JP2004335079A - Recording control unit, recording and reproducing device, and recording control method - Google Patents

Recording control unit, recording and reproducing device, and recording control method Download PDF

Info

Publication number
JP2004335079A
JP2004335079A JP2004117386A JP2004117386A JP2004335079A JP 2004335079 A JP2004335079 A JP 2004335079A JP 2004117386 A JP2004117386 A JP 2004117386A JP 2004117386 A JP2004117386 A JP 2004117386A JP 2004335079 A JP2004335079 A JP 2004335079A
Authority
JP
Japan
Prior art keywords
recording
maximum likelihood
signal
likelihood decoding
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004117386A
Other languages
Japanese (ja)
Other versions
JP2004335079A5 (en
Inventor
Seijun Miyashita
晴旬 宮下
Takeshi Nakajima
健 中嶋
Naohiro Kimura
直浩 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004117386A priority Critical patent/JP2004335079A/en
Publication of JP2004335079A publication Critical patent/JP2004335079A/en
Publication of JP2004335079A5 publication Critical patent/JP2004335079A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • G11B7/1267Power calibration

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To set optimum recording parameters most suitable to the most likelihood decoding method. <P>SOLUTION: The operation of a reliability value ¾Pa-Pb¾-Pstd of a result of the most likelihood of a part which corresponds to the start and final end parts of an edge of a recording mark and in which occurrence probability is higher in the most likelihood decoding method is performed by each combination of the prescribed mark length and space length immediately before, and each combination of the mark length and space length immediately after, recording parameters optimizing an edge shift position is obtained from the operation result, and recording in which the obtained recording parameter is reflected is performed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、最尤復号法を用いた記録制御装置、記録再生装置および記録制御方法に関する。   The present invention relates to a recording control device, a recording / reproducing device, and a recording control method using a maximum likelihood decoding method.

可搬記録媒体に原デジタル情報を記録し、再生する記録再生装置では、同一形状の記録パルスを用いても、装置や記録媒体の個体差によって、媒体上に形成されるマークの形状がばらつき、再生される信号品質は大きくことなる場合がある。このようなばらつきによる信頼性の低下を防ぐために、記録媒体の脱着時などに校正動作を行っている。校正とはユーザデータの信頼性を確保するために、再生系の特性の設定、記録パルスの形状などの最適化を行う制御である。   In a recording / reproducing apparatus that records and reproduces original digital information on a portable recording medium, even if a recording pulse having the same shape is used, the shape of a mark formed on the medium varies due to individual differences between the apparatus and the recording medium. The quality of the reproduced signal can be large. In order to prevent a decrease in reliability due to such variations, a calibration operation is performed when a recording medium is attached or detached. Calibration is control for setting the characteristics of the reproduction system and optimizing the shape of the recording pulse and the like in order to ensure the reliability of the user data.

一般的な情報再生装置においては、再生信号に含まれるクロック情報を抽出し、抽出されたクロック情報をもとに原デジタル情報を弁別するPLL回路をもちいている。   A general information reproducing apparatus uses a PLL circuit that extracts clock information included in a reproduced signal and discriminates original digital information based on the extracted clock information.

図14に従来の光ディスクドライブを示す。光ディスク17からの反射光は光学ヘッド18により再生信号に変換される。再生信号は波形等化器19により波形整形される。波形整形された再生信号はコンパレータ20で2値化される。通常、コンパレータ20のしきい値は、2値化信号出力の積分結果が0となるようにフィードバック制御されている。位相比較器21は2値化信号出力と再生クロックとの位相誤差を求める。位相誤差をLPF22により平均処理し、処理結果がVCO23の制御電圧となる。位相比較器21から出力される位相誤差が常に0になるように、位相比較器21はフィードバック制御される。熱記録される記録媒体においては、媒体上の熱干渉と前後の記録パターンとにもとづいて媒体上に形成されるマークの形状が異なってくる。したがって個々のパターンの記録に最適な記録パラメータ設定をしなければならない。   FIG. 14 shows a conventional optical disk drive. Light reflected from the optical disk 17 is converted into a reproduction signal by the optical head 18. The reproduced signal is shaped by the waveform equalizer 19. The waveform-shaped reproduced signal is binarized by the comparator 20. Normally, the threshold value of the comparator 20 is feedback-controlled so that the integration result of the binarized signal output becomes zero. The phase comparator 21 calculates a phase error between the output of the binary signal and the recovered clock. The phase error is averaged by the LPF 22, and the processing result becomes the control voltage of the VCO 23. The phase comparator 21 is feedback-controlled so that the phase error output from the phase comparator 21 is always zero. In a recording medium on which thermal recording is performed, the shape of the mark formed on the medium differs based on the thermal interference on the medium and the recording patterns before and after. Therefore, it is necessary to set the optimum printing parameters for printing the individual patterns.

記録パラメータを評価する指標が上記のような誤差検出出力である。誤差検出出力が最小となるように、記録パラメータの設定を行う。具体的には、初期設定された記録パラメータを用いてパターン発生回路26から出力された記録パターンに基いて、記録補償回路27は所定の波形のパルスを生成し、レーザ駆動回路28は光ディスクに情報を記録する。所定のパターンが記録されたトラックから情報を再生しているとき、誤差検出回路24は、コンパレータ20の出力とVCO23の出力との位相誤差の絶対値を積分することで、検出信号を得る。この検出信号は、再生クロックと2値化パルスエッジとの間のジッタと、相関をもつ。記録パラメータを変化させて、記録と再生とを繰り返す。検出値が最小となるときの記録パラメータを最適とする。   The index for evaluating the recording parameter is the error detection output as described above. The recording parameters are set so that the error detection output is minimized. Specifically, based on the recording pattern output from the pattern generating circuit 26 using the initially set recording parameters, the recording compensation circuit 27 generates a pulse having a predetermined waveform, and the laser driving circuit 28 Record When reproducing information from a track on which a predetermined pattern is recorded, the error detection circuit 24 obtains a detection signal by integrating the absolute value of the phase error between the output of the comparator 20 and the output of the VCO 23. This detection signal has a correlation with the jitter between the reproduction clock and the binarized pulse edge. Recording and reproduction are repeated by changing the recording parameters. The recording parameter when the detected value is minimized is optimized.

誤差検出回路24の具体的な動作の様子を図15に示す。例えば6T、4T、6T、8Tの繰り返しパターンを有する記録パルスを用いた場合の、4Tマークと6Tスペースとの組み合わせパターンに対応するマーク終端エッジの最適化を図る場合をあげる。6Tスペースと8Tマークとの組み合わせパターンに対応するマーク始端エッジ、および8Tマークと6Tスペースとの組み合わせパターンに対応する終端エッジは最適な記録パラメータで記録されているものとする。   FIG. 15 shows a specific operation of the error detection circuit 24. For example, when a recording pulse having a repetition pattern of 6T, 4T, 6T, and 8T is used, a case where the end edge of the mark corresponding to the combination pattern of the 4T mark and the 6T space is optimized is described. It is assumed that the start edge of the mark corresponding to the combination pattern of the 6T space and the 8T mark and the end edge corresponding to the combination pattern of the 8T mark and the 6T space are recorded with optimal recording parameters.

記録補償回路27は、図15(a)に示すような周期のNRZI信号が与えられると、図15(b)のようなレーザ駆動波形パルスを生成する。Tsfpはマーク始端位置を設定するパラメータで、Telpはマーク終端位置を設定するパラメータである。レーザ駆動回路28は、図15(b)のようなパターンに従って発光パワーを変調する。レーザ発光により図15(c)のようにトラック上に物理的にアモルファス領域が形成される。Telpを、Telp1、Telp2、Telp3と変化させた場合、形成されるマークの形状は図15(c)のように変化する。このような記録状態のトラックからの情報再生を考える。   When an NRZI signal having a cycle as shown in FIG. 15A is provided, the recording compensation circuit 27 generates a laser drive waveform pulse as shown in FIG. 15B. Tsfp is a parameter for setting the mark start position, and Telp is a parameter for setting the mark end position. The laser drive circuit modulates the light emission power according to a pattern as shown in FIG. By laser light emission, an amorphous region is physically formed on the track as shown in FIG. When Telp is changed to Telp1, Telp2, and Telp3, the shape of the mark to be formed changes as shown in FIG. Consider information reproduction from a track in such a recording state.

4Tマーク終端の記録パラメータを最適値のTelp2としたとき、図15(d)に実線で示す再生信号が得られる。コンパレータ出力の積分値が0となるようしきい値が定められる。コンパレータ出力と再生クロックとの位相差を検出し、位相誤差の積分値が0となるように再生クロック(図15(e))が生成される。   When the recording parameter at the end of the 4T mark is set to the optimum value Telp2, a reproduced signal indicated by a solid line in FIG. 15D is obtained. The threshold value is determined so that the integrated value of the comparator output becomes zero. The phase difference between the comparator output and the reproduction clock is detected, and the reproduction clock (FIG. 15E) is generated so that the integrated value of the phase error becomes 0.

次に、4Tマーク終端の記録パラメータを最適値より小さくし、Telp1とした場合を考える。このとき図15(f)に実線で示す再生信号が得られる。4Tマーク終端エッジが時間軸方向に変化するため、コンパレータのしきい値Tvは、図15(d)と比べて、図15(f)の一点鎖線ように大きくなる。コンパレータ出力が変化したため、位相誤差の積分値が0となるよう、図15(e)と比べて再生クロックの位相が進み、図15(g)のような再生クロックが生成される。   Next, a case is considered where the recording parameter at the end of the 4T mark is smaller than the optimum value and is set to Telp1. At this time, a reproduced signal indicated by a solid line in FIG. Since the 4T mark end edge changes in the time axis direction, the threshold value Tv of the comparator becomes larger as shown by the dashed line in FIG. 15F than in FIG. 15D. Since the output of the comparator has changed, the phase of the reproduced clock is advanced as compared with FIG. 15E so that the integrated value of the phase error becomes 0, and a reproduced clock as shown in FIG. 15G is generated.

