JP2004335120A - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2004335120A
JP2004335120A JP2003124879A JP2003124879A JP2004335120A JP 2004335120 A JP2004335120 A JP 2004335120A JP 2003124879 A JP2003124879 A JP 2003124879A JP 2003124879 A JP2003124879 A JP 2003124879A JP 2004335120 A JP2004335120 A JP 2004335120A
Authority
JP
Japan
Prior art keywords
electrode
polymer electrolyte
area
fuel
air electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003124879A
Other languages
Japanese (ja)
Inventor
Shintaro Izumi
伸太郎 泉
Yasuhiro Kamiyama
康博 上山
Makoto Uchida
誠 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003124879A priority Critical patent/JP2004335120A/en
Publication of JP2004335120A publication Critical patent/JP2004335120A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a polymer electrolyte fuel cell with reduced cost and high stability, with an improved assembly yield attained by an improvement of a structure of a membrane-electrode junction (MEA). <P>SOLUTION: An area of either a fuel electrode 17 or an air electrode 18 arranged so as to face each other, interposing a polymer electrolyte film, is made smaller than the other, and the smaller face is arranged so as to be contained inside the larger face, with the area of the smaller face enabled to obtain a given output when the fuel electrode 17 and the air electrode 18 are opposed without misalignment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子電解質膜とその両側の燃料極と酸素極で構成された膜電極接合体(Membrane Electrode Assembly、以下、MEAという)を一対のガス拡散層および流路付きセパレータで挟んだものを単セルスタックとして構成する高分子電解質型燃料電池に関するものである。
【0002】
【従来の技術】
一般に、燃料電池は、水素を含む燃料と酸素等を含む空気とを電気化学的に反応させて電力エネルギーを発生させるものであり、使用する電解質によって各種の燃料電池に分類され、りん酸水溶液を電解質として使用するりん酸型燃料電池、高分子電解質膜を使用する高分子電解質型燃料電池等があり、図5は従来の一般的な高分子電解質型燃料電池の単セルスタックの断面図、図6は従来の高分子電解質型燃料電池のMEAの側断面図であり、1は水素イオン伝導性フツ素樹脂からなる高分子電解質膜、2は前記高分子電解質膜1の一方の面上に転写、印刷、塗布、射出等により付けられた、白金系の金属触媒を担持したカーボン粉末を主成分とする触媒層3と燃料ガスの通気性と、電子導電性を併せ持つ多孔質の導電性カーボンシートを主成分とするガス拡散層4とから構成される燃料極、5は前記燃料極2の高分子電解質膜1と反対側の面上に付けられた金属製セパレータ、6は前記金属製セパレータ5の燃料極2と接する表面上に形成された溝により、前記燃料極2を構成するガス拡散層4に燃料を供給するガス流路、7、8は、前記のように、高分子電解質膜1の一方の面上に設けられた燃料極2、金属製セパレータ5と同様、高分子電解質膜1の他方の面上に順次設けられた触媒層9とガス拡散層10とからなる空気極と金属製セパレータ、11は前記金属製セパレータ8の空気極7と接する表面上に形成された溝により、前記空気極7を構成するガス拡散層10に酸素を供給するガス流路、12は前記高分子電解質膜1上に積層して設けた燃料極2と金属製セパレータ5の積層端面において、燃料極2の積層の無い金属製セパレータ5と高分子電解質膜1の間にシール材13を介して設けられたガスケット(型枠)、14は、前記ガスケット(型枠)12と同様、前記高分子電解質膜1上に積層して設けた空気極7と金属製セパレータ8の積層端面において、空気極7の積層の無い金属製セパレータ8と高分子電解質膜1の間にシール材15を介して設けられたガスケット(型枠)である。
【0003】
なお、前記ガスケット(型枠)12、14およびシール材13、15は供給する燃料ガスが外にリークしたり、2種類の燃料ガスが互いに混合しないように、燃料極2および空気極7の周囲に高分子電解質膜1を挟んで配置され、燃料極2および空気極7、高分子電解質膜1と一体化してMEAとしてあらかじめ組み立てられている。
【0004】
また、金属製セパレータ5、8はMEAの外側において、MEAを機械的に固定すると共に、隣接したMEAを互いに電気的に直列に接続するための働きをし、金属製セパレータ5、8のMEAと接触する部分に形成したガス流路6、11は、燃料極2および空気極7の表面に反応ガスを供給し、生成ガスや余剰ガスを運び去るための働きをする。ガス流路6、11は金属製セパレータ5、8と別に設けることもできるが、金属製セパレータ5、8の表面に溝を設けてガス流路6、11とする方式が一般的である。
