s) and (6s) including the metal foils (5b) and (6b) in the first and second conducting members (T1) and (T2) are respectively buried.
[0018]
The inner ends of the metal foils (5b) and (6b) are connected to the outer ends of a pair of counter electrode rods (5a) and (6a) extending into the arc tube part (1a). ) Are connected to ends of external lead rods (5c) and (6c) extending to the outside.
[0019]
In the arc tube part (1a), a metal halide (7) [and mercury (8) as necessary] are sealed in addition to a necessary gas. The metal halide (7) includes, for example, a sodium-scandium-based metal halide, and the rare gas that is a necessary gas includes xenon gas, argon gas, or krypton gas.
[0020]
The two-port type high-pressure discharge lamp (A) thus formed is used as it is or mounted on a reflector (not shown), and has a color temperature at the time of lighting of 5,000 to 8,000 K and an internal pressure of tens to several atmospheres. It reaches 100 atm and emits whitish light.
[0021]
Next, a manufacturing procedure of the two-port type high-pressure discharge lamp (A) will be described. As shown in FIG. 1, for example, a quartz glass tube (M) having a diameter of about 3 mm is cut at a predetermined length, and then, as shown in FIG. 2, a predetermined portion of the quartz glass tube (M) is burned (R). Is heated while being rotated, and the heated portion is deformed by the mold (D) to form a substantially spheroidal or spherical arc tube part (1a) having a diameter of about 5 mm. As a result, a sealed container (1) in which the first and second sealing tube portions (2) and (3) extend at both ends of the arc tube portion (1a) is formed. The boundary between the arc tube portion (1a) and the first and second sealing tube portions (2) and (3) is generally constricted.
[0022]
The sealed container (1) formed in the atmosphere in this way is generally used before assembly in order to remove minute contamination containing water that may have adhered to or penetrated the surface by the above-described series of processing. Is heated in a vacuum at a temperature immediately before devitrification of the quartz glass, for example, 1050 ° C. for several to several tens hours to release the occluded gas. The heat treatment is appropriately performed inside or outside the working container (G).
[0023]
In the first and second electrode mounts (5) and (6) in the present embodiment, the electrode rods (5a) and (6a) are connected to the inner ends of the metal foils (5b) and (6b), and the outer lead rods ( 5c) and (6c) are connected. When the external lead rods (5c) and (6c) are inserted into the first and second sealing tubes (2) and (3), the first and second electrode mounts (5) and (6) are in the first position. 2 It is bent in a substantially C-shape or zigzag shape or a substantially U-shape as in this example so that it can be fixed to a predetermined portion of the sealing tube portions (2) and (3). The width of the bent portions (5d) and (6d) is formed slightly larger than the inner diameter of the first and second sealing tubes (2) and (3), and the elasticity of the bent portions (5d) and (6d) at the time of insertion. The expanding force acts on the inner peripheral surfaces of the first and second sealing tubes (2) and (3).
[0024]
When the first and second electrode mounts (5) and (6) are inserted into the first and second sealing tubes (2) and (3), the electrode rods of the first and second electrode mounts (5) and (6) are inserted. (5a) The metal foils (5b) and (6b) of the first and second electrode mounts (5) and (6), and the electrode rods (5a) and (6a) so that (5a) and (6a) correspond to the center line of the enclosure (1). ) And the external lead rods (5c) and (6c) are connected so as to be straight. The parts of the first and second electrode mounts (5) and (6) are cleaned and heat-treated, and then assembled in the atmosphere to become the first and second electrode mounts (5) and (6).
[0025]
The envelope container (1) and the first and second electrode mounts (5) and (6) thus manufactured are first subjected to high-temperature vacuum treatment at 1050 to 1,100 ° C. for several tens of hours to remove OH groups. Is performed. Then, before being carried into the working vessel (G) set in a non-oxidizing atmosphere (usually an argon atmosphere), an anti-chamber (not shown) continuously installed in the working vessel (G) is treated. The sealed container (1), the first and second electrode mounts (5) and (6), and the filling materials (7) and (8) [for example, sodium-scandium, NaI-ScI] 3 System + Hg particles], where deaeration is carried out, and then carried into a working vessel (G) set in a non-oxidizing atmosphere, where these electrode mounts (5), (6) and filling are carried out. The materials (7) and (8) are assembled into the enclosure (1). As the working container (G), for example, a glove box or the like filled with argon gas is used, and the inside pressure is set to be higher than the atmospheric pressure, for example, slightly higher than 1 atm, and outside air flows into the working container (G). I try not to.
