【0001】
【発明の属する技術分野】
本発明は、遠赤外線を発するヒーター管に関する。
【0002】
【従来の技術】
従来のこの種の遠赤外線ヒーターとして、ハロゲンランプヒーターの熱を反射盤に反射させるものが知られている(例えば、特許文献1参照)。ハロゲンランプは、電源入力時の突入電流が定格電流の数倍近くもあって、過電流対策を必要とした。
そこで、次のような二種類のカーボンヒーターが一般的に用いられるようになってきた。即ち、第一のものは、炭素粒を圧縮成型して、棒状カーボンヒーターとして、これを密閉された石英管(密封管)に入れ、その両端から電極を突出させた構造のものであるが、このような上記棒状カーボンヒーターは曲げられない───非可撓性───ので、ヒーター管の形状を直管以外の弯曲形状とすることが難しく、又は、予め決められた弯曲形状以外の弯曲形状に流用できないという問題があった。
【0003】
第2のものは、炭素をスポンジ(海綿)状に加工し、細長い形に分割したカーボンヒーター3を、石英管(密封管)に入れたものである。しかしながら、このスポンジ状炭素の気泡分布が不均等となり易く、ヒーター管の発熱分布が不均等となって、消費電力を正確にコントロールすることが難しく、また、異なる形のヒーター管を揃えることが難しいといった問題がある。
【0004】
【特許文献1】
特開2002−22185号公報
【0005】
【発明が解決しようとする課題】
上述のように、従来の二種類のヒーター管は、棒状カーボンヒーター、又は、スポンジ状カーボンヒーターを備えていたが、一旦、その全体形状を設定すると、その形状以外の製品に変更することが困難であった。
【0006】
【課題を解決するための手段】
そこで、本発明に係るヒーター管は、耐熱繊維糸の紐状体と、該紐状体の外表面に密に外嵌させた炭素繊維糸と、をもって可撓性発熱本体を形成し、さらに、該可撓性発熱本体の両端部の各々に、金属製コイルを密に外嵌させて上記炭素繊維糸の各端部に緊密に接触させ、かつ、該コイルの外端を電気的に電極に接続して、管内ユニット体を構成し、該管内ユニット体を、複数の保持リングを介して密封管内の軸心に沿って保持して、該密封管内に内蔵した構成である。
また、紐状体が多数の耐熱繊維糸を編んで構成されている。また、炭素繊維糸が螺旋状又は網状に紐状体の外表面に巻付けられている。また、密封管が弯曲形状であり、保護リングがフェルト材から成る。
【0007】
【発明の実施の形態】
以下、図示の実施の形態に基づき、本発明を詳説する。
図1の一部破断正面図、及び、図2のその要部を示す拡大断面図に於て、1は耐熱繊維糸から成る紐状体であり、その紐状体1の外表面に密に炭素繊維糸2が巻付けられ(外嵌され)、この紐状体1と炭素繊維糸2とをもって、可撓性発熱本体11を形成する。紐状体1は、石英ガラス、石綿、セラミック等の5本〜 100本の多数の耐熱繊維糸を編んで、横断面略円形に形成したもの、又は、単にストレート状又は撚り状の多数の耐熱繊維糸を束ねたものとする。
【0008】
そして、炭素繊維糸2は、図2のように螺旋状に一重に巻付けられ、又は、図1と図3に示すように、X字状に交叉するように二重以上に螺旋に巻付けられる。若しくは、(図1と図3に於て、)炭素繊維糸2を網状に編んで外嵌しても良い。
【0009】
図2又は図3に於て、上記可撓性発熱本体11の両端部11a,11aの各々に、金属製コイル4を密に外嵌───巻付け───して、端部11aの炭素繊維糸2の端部2aに緊密に接触させ、かつ、このコイル4の外周側から圧着固定スリーブ5をカシメ等で圧着して固定する。このコイル4の外端4を、電気的に電極7に接続する。即ち、電極プレート6に、ハンダ等でコイル4の外端4aを固着(接続)し、プレート6に電極7の内端をハンダ等で固着(接続)している。
【0010】
このように、両端各々の電極連接部位13は、コイル4、スリーブ5、プレート6及び電極7から成る場合を図2に示す。コイル4の巻設部───外端4aへの延伸部4bを除いた部分───の軸心方向幅寸法は、3〜8mmとする。上記圧着固定スリーブ5がコイル4を外側から強く包囲しており、炭素繊維糸2とコイル4の間の電気的導通性及び耐久性は、安定して良好である。