【0005】
上記構成の高分子電解質型燃料電池は、燃料極2に水素やメタノール等の燃料を、空気極7に酸素をそれぞれガス流路6、11を通じて供給することにより、水素は前記燃料極2の触媒層3によって水素イオンとなって水素イオン伝導性高分子電解質として働く高分子電解質膜1内を移動し、前記空気極7の触媒層9により酸素と反応して水になる。この過程で空気極7から燃料極2へ電子が移動する。
【0006】
なお、前記構成ではガスケット(型枠)12、14とシール材13、15により燃料および酸素の漏れを防いでいるが、他に燃料極2側および空気極7側のMEAやガス拡散層4、10の構造関係を工夫し電極膜構造体とセパレータのシール性を向上させてガスリーク性を減少させる手法、構造が数多く考案され、アノード側拡散電極とカソード側拡散電極とを、いずれか一方の面が他方の面内に収まるように配置して電極膜構造体を形成して、アノード側拡散電極とカソード側拡散電極のうち大きい表面積の拡散電極の外周部分と一方のセパレータの間に、小さい表面積の拡散電極を囲むように第1のシールを設ける等、シールを設ける空間を作るために、アノード側拡散電極とカソード側拡散電極のいずれか一方を他方よりも面積を大きくしている(例えば、特許文献1参照)。
【0007】
また、単セルスタック当りの発電効率を安定化させるためには、前記のように、高分子電解質膜1の両面上に転写、印刷、塗布、射出等により付けられた燃料極2および空気極7の対向している部位が多い程良いのであるが、燃料極2と空気極7を高分子電解質膜1を挟んで同一位置に同一形状で形成することは、転写、印刷、塗布、射出等のいずれの形成方式を採った場合でも困難であり、燃料極2と空気極7の対向しない部位、すなわち、ズレが不定期に発生することが多い。
【0008】
【特許文献1】
特開2002−25587号公報(第2頁 請求項1、請求項7、第2頁〜第3頁 段落[0004])
【0009】
【発明が解決しようとする課題】
前記のように、従来の高分子電解質型燃料電池においては、単セルスタック当りの発電効率を安定化させるために、燃料極と空気極を高分子電解質膜を挟んで同一位置に同一形状で形成しようとしても困難であり、燃料極と空気極の対向しない部位が発生し、燃料極と空気極にズレが発生することがあるため、設計した燃料極と空気極の面積から予測される所定の出力に対し、実出力が低くなるといったバラツキが生じることが多々あった。
【0010】
また、燃料極と空気極はほば同一組成で構成されており、且つ、同色であり、目視で見分けをつけることは困難であるため、MEA、ガス拡散層、流路付きセパレータを組み合わせて単セルスタック化する際に、MEAの燃料極側触媒層と空気極側触媒層の方向を間違って単セルスタック化してしまい、単セルスタックを複数枚用いて、直列に配列、組み立てしたフルスタック構造にしたときに所定の出力を得られないということが多々あった。
【0011】
本発明は上記課題を解決するものであり、出力安定性が向上し、また、組立歩留りが大幅に向上した高分子電解質型燃料電池を得ることを目的とするものである。
【0012】
【課題を解決するための手段】
上記の課題を解決するために、本発明は、固体高分子電解質膜とその両側の燃料極と空気極とでMEAを構成し、そのMEAの両側をセパレータで挟んだ単セルスタックを積層してなる高分子電解質型燃料電池であって、固体高分子電解質膜を挟んで対向して設けられる燃料極と空気極のいずれか一方の面積を他方の面積よりも小さくし、小さい方の面が大きい方の面内に収まるように配置し、その小さい方の面積は、燃料極と空気極がズレ無く対向した場合に所定の出力が得られる面積である高分子電解質型燃料電池であり、単セルスタックの出力安定性が向上し、また、MEAの燃料極側と空気極側を容易に目視で識別可能になり、間違えて組み立てることが無くなり、組立歩留りが大幅に向上した高分子電解質型燃料電池を得ることができる。
【0013】
【発明の実施の形態】
本発明の請求項1に記載の発明は、固体高分子電解質膜とその両側の燃料極と空気極とでMEAを構成し、そのMEAの両側をセパレータで挟んだ単セルスタックを積層してなる高分子電解質型燃料電池であって、固体高分子電解質膜を挟んで対向して設けられる燃料極と空気極のいずれか一方の面積を他方の面積よりも小さくし、小さい方の面が大きい方の面内に収まるように配置し、その小さい方の面積は、燃料極と空気極がズレ無く対向した場合に所定の出力が得られる面積である高分子電解質型燃料電池であり、燃料極と空気極のいずれか一方の面積を他方の面積よりも小さくし、小さい方の面が大きい方の面内に収まるように配置し、その小さい方の面積は、燃料極と空気極がズレ無く対向した場合に所定の出力が得られる面積であることにより、所定の出力を安定して得ることができるという作用を有する。
【0014】
以下、本発明の実施の形態について図面を参照しながら説明する。
【0015】
(実施の形態)
図1は、前記図5に示す高分子電解質型燃料電池の一般的な従来の単セルにおけるMEAを抜き出して、本発明を適用した実施の形態におけるMEAの側断面図であり、実施の形態におけるMEAの構造が一般的な従来の例を示す図5の高分子電解質型燃料電池におけるMEAの構造と異なるところは、図5においては、高分子電解質膜1を介して対向して形成された燃料極2と空気極7の面積は同じ大きさであるのに対し、本実施の形態を示す図1においては、高分子電解質膜16を介して対向して形成された燃料極17と空気極18のうち、触媒となる含有白金の含有量がより多い負極、すなわち、燃料極17の面積を空気極18の面積よりも小さくし、燃料極17の面が空気極18の面内に収まるように配置し、燃料極17の面積は、燃料極と空気極がズレ無く対向した場合に所定の出力が得られるような面積に設定されている点であり、図1に示す実施の形態におけるMEAを図5に示す従来のMEAと置き換えれば、そのまま本実施の形態における高分子電解質型燃料電池が得られる。
【0016】