逆に、4Tマーク終端の記録パラメータを最適値より大きくし、Telp3とした場合を考える。このとき図15(h)に実線で示す再生信号が得られる。4Tマーク終端エッジが時間軸方向に変化するため、コンパレータのしきい値Tvは、図15(d)とくらべて図15(h)の一点鎖線ように小さくなる。コンパレータ出力が変化したため、位相誤差の積分値が0となるよう、図15(e)と比べて再生クロックは位相が遅れ、図15(i)のような再生クロックが生成される。   Conversely, consider a case where the recording parameter at the end of the 4T mark is set to be larger than the optimum value and is set to Telp3. At this time, a reproduced signal indicated by a solid line in FIG. Since the end edge of the 4T mark changes in the time axis direction, the threshold value Tv of the comparator becomes smaller as shown by the one-dot chain line in FIG. 15H than in FIG. Since the output of the comparator has changed, the phase of the reproduced clock is delayed as compared with FIG. 15E so that the integrated value of the phase error becomes 0, and a reproduced clock as shown in FIG. 15I is generated.

マーク終端エッジ(再生信号の立ち上がり)と再生クロックとの時間差(いわゆるデータ−クロック間ジッタ)を測定すると、図15の(j)〜(l)のような分布が得られる。ただし4Tマーク終端および8Tマーク終端エッジは、おなじ分散値の正規分布となるようなばらつきを持つことを仮定している。   When a time difference (a so-called data-clock jitter) between a mark end edge (rising edge of a reproduced signal) and a reproduced clock is measured, distributions as shown in (j) to (l) of FIG. 15 are obtained. However, it is assumed that the end of the 4T mark and the end of the 8T mark have the same dispersion of the same variance.

図15(d)、図15(e)のような再生信号と再生クロックの場合、立ち上がりエッジ(マーク終端エッジ)でのコンパレータ出力と再生クロックとの時間差の分布を求めると、図15(k)のようになる。4Tマーク終端と8Tマーク終端の分布のそれぞれの平均値が0となる。   In the case of the reproduced signal and the reproduced clock as shown in FIGS. 15D and 15E, the distribution of the time difference between the comparator output and the reproduced clock at the rising edge (mark end edge) is obtained. become that way. The average value of the distributions at the end of the 4T mark and the end of the 8T mark is 0.

しかし4Tマーク終端のパラメータがTelp1(最適値Telp2より小さい値)のときは、図15(j)のように4Tマーク終端エッジの分布の平均値と8Tマーク終端エッジの分布との平均値は0とはならず、0から同じ距離離れた分布となる。したがって立ち上がりエッジのトータルの分散は図15(k)の場合に比べて大きくなる。同様に4Tマーク終端のパラメータがTelp3(最適値Telp2より大きい値)のときは、図15(l)のように4Tマーク終端エッジの分布の平均値と8Tマーク終端エッジの分布との平均値は0とはならず、0から同じ距離離れた分布となる。図15(l)と図15(j)とは4Tマーク終端と8Tマーク終端の分布が入れ替わっていることになる。この場合も、立ち上がりエッジのトータルの分散は図15(k)の場合に比べて大きくなる。   However, when the parameter at the end of the 4T mark is Telp1 (a value smaller than the optimum value Telp2), the average value of the distribution of the 4T mark end edge and the average value of the 8T mark end edge distribution are 0 as shown in FIG. And the distribution is the same distance from 0. Therefore, the total variance of the rising edge is larger than in the case of FIG. Similarly, when the parameter at the end of the 4T mark is Telp3 (a value larger than the optimum value Telp2), the average value of the distribution of the 4T mark end edge and the average value of the 8T mark end edge distribution are as shown in FIG. The distribution is not 0, but is the same distance from 0. 15 (l) and FIG. 15 (j), the distributions of the 4T mark end and the 8T mark end are interchanged. Also in this case, the total variance of the rising edge is larger than in the case of FIG.

位相誤差の絶対値を累積した結果を誤差検出出力とする場合、記録パラメータTelpの変化に従って、図15(m)のように誤差検出値が変化する。したがって記録パラメータを変化させ、誤差検出回路24の出力が最小となるパラメータを最適値とする。   When the result of accumulating the absolute value of the phase error is used as the error detection output, the error detection value changes as shown in FIG. 15M according to the change of the recording parameter Telp. Therefore, the recording parameter is changed, and the parameter that minimizes the output of the error detection circuit 24 is set as the optimum value.

上記の例では4Tマーク終端のパラメータTelpを最適化する際の手順について説明したが、その他のパラメータについてもそれぞれに対応した特定パターンを用いてテスト記録を行い、誤差検出出力にもとづいて最適パラメータをもとめる。   In the above example, the procedure for optimizing the parameter Telp at the end of the 4T mark has been described. However, test recording is performed for other parameters using specific patterns corresponding to the parameters, and the optimal parameters are determined based on the error detection output. Find out.

以上の手順に従ってすべての記録パラメータをもとめる際の動作をフローチャートで示すと、図16のようになる。テスト記録を行う媒体の領域にアクセスし(S161)、マーク始端あるいはマーク終端の記録パラメータを所定領域(例えばセクタ)ごとに変化させながら、テスト記録を行う(S163)。テスト記録領域から情報の再生を行い、パラメータを変化させた領域ごとに誤差検出出力を得る(S164)。誤差検出出力が最小となるパラメータを求める(S165)。つぎのパラメータを求めるために以上の動作をすべてのパラメータがもとまるまで繰り返す(S162)(特許文献1、特許文献2参照)。
特開2000−200418号公報 特開2001−109597号公報
FIG. 16 is a flowchart showing the operation for obtaining all the recording parameters according to the above procedure. The area of the medium on which the test recording is to be performed is accessed (S161), and the test recording is performed while changing the recording parameters at the start and end of the mark for each predetermined area (for example, sector) (S163). Information is reproduced from the test recording area, and an error detection output is obtained for each area where the parameter is changed (S164). A parameter that minimizes the error detection output is obtained (S165). The above operation is repeated until all parameters are obtained in order to obtain the next parameter (S162) (see Patent Documents 1 and 2).
JP 2000-200418 A JP 2001-109597 A

ところが、上記のように記録パラメータをジッタが最小となるように設定する方法では、最尤復号法を採用したシステムにおいて、エラーの発生する確率が最小とはならない場合があった。最尤復号法は典型的には、再生信号波形から信号パターンを予め推定しておいて、再生信号波形と推定信号波形とを比較しながら、再生信号を最も確からしい信号パターンを有する信号に復号する方法である。最尤復号法では、再生信号波形と推定信号波形の差異が小さいほど、エラーの発生する確率も小さくなる。   However, in the method of setting the recording parameter so as to minimize the jitter as described above, the probability that an error occurs may not be minimized in a system employing the maximum likelihood decoding method. In the maximum likelihood decoding method, typically, a signal pattern is preliminarily estimated from a reproduced signal waveform, and the reproduced signal is decoded into a signal having the most probable signal pattern while comparing the reproduced signal waveform with the estimated signal waveform. How to In the maximum likelihood decoding method, the smaller the difference between the reproduced signal waveform and the estimated signal waveform, the smaller the probability that an error will occur.

本発明は、最尤復号を行うときのエラーの発生する確率が最小となるように、情報の記録時に記録パラメータを最適化する記録制御装置、記録再生装置および記録制御方法を提供することを目的とする。   An object of the present invention is to provide a recording control device, a recording / reproducing device, and a recording control method for optimizing recording parameters when recording information so that the probability of occurrence of an error when performing maximum likelihood decoding is minimized. And

本発明の記録制御装置は、情報記録媒体から再生された情報を示すアナログ信号から生成されたデジタル信号を受け取り、上記デジタル信号の波形を整形する整形部と、上記波形が整形されたデジタル信号を最尤復号し、上記最尤復号の結果を示す2値化信号を生成する最尤復号部と、上記波形が整形されたデジタル信号と上記2値化信号とに基づいて上記最尤復号の結果の信頼性を計算する信頼性計算部と、上記計算した信頼性に基づいて、上記情報記録媒体に上記情報を記録するための記録信号の形状を調整する調整部とを備え、そのことにより上記目的が達成される。   The recording control device of the present invention receives a digital signal generated from an analog signal indicating information reproduced from an information recording medium, and shapes a waveform of the digital signal. A maximum likelihood decoding unit that performs maximum likelihood decoding and generates a binary signal indicating the result of the maximum likelihood decoding, and a result of the maximum likelihood decoding based on the digital signal whose waveform has been shaped and the binary signal A reliability calculation unit that calculates the reliability of the information recording medium, based on the calculated reliability, comprising an adjustment unit that adjusts the shape of a recording signal for recording the information on the information recording medium, whereby the Objective is achieved.

上記調整部は、上記記録信号の所定部分の形状を調整してもよい。   The adjusting section may adjust a shape of a predetermined portion of the recording signal.

上記調整部は、上記記録信号のエッジの位置を調整してもよい。   The adjusting section may adjust the position of the edge of the recording signal.

上記最尤復号部は、最小極性反転間隔が2である記録符号と等化方式PR(C0,C1,C0)とから定まる状態遷移則を用いて最尤復号を行ってもよい。   The maximum likelihood decoding unit may perform maximum likelihood decoding using a state transition rule determined from a recording code having a minimum polarity inversion interval of 2 and an equalization scheme PR (C0, C1, C0).

上記最尤復号部は、最小極性反転間隔が2である記録符号と等化方式PR(C0,C1,C1,C0)とから定まる状態遷移則を用いて最尤復号を行ってもよい。   The maximum likelihood decoding unit may perform maximum likelihood decoding using a state transition rule determined from a recording code having a minimum polarity inversion interval of 2 and an equalization scheme PR (C0, C1, C1, C0).

上記最尤復号部は、最小極性反転間隔が2である記録符号と等化方式PR(C0,C1,C2,C1,C0)とから定まる状態遷移則を用いて最尤復号を行ってもよい。   The maximum likelihood decoding unit may perform maximum likelihood decoding using a state transition rule determined from a recording code having a minimum polarity inversion interval of 2 and an equalization scheme PR (C0, C1, C2, C1, C0). .