【0011】
図3に於て、図2の圧着固定スリーブ5の代わりに、(金型内に注入して固化させた)炭素ブロック8を用いて、コイル4を固着している。この図3のようにすれば、導電性と耐久性は安定して良好である。
図2又は図3に於て、9は孔付き平ワッシャ状の保持リングであり、10は石英ガラス等から成る密封管であり、横横断面円形のこの密封管10の軸心Lに沿って、可撓性発熱本体11を、複数の上記保持リング9を所定ピッチで配設することで、保持する。
【0012】
このように、紐状体1と炭素繊維糸2とから成る可撓性発熱本体11と、金属製コイル4と、図2の圧着固定スリーブ又は図3の炭素ブロック8、電極プレート6、電極7等をもって、管内ユニット体Uを構成する。この管内ユニット体Uを、複数の保持リング9…を介して、密封管10内の軸心Lに沿って保持して、ユニット体Uを密封管10内に内蔵している。
【0013】
図1では密封管10の全体形状は、馬蹄形であり、これ以外円形や楕円形、及び、その他の形状(ストレート状を含む)であっても自由であるが、特に弯曲形状である場合にも、保持リング9…によって、軸心Lに一致するように、発熱本体11───ユニット体U───が保持される。発熱本体11は可撓性を有するので、密封管10の形状にかかわらず、発熱本体11が柔軟に自由自在に対応した形状に、保ち得る。
【0014】
保持リング9はフェルト材が好ましいが、耐熱性のある他の材質や組成としても良い。この保持リング9の内周面は、炭素繊維糸2(及び紐状体1)に接触し、外周面は、密封管10の内周面に接触し、これによって、保持リング9は、可撓性発熱本体11の固定・保持の役割、及び、炭素繊維糸2の放熱(散熱)の役割を果たす。
【0015】
製法について説明すると、両端開口状密封管10を予め直管(ストレート状)や、弯曲管(異形)に製造しておき、図2又は図3に於て、密封管10以外の組み立て体───管内ユニット体U───を別途準備し、上記両端開口状密封管10内にこの管内ユニット体Uを、電極7,7を両端外方へ突出状となるように、挿入する。次に、密封管10を真空状態に保ち、保護性気体(不活性ガス)を注入してから、両端を図2又は図3のように密閉する。
【0016】
このように、直管はもちろんのこと、馬蹄形やその他の異形にも、容易に製造が可能である。そして、(発熱する)炭素繊維糸2の長さ、直径、巻付け密度、巻付け本数等を、選定することで、所定の発熱量のヒーター管を容易に製造可能となる。
なお、本発明に係るヒーター管は電子レンジ、オーブントースター、暖房機、冷蔵庫霜取り等の家電や、人体疾患治療機等に、広く適用できる。
【0017】
【発明の効果】
本発明は上述の構成により以下の著大な効果を奏する。
(請求項1によれば、)発熱本体11は可撓性を有するので、直管以外の各種弯曲形状のヒーター管をも、容易に製造可能であり、かつ、各種の形状の密封管に対して、挿入される管内ユニット体Uを共用することも容易であって、コストダウン及び全体の製造の容易化を、図り得る。
(請求項2によれば、)紐状体1の強度が増大し、細径であっても十分な強度と耐久性を発揮する。
(請求項3によれば、)発熱が長手方向に均等にできる。しかも、紐状体1と共に強度が向上し、適度の可撓性を確保できる。
(請求項4によれば、)保持リング9が確実に管内ユニット体Uを軸心Lに一致するように保ち、かつ、発熱を妨げない。
【図面の簡単な説明】
【図1】本発明の実施の一形態を示す一部破断正面図である。
【図2】要部拡大断面図である。
【図3】他の実施の形態を示す要部拡大断面図である。
【符号の説明】
1 紐状体
2 炭素繊維系
2a 端部
4 金属製コイル
4a 外端
7 電極
9 保持リング
10 密封管
11 可撓性発熱本体
11a 端部
L 軸心
U 管内ユニット体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heater tube that emits far-infrared rays.