[0026]
After the enclosure container (1), the first and second electrode mounts (5) and (6), and the filling materials (7) and (8) are carried into the working container (G) in this manner, first, FIG. As shown, the first electrode mount (5) is inserted into a predetermined location in the first sealing tube (2) of the envelope (1), and the other open end of the envelope (1) is inserted. (3b) is connected to the exhaust stand (H).
[0027]
The first electrode mount (5) inserted into a predetermined position in the first sealing tube (2) is adapted to expand the envelope (5d) of the bent portion (5d) of the external lead rod (5c). 51) is accurately positioned and held on the tube axis.
[0028]
After inserting the first electrode mount (5) into the envelope (1), one open end (2b) of the envelope (1) is irradiated with a laser or a plasma burner (P) as in this example. The opening end (2b) is heated and softened as shown in FIG. 4 by heating in a non-oxidizing atmosphere, and is closed in a hemispherical shape by the surface tension of the envelope container (1) in which the inside is reduced in pressure. Since the insertion of the first electrode mount (5) into the enclosure container (1) is performed in the working container (G), no contamination is attached to the first electrode mount (5) and the first electrode mount (5) is not attached. Immediately after the insertion of the mount (5), the end closing operation is performed (see FIG. 4).
[0029]
Thereafter, as shown in FIG. 5, the envelope container (1) is once removed from the exhaust stand (H), and the other opening of the envelope container (1) fills the arc tube portion (1a) into the arc tube portion (1a). The metal halide (7) [and mercury particles (8) if necessary] are sealed, and the second electrode mount (6) is inserted into the second sealing tube (3) in the envelope (1). The second electrode mount (6) is also accurately held at a predetermined position by the elastic expanding force of the bent portion (6d) of the external lead rod (5c), and the left and right electrode rods (5a) (6a) are spaced apart from each other by a predetermined distance. Hold and face each other. Either of the necessary substances (7) (8) and the second electrode mount (6) may be inserted first.
[0030]
In this case, in the work after the insertion of the first electrode mount, the envelope container (1) is placed in a horizontal posture, and the operation is performed in a state where the necessary substances (7) and (8) are located in the arc tube part (1a). Alternatively, after closing the first open end (2b) of the envelope container (1) (or from the beginning if the first open end (2b) is closed from the beginning), the vertical state is established. At least before the sealing of the last second buried portion (6s), the necessary substances (7) and (8) are moved so as to be located in the arc tube portion (1a). The second embedded portion (6s) may be sealed.
[0031]
The metal halide (7) [and mercury particles (8) if necessary] are sealed in an ampoule that is shut off from the air in advance, and when sealed in the envelope (1), the working container (G) is closed. Since there is no risk of contamination by impurities.
[0032]
Next, the envelope container (1) into which the second electrode mount (6) and the like are inserted is again supported by the exhaust stand (12) as shown in FIG. In this state, a vacuum pump (not shown) is operated to evacuate the inside of the enclosure (1) through the evacuation table (H), thereby sucking and exhausting the argon gas present in the enclosure (1). I do. Then, a required gas such as xenon gas or new argon gas or krypton gas is supplied from the outside to the inside of the envelope container (1) via the exhaust stand (H), and sealed at 1 atm or less at the time of sealing.
[0033]
Thereafter, the other open end (3b) of the envelope container (1) is heated by a laser or a plasma burner (P) as in this example to heat the open end (3b) as shown in FIG. This portion is closed by softening and shrinking by surface tension.
[0034]
As described above, the first and second electrode mounts (6), the filling material, and the like are inserted into the working container (G), and the open ends (2b) and (3b) are welded and closed. With this, there is no concern that the inside is contaminated with impurities, and it is possible to cope with the promotion of miniaturization while maintaining good lamp performance.
[0035]
At this stage, since both open ends (2b) and (3b) of the envelope container (1) are closed, the envelope container (1) is unloaded from the working container (G) and the subsequent work is performed in the atmosphere. It can be carried out. Of course, the subsequent work may be performed subsequently in the work container (G).
[0036]