上記信頼性計算部は、上記情報記録媒体に形成された記録マークの端部に対応するデジタル信号および2値化信号に基づいて上記信頼性を計算してもよい。   The reliability calculation unit may calculate the reliability based on a digital signal and a binary signal corresponding to an end of a recording mark formed on the information recording medium.

上記調整部は、上記信頼性が高くなるように上記記録信号の形状を調整してもよい。   The adjusting unit may adjust the shape of the recording signal so as to increase the reliability.

上記調整部は、上記計算した信頼性の積算値および上記計算した信頼性の平均値のうちの一方を計算し、上記積算値および上記平均値のうちの一方に基づいて上記記録信号の形状を調整してもよい。   The adjusting unit calculates one of the integrated value of the calculated reliability and the average value of the calculated reliability, and determines the shape of the recording signal based on one of the integrated value and the average value. It may be adjusted.

上記調整部は、記録マーク長とスペース長との組み合わせ毎に、上記積算値および上記平均値のうちの一方を計算してもよい。   The adjusting unit may calculate one of the integrated value and the average value for each combination of the recording mark length and the space length.

本発明の記録再生装置は、情報記録媒体から再生した情報を示すアナログ信号からデジタル信号を生成する再生部と、上記デジタル信号を受け取って上記デジタル信号の波形を整形する整形部と、上記波形が整形されたデジタル信号を最尤復号し、上記最尤復号の結果を示す2値化信号を生成する最尤復号部と、上記波形が整形されたデジタル信号と上記2値化信号とに基づいて上記最尤復号の結果の信頼性を計算する信頼性計算部と、上記計算した信頼性に基づいて、上記情報記録媒体に上記情報を記録するための記録信号の形状を調整する調整部と、上記記録信号の形状の調整結果に基づいて上記情報記録媒体に上記情報を記録する記録部とを備え、そのことにより上記目的が達成される。   The recording / reproducing apparatus of the present invention includes: a reproducing unit that generates a digital signal from an analog signal indicating information reproduced from an information recording medium; a shaping unit that receives the digital signal and shapes the waveform of the digital signal; A maximum likelihood decoding unit that performs maximum likelihood decoding on the shaped digital signal and generates a binarized signal indicating the result of the maximum likelihood decoding, based on the shaped digital signal and the binary signal A reliability calculation unit that calculates the reliability of the result of the maximum likelihood decoding, and an adjustment unit that adjusts the shape of a recording signal for recording the information on the information recording medium based on the calculated reliability, A recording unit for recording the information on the information recording medium based on the adjustment result of the shape of the recording signal, whereby the object is achieved.

本発明の記録制御方法は、情報記録媒体から再生された情報を示すアナログ信号から生成されたデジタル信号を受け取り、上記デジタル信号の波形を整形するステップと、上記波形が整形されたデジタル信号を最尤復号し、上記最尤復号の結果を示す2値化信号を生成するステップと、上記波形が整形されたデジタル信号と上記2値化信号とに基づいて上記最尤復号の結果の信頼性を計算するステップと、上記計算した信頼性に基づいて、上記情報記録媒体に上記情報を記録するための記録信号の形状を調整するステップとを包含し、そのことにより上記目的が達成される。   A recording control method according to the present invention includes the steps of: receiving a digital signal generated from an analog signal indicating information reproduced from an information recording medium, shaping the waveform of the digital signal; Performing a likelihood decoding to generate a binary signal indicating the result of the maximum likelihood decoding, and determining the reliability of the result of the maximum likelihood decoding based on the digital signal whose waveform has been shaped and the binary signal. Calculating, and adjusting the shape of a recording signal for recording the information on the information recording medium based on the calculated reliability, whereby the object is achieved.

上記調整するステップは、上記記録信号の所定部分の形状を調整するステップを包含してもよい。   The adjusting step may include adjusting a shape of a predetermined portion of the recording signal.

上記調整するステップは、上記記録信号のエッジの位置を調整するステップを包含してもよい。   The adjusting may include adjusting an edge position of the recording signal.

本発明によれば、波形が整形されたデジタル信号と最尤復号部が生成した2値化信号とに基づいて最尤復号の結果の信頼性を計算し、計算した信頼性に基づいて、情報記録媒体に情報を記録するための記録信号の形状を調整する。このことにより、最尤復号の結果の信頼性が高くなるように記録信号の形状を調整することができるので、最尤復号を行うときのエラーの発生確率を小さくすることができる。   According to the present invention, the reliability of the result of the maximum likelihood decoding is calculated based on the digital signal whose waveform is shaped and the binary signal generated by the maximum likelihood decoding unit, and the information is calculated based on the calculated reliability. The shape of a recording signal for recording information on a recording medium is adjusted. Thus, the shape of the recording signal can be adjusted so that the reliability of the result of the maximum likelihood decoding becomes high, so that the probability of occurrence of an error when performing the maximum likelihood decoding can be reduced.

以下、本発明の実施の形態について、図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、最尤復号法を用いた場合の再生信号品質の評価方法について述べる。例として、記録符号として最小極性反転間隔が2の記録符号を用い、また、記録時および再生時の信号の周波数特性がPR(1,2,2,1)等化となるように信号の波形が整形される場合の再生信号品質の評価方法について説明する。   First, a method for evaluating the quality of a reproduced signal when the maximum likelihood decoding method is used will be described. As an example, a recording code having a minimum polarity reversal interval of 2 is used as the recording code, and the signal waveform is such that the frequency characteristics of the signal during recording and reproduction are PR (1, 2, 2, 1) equalization. A method for evaluating the quality of a reproduced signal in the case where is shaped will be described.

記録符号をbとし、1時刻前の記録符号をbk−1とし、2時刻前の記録符号をbk−2とし、3時刻前の記録符号をbk−3とする。PR(1,2,2,1)等化の理想的な出力値Levelは(式1)で表される。
Level=bk−3+2bk−2+2bk−1+b (式1)
ここでkは時刻を表す整数であり、vは0〜6までの整数である。
The recording code is b k , the recording code one time before is b k−1 , the recording code two times before is b k−2, and the recording code three times before is b k−3 . An ideal output value Level v of PR (1, 2, 2, 1) equalization is represented by (Equation 1).
Level v = b k−3 + 2b k−2 + 2b k−1 + b k (Equation 1)
Here, k is an integer representing time, and v is an integer from 0 to 6.

時刻kでの状態をS(bk−2,bk−1,b)とすると、(表1)の状態遷移表が得られる。 Assuming that the state at the time k is S (b k−2 , b k−1 , b k ), a state transition table of (Table 1) is obtained.

Figure 2004335079
Figure 2004335079

簡単のために、時刻kでの状態S(0,0,0)をS0、状態S(0,0,1)をS1、状態S(0,1,1)をS2、状態S(1,1,1)をS3、状態S(1,1,0)をS4、状態S(1,0,0)をS5とすると、図2に示す状態遷移図が得られる。図2に示す状態遷移図は、最小極性反転間隔が2である記録符号と等化方式PR(1,2,2,1)とから定まる状態遷移則を表している。この状態遷移図を時間軸に沿って展開すると図3のトレリス図が得られる。時刻kでの状態S0と時刻k−4の状態S0k−4に注目する。図3では、状態S0と状態S0k−4との間でとりうる2つの状態遷移列を示している。1つのとりうる状態遷移列をパスAとすると、パスAは状態S2k−4、S4k−3、S5k−2、S0k−1、S0を遷移する。もう1つの状態遷移列をパスBとすると、パスBは状態S2k−4、S3k−3、S4k−2、S5k−1、S0を遷移する。時刻k−6から時刻kまでの最尤復号結果を(Ck−6, Ck−5, Ck−4, Ck−3, Ck−2, Ck−1, C)とすると、(Ck−6, Ck−5, Ck−4, Ck−3, Ck−2, Ck−1, C)=(0,1,1,x,0,0,0)となる復号結果(xは0または1の値)が得られた場合には、パスAまたはパスBの状態遷移列が最も確からしいと推定されたこととなる。パスAおよびパスBの両方とも、時刻k−4における状態が状態S2k−4であることの確からしさは同じであるから、時刻k−3から時刻kまでの、再生信号yk−3から再生信号yまでの値と、パスAおよびパスBそれぞれの期待値との差を2乗した値の累積値を求めることよって、パスAとパスBのどちらかの状態遷移列が確からしいことが分かる。時刻k−3から時刻kまでの再生信号yk−3からyまでの値とパスAの期待値との差を2乗した値の累積値をPaとするとPaは(式2)で表される。時刻k−3から時刻kまでの再生信号yk−3からyまでの値とパスBの期待値との差を2乗した値の累積値をPbとするとPbは(式3)で表される。
Pa=(yk−3−4)+(yk−2−3)+(yk−1−1)+(y−0) (式2)
Pb=(yk−3−5)+(yk−2−5)+(yk−1−3)+(y−1) (式3)
ここで最尤復号結果の信頼性を示すPaとPbとの差Pa−Pbの意味について述べる。最尤復号部は、Pa<<PbであればパスAを自信を持って選択し、Pa>>PbであればパスBを自信を持って選択したといえる。またPa=PbであればパスA、パスBのいずれを選択してもおかしくなく、復号結果が正しいかどうかは5分5分であるといえる。このようにして所定の時間あるいは所定の回数、復号結果からPa−Pbを求めるとPa−Pbの分布が得られる。Pa−Pbの分布の模式図を図4に示す。
For simplicity, state S (0,0,0) k at time k is S0 k , state S (0,0,1) k is S1 k , and state S (0,1,1) k is S2 k 2, the state S (1,1,1) k is S3 k , the state S (1,1,0) k is S4 k , and the state S (1,0,0) k is S5 k . A transition diagram is obtained. The state transition diagram shown in FIG. 2 shows a state transition rule determined from a recording code whose minimum polarity inversion interval is 2 and the equalization method PR (1, 2, 2, 1). When this state transition diagram is developed along the time axis, the trellis diagram of FIG. 3 is obtained. Attention is paid to the state S0 state of k and time k-4 S0 k-4 at time k. FIG. 3 shows two possible state transition sequences between the state S0 k and the state S0 k-4 . Assuming that one possible state transition sequence is path A, path A transits states S2 k-4 , S4 k-3 , S5 k-2 , S0 k-1 , and S0 k . Assuming that another state transition sequence is path B, path B transitions between states S2 k-4 , S3 k-3 , S4 k-2 , S5 k-1 , and S0 k . When the maximum likelihood decoding result from time k-6 to time k is ( Ck-6 , Ck-5 , Ck-4 , Ck-3 , Ck-2 , Ck-1 , Ck ). , (C k-6, C k-5, C k-4, C k-3, C k-2, C k-1, C k) = (0,1,1, x, 0,0,0 ) Is obtained (x is a value of 0 or 1), it means that the state transition sequence of the path A or the path B is estimated to be most likely. Since the probability that the state at the time k-4 is the state S2 k-4 is the same for both the path A and the path B, the reproduction signal y k-3 from the time k-3 to the time k is the same. By calculating the cumulative value of the square of the difference between the value up to the reproduced signal y k and the expected value of each of the path A and the path B, the state transition sequence of either the path A or the path B is likely to be certain. I understand. Assuming that the accumulated value of the square of the difference between the value of the reproduced signal y k−3 to y k from time k−3 to time k and the expected value of the path A is Pa, Pa is represented by (Equation 2). Is done. Assuming that the accumulated value of the square of the difference between the value of the reproduction signal y k−3 to y k from time k−3 to time k and the expected value of the path B is Pb, Pb is represented by (Equation 3). Is done.
Pa = (y k−3 −4) 2 + (y k−2 −3) 2 + (y k−1 −1) 2 + (y k− 0) 2 (Equation 2)
Pb = (y k−3 −5) 2 + (y k−2 −5) 2 + (y k−1 −3) 2 + (y k− 1) 2 (formula 3)
Here, the meaning of the difference Pa−Pb between Pa and Pb indicating the reliability of the maximum likelihood decoding result will be described. It can be said that the maximum likelihood decoding unit confidently selected the path A if Pa << Pb, and confidently selected the path B if Pa >> Pb. If Pa = Pb, either path A or path B can be selected, and it can be said that whether the decoding result is correct is 5 minutes and 5 minutes. When Pa-Pb is obtained from the decoding result for a predetermined time or a predetermined number of times, a distribution of Pa-Pb is obtained. FIG. 4 shows a schematic diagram of the distribution of Pa-Pb.