図5に示すように、高分子電解質膜1を介して対向して形成される燃料極2と空気極7の面積が同じ大きさである場合は、燃料極2と空気極7の形成時に図6に示すように、一方にズレが生じると、そのズレの長さLに幅方向の長さを掛けた面積分、反応に有効な重複部分が無くなることになる。
【0017】
前記燃料極2と空気極7は転写、印刷、塗布、射出等のいずれの形成方式を採った場合でも、高分子電解質膜1を挟んで同一位置、同一形状に正確に形成することは、非常に困難であり、燃料極2と空気極7の面積を、ズレ無く対向させた場合に所定の出力が得られる面積に過不足無く設定すると、前記ズレのため所定の出力が得られないという問題がある。
【0018】
しかるに、図1に示す本実施の形態におけるMEAは、図2のMEA製造装置の構成図に示すように、ロール19により走行するベルト状基材20上に空気極18を間欠的に形成した後に、空気極18を覆うようにベルト状に高分子電解質膜21を形成し、次いで、燃料極材料を内蔵した金型22のスリットから前記高分子電解質膜21上の前記空気極18と重なる位置に間欠的に燃料極17を前記空気極18の面内に収まるように小さく形成する。
【0019】
前記燃料極17の面積は燃料極17と空気極18がズレ無く対向した場合に所定の出力が得られる面積であるが、空気極18の面積よりも小さいため、空気極18の面内に燃料極17を収めることは比較的容易であり、少なくとも燃料極17の面積だけは空気極18と重なって形成することができ、燃料極17の面積で設定された所定の出力が得られるものである。
【0020】
また、面積を小さくする方の電極として、一般的に触媒となる含有白金の含有量がより多い負極、すなわち、燃料極17を選ぶことにより、コスト的なメリットが得られる。
【0021】
なお、燃料極17より大きな空気極18の面積は、センサ23で燃料極17と空気極18の面積の違いを検知し、材料ロスにならないよう最適面積に設定される。
【0022】
また、燃料極17および空気極18の形成方法は図2の塗布方法に限られず、転写、印刷、射出等いずれの方法を採った場合であっても形成可能である。
【0023】
次に、燃料極と酸素極のうち、一方の面積を他方の面積より小さく形成した構造(以下異面積構造)のMEAと両方とも同一の大きさの面積で形成した構造(以下同面積構造)のMEAを用い、単セルスタック化し、燃料極側に水素を、酸素極側に空気を送り、電池特性を評価し、出力値と分布を取ったものが図3の出力安定性比較図であり、横軸に0.2[A]動作時の電圧[V]を、縦軸にサンプル100個評価時の頻度[%]を表わしている。
【0024】
例えば、設定電圧値が0.6Vと0.7Vの間のVであるとき、同面積構造の場合は設定電圧値Vになるサンプル数は約40%であるのに対し、異面積構造の場合は設定電圧値Vになるサンプル数は約80%になり、設定電圧値V通りになる頻度が高く所定の出力を得られる燃料電池を安定して得ることができる。
【0025】
従って、フルスタック構造にしたときに単セルスタック当りの出力が一定であるので、万が一、フルスタックを構成する一部の単セルのみが寿命を迎えた場合でも、新しい単セルと交換することで、常に安定した出力を得ることが可能である。
【0026】
また、燃料極17と空気極18のうち、燃料極17の面積が空気極18の面積よりも小さいので、単セルスタック化する際にMEAの燃料極17側と空気極18側を容易に目視で識別可能になる。
【0027】
単セルスタックをフルスタック化する際に1枚ずつ検査していくことも可能だが、単セルスタックの検査は一度運転状態にする必要があり、加湿・加温に時間、コストがかかり、効率が悪い。
【0028】
その点、異面積構造の場合は簡易的な画像検査装置で燃料極17、空気極18の識別が可能であるので、MEAの燃料極17と空気極18の方向を間違って単セルスタック化することが無くなり、画像検査装置を量産組立機に組込み、自動化すれば、図4のコスト率、作業時間効率、組立歩留率比較図に示すように、同面積構造の場合のコスト率、作業時間効率、組立歩留率を100とし、異面積構造の場合のコスト率、作業時間効率、組立歩留率で除し、コスト率、作業時間効率、組立歩留率を数値化しプロットすると、異面積構造の場合のコスト率、作業時間効率、組立歩留率は同面積構造の場合に比し、優れていることが分かる。
【0029】
【発明の効果】
以上のように、本発明の高分子電解質型燃料電池は、MEAの燃料極を空気極よりも小さな面積とし、空気極の面内に収まるようにすることにより、燃料極の面積から予測される所定の出力の高分子電解質型燃料電池を安定して得ることができ、また、組立歩留りが大幅に向上するという効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態における高分子電解質型燃料電池のMEAの側断面図
【図2】図1に示すMEAの製造装置の構成図
【図3】本発明の実施の形態における高分子電解質型燃料電池と従来の高分子電解質型燃料電池の出力安定性比較図
【図4】本発明の実施の形態における高分子電解質型燃料電池と従来の高分子電解質型燃料電池のコスト率、作業時間効率、組立歩留率比較図
【図5】従来の一般的な高分子電解質型燃料電池の単セルスタックの断面図
【図6】従来の高分子電解質型燃料電池のMEAの側断面図
【符号の説明】
1,16,21 高分子電解質膜
2,17 燃料極
3,9 触媒層
4,10 ガス拡散層
5,8 金属製セパレータ
6,11 ガス流路
7,18 空気極
12,14 ガスケット(型枠)
13,15 シール材
19 ロール
20 ベルト状基材
22 金型
23 センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, a membrane electrode assembly (hereinafter, referred to as MEA) composed of a solid polymer electrolyte membrane and a fuel electrode and an oxygen electrode on both sides thereof is sandwiched between a pair of gas diffusion layers and a separator with a flow path. The present invention relates to a polymer electrolyte fuel cell configured as a single cell stack.