Specifically, as shown in FIG. 8, the first and second sealing portions (2a) and (3a) in the sealing container (1) are heated and sealed. First, the shielding plate (S) is arranged between the arc tube portion (1a) and the sealing portions (2a) and (3a), and liquid nitrogen (N) is sprayed on the arc tube portion (1a). To prevent the fillings (7), (8) from evaporating when heated. In this state, the first sealing portion (2a) corresponding to the first embedded portion (5s), which is the portion of the substantially metal foil (5b) of the first electrode mount (5), is heated by a heating means such as a normal burner. The first embedded portion (5s) is buried in the first sealing portion (2a) by heating by (L) and shrinking the first sealing portion (2a) or compressing with a pinch seal. And seal. Further, similarly, the second sealing portion (3a) is heated in the same manner, and the second sealing portion (3a) is contracted or compressed by a pinch seal, so that the second buried portion (6s) is compressed. It is embedded and sealed in the second sealing portion (3a).
[0037]
In this embedding and sealing step, the second sealed portion (3a) is heated while the first sealed portion (2a) is immersed in liquid nitrogen while the envelope container (1) is held vertically. You may do so.
[0038]
When the sealing operation of the envelope container (1) is completed, a predetermined portion of the envelope container (1) is cut by using, for example, a laser or a diamond cutter to obtain a desired high-pressure discharge lamp shown in FIG. (A) is manufactured.
[0039]
In addition, in the method for manufacturing the two-port type high-pressure discharge lamp (A), as another method, the envelope container (1) in which the end of the first sealing tube (2) is closed is step (a). May be formed. Regardless of the embodiment, the first and second electrode mounts (5) and (6) in which the electrode rods (5a) are connected to the current-carrying members (T1) and (T2) are connected to the electrode rods (5a) and (6a). Are inserted into the first and second sealing tube portions (2) and (3) of the envelope container (1) with the inner end thereof protruding into the arc tube portion (1a) and facing the arc tube portion (1a). Step 1) enclosing the necessary substances (7) and (8) and the necessary gas in 1), and welding and closing the open end portions (2b) and (3b) on the first and second sealing tube portions (2) and (3) side. Then, the order of the steps other than the sealing step may be any order, and the order does not matter.
[0040]
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 14 shows a two-port type high-pressure halogen lamp (B), and the same or corresponding parts as those of the high-pressure discharge lamp of FIG. 9 are denoted by the same reference numerals and description thereof will be omitted. In FIG. 14, a filament mount (10) is the same as that used for a normal halogen lamp, and includes a filament (10a) and lead members (5e) (6e) connected to both ends of the filament (10a). Metal foils (5b) and (6b) connected to the outer ends of the lead members (5e) and (6e); and external lead bars (5c) and (6c) connected to the outer ends of the metal foils (5b) and (6b). ), And is fixed at a predetermined position in the envelope container (1).
[0041]
The arc tube part (1a) of the envelope (1) remains a cylindrical shape having the same diameter as the first and second sealing tube parts (2) and (3). Gas is enclosed.
[0042]
Next, a description will be given of a manufacturing procedure of the double-headed high-pressure halogen type (B). The envelope container (1) is formed by cutting the quartz glass tube (M) of FIG. 1 to a predetermined length, and before the filament mount (10) is assembled, immediately before devitrification of the quartz glass. At a temperature of, for example, 1050 ° C. in a vacuum for several to several tens hours to release the stored gas.
[0043]
On the other hand, the filament (10a), the lead members (5e) (6e), the metal foils (5b) (6b), and the external lead rods (5c) (6c) are also washed with a chemical such as an alkali or an acid to remove impurities. Drying and further vacuum heat treatment are performed.
[0044]
As shown in FIG. 10, the envelope container (1) and the filament mount (10) are carried into the working container (G), and the filament mount (10) is inserted into a predetermined position in the envelope container (1). Then, the other open end (3b) of the envelope container (1) is connected to the exhaust stand (H). In this state, one open end (2b) of the envelope container (1) is heated by a laser or a plasma burner (P) as in this example, and the open end (2b) is welded as shown in FIG. And close it. Then, in this case, the work after the insertion of the mount may be performed in a state where the envelope container (1) is in the horizontal posture, as described above.
[0045]
Thereafter, the inside of the enclosure (1) is evacuated to discharge the argon gas, and then the required gas (for example, xenon gas, argon gas or krypton gas at 1 atm or less at the time of sealing) is exhausted from the exhaust table (H). Etc.). Next, the other open end (3b) of the envelope (1) is heated by a laser or a plasma burner (P) as in this example, and the open end (2b) is welded as shown in FIG. To close.