図4(a)は再生信号にノイズが重畳された場合のPa−Pbの分布の様子を示している。分布には2つのピークがあり、1つはPa=0となるときに頻度が極大となり、もう1つはPb=0となるときに頻度が極大となる。Pa=0となるときのPa−Pbの値を−Pstd、Pb=0となるときのPa−Pbの値をPstdとあらわすことにする。Pa−Pbの絶対値を計算し、|Pa−Pb|−Pstdを求める。図4(b)は|Pa−Pb|−Pstdの分布の様子を示している。図4(b)に示す分布の標準偏差σと平均値Paveを求める。図4(b)に示す分布が正規分布であるとし、例えばσとPaveとに基づいて復号結果の信頼性|Pa−Pb|の値が−Pstd以下となるときを誤りが発生した状態とすると、誤り確率P(σ,Pave)は(式4)のように表される。   FIG. 4A shows the distribution of Pa-Pb when noise is superimposed on the reproduced signal. The distribution has two peaks, one having a maximum frequency when Pa = 0, and another having a maximum frequency when Pb = 0. The value of Pa−Pb when Pa = 0 is expressed as −Pstd, and the value of Pa−Pb when Pb = 0 is expressed as Pstd. The absolute value of Pa-Pb is calculated to obtain | Pa-Pb | -Pstd. FIG. 4B shows the distribution of | Pa−Pb | −Pstd. The standard deviation σ and the average value Pave of the distribution shown in FIG. It is assumed that the distribution shown in FIG. 4B is a normal distribution, and when the value of the reliability | Pa−Pb | of the decoding result becomes −Pstd or less based on, for example, σ and Pave, an error occurs. , The error probability P (σ, Pave) is expressed as (Equation 4).

Figure 2004335079
Figure 2004335079

Pa−Pbの分布から計算した平均値Paveと標準偏差σとから最尤復号結果を示す2値化信号の誤り率を予想することができる。つまり平均値Paveと標準偏差σとを再生信号品質の指標とすることができる。なお上記の例では|Pa−Pb|の分布が正規分布となることを仮定したが、分布が正規分布でない場合には、|Pa−Pb|−Pstdの値が所定の基準値以下になる回数をカウントし、そのカウント数を信号品質の指標とすることも可能である。   From the average value Pave and the standard deviation σ calculated from the Pa-Pb distribution, the error rate of the binary signal indicating the maximum likelihood decoding result can be predicted. That is, the average value Pave and the standard deviation σ can be used as indexes of the reproduction signal quality. In the above example, it is assumed that the distribution of | Pa-Pb | is a normal distribution, but when the distribution is not a normal distribution, the number of times that the value of | Pa-Pb | -Pstd becomes equal to or less than a predetermined reference value Can be counted, and the counted number can be used as an index of the signal quality.

最小極性反転間隔が2である記録符号と等化方式PR(1,2,2,1)とから定まる状態遷移則の場合、状態が遷移するときに2つの状態遷移列をとり得るような組み合わせは、時刻k−4から時刻kの範囲では8パターンあり、時刻k−5から時刻kの範囲では8パターンあり、時刻k−6から時刻kの範囲では8パターン存在する。さらに検出する範囲を拡大すると、2つの状態遷移列をとり得るような組み合わせは、信頼性Pa−Pbパターン存在する。ここで重要なのは、信頼性Pa−Pbを再生信号品質の指標とすることにより、すべてのパターンを検出しなくても、誤る可能性(誤り率)が大のパターンのみを検出すれば、その検出結果を誤り率と相関のある指標とすることができる。ここで、誤る可能性が大のパターンとは、信頼性Pa−Pbの値が小となるパターンであり、Pa−Pb=±10となる8パターンである。この8パターンとPa−Pbとについてまとめると(表2)のようになる。   In the case of a state transition rule determined from a recording code having a minimum polarity inversion interval of 2 and an equalization method PR (1, 2, 2, 1), a combination that can take two state transition sequences when a state transition occurs There are eight patterns in the range from time k-4 to time k, eight patterns in the range from time k-5 to time k, and eight patterns in the range from time k-6 to time k. When the range to be detected is further expanded, a combination that can take two state transition sequences has a reliability Pa-Pb pattern. What is important here is that if the reliability Pa-Pb is used as an index of the reproduction signal quality and only patterns with a high possibility of error (error rate) are detected without detecting all patterns, the detection is performed. The result can be used as an index correlated with the error rate. Here, the patterns having a high possibility of being erroneous are patterns in which the value of the reliability Pa−Pb is small, and are eight patterns in which Pa−Pb = ± 10. The eight patterns and Pa-Pb are summarized in (Table 2).

Figure 2004335079
Figure 2004335079

上記8とおりの復号結果の信頼性Pa−Pbをまとめると(式5)が得られる。   (Equation 5) is obtained by summarizing the reliability Pa-Pb of the above eight decoding results.

Figure 2004335079
Figure 2004335079

ここでAk=(yk−0),Bk=(yk−1),Ck=(yk−2),Dk=(yk−3),Ek=(yk−4),Fk=(yk−5),Gk=(yk−6)とする。最尤復号結果cから(数5)を満たすPa−Pbをもとめ、Pa−Pbの分布から標準偏差σ10と平均値Pave10とを求める。Pa−Pbの分布が正規分布であると仮定すると誤りを起こす確率P10は(式6)で表される。 Here, Ak = (yk-0) 2 , Bk = (yk-1) 2 , Ck = (yk-2) 2 , Dk = (yk-3) 2 , Ek = (yk-4) 2 , Fk = ( yk-5) 2 and Gk = (yk-6) 2 . Determine the Pa-Pb which satisfies the maximum likelihood decoding result c k (number 5), obtains the average value Pave 10 and the standard deviation sigma 10 from the distribution of Pa-Pb. The probability P 10 the distribution of Pa-Pb causes a assume the errors to be normal distribution is expressed by (Equation 6).

Figure 2004335079
Figure 2004335079

上記8パターンは、1ビットシフトエラーを起こすパターンであり、他のパターンは、2ビット以上のシフトエラーを起こすパターンである。PRML処理後のエラーパターンを分析すると、ほとんどが、1ビットシフトエラーであるため、(式6)を求めることで再生信号の誤り率が推定できる。このように、標準偏差σ10および平均値Pave10を再生信号の品質を示す指標として用いることができる。 The eight patterns are patterns that cause a one-bit shift error, and the other patterns are patterns that cause a shift error of two or more bits. When the error pattern after the PRML processing is analyzed, most of the error patterns are 1-bit shift errors. Therefore, the error rate of the reproduced signal can be estimated by obtaining (Equation 6). As described above, the standard deviation σ 10 and the average value Pave 10 can be used as indices indicating the quality of the reproduced signal.

本発明の実施の形態では、上記8パターンの検出を、後述する記録パターンごと(マーク長と直前のスペース長の組み合わせと、マーク長と直後のスペース長の組み合わせのパターンごと)に行い、記録信号の形状、特にエッジの始終端部分に着目し、記録信号のエッジの位置を最適化する記録パラメータを決定する。全てのパターンの最尤復号結果の信頼性|Pa−Pb|のうち、|Pa−Pb|の値が最小となるパターンのみに着目するということは、記録マークのエッジ部分のみに着目することを意味する。上記でも述べたが、Pa−Pbの値が小となるパターンは、エラーの発生確率が大きいパターンである。すなわち、最尤復号結果の信頼性が高くなるように、記録マークのエッジの位置を部分的に最適化すれば、全体の最適化につながることを意味する。その方法について以下説明する。   In the embodiment of the present invention, the above-mentioned eight patterns are detected for each recording pattern described later (for each pattern of a combination of the mark length and the immediately preceding space length and a pattern of the combination of the mark length and the immediately succeeding space length). The recording parameters for optimizing the position of the edge of the recording signal are determined by paying attention to the shape of the recording signal, particularly the start and end portions of the edge. Focusing only on the pattern with the minimum value of | Pa-Pb | among the reliability | Pa-Pb | of the maximum likelihood decoding results of all the patterns means focusing on only the edge portion of the recording mark. means. As described above, a pattern in which the value of Pa-Pb is small is a pattern in which the error occurrence probability is large. That is, if the position of the edge of the recording mark is partially optimized so as to increase the reliability of the maximum likelihood decoding result, it means that the overall optimization is achieved. The method will be described below.