[0002]
[Prior art]
As a conventional far-infrared heater of this type, there is known a heater that reflects the heat of a halogen lamp heater to a reflector (for example, see Patent Document 1). Halogen lamps had inrush current at the time of power input nearly several times the rated current, and required countermeasures for overcurrent.
Therefore, the following two types of carbon heaters have been generally used. That is, the first one has a structure in which carbon particles are compression-molded and placed as a rod-shaped carbon heater in a sealed quartz tube (sealed tube), and electrodes are projected from both ends thereof. Since such a rod-shaped carbon heater is not bendable (inflexible), it is difficult to make the shape of the heater tube a curved shape other than a straight tube, or a shape other than a predetermined curved shape. There was a problem that it could not be diverted to a curved shape.
[0003]
The second one is one in which carbon is processed into a sponge (sponge) shape, and a carbon heater 3 divided into an elongated shape is placed in a quartz tube (sealed tube). However, the bubble distribution of the sponge-like carbon tends to be uneven, and the heat distribution of the heater tube is uneven, so that it is difficult to accurately control power consumption, and it is difficult to arrange heater tubes of different shapes. There is a problem.
[0004]
[Patent Document 1]
JP-A-2002-22185 [0005]
[Problems to be solved by the invention]
As described above, the conventional two types of heater tubes are provided with a rod-shaped carbon heater or a sponge-shaped carbon heater. However, once the entire shape is set, it is difficult to change to a product other than the shape. Met.
[0006]
[Means for Solving the Problems]
Therefore, the heater tube according to the present invention forms a flexible heat-generating body with a string-shaped body of heat-resistant fiber thread and a carbon fiber thread closely fitted to the outer surface of the string-shaped body, A metal coil is closely fitted to each of both ends of the flexible heating body so as to be in close contact with each end of the carbon fiber yarn, and the outer end of the coil is electrically connected to the electrode. By connecting them, an in-pipe unit body is formed, and the in-pipe unit body is held along an axis in the sealed pipe via a plurality of holding rings, and is built in the sealed pipe.
Further, the string-like body is formed by knitting a number of heat-resistant fiber yarns. In addition, the carbon fiber yarn is wound around the outer surface of the cord in a spiral or net shape. The sealing tube has a curved shape, and the protection ring is made of felt material.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.
In the partially cutaway front view of FIG. 1 and the enlarged cross-sectional view of the main part of FIG. 2, reference numeral 1 denotes a string made of heat-resistant fiber yarn, and the string 1 is densely attached to the outer surface of the string 1. The carbon fiber thread 2 is wound (fitted around), and the string-shaped body 1 and the carbon fiber thread 2 form a flexible heating body 11. The string-like body 1 is formed by knitting a large number of 5 to 100 heat-resistant fiber yarns of quartz glass, asbestos, ceramic, or the like and forming them in a substantially circular cross-section, or simply a large number of heat-resistant straight or twisted fibers. It is assumed that fiber yarns are bundled.
[0008]
Then, the carbon fiber yarn 2 is spirally wound as a single layer as shown in FIG. 2, or as shown in FIG. 1 and FIG. Can be Alternatively (in FIGS. 1 and 3), the carbon fiber yarn 2 may be knitted in a net shape and fitted outside.
[0009]
In FIG. 2 or FIG. 3, the metal coil 4 is tightly fitted (wrapped) around both ends 11a, 11a of the flexible heat generating main body 11 to form the end 11a. The end portion 2a of the carbon fiber yarn 2 is brought into close contact with the end portion 2a, and the crimping fixing sleeve 5 is fixed from the outer peripheral side of the coil 4 by crimping or the like. The outer end 4 of the coil 4 is electrically connected to the electrode 7. That is, the outer end 4a of the coil 4 is fixed (connected) to the electrode plate 6 with solder or the like, and the inner end of the electrode 7 is fixed (connected) to the plate 6 with solder or the like.
[0010]
FIG. 2 shows a case where the electrode connection portions 13 at both ends are composed of the coil 4, the sleeve 5, the plate 6, and the electrode 7 as described above. The width in the axial direction of the winding portion of the coil 4 (the portion excluding the extending portion 4b extending to the outer end 4a) is 3 to 8 mm. The press-fixing sleeve 5 strongly surrounds the coil 4 from the outside, and the electrical conductivity and durability between the carbon fiber yarn 2 and the coil 4 are stable and good.