[0002]
[Prior art]
In general, fuel cells generate electric power by electrochemically reacting a fuel containing hydrogen and air containing oxygen and the like, and are classified into various fuel cells according to an electrolyte to be used. There are a phosphoric acid fuel cell used as an electrolyte, a polymer electrolyte fuel cell using a polymer electrolyte membrane, and the like. FIG. 5 is a cross-sectional view of a single cell stack of a conventional general polymer electrolyte fuel cell. 6 is a side sectional view of the MEA of the conventional polymer electrolyte fuel cell, 1 is a polymer electrolyte membrane made of a hydrogen ion conductive fluorine resin, and 2 is transferred onto one surface of the polymer electrolyte membrane 1. A catalyst layer 3 mainly composed of a carbon powder carrying a platinum-based metal catalyst and a porous conductive carbon sheet having both gas permeability and electronic conductivity, applied by printing, coating, injection or the like. To A fuel electrode comprising a gas diffusion layer 4 as a component; 5, a metal separator provided on the surface of the fuel electrode 2 opposite to the polymer electrolyte membrane 1; Due to the grooves formed on the surface in contact with the electrode 2, the gas flow paths 7 and 8 for supplying fuel to the gas diffusion layer 4 constituting the fuel electrode 2 are formed on one side of the polymer electrolyte membrane 1 as described above. Similarly to the fuel electrode 2 and the metal separator 5 provided on the surface of the polymer electrolyte membrane 1, the air electrode including the catalyst layer 9 and the gas diffusion layer 10 sequentially provided on the other surface of the polymer electrolyte membrane 1 and the metal separator , 11 are gas channels for supplying oxygen to a gas diffusion layer 10 constituting the air electrode 7 by grooves formed on a surface of the metal separator 8 which is in contact with the air electrode 7, and 12 is a polymer electrolyte membrane. 1. A fuel electrode 2 and a metal separator laminated on top of each other 5 is a gasket (form) provided between the metal separator 5 having no fuel electrode 2 and the polymer electrolyte membrane 1 with a sealing material 13 interposed therebetween, and 14 is the gasket (form). Similarly to 12, at the lamination end surface of the air electrode 7 and the metal separator 8 laminated on the polymer electrolyte membrane 1, between the metal separator 8 without the lamination of the air electrode 7 and the polymer electrolyte membrane 1. This is a gasket (mold) provided via a sealing material 15.