図5(a)〜(h)に、上記8パターン(Pattern−1〜Pattern−8)のサンプル値を示す。横軸は時間(1目盛りは1チャネルクロック周期(Tclk)を表す)、縦軸は信号レベル(0〜6)を示し、点線、実線はそれぞれパスA、パスBを示す。各サンプル値は、(表1)で説明した最尤復号における入力の期待値Levelの0〜6に相当する。図15(c)、(d)で示したように記録部分(アモルファス領域)は、反射光が減るため信号レベルとしてはコンパレータ閾値より下側の波形として再生される。一方、未記録部分(非アモルファス領域)は、コンパレータ閾値より上側の波形として再生される。また、図5で示した8パターンは、すべて記録部(マーク)と未記録部(スペース)の境界部分(マークの始端エッジおよび終端エッジ)である再生波形に相当する。よって、図5における8パターンのうち、Pattern−1、Pattern−2、Pattern−3、Pattern−4は、マークの始端エッジ部分に相当し、Pattern−5、Pattern−6、Pattern−7、Pattern−8は、マークの終端エッジ部分に相当する。 FIGS. 5A to 5H show sample values of the above eight patterns (Pattern-1 to Pattern-8). The horizontal axis represents time (one division represents one channel clock cycle (Tclk)), the vertical axis represents signal level (0 to 6), and the dotted and solid lines represent path A and path B, respectively. Each sample value corresponds to an input expected value Level v of 0 to 6 in the maximum likelihood decoding described in (Table 1). As shown in FIGS. 15C and 15D, the recorded portion (amorphous region) is reproduced as a waveform whose signal level is lower than the comparator threshold because the reflected light is reduced. On the other hand, the unrecorded portion (non-amorphous area) is reproduced as a waveform above the comparator threshold. In addition, all eight patterns shown in FIG. 5 correspond to reproduced waveforms that are boundary portions (start and end edges of marks) between a recorded portion (mark) and an unrecorded portion (space). Therefore, of the eight patterns in FIG. 5, Pattern-1, Pattern-2, Pattern-3, and Pattern-4 correspond to the starting edge portion of the mark, and Pattern-5, Pattern-6, Pattern-7, and Pattern-n. 8 corresponds to the end edge portion of the mark.

Patern−1に着目して、マークの始端エッジのシフトズレ検出方法を説明する。図6は、Pattern−1における再生波形と記録マークのズレとの相関を示す。図6において、実線△印は入力信号であり、点線で示すパスAが正解の状態遷移パスとする。入力信号は記録マークB1に基づいて生成されている。記録マークA1は理想的な始端エッジを有しているとする。図6(a)は、記録マークの始端エッジ位置が理想的な始端エッジ位置と比較して後ろにずれている場合である。入力信号のサンプル値(yk−3、yk−2、yk−1、y)を(4.2 、3.2 、1.2 、0.2)とし、(式2)および(式3)からパスAと入力信号との距離Paと、パスBと入力信号との距離Pbとは、(式7)および(式8)の様に求まる。
Pa=(4.2−4)+(3.2−3)+(1.2−1)+(0.2−0)
=0.16 (式7)
Pb=(4.2−5)+(3.2−5)+(1.2−3)+(0.2−1)
=7.76 (式8)
始端エッジのズレ量とズレ方向は、上述した|Pa−Pb|−Pstdを算出することで求めることができる。
E1=|Pa−Pb|−Pstd=|0.16−7.76|−10=−2.4 (式9)
(式9)から求まるE1の絶対値が、ズレ量であり、その符号がズレ方向である。すなわち、図6(a)の場合、E1=−2.4と検出できるため、2.4だけ始端エッジ位置が基準より後ろにずれていると判断できる。
Focusing on Pattern-1, a description will be given of a method of detecting a shift deviation of the start edge of a mark. FIG. 6 shows a correlation between a reproduction waveform and a shift of a recording mark in Pattern-1. In FIG. 6, the solid line symbol △ indicates an input signal, and a path A indicated by a dotted line is a correct state transition path. The input signal is generated based on the recording mark B1. It is assumed that the recording mark A1 has an ideal starting edge. FIG. 6A shows a case where the starting edge position of the recording mark is shifted backward compared to the ideal starting edge position. The sample values (y k−3 , y k−2 , y k−1 , y k ) of the input signal are set to (4.2, 3.2, 1.2, 0.2), and (Equation 2) and (Eq. 2) From Expression 3), the distance Pa between the path A and the input signal and the distance Pb between the path B and the input signal are obtained as in (Expression 7) and (Expression 8).
Pa = (4.2-4) 2 + (3.2-3) 2 + (1.2-1) 2 + (0.2-0) 2
= 0.16 (Equation 7)
Pb = (4.2-5) 2 + (3.2-5) 2 + (1.2-3) 2 + (0.2-1) 2
= 7.76 (Equation 8)
The shift amount and the shift direction of the start end edge can be obtained by calculating | Pa−Pb | −Pstd described above.
E1 = | Pa−Pb | −Pstd = | 0.16−7.76 | −10 = −2.4 (Equation 9)
The absolute value of E1 obtained from (Equation 9) is the shift amount, and the sign thereof is the shift direction. That is, in the case of FIG. 6A, since it is possible to detect that E1 = −2.4, it can be determined that the start end edge position is shifted behind the reference by 2.4.

同様に、図6(b)は、記録マークB1の始端エッジ位置が理想的な始端エッジ位置と比較して、前にずれている場合である。入力信号のサンプル値(yk−3 、yk−2 、yk−1 、y)を(3.8 、2.8 、0.8 、−0.2)とし、E2(=|Pa−Pb|−Pstd)を算出すると、E2=2.4と算出することができる。よって、図6(b)の場合、2.4だけ始端エッジ位置が基準より前にずれていると判断できる。 Similarly, FIG. 6B shows a case where the start edge position of the recording mark B1 is shifted forward compared to the ideal start edge position. Sample values of the input signal (y k-3, y k -2, y k-1, y k) (3.8, 2.8, 0.8, -0.2) and then, E2 (= | Pa -Pb | -Pstd), E2 = 2.4 can be calculated. Therefore, in the case of FIG. 6B, it can be determined that the starting edge position is shifted by 2.4 by a value before the reference.

図7に、Pattern−1における再生波形と記録マークのズレとの相関を示す。図7では、パスBが正解の状態遷移パスとする。図7(a)は、記録マークの始端エッジが理想的な始端エッジと比較して後ろにずれている場合である。入力信号のサンプル値(yk−3 、yk−2 、yk−1 、y)を(5.2 、5.2 、3.2 、1.2)とし、E3(=|Pa−Pb|−Pstd)を算出すると、E3=2.4と算出することができる。よって、図7(a)の場合、2.4だけ始端エッジ位置が基準より後ろにずれていると判断できる。図7(b)は、記録マークの始端エッジ位置が理想的な始端エッジ位置と比較して、前にずれている場合である。入力信号のサンプル値(yk−3 、yk−2 、yk−1 、y)を(4.8 、4.8 、2.8 、0.8)とし、E4(=|Pa−Pb|−Pstd)を算出すると、E4=−2.4と算出することができる。よって、図7(b)の場合、2.4だけ始端エッジ位置が基準より前にずれていると判断できる。図6のパスAが正解の場合と、図7のパスBが正解の場合では、記録マークの始端エッジのズレ方向を示す符号の表現が反対である。これは、正解パスおよびもう一つの候補パスそれぞれの期待値系列と、入力信号の系列との関係に依存する。図6(b)、図7(a)のように、入力信号の系列が、正解ではないパスの期待値系列との誤差を大きく持つ場合は、(数9)で算出される値は正の符号を持つ値となる。言い換えれば、入力信号の系列と、正解ではないパスの期待値系列との差が大となるほど、最尤復号では、エラーが発生しにくい状況であることを示す。この場合、(数9)では正符号の値として算出される。この特徴を考慮して、記録マークの始端エッジ位置のズレ方向を検出すればよい。Pattern−1において、パスAが正解の場合は、Pattern−1は、2Tスペースと4Tマーク以上の長さのマークとの組み合わせの始端エッジの検出時に用いられるパターンであり、パスBが正解の場合は、Pattern−1は、3Tスペースと3Tマーク以上の長さのマークとの組み合わせの始端エッジの検出時に用いられるパターンである。以上のような方法を用いて、各記録マークの始終端パターンごとの積算値または平均値を求め、エッジ位置のずれ量が0に近づくように記録パラメータを設定すれば、最尤復号方法に最適な記録制御が可能となる。 FIG. 7 shows the correlation between the reproduced waveform in Pattern-1 and the deviation of the recording mark. In FIG. 7, path B is the correct state transition path. FIG. 7A shows a case where the starting edge of the recording mark is shifted behind as compared with the ideal starting edge. The sample values (y k−3 , y k−2 , y k−1 , y k ) of the input signal are set to (5.2, 5.2, 3.2, 1.2), and E3 (= | Pa− When Pb | -Pstd) is calculated, E3 = 2.4 can be calculated. Therefore, in the case of FIG. 7A, it can be determined that the starting edge position is shifted behind the reference by 2.4. FIG. 7B shows a case where the starting edge position of the recording mark is shifted forward compared to the ideal starting edge position. Sample value of the input signal (y k-3, y k -2, y k-1, y k) and (4.8, 4.8, 2.8, 0.8) and, E4 (= | Pa- When Pb | −Pstd) is calculated, E4 = −2.4 can be calculated. Therefore, in the case of FIG. 7B, it can be determined that the starting edge position is shifted by 2.4 by a value before the reference. When the path A in FIG. 6 is a correct answer and when the path B in FIG. 7 is a correct answer, the expression of the sign indicating the deviation direction of the start edge of the recording mark is opposite. This depends on the relationship between the expected value sequence of each of the correct answer path and another candidate path and the sequence of the input signal. As shown in FIG. 6B and FIG. 7A, when the sequence of the input signal has a large error from the expected value sequence of the path that is not the correct answer, the value calculated by (Equation 9) is positive. The value has a sign. In other words, the larger the difference between the sequence of the input signal and the expected value sequence of the path that is not the correct answer, the less likely it is that errors will occur in maximum likelihood decoding. In this case, in (Equation 9), it is calculated as a positive sign value. In consideration of this feature, the deviation direction of the start edge position of the recording mark may be detected. In Pattern-1, when Path A is correct, Pattern-1 is a pattern used when detecting the leading edge of a combination of a 2T space and a mark longer than a 4T mark, and when Path B is correct. Is a pattern used at the time of detecting the start edge of a combination of a 3T space and a mark having a length of 3T mark or more. By using the method described above, an integrated value or an average value for each start / end pattern of each recording mark is obtained, and recording parameters are set so that the deviation amount of the edge position approaches 0, which is most suitable for the maximum likelihood decoding method. Recording control becomes possible.