[0011]
In FIG. 3, the coil 4 is fixed by using a carbon block 8 (injected into a mold and solidified) instead of the crimp fixing sleeve 5 of FIG. According to FIG. 3, the conductivity and durability are stable and good.
In FIG. 2 or 3, reference numeral 9 denotes a flat washer-shaped holding ring with a hole, 10 denotes a sealing tube made of quartz glass or the like, and the sealing tube 10 has a circular cross section along the axis L of the sealing tube 10. The flexible heating body 11 is held by arranging the plurality of holding rings 9 at a predetermined pitch.
[0012]
As described above, the flexible heating body 11 composed of the string-like body 1 and the carbon fiber yarn 2, the metal coil 4, the crimping fixed sleeve of FIG. 2 or the carbon block 8, the electrode plate 6, and the electrode 7 of FIG. The tube unit body U is constituted by the above. The in-pipe unit body U is held along the axis L in the sealed tube 10 via a plurality of holding rings 9.
[0013]
In FIG. 1, the entire shape of the sealed tube 10 is a horseshoe shape, and other shapes such as a circular shape, an elliptical shape, and other shapes (including a straight shape) are free. The heating body 11 {the unit body U} is held by the holding rings 9 so as to coincide with the axis L. Since the heat-generating body 11 has flexibility, the heat-generating body 11 can be maintained in a shape that can flexibly and freely correspond to the shape of the sealed tube 10.
[0014]
The holding ring 9 is preferably made of a felt material, but may be made of another material or composition having heat resistance. The inner peripheral surface of the retaining ring 9 contacts the carbon fiber yarn 2 (and the string-like body 1), and the outer peripheral surface contacts the inner peripheral surface of the sealed tube 10, whereby the retaining ring 9 becomes flexible. It plays a role of fixing and holding the heat generating main body 11 and a role of heat radiation (heat dissipation) of the carbon fiber yarn 2.
[0015]
The manufacturing method will be described. The sealed pipe 10 having both ends open is manufactured in advance into a straight pipe (straight shape) or a curved pipe (irregular shape), and as shown in FIG. 2 or FIG. A {in-tube unit body U} is separately prepared, and this in-tube unit body U is inserted into the open-ended sealed tube 10 so that the electrodes 7, 7 protrude outward at both ends. Next, the sealed tube 10 is kept in a vacuum state, a protective gas (inert gas) is injected, and both ends are sealed as shown in FIG. 2 or FIG.
[0016]
As described above, it is possible to easily manufacture not only a straight pipe but also a horseshoe and other irregular shapes. Then, by selecting the length, diameter, winding density, number of windings, and the like of the carbon fiber yarn 2 (which generates heat), a heater tube having a predetermined heating value can be easily manufactured.
The heater tube according to the present invention can be widely applied to home appliances such as microwave ovens, oven toasters, heaters, refrigerator defrosters, and treatment devices for human body diseases.
[0017]
【The invention's effect】
The present invention has the following significant effects by the above configuration.
(According to claim 1) Since the heat generating body 11 has flexibility, it is possible to easily manufacture a heater pipe having various curved shapes other than a straight pipe, and to produce a sealed pipe having various shapes. Therefore, it is easy to share the in-pipe unit body U to be inserted, so that cost reduction and simplification of the whole manufacturing can be achieved.
(According to claim 2) The strength of the cord-like body 1 is increased, and sufficient strength and durability are exhibited even with a small diameter.
(According to claim 3), heat generation can be made uniform in the longitudinal direction. In addition, the strength is improved together with the string-shaped body 1, and appropriate flexibility can be secured.
(According to claim 4), the retaining ring 9 reliably keeps the in-pipe unit body U coincident with the axis L, and does not hinder heat generation.
[Brief description of the drawings]
FIG. 1 is a partially cutaway front view showing an embodiment of the present invention.
FIG. 2 is an enlarged sectional view of a main part.
FIG. 3 is an enlarged sectional view of a main part showing another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 String-like body 2 Carbon fiber system 2a End part 4 Metal coil 4a Outer end 7 Electrode 9 Retaining ring 10 Sealing tube 11 Flexible heating body 11a End L Shaft center U In-tube unit body