[0003]
The gaskets (molds) 12 and 14 and the sealing members 13 and 15 are provided around the fuel electrode 2 and the air electrode 7 so that the supplied fuel gas does not leak outside and the two types of fuel gas do not mix with each other. The fuel electrode 2, the air electrode 7, and the polymer electrolyte membrane 1 are integrated with each other with the polymer electrolyte membrane 1 interposed therebetween, and are assembled in advance as an MEA.
[0004]
Further, the metal separators 5 and 8 function to mechanically fix the MEA and electrically connect adjacent MEAs to each other in series outside the MEA. The gas passages 6 and 11 formed at the contacting portions serve to supply the reactant gas to the surfaces of the fuel electrode 2 and the air electrode 7 and to carry away generated gas and surplus gas. Although the gas flow paths 6 and 11 can be provided separately from the metal separators 5 and 8, a method in which grooves are provided on the surfaces of the metal separators 5 and 8 to form the gas flow paths 6 and 11 is general.
[0005]
In the polymer electrolyte fuel cell having the above-described structure, the fuel such as hydrogen or methanol is supplied to the fuel electrode 2 and the oxygen is supplied to the air electrode 7 through the gas passages 6 and 11, respectively. The layer 3 becomes hydrogen ions and moves in the polymer electrolyte membrane 1 serving as a hydrogen ion conductive polymer electrolyte. The catalyst layer 9 of the air electrode 7 reacts with oxygen to form water. In this process, electrons move from the air electrode 7 to the fuel electrode 2.
[0006]
In the above configuration, leakage of fuel and oxygen is prevented by the gaskets (molds) 12 and 14 and the sealing members 13 and 15. However, the MEA and the gas diffusion layer 4 on the fuel electrode 2 side and the air electrode 7 side are also provided. Numerous techniques and structures have been devised to improve the sealing properties between the electrode membrane structure and the separator to reduce the gas leakage property by devising the structural relationship of No. 10, and the anode-side diffusion electrode and the cathode-side diffusion electrode are connected to one of the surfaces. Are arranged so as to fit in the other surface to form an electrode film structure, and a small surface area is provided between the outer peripheral portion of the large surface area diffusion electrode of the anode side diffusion electrode and the cathode side diffusion electrode and one separator. One of the anode-side diffusion electrode and the cathode-side diffusion electrode is made larger in area than the other in order to create a space for providing the seal, for example, by providing a first seal so as to surround the diffusion electrode. Is (e.g., see Patent Document 1).
[0007]
Further, in order to stabilize the power generation efficiency per unit cell stack, as described above, the fuel electrode 2 and the air electrode 7 are transferred, printed, coated, injected, etc. on both surfaces of the polymer electrolyte membrane 1. It is better to have as many opposing parts as possible, but forming the fuel electrode 2 and the air electrode 7 in the same position at the same position with the polymer electrolyte membrane 1 interposed therebetween requires transfer, printing, coating, injection, etc. It is difficult to use any of the forming methods, and a portion where the fuel electrode 2 and the air electrode 7 do not face each other, that is, a displacement often occurs irregularly.