ここで、記録パラメータの最適化について説明する。記録符号の最小極性反転間隔をm(本実施の形態では、m=2)とする。情報記録媒体上に形成されるマークの始端位置は、そのマーク直前のスペースの幅とそのマーク自身の幅に依存する。例えば、直前のスペース幅がmTから(m+b)Tである場合は、マークの始端位置は直前のスペース幅に依存する。直前のスペース幅が(m+b)Tより大きい場合は、マークの始端位置は直前のスペース幅に依存しない。自身のマーク幅がmTから(m+a)Tである場合は、マークの始端位置は自身のマーク幅に依存する。自身のマーク幅が(m+a)Tより大きい場合は、マークの始端位置は自身のマーク幅に依存しない。   Here, optimization of the recording parameters will be described. The minimum polarity reversal interval of the recording code is m (m = 2 in the present embodiment). The starting position of the mark formed on the information recording medium depends on the width of the space immediately before the mark and the width of the mark itself. For example, when the immediately preceding space width is from mT to (m + b) T, the starting position of the mark depends on the immediately preceding space width. If the immediately preceding space width is larger than (m + b) T, the start position of the mark does not depend on the immediately preceding space width. When the own mark width is from mT to (m + a) T, the starting position of the mark depends on the own mark width. When the own mark width is larger than (m + a) T, the starting position of the mark does not depend on the own mark width.

また情報記録媒体上に形成されるマークの終端位置は、マーク自身の幅と直後のスペースの幅に依存する。例えば、自身のマーク幅がmTから(m+a)Tである場合は、マークの終端位置は自身のマーク幅に依存する。自身のマーク幅が(m+a)Tより大きい場合は、マークの終端位置は自身のマーク幅に依存しない。また、後続のスペース幅がmTから(m+b)Tである場合は、マークの終端位置は後続のスペース幅に依存する。後続のスペース幅が(m+b)Tより大きい場合は、マークの終端位置は後続のスペース幅に依存しない。ただしa、bは0以上の整数であり、記録符号の最大極性反転はm+a、m+bよりも大きいとする。   The end position of the mark formed on the information recording medium depends on the width of the mark itself and the width of the space immediately after the mark. For example, when the own mark width is from mT to (m + a) T, the end position of the mark depends on the own mark width. When the own mark width is larger than (m + a) T, the end position of the mark does not depend on the own mark width. If the subsequent space width is from mT to (m + b) T, the end position of the mark depends on the subsequent space width. If the subsequent space width is larger than (m + b) T, the end position of the mark does not depend on the subsequent space width. Here, a and b are integers of 0 or more, and the maximum polarity inversion of the recording code is larger than m + a and m + b.

上記のようなマークの始端位置および終端位置の依存性を考えると、始端パラメータTsfpの最適化は、幅が(m+b)T以下のスペースが隣接しているマークについて行う必要がある。また、終端パラメータTelpの最適化は、幅が(m+a)T以下のマークについて行う必要がある。簡単のためにm=3、a=b=3とすると、単純には図8に示す32とおりの記録パターンに対応するパラメータの最適化が必要となる。図8において、例えば2Ts2Tmは、2Tマークの直前に2Tスペースが存在するパターンであることを意味する。   Considering the dependence of the start position and the end position of the mark as described above, it is necessary to optimize the start parameter Tsfp for a mark having a space whose width is equal to or less than (m + b) T. Further, it is necessary to optimize the termination parameter Telp for a mark having a width of (m + a) T or less. Assuming that m = 3 and a = b = 3 for simplicity, it is simply necessary to optimize parameters corresponding to the 32 recording patterns shown in FIG. In FIG. 8, for example, 2Ts2Tm means that the pattern has a 2T space immediately before the 2T mark.

図9は、図8に示す各記録パターン(すなわちエッジパターン)を、上記8パターン(Pattern−1〜Pattern−8)のうちどのパターンで検出を行うかを示したものである。例えば、図8の2Ts3Tmは、P3Aのパターンで、記録マークの始終端パターンに対応する信号のずれ量の検出を行うことを意味する。P3Aは、Pattern−3で、パスAが正解の状態遷移パスであるパターンを意味する。また、図8の3Ts3Tmは、P1Bまたは、P4Aのパターンでずれ量の検出を行うことを意味する。P1Bは、Pattern−1で、パスBが正解の状態遷移パスであるパターンを意味し、P4Aは、Pattern−4で、パスAが正解の状態遷移パスであるパターンを意味する。以上のことから、最尤復号に最適な記録パラメータを制御する方法とは、図9における記録マークの始終端パターンそれぞれに対応する信号のずれ量が、すべて0に近づくように、記録パラメータを変化させることである。   FIG. 9 shows which of the eight patterns (Pattern-1 to Pattern-8) is to be used to detect each of the recording patterns (that is, edge patterns) shown in FIG. For example, 2Ts3Tm in FIG. 8 means that the shift amount of the signal corresponding to the start / end pattern of the recording mark is detected in the P3A pattern. P3A is Pattern-3 and means a pattern in which path A is a correct state transition path. Further, 3Ts3Tm in FIG. 8 means that the shift amount is detected in the pattern of P1B or P4A. P1B indicates a pattern in which the path B is a correct state transition path in Pattern-1, and P4A indicates a pattern in which the path A is a correct state transition path in Pattern-4. From the above, the method of controlling the recording parameters optimal for the maximum likelihood decoding means that the recording parameters are changed so that the shift amounts of the signals corresponding to the respective start and end patterns of the recording marks in FIG. It is to let.

図9において、2Ts2Tm(2Tマーク立ち上がりで、直前に2Tスペースがあるパターン)と、2Tm2Ts(2Tマーク立ち下がりで、直後に2Tスペースがあるパターン)は、上記8パターン(Pattern−1〜Pattern−8)では、検出不可であるため、他の方法でエッジシフト量を最適化する必要がある。しかし、2Ts2Tmと2Tm2Tsを含むパターンは、信頼性Pa−Pbの値が比較的大きいパターンであるため、上記8パターンには含まれていない。言い換えれば、2Ts2Tmと2Tm2Tsのエッジ部分は厳密に最適化しなくても、最尤復号においては、エラーが発生する可能性が低いと言える。そのため、ディスクごとに最適化するのではなく、適切な初期値を用いてもよい。2Ts2Tmと2Tm2Tsを最適化する場合は、再生信号の位相誤差の積算値が最小となるように最適化してもよい。   In FIG. 9, 2Ts2Tm (2T mark rising and 2T space immediately preceding pattern) and 2Tm2Ts (2T mark falling and 2T space immediately following pattern) correspond to the eight patterns (Pattern-1 to Pattern-8). In (2), since the detection is not possible, it is necessary to optimize the edge shift amount by another method. However, a pattern including 2Ts2Tm and 2Tm2Ts is a pattern in which the value of the reliability Pa-Pb is relatively large, and is not included in the eight patterns. In other words, it can be said that even if the edge portions of 2Ts2Tm and 2Tm2Ts are not strictly optimized, there is a low possibility that an error will occur in maximum likelihood decoding. Therefore, instead of optimizing each disk, an appropriate initial value may be used. When optimizing 2Ts2Tm and 2Tm2Ts, optimization may be performed so that the integrated value of the phase error of the reproduction signal is minimized.

図1に、本発明の実施の形態における記録再生装置100を示す。記録再生装置100は、上述した記録パラメータ最適化方法を実行する。   FIG. 1 shows a recording / reproducing apparatus 100 according to an embodiment of the present invention. The recording / reproducing apparatus 100 executes the above-described recording parameter optimizing method.

記録再生装置100は、再生部101と、記録制御装置102と、記録部103とを備える。記録再生装置100には、情報記録媒体1が搭載される。情報記録媒体1は、光学的に情報の記録再生を行うための情報記録媒体であり、例えば光ディスクである。   The recording / reproducing device 100 includes a reproducing unit 101, a recording control device 102, and a recording unit 103. The information recording medium 1 is mounted on the recording / reproducing device 100. The information recording medium 1 is an information recording medium for optically recording and reproducing information, and is, for example, an optical disk.

再生部101は、光ヘッド部2と、プリアンプ3と、AGC4と、波形等化器5と、A/D変換器6と、PLL回路7とを備える。再生部101は、情報記録媒体1から再生された情報を示すアナログ信号からデジタル信号を生成する。   The reproducing unit 101 includes an optical head unit 2, a preamplifier 3, an AGC 4, a waveform equalizer 5, an A / D converter 6, and a PLL circuit 7. The reproducing unit 101 generates a digital signal from an analog signal indicating information reproduced from the information recording medium 1.

記録制御装置102は、整形部8と、最尤復号部9と、信頼性計算部10と、調整部104とを備える。調整部104は、パターン検出回路11と、エッジシフト検出回路12と、情報記録媒体コントローラ13とを備える。記録制御装置102は例えば半導体チップとして製造される。   The recording control device 102 includes a shaping unit 8, a maximum likelihood decoding unit 9, a reliability calculation unit 10, and an adjustment unit 104. The adjustment unit 104 includes a pattern detection circuit 11, an edge shift detection circuit 12, and an information recording medium controller 13. The recording control device 102 is manufactured, for example, as a semiconductor chip.