[0046]
Also in this case, the filament mount (10) is incorporated into the envelope container (1) in the working container (G), and both open ends (2b) and (3b) of the envelope container (1) are welded and closed. There is no possibility that air, impurities, or the like enter the sealed container (1), and the lamp performance can be satisfactorily exhibited in response to miniaturization.
[0047]
Thereafter, since both ends of the envelope container (1) are closed, there is no possibility that a trace amount of impurities may enter the inside even if the container is taken out and processed in the atmosphere. Will be worked on. Of course, it is also possible to work in the working container (G). As shown in FIG. 13, the first sealing portion (2a) corresponding to the first buried portion (5s) of the filament mount (10) is heated in the atmosphere by a heating means (L) such as a normal burner. By shrinking or compressing the first sealing portion (2a) into a pinch seal, the first embedded portion (5s) is embedded in the first sealing portion (2a) and sealed.
[0048]
Further, the second sealing portion (3a) is heated in the same manner, and the second sealing portion (3a) is shrunk or compressed into a pinch seal, so that the second buried portion (6s) is sealed in the second sealing portion (6s). It is embedded in the stop point (3a) and sealed.
[0049]
When the sealing operation is completed, a predetermined high-pressure halogen lamp (B) shown in FIG. 14 is created by cutting a predetermined portion of the envelope container (1) in the same manner as described above. In addition, in the embodiment of FIGS. 10 to 13, the envelope container (1) is set vertically, but the above operation can be performed in a horizontal state.
[0050]
【The invention's effect】
As described above, according to the present invention, an electrode (filament) mount or the like is inserted into a sealed container in a working container set in a non-oxidizing atmosphere, and both open ends of the sealed container are welded and closed. Therefore, there is no possibility that parts such as the envelope container are contaminated by air, impurities, or the like during assembly of the lamp, and a chipless small high-pressure lamp excellent in lamp performance can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a cut state of a quartz glass tube used for manufacturing a high-pressure discharge lamp according to an embodiment of the present invention.
FIG. 2 is a sectional view showing a processing state of the quartz glass tube of FIG.
FIG. 3 is a cross-sectional view showing a state where a first electrode mount is inserted into a sealing container in a working container.
FIG. 4 is a cross-sectional view showing a state in which one open end of the envelope container is welded and closed.
FIG. 5 is a cross-sectional view showing a state in which a sealing container is removed from an exhaust stand and a second electrode mount and the like are inserted.
FIG. 6 is a cross-sectional view showing a state where the other open end of the envelope container is welded and closed.
FIG. 7 is a cross-sectional view showing a sealed container with the other open end welded and closed.
FIG. 8 is a cross-sectional view showing a state where a predetermined portion of the envelope container is heated and sealed after both opening ends are closed.
FIG. 9 is a cross-sectional view showing a high-pressure discharge lamp obtained by cutting off a predetermined portion of a sealed container.
FIG. 10 is a cross-sectional view showing a state where a filament mount is inserted into a sealing container in a working container in another embodiment of the present invention.
FIG. 11 is a cross-sectional view showing a state where one open end of the envelope container into which the filament mount is inserted is welded and closed.
FIG. 12 is a cross-sectional view showing a state where the other open end of the envelope container into which the filament mount is inserted is welded and closed.
FIG. 13 is a cross-sectional view showing a state in which a predetermined portion of the envelope container is heated and sealed after both opening ends are closed.
FIG. 14 is a cross-sectional view showing a high-pressure halogen lamp obtained by cutting off a predetermined portion of a sealed container.
[Explanation of symbols]
(1) ・ ・ ・ ・ ・ Envelope container
(1a) ········ Arc tube part
(2) · · · · First sealing tube
(3) ······ Second sealing tube
(2a) ······ First sealing location
(3a)... Second sealing location
(2b) (3b) ··· Open end of envelope container
(5) ····· First electrode mount
(6) ・ ・ ・ ・ ・ Second electrode mount
(5a) (6a) ... electrode rod
(5s) (6s) ... buried part
(7) (8) ···· Filling substance
(10) ... Filament mount
(A) (B) High pressure lamp
(G) ・ ・ ・ ・ ・ Working container
(T1) (T2) ... energizing member