[0008]
[Patent Document 1]
JP-A-2002-25587 (page 2, claim 1, claim 7, page 2 to page 3, paragraph [0004])
[0009]
[Problems to be solved by the invention]
As described above, in the conventional polymer electrolyte fuel cell, in order to stabilize the power generation efficiency per unit cell stack, the fuel electrode and the air electrode are formed in the same shape at the same position with the polymer electrolyte membrane interposed therebetween. Attempting to do so is difficult, and a portion where the fuel electrode and the air electrode do not face each other may occur, causing a gap between the fuel electrode and the air electrode. In many cases, the actual output is lower than the output.
[0010]
Further, since the fuel electrode and the air electrode are almost composed of the same composition, are of the same color, and it is difficult to distinguish them visually, it is simple to combine the MEA, the gas diffusion layer, and the separator with a flow path. When the cell stack is used, the direction of the fuel electrode side catalyst layer and the air electrode side catalyst layer of the MEA is incorrectly formed into a single cell stack, and a plurality of single cell stacks are arranged in series and assembled in a full stack structure. In many cases, a predetermined output cannot be obtained.
[0011]
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a polymer electrolyte fuel cell having improved output stability and significantly improved assembly yield.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a MEA comprising a solid polymer electrolyte membrane, a fuel electrode and an air electrode on both sides thereof, and stacking a single cell stack in which both sides of the MEA are sandwiched by separators. Wherein the area of one of a fuel electrode and an air electrode provided to face each other with a solid polymer electrolyte membrane therebetween is smaller than the other area, and the smaller surface is larger. It is a polymer electrolyte fuel cell which is an area where a predetermined output can be obtained when the fuel electrode and the air electrode face each other without displacement, and A polymer electrolyte fuel cell with improved output stability of the stack, easily distinguishable between the fuel electrode side and the air electrode side of the MEA by visual inspection, avoiding incorrect assembly, and greatly improving the assembly yield. Can get Kill.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 of the present invention comprises a MEA comprising a solid polymer electrolyte membrane, a fuel electrode and an air electrode on both sides thereof, and a single cell stack in which both sides of the MEA are sandwiched by separators. In a polymer electrolyte fuel cell, the area of one of a fuel electrode and an air electrode provided to face each other with a solid polymer electrolyte membrane therebetween is smaller than the other area, and the smaller surface is larger. Are arranged so as to fit within the plane of the polymer electrolyte fuel cell, the smaller area of which is an area where a predetermined output can be obtained when the fuel electrode and the air electrode face each other without displacement. The area of one of the cathodes is smaller than the area of the other, and the smaller side is arranged so that it fits within the larger side, and the smaller side faces the fuel electrode and the cathode without displacement. In the area where the specified output can be obtained when The Rukoto has the effect that it is possible to stably obtain a predetermined output.
[0014]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
(Embodiment)
FIG. 1 is a side sectional view of an MEA in an embodiment to which the present invention is applied by extracting an MEA in a general conventional single cell of the polymer electrolyte fuel cell shown in FIG. The structure of the MEA is different from the structure of the MEA in the polymer electrolyte fuel cell shown in FIG. 5 which shows a general conventional example in FIG. While the area of the electrode 2 and the area of the air electrode 7 are the same, in FIG. 1 showing the present embodiment, the fuel electrode 17 and the air electrode 18 which are formed to face each other with the polymer electrolyte membrane 16 interposed therebetween. Among them, the negative electrode having a higher content of the contained platinum serving as a catalyst, that is, the area of the fuel electrode 17 is made smaller than the area of the air electrode 18 so that the surface of the fuel electrode 17 falls within the plane of the air electrode 18. The area of the fuel electrode 17 is The area is set so that a predetermined output can be obtained when the cathode and the air electrode face each other without displacement. If the MEA in the embodiment shown in FIG. 1 is replaced with the conventional MEA shown in FIG. Thus, the polymer electrolyte fuel cell according to the present embodiment can be obtained as it is.
[0016]
As shown in FIG. 5, when the area of the fuel electrode 2 and the area of the air electrode 7 formed to face each other with the polymer electrolyte membrane 1 interposed therebetween are the same, when the fuel electrode 2 and the air electrode 7 are formed, As shown in FIG. 6, when a shift occurs on one side, the overlap portion effective for the reaction is eliminated by the area obtained by multiplying the length L of the shift by the length in the width direction.
[0017]
Regardless of the formation method of the fuel electrode 2 and the air electrode 7 such as transfer, printing, coating, and injection, it is extremely difficult to accurately form the same position and the same shape with the polymer electrolyte membrane 1 interposed therebetween. If the area of the fuel electrode 2 and the area of the air electrode 7 are set to an area where a predetermined output can be obtained when they are opposed to each other without any deviation, a predetermined output cannot be obtained due to the deviation. There is.