整形部8は例えばデジタルフィルタであり、再生部101が生成したデジタル信号を受け取ってデジタル信号が所定の等化特性を有するようにデジタル信号の波形を整形する。   The shaping unit 8 is, for example, a digital filter, and receives the digital signal generated by the reproducing unit 101 and shapes the waveform of the digital signal so that the digital signal has a predetermined equalization characteristic.

最尤復号部9は例えばビタビ復号回路であり、整形部8から出力された波形が整形されたデジタル信号を最尤復号し、最尤復号の結果を示す2値化信号を生成する。   The maximum likelihood decoding unit 9 is, for example, a Viterbi decoding circuit, and performs maximum likelihood decoding on a digital signal whose waveform is output from the shaping unit 8 and generates a binary signal indicating a result of the maximum likelihood decoding.

信頼性計算部10は例えば差分メトリック検出回路であり、整形部8から出力された波形が整形されたデジタル信号と最尤復号部9から出力された2値化信号とに基づいて最尤復号の結果の信頼性を計算する。本発明の一つの実施形態では、信頼性計算部10は、情報記録媒体1に形成された記録マークの始終端部に対応するデジタル信号および2値化信号に基づいて、最尤復号結果の信頼性を計算する。   The reliability calculation unit 10 is, for example, a difference metric detection circuit, and performs maximum likelihood decoding based on a digital signal whose waveform is output from the shaping unit 8 and a binary signal output from the maximum likelihood decoding unit 9. Calculate the reliability of the result. In one embodiment of the present invention, the reliability calculation unit 10 determines the reliability of the maximum likelihood decoding result based on the digital signal and the binary signal corresponding to the start and end of the recording mark formed on the information recording medium 1. Calculate gender.

調整部104は、信頼性計算部10が計算した信頼性に基づいて、情報記録媒体1に情報を記録するための記録信号の所定部分の形状を調整する(例えば記録信号のエッジの位置を調整する)。調整部104は、最尤復号の結果の信頼性が高くなるように記録信号の形状を調整する。情報記録媒体コントローラ13は例えば光ディスクコントローラである。   The adjusting unit 104 adjusts the shape of a predetermined portion of the recording signal for recording information on the information recording medium 1 based on the reliability calculated by the reliability calculating unit 10 (for example, adjusts the position of the edge of the recording signal). Do). The adjustment unit 104 adjusts the shape of the recording signal so that the reliability of the result of the maximum likelihood decoding increases. The information recording medium controller 13 is, for example, an optical disk controller.

記録部103は、パターン発生回路14と、記録補償回路15と、レーザ駆動回路16と、光ヘッド部2とを備える。記録部103は、記録信号の形状の調整結果に基づいて情報記録媒体1に情報を記録する。本実施の形態では、光ヘッド部2は、再生部101および記録部103に共有され、記録ヘッドおよび再生ヘッドの両方の機能を有する。なお記録ヘッドと再生ヘッドとが別々に設けられてもよい。記録再生装置100の動作を以下により詳細に説明する。   The recording unit 103 includes a pattern generation circuit 14, a recording compensation circuit 15, a laser driving circuit 16, and the optical head unit 2. The recording unit 103 records information on the information recording medium 1 based on the result of adjusting the shape of the recording signal. In the present embodiment, the optical head unit 2 is shared by the reproducing unit 101 and the recording unit 103 and has both functions of a recording head and a reproducing head. Note that the recording head and the reproducing head may be provided separately. The operation of the recording / reproducing device 100 will be described in more detail below.

光学ヘッド部2は情報記録媒体1から読み出した情報を示すアナログ再生信号を生成する。アナログ再生信号は、プリアンプ3によって増幅されてACカップリングされたのち、AGC4に入力される。AGC4では後段の波形等化器5の出力が一定振幅となるようゲインが調整される。AGC4から出力されたアナログ再生信号は波形等化器5によって波形整形される。波形整形されたアナログ再生信号はA/D変換器6に出力される。A/D変換器6はPLL回路7から出力された再生クロックに同期してアナログ再生信号をサンプリングする。PLL回路7はA/D変換器6でサンプリングされたデジタル再生信号から再生クロックを抽出する。   The optical head 2 generates an analog reproduction signal indicating information read from the information recording medium 1. The analog reproduction signal is amplified by the preamplifier 3 and AC-coupled, and then input to the AGC 4. In the AGC 4, the gain is adjusted so that the output of the waveform equalizer 5 at the subsequent stage has a constant amplitude. The analog reproduced signal output from the AGC 4 is shaped by the waveform equalizer 5. The waveform-shaped analog reproduction signal is output to the A / D converter 6. The A / D converter 6 samples the analog reproduction signal in synchronization with the reproduction clock output from the PLL circuit 7. The PLL circuit 7 extracts a reproduction clock from the digital reproduction signal sampled by the A / D converter 6.

A/D変換器6のサンプリングにより生成されたデジタル再生信号は整形部8に入力される。整形部8は、記録時および再生時のデジタル再生信号の周波数特性が最尤復号部9の想定する特性(本実施の形態ではPR(1,2,2,1)等化特性)となるようにデジタル再生信号の周波数を調整する(すなわちデジタル再生信号の波形を整形する)。   The digital reproduction signal generated by the sampling of the A / D converter 6 is input to the shaping unit 8. The shaping unit 8 sets the frequency characteristics of the digital reproduction signal at the time of recording and reproduction to the characteristics assumed by the maximum likelihood decoding unit 9 (PR (1, 2, 2, 1) equalization characteristics in the present embodiment). Then, the frequency of the digital reproduction signal is adjusted (that is, the waveform of the digital reproduction signal is shaped).

最尤復号部9は、整形部8から出力された波形整形されたデジタル再生信号を最尤復号し、2値化信号を生成する。信頼性計算部10は、整形部8から出力された波形整形されたデジタル再生信号と、2値化信号とを受け取る。信頼性計算部10は、2値化信号から状態遷移を判別し、判別結果とブランチメトリックから復号結果の信頼性を示す|Pa−Pb|−Pstd((数9)参照、以後、Pabsと表記する)を求める。パターン検出回路11は、2値化信号に基いて、上記8パターン(Patttern−1〜Pattern−8)を図9で示した記録マークの始終端エッジのパターンごとに割り当てるためのパルス信号を生成してエッジシフト検出回路12に出力する。エッジシフト検出回路12は上記信頼性Pabsをパターンごとに累積加算し、記録補償パラメータの最適値からのずれ(後述ではエッジシフトと言う)を求める。情報記録媒体コントローラ13はパターンごとのエッジシフト量から変更が必要と判断された記録パラメータ(記録信号の波形)を変更する。パターン発生回路14は、記録補償学習用パターンを出力する。   The maximum likelihood decoding section 9 performs maximum likelihood decoding on the digitally reproduced signal whose waveform has been output from the shaping section 8 to generate a binary signal. The reliability calculator 10 receives the waveform-shaped digital reproduction signal output from the shaping unit 8 and the binarized signal. The reliability calculation unit 10 determines a state transition from the binary signal, and indicates | Pa−Pb | −Pstd (Expression 9) indicating the reliability of the decoding result based on the determination result and the branch metric, and is hereinafter referred to as Pabs. Do). The pattern detection circuit 11 generates a pulse signal for allocating the above eight patterns (Pattern-1 to Pattern-8) to each of the start and end edges of the recording mark shown in FIG. 9 based on the binarized signal. And outputs it to the edge shift detection circuit 12. The edge shift detection circuit 12 accumulatively adds the above-mentioned reliability Pabs for each pattern, and obtains a deviation from the optimum value of the recording compensation parameter (hereinafter referred to as an edge shift). The information recording medium controller 13 changes the recording parameter (the waveform of the recording signal) determined to need to be changed from the edge shift amount for each pattern. The pattern generation circuit 14 outputs a recording compensation learning pattern.

記録補償回路15は情報記録媒体コントローラ13からの記録パラメータをもとに、記録補償学習パターンに従ってレーザ発光波形パターンを生成する。生成されたレーザ発光波形パターンにしたがって、レーザ駆動回路16は光学ヘッド部2のレーザ発光動作を制御する。   The recording compensation circuit 15 generates a laser emission waveform pattern according to the recording compensation learning pattern based on the recording parameters from the information recording medium controller 13. The laser drive circuit 16 controls the laser emission operation of the optical head unit 2 according to the generated laser emission waveform pattern.

次に、本発明の実施の形態におけるエッジシフト検出回路12の動作を詳細に説明する。図10にパターン検出回路11とエッジシフト検出回路12とを示す。エッジシフト検出回路12には、パターン検出回路11でのパターン検出結果と、信頼性計算部10で算出された信頼性Pabsとが入力される。パターン検出回路11での遅延を考慮して、入力される信頼性Pabsデータをフィリップフロップ(FF)によって遅延させる。パターン検出出力および検出出力点に対応する信頼性Pabsデータが加算器に入力され、同時にパターン検出結果がセレクタに入力される。セレクタは検出パターンにしたがってこれまでの累積加算結果を選択して加算器に入力する。加算器は累積加算結果と新しく入力された信頼性Pabsデータを加算し出力する。検出パターンに対応した特定のレジスタは、イネーブル信号を受け取ると、加算結果を格納する。   Next, the operation of the edge shift detection circuit 12 according to the embodiment of the present invention will be described in detail. FIG. 10 shows a pattern detection circuit 11 and an edge shift detection circuit 12. The pattern detection result of the pattern detection circuit 11 and the reliability Pabs calculated by the reliability calculation unit 10 are input to the edge shift detection circuit 12. In consideration of the delay in the pattern detection circuit 11, the input reliability Pabs data is delayed by a flip-flop (FF). The pattern detection output and reliability Pabs data corresponding to the detection output point are input to the adder, and at the same time, the pattern detection result is input to the selector. The selector selects the cumulative addition result so far according to the detection pattern and inputs the result to the adder. The adder adds the cumulative addition result to the newly input reliability Pabs data and outputs the result. Upon receiving the enable signal, the specific register corresponding to the detection pattern stores the addition result.