Claims (5)

(イ)発光管部の両側に第1及び第2封止管部が延びている状態の封体容器を形成するステップと、
(ロ)通電部材に電極棒が接続されている第1、2電極マウントを該電極棒の内端が発光管部内に臨出し且つ対向する状態で封体容器の第1及び第2封止管部内に挿入し且つ発光管部内に必要物質と必要ガスを封入し、第1,2封止管部側の開口端部を溶着・閉塞するステップと、
(ハ)両開口端部が封止された封体容器における第1及び第2封止管部の第1及び第2封止箇所をそれぞれ加熱して、第1及び第2電極マウントの第1及び第2被埋設部分を第1及び第2封止箇所にそれぞれ埋入するステップとを備え、
前記(イ)〜(ロ)のステップのうちの少なくとも(ロ)のステップを非酸化性雰囲気に設定されている作業容器内で実行する事を特徴とするランプの製造方法。
(A) forming a sealed container with the first and second sealed tube portions extending on both sides of the arc tube portion;
(B) First and second sealing tubes of a sealed container with first and second electrode mounts each having an electrode rod connected to a current-carrying member, with the inner ends of the electrode rods protruding into the arc tube portion and facing each other. Inserting the necessary substance and necessary gas into the arc tube part and sealing and opening / closing the opening ends of the first and second sealing tube parts;
(C) heating the first and second sealed portions of the first and second sealed tube portions in the sealed container in which both open end portions are sealed, respectively, so as to heat the first and second electrode mounts; And embedding the second buried portion in the first and second sealing portions, respectively.
A method of manufacturing a lamp, wherein at least step (b) of the steps (a) to (b) is performed in a working vessel set in a non-oxidizing atmosphere.
(イ)発光管部の両側に第1及び第2封止管部が延びている状態の封体容器を形成するステップと、
(ロ)通電部材に電極棒が接続されている第1電極マウントを、該電極棒の内端が発光管部内に臨出する状態で封体容器の第1封止用管部内に挿入するステップと、
(ハ)第1電極マウントが挿入された封体容器の第1封止管部側の開口端部を溶着・閉塞するステップと、
(ニ)通電部材に電極棒が接続されている第2電極マウントを、該電極棒の内端が発光管部内に臨出する状態で封体容器の第2封止用管部内に挿入すると共に発光管部内に必要物質及び必要ガスを封入するステップと、
(ホ)第2電極マウントが挿入された封体容器の第2封止管部側の開口端部を溶着・閉塞するステップと、
(ヘ)両開口端部が封止された封体容器における第1及び第2封止管部の第1及び第2封止箇所をそれぞれ加熱して、第1及び第2電極マウントの第1及び第2被埋設部分を第1及び第2封止箇所にそれぞれ埋入するステップとを備え、
前記(イ)〜(へ)のステップのうちの少なくとも(ロ)〜(ホ)のステップを非酸化性雰囲気に設定されている作業容器内で実行する事を特徴とするランプの製造方法。
(A) forming a sealed container with the first and second sealed tube portions extending on both sides of the arc tube portion;
(B) inserting the first electrode mount, in which the electrode rod is connected to the current-carrying member, into the first sealing tube portion of the envelope container with the inner end of the electrode rod protruding into the arc tube portion; When,
(C) welding and closing the opening end of the sealed container into which the first electrode mount is inserted, on the first sealing tube side;
(D) Inserting the second electrode mount in which the electrode bar is connected to the current-carrying member into the second sealing tube portion of the envelope container with the inner end of the electrode bar protruding into the arc tube portion. Enclosing a necessary substance and a necessary gas in the arc tube part,
(E) welding and closing the open end of the sealed container into which the second electrode mount is inserted, on the side of the second sealing tube;
(F) heating the first and second sealed portions of the first and second sealed tube portions in the sealed container in which both open end portions are sealed, respectively, so as to heat the first and second electrode mounts; And embedding the second buried portion in the first and second sealing portions, respectively.
A method for manufacturing a lamp, characterized in that at least steps (b) to (e) of the steps (a) to (f) are performed in a working vessel set in a non-oxidizing atmosphere.
(イ)発光管部の両側に第1及び第2封止管部が延びており、第1封止管部の端部が閉塞された状態の封体容器を形成するステップと、
(ロ)通電部材に電極棒が接続されている第1電極マウントを、第2封止管部の開口端から該電極棒の内端が発光管部内に臨出する状態で封体容器の第1封止用管部内に挿入するステップと、
(ハ)通電部材に電極棒が接続されている第2電極マウントを、該電極棒の内端が発光管部内に臨出する状態で封体容器の第2封止用管部内に挿入すると共に発光管部内に必要物質及び必要ガスを封入するステップと、
(ニ)第2電極マウントが挿入された封体容器の第2封止管部側の開口端部を溶着・閉塞するステップと、