[0018]
However, the MEA according to the present embodiment shown in FIG. 1 has a structure in which the air electrode 18 is intermittently formed on the belt-shaped base material 20 running by the roll 19 as shown in the configuration diagram of the MEA manufacturing apparatus in FIG. Then, a polymer electrolyte membrane 21 is formed in a belt shape so as to cover the air electrode 18, and then from a slit of a mold 22 containing a fuel electrode material to a position overlapping the air electrode 18 on the polymer electrolyte membrane 21. The fuel electrode 17 is formed small intermittently so as to fit within the plane of the air electrode 18.
[0019]
The area of the fuel electrode 17 is an area where a predetermined output can be obtained when the fuel electrode 17 and the air electrode 18 face each other without displacement. However, since the area is smaller than the area of the air electrode 18, the fuel It is relatively easy to accommodate the electrode 17, and at least the area of the fuel electrode 17 can be formed so as to overlap the air electrode 18, and a predetermined output set by the area of the fuel electrode 17 is obtained. .
[0020]
In addition, a cost advantage can be obtained by selecting a negative electrode, that is, a fuel electrode 17, which generally has a higher content of platinum contained therein, as an electrode having a smaller area.
[0021]
The area of the air electrode 18 that is larger than the fuel electrode 17 is set to an optimum area so that a difference in the area between the fuel electrode 17 and the air electrode 18 is detected by the sensor 23 and material loss does not occur.
[0022]
Further, the method of forming the fuel electrode 17 and the air electrode 18 is not limited to the coating method shown in FIG. 2 and can be formed by any method such as transfer, printing, and injection.
[0023]
Next, a MEA having a structure in which one of the fuel electrode and the oxygen electrode is formed smaller than the other (hereinafter referred to as a different area structure) and a structure in which both have the same size (hereinafter referred to as the same area structure) Fig. 3 shows the output stability of Fig. 3 in which a single cell stack was used, hydrogen was supplied to the fuel electrode side, and air was supplied to the oxygen electrode side. The horizontal axis represents the voltage [V] at the time of 0.2 [A] operation, and the vertical axis represents the frequency [%] at the time of evaluating 100 samples.
[0024]
For example, when the setting voltage value is V 1 of the between 0.6V and 0.7 V, whereas the number of samples becomes set voltage value V 1 was a case of the area structure is about 40% different area structure for the number of samples to be set voltage value V 1 was now about 80%, can be stably obtained a fuel cell obtained by high predetermined output frequency becomes 1 street set voltage value V.
[0025]
Therefore, since the output per unit cell stack is constant when a full stack structure is used, even if only some of the unit cells constituting the full stack have reached the end of their life, they can be replaced with new unit cells. It is possible to always obtain a stable output.
[0026]
Further, since the area of the fuel electrode 17 is smaller than the area of the air electrode 18 among the fuel electrode 17 and the air electrode 18, the fuel electrode 17 side and the air electrode 18 side of the MEA can be easily visually observed when forming a single cell stack. Can be identified.
[0027]
Although it is possible to inspect single cells one by one when a single cell stack is made full stack, it is necessary to put the single cell stack into operation once, it takes time and cost to humidify and warm, bad.
[0028]
On the other hand, in the case of a different area structure, since the fuel electrode 17 and the air electrode 18 can be identified by a simple image inspection device, the directions of the fuel electrode 17 and the air electrode 18 of the MEA are erroneously formed into a single cell stack. If the image inspection device is incorporated into a mass production assembling machine and automated, the cost rate and work time for the same area structure as shown in the cost rate, work time efficiency, and assembly yield rate comparison diagram in FIG. Efficiency, assembly yield rate is set to 100, cost rate, work time efficiency, assembly yield rate in case of different area structure is divided by, and cost rate, work time efficiency, assembly yield rate are quantified and plotted. It can be seen that the cost rate, working time efficiency, and assembly yield rate of the structure are superior to those of the same area structure.
[0029]
【The invention's effect】
As described above, in the polymer electrolyte fuel cell of the present invention, the area of the fuel electrode of the MEA is predicted from the area of the fuel electrode by making the area of the fuel electrode smaller than that of the air electrode so as to fit within the plane of the air electrode. A polymer electrolyte fuel cell having a predetermined output can be stably obtained, and the effect of significantly improving the assembly yield can be obtained.