(ホ)両開口端部が封止された封体容器における第1及び第2封止管部の第1及び第2封止箇所をそれぞれ加熱して、第1及び第2電極マウントの第1及び第2被埋設部分を第1及び第2封止箇所にそれぞれ埋入するステップとを備え、
前記(イ)〜(ホ)のステップのうちの少なくとも(ロ)〜(ニ)のステップを非酸化性雰囲気に設定されている作業容器内で実行する事を特徴とするランプの製造方法。
(A) forming a sealed container in which the first and second sealed tube portions extend on both sides of the arc tube portion and the end of the first sealed tube portion is closed;
(B) The first electrode mount in which the electrode rod is connected to the current-carrying member is placed on the first container mount in a state where the inner end of the electrode rod projects from the opening end of the second sealing tube part into the arc tube part. (1) inserting into a sealing tube;
(C) Inserting the second electrode mount, in which the electrode rod is connected to the current-carrying member, into the second sealing tube portion of the envelope container with the inner end of the electrode rod protruding into the arc tube portion. Enclosing a necessary substance and a necessary gas in the arc tube part,
(D) welding and closing the opening end of the sealed container into which the second electrode mount is inserted, on the side of the second sealing tube;
(E) heating the first and second sealed portions of the first and second sealed tube portions in the sealed container in which both open end portions are sealed, respectively, so as to heat the first and second electrode mounts; And embedding the second buried portion in the first and second sealing portions, respectively.
A method for manufacturing a lamp, wherein at least steps (b) to (d) of the steps (a) to (e) are performed in a working vessel set in a non-oxidizing atmosphere.
(イ)フィラメントの両側に第1及び第2通電部材が接続されているフィラメントマウントを封体容器内に挿入するステップと、
(ロ)フィラメントマウントが挿入された封体容器内の第1封止管部側の開口端部を溶着・閉塞するステップと、
(ハ)封体容器内に必要ガスを封入するステップと、
(ニ)フィラメントマウントが挿入され且つ必要ガスが封入された封体容器の第2封止管部側の開口端部を溶着・閉塞するステップと、
(ホ)両開口端部が封止された封体容器における第1及び第2封止管部の第1及び第2封止箇所をそれぞれ加熱して、フィラメントマウントにおける第1及び第2被埋設部分を第1及び第2封止箇所にそれぞれ埋入するステップとを備え、
前記(イ)〜(ホ)のステップのうちの少なくとも(ロ)〜(ニ)のステップを非酸化性雰囲気に設定されている作業容器内で実行する事を特徴とするランプの製造方法。
(A) inserting a filament mount in which the first and second current-carrying members are connected to both sides of the filament into the envelope container;
(B) welding and closing the opening end on the first sealing tube side in the envelope in which the filament mount is inserted;
(C) enclosing the necessary gas in the sealed container;
(D) welding and closing the opening end of the sealed container in which the filament mount is inserted and the required gas is sealed, on the side of the second sealing tube;
(E) heating the first and second sealed portions of the first and second sealed tube portions in the sealed container in which both open ends are sealed, and burying the first and second embedded portions in the filament mount; Embedding the portions in the first and second sealing locations, respectively.
A method for manufacturing a lamp, wherein at least steps (b) to (d) of the steps (a) to (e) are performed in a working vessel set in a non-oxidizing atmosphere.
(イ)のステップにおいて、封体容器の第1封止管部が閉塞され、第2封止管部が開口しており、フィラメントマウントを第2封止管部の開口端部から挿入することを特徴とする請求項4に記載のランプの製造方法。In the step (a), the first sealing tube portion of the envelope container is closed, the second sealing tube portion is open, and the filament mount is inserted from the opening end of the second sealing tube portion. The method for producing a lamp according to claim 4, wherein
JP2003133645A 2003-05-12 2003-05-12 Lamp manufacturing method Expired - Lifetime JP4091473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003133645A JP4091473B2 (en) 2003-05-12 2003-05-12 Lamp manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003133645A JP4091473B2 (en) 2003-05-12 2003-05-12 Lamp manufacturing method

Publications (2)

Publication Number Publication Date
JP2004335423A true JP2004335423A (en) 2004-11-25
JP4091473B2 JP4091473B2 (en) 2008-05-28

Family

ID=33508118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003133645A Expired - Lifetime JP4091473B2 (en) 2003-05-12 2003-05-12 Lamp manufacturing method

Country Status (1)

Country Link
JP (1) JP4091473B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164533A (en) * 2004-12-02 2006-06-22 Koito Mfg Co Ltd Arc tube for discharge lamp device and manufacturing method for the arc tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164533A (en) * 2004-12-02 2006-06-22 Koito Mfg Co Ltd Arc tube for discharge lamp device and manufacturing method for the arc tube
JP4509754B2 (en) * 2004-12-02 2010-07-21 株式会社小糸製作所 Arc tube for discharge lamp device and method of manufacturing the same

Also Published As

Publication number Publication date
JP4091473B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
EP1324368B1 (en) Method for producing a high pressure discharge lamp
JP3394645B2 (en) Arc tube and manufacturing method thereof
JP4856788B2 (en) Discharge lamp electrode, high pressure discharge lamp, lamp unit, and projection type image display device
JP3582500B2 (en) Ultra high pressure mercury lamp
JP3665510B2 (en) Arc tube for discharge lamp equipment
JP4229831B2 (en) Manufacturing method of arc tube for high intensity discharge lamp
CN101061567A (en) Rapid re-strike ceramic discharge metal halide lamp
JP3204189B2 (en) Short arc type ultra-high pressure discharge lamp
JP4091473B2 (en) Lamp manufacturing method
EP1168408A1 (en) Method for producing a discharge lamp and discharge lamp
CN1316762A (en) Discharge lamp and its lamp assembling unit
JP2005522842A (en) High-intensity discharge lamp, arc tube, and manufacturing method thereof
JP3411810B2 (en) Ceramic discharge lamp
US6335593B1 (en) Electric discharge lamp with an improved sealing structure improving uniformity of light output and method of making
JP3594890B2 (en) Method for manufacturing high-pressure lamp and high-pressure lamp formed by the method
JP4912547B2 (en) Discharge lamp and manufacturing method thereof
JP2004111267A (en) Manufacturing device of high-pressure lamp
JP4453487B2 (en) Oxygen sealing method for high pressure discharge lamp
JP2003282021A (en) Manufacturing method of high-pressure discharge lamp and quartz glass bulb for lamp and illumination device
JP4703405B2 (en) Manufacturing method of arc tube for discharge lamp device
JPH01243339A (en) Manufacture of fluorescent lamp
JP4429129B2 (en) Method for producing mercury-free arc tube for discharge lamp device and mercury-free arc tube for discharge lamp device
JP2008277091A (en) Discharge lamp manufacturing method
JP4451650B2 (en) Manufacturing method of high-pressure discharge lamp
JP2006216387A (en) Low-pressure mercury discharge lamp and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050114

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060124

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060228

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060501

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080205

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20080228

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110307

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110307

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5