[Brief description of the drawings]
FIG. 1 is a side sectional view of an MEA of a polymer electrolyte fuel cell according to an embodiment of the present invention. FIG. 2 is a configuration diagram of an apparatus for manufacturing the MEA shown in FIG. 1. FIG. FIG. 4 is a comparison diagram of output stability between a polymer electrolyte fuel cell and a conventional polymer electrolyte fuel cell. FIG. 4 shows a cost rate of the polymer electrolyte fuel cell according to the embodiment of the present invention and a conventional polymer electrolyte fuel cell. FIG. 5 is a cross-sectional view of a single cell stack of a conventional general polymer electrolyte fuel cell. FIG. 6 is a side cross-sectional view of an MEA of a conventional polymer electrolyte fuel cell. [Explanation of symbols]
1,16,21 polymer electrolyte membrane 2,17 fuel electrode 3,9 catalyst layer 4,10 gas diffusion layer 5,8 metal separator 6,11 gas flow path 7,18 air electrode 12,14 gasket (mold)
13, 15 Sealing material 19 Roll 20 Belt-like base material 22 Mold 23 Sensor

Claims (1)

固体高分子電解質膜とその両側の燃料極と空気極とでMEAを構成し、そのMEAの両側をセパレータで挟んだ単セルスタックを積層してなる高分子電解質型燃料電池であって、固体高分子電解質膜を挟んで対向して設けられる燃料極と空気極のいずれか一方の面積を他方の面積よりも小さくし、小さい方の面が大きい方の面内に収まるように配置し、その小さい方の面積は、燃料極と空気極がズレ無く対向した場合に所定の出力が得られる面積である高分子電解質型燃料電池。A polymer electrolyte fuel cell comprising an MEA comprising a solid polymer electrolyte membrane, a fuel electrode on both sides thereof, and an air electrode, and stacking a single cell stack having both sides of the MEA sandwiched by separators. The area of one of the fuel electrode and the air electrode provided opposite to each other with the molecular electrolyte membrane interposed therebetween is made smaller than the other area, and the smaller surface is arranged so as to fit within the larger surface. The polymer electrolyte fuel cell has an area where a predetermined output is obtained when the fuel electrode and the air electrode face each other without displacement.
JP2003124879A 2003-04-30 2003-04-30 Polymer electrolyte fuel cell Pending JP2004335120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003124879A JP2004335120A (en) 2003-04-30 2003-04-30 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003124879A JP2004335120A (en) 2003-04-30 2003-04-30 Polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2004335120A true JP2004335120A (en) 2004-11-25

Family

ID=33502298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003124879A Pending JP2004335120A (en) 2003-04-30 2003-04-30 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2004335120A (en)

Similar Documents

Publication Publication Date Title
RU2231172C2 (en) Pile of fuel elements with membrane of polymer electrolyte
US8039162B2 (en) Unit cell for solid polymer electrolyte fuel cell
US7745035B2 (en) Separator and fuel cell using thereof
KR100838929B1 (en) Solid state polymer type fuel cell
US20120040268A1 (en) Polymer electrolyte fuel cell and fuel cell stack comprising the same
KR20100002253A (en) Fuel cell
JP5114899B2 (en) Polymer electrolyte fuel cell
JP5778044B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
WO2013077488A1 (en) Separation plate for polymer electrolyte fuel cell, and polymer electrolyte fuel cell using same
EP2112705A1 (en) Film-film reinforcing member bonded body, film-catalyst layer bonded body, film-electrode bonded body, and polyelectrolyte type fuel cell
US8691471B2 (en) Polymer electrolyte fuel cell and fuel cell stack comprising the same
US8227136B2 (en) Using ionomer to militate against membrane buckling in the tenting region
US7572538B2 (en) Fuel cell
KR20100030709A (en) Bipolarplate for fuel cell stack
CN102714321B (en) Fuel cell and vehicle equipped with fuel cell
US20080113248A1 (en) Fuel cell
US10283784B2 (en) Fuel cell for detecting a pollutant
JP2013258096A (en) Production method of electrolyte membrane/electrode structure with resin frame for fuel cell
JP2003123801A (en) Polymer electrolyte stacked fuel cell
JP2004335179A (en) Fuel cell
US10847826B2 (en) Polymer electrolyte fuel cells and production method thereof
JP2004335120A (en) Polymer electrolyte fuel cell
US9595722B2 (en) Fuel cell plate and fuel cell
JP2005216700A (en) Fuel cell stack, separator intermediate body and method of manufacture for separator
KR101301824B1 (en) Separator for Fuel Cell

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050221