例えばアドレス単位で情報が管理されている情報記録媒体に情報を記録する場合、図11(b)、(c)のような加算区間ゲート信号とレジスタイネーブル信号の使用が想定される。図11(a)はアドレスユニットを示している。アドレス単位ごとに、ユーザ領域にテスト記録を行い、エッジシフト量を求める場合、加算区間を定める制御が必要となる。図11(b)のような加算区間ゲート信号がエッジシフト検出回路12に入力されると、加算区間ゲート信号は、図10のように2段のフリップフロップを通過し、フリップフロップFF29〜FF0に入力される。図11(b)に示す加算区間ゲート信号のLow区間でフリップフロップをリセットし、High区間で加算結果を格納する。また、図11(c)のようなレジスタイネーブル信号は、加算区間ゲート信号から生成され、レジスタイネーブル信号は、加算区間ゲート信号の終端で加算結果をレジスタREG29〜REG0に格納するためのイネーブル信号である。アドレス単位ごとにエッジシフト量を示すデータがレジスタREG29〜REG0に格納される。エッジシフト検出回路12は、このような回路構成を備えることで、1つの加算器をもちいて記録パラメータの最適化に必要なすべてのエッジシフト量をもとめることができる。   For example, when information is recorded on an information recording medium in which information is managed in address units, it is assumed that an addition section gate signal and a register enable signal as shown in FIGS. 11B and 11C are used. FIG. 11A shows an address unit. When test recording is performed in the user area for each address unit to determine the edge shift amount, control for defining an addition section is required. When the addition section gate signal as shown in FIG. 11B is input to the edge shift detection circuit 12, the addition section gate signal passes through two stages of flip-flops as shown in FIG. Will be entered. The flip-flop is reset in the Low period of the addition period gate signal shown in FIG. 11B, and the addition result is stored in the High period. A register enable signal as shown in FIG. 11C is generated from the addition section gate signal. The register enable signal is an enable signal for storing the addition result in the registers REG29 to REG0 at the end of the addition section gate signal. is there. Data indicating the edge shift amount for each address unit is stored in the registers REG29 to REG0. The edge shift detection circuit 12 having such a circuit configuration can obtain all the edge shift amounts necessary for optimizing the recording parameters using one adder.

図10の回路例では、テスト記録に用いられる記録パターン(例えばランダムパターン)のうちの、パラメータの最適化に必要な所定長のマークとスペースとの組み合わせによって発生頻度が異なってしまう。検出された30のエッジシフト量(R23T、R33T、・・・、R45L、R55L)は各パターンの発生頻度に依存する。   In the circuit example of FIG. 10, the frequency of occurrence differs depending on a combination of a mark and a space of a predetermined length necessary for optimizing parameters in a recording pattern (for example, a random pattern) used for test recording. The detected 30 edge shift amounts (R23T, R33T,..., R45L, R55L) depend on the occurrence frequency of each pattern.

また、図1におけるPLL回路7では、DC成分(再生信号に含まれる低周波数成分)を用いてスライサーのしきい値を自動的に検出し、再生信号とクロック信号とを同期させている。従って、フィードバック制御がPLL回路7でのクロック生成に影響しないように、テスト記録パターンにはDC成分が少ないことが望まれる。また、最適化に要する時間と精度とを考えると、できるだけ少ない記録領域で高い精度の検出結果が望まれる。したがって記録パターン中にパラメータの最適化に必要なマークとスペースとの組み合わせが同一頻度で発生し、なおかつ符号に含まれるDC成分(DSV)が0となり、かつ最適化に必要な組み合わせの単位長あたりの発生頻度が高くなるような記録パターンが必要となる。このような記録パターンの一例を図12に示す。   Further, the PLL circuit 7 in FIG. 1 automatically detects the threshold value of the slicer using the DC component (low frequency component included in the reproduction signal), and synchronizes the reproduction signal with the clock signal. Therefore, it is desired that the test recording pattern has a small DC component so that the feedback control does not affect the clock generation in the PLL circuit 7. Also, in consideration of the time and accuracy required for optimization, a highly accurate detection result is desired in as few recording areas as possible. Therefore, a combination of a mark and a space necessary for parameter optimization occurs in a recording pattern at the same frequency, the DC component (DSV) included in the code becomes 0, and the unit length of the combination required for optimization is per unit length. It is necessary to use a recording pattern that increases the frequency of occurrence of the pattern. FIG. 12 shows an example of such a recording pattern.

図12において、2Mは2Tマークを意味し、2Sは2Tスペースを意味する。図12の例では、2T〜5Tマークと2T〜5Tスペースとの組み合わせである30とおりのパターンが、108ビットの記録パターンに1回づつ発生する。また108ビットの記録パターンを含むシンボル‘0’とシンボル‘1’の数は同数の54であり、記録パターンのDSVは0となっている。この記録パターンを図10のエッジシフト検出回路12に適用すると、各パターンを同一回数検出することができ、より正確なシフト量検出結果が得られる。なお、本実施の形態では、5T以上の幅のマークあるいはスペースについては、同一の記録パラメータで記録できることを想定している。   In FIG. 12, 2M means a 2T mark, and 2S means a 2T space. In the example of FIG. 12, 30 patterns, which are combinations of 2T to 5T marks and 2T to 5T spaces, occur once for each 108-bit recording pattern. The number of symbols “0” and “1” including the 108-bit recording pattern is 54, which is the same number, and the DSV of the recording pattern is 0. When this recording pattern is applied to the edge shift detection circuit 12 in FIG. 10, each pattern can be detected the same number of times, and a more accurate shift amount detection result can be obtained. In this embodiment, it is assumed that marks or spaces having a width of 5T or more can be recorded with the same recording parameters.

図13は、エッジシフト検出回路12の改変例を示す。図13に示すエッジシフト検出回路12aでは、テスト記録に用いられる記録パターンとして、ランダムパターン(最適化に必要な組み合わせパターンによって発生頻度が異なるパターン)を用いる。   FIG. 13 shows a modification of the edge shift detection circuit 12. In the edge shift detection circuit 12a shown in FIG. 13, a random pattern (a pattern having a different occurrence frequency depending on a combination pattern necessary for optimization) is used as a recording pattern used for test recording.

図13のエッジシフト検出回路12aでは、パターン検出回路11によって、図9で示した特定パターン(30パターン)のエッジを検出し、パターンそれぞれに対応するエッジシフト量とパターン検出回数とを個々に積算する。エッジシフト量の加算結果をパターン検出回数で割ることにより、特定パターン毎に平均エッジシフト量を算出する。これにより、特定パターン毎の発生確率が異なるテスト記録パターンを用いても、どのパターンに対応する記録マークの始終端位置を変更すべきか判断することができる。   In the edge shift detection circuit 12a of FIG. 13, the pattern detection circuit 11 detects the edge of the specific pattern (30 patterns) shown in FIG. 9, and individually integrates the edge shift amount and the number of times of pattern detection corresponding to each pattern. I do. The average edge shift amount is calculated for each specific pattern by dividing the addition result of the edge shift amount by the number of times of pattern detection. As a result, even if a test recording pattern having a different occurrence probability for each specific pattern is used, it is possible to determine which pattern corresponds to the start / end position of the recording mark to be changed.

上述のように、調整部104が備えるエッジシフト検出回路12は、記録マーク長とスペース長との組み合わせ毎に、最尤復号結果の信頼性の積算値または平均値のうちの一方を計算し、それら計算した積算値または平均値に基づいて記録信号の形状を調整する。   As described above, the edge shift detection circuit 12 included in the adjustment unit 104 calculates one of the integrated value or the average value of the reliability of the maximum likelihood decoding result for each combination of the recording mark length and the space length, The shape of the recording signal is adjusted based on the calculated integrated value or average value.

上記実施の形態では、最小極性反転間隔が2である記録符号と等化方式PR(1,2,2,1)とから定まる状態遷移則を用いて最尤復号部が最尤復号を行う場合について説明したが、本発明はこれに限定されない。例えば、最小極性反転間隔が3である記録符号と等化方式PR(C0,C1,C1,C0)とから定まる状態遷移則を用いた場合や、最小極性反転間隔が2または3である記録符号と等化方式PR(C0,C1,C0)とから定まる状態遷移則を用いた場合や、最小極性反転間隔が2または3である記録符号と等化方式PR(C0,C1,C2,C1,C0)とから定まる状態遷移則を用いた場合においても適用できる。C0、C1、C2は任意の正の数である。   In the above embodiment, the case where the maximum likelihood decoding unit performs maximum likelihood decoding using a state transition rule determined from a recording code whose minimum polarity inversion interval is 2 and the equalization scheme PR (1, 2, 2, 1) However, the present invention is not limited to this. For example, when a state transition rule determined from a recording code having a minimum polarity inversion interval of 3 and the equalization method PR (C0, C1, C1, C0) is used, or a recording code having a minimum polarity inversion interval of 2 or 3 is used. When a state transition rule determined from the equalization method PR (C0, C1, C0) is used, or a recording code having a minimum polarity inversion interval of 2 or 3 and the equalization method PR (C0, C1, C2, C1, C1) The present invention can be applied even when a state transition rule determined from C0) is used. C0, C1, and C2 are arbitrary positive numbers.

最小極性反転間隔が2の記録符号と等化方式PR(a,b,a)とから定まる状態遷移則を表す状態遷移表を表3に示し、状態遷移図を図17に示す。ここで、a、bは任意の正の数である。   Table 3 shows a state transition table representing a state transition rule determined by the recording code having the minimum polarity inversion interval of 2 and the equalization scheme PR (a, b, a), and FIG. 17 shows a state transition diagram. Here, a and b are arbitrary positive numbers.

Figure 2004335079
Figure 2004335079

また、最小極性反転間隔が2の記録符号と等化方式PR(a、b、c、b、a)とから定まる状態遷移則を表す状態遷移表を表4に示し、状態遷移図を図18に示す。ここで、a、b、cは任意の正の数である。   Also, Table 4 shows a state transition table representing a state transition rule determined by a recording code having a minimum polarity inversion interval of 2 and the equalization method PR (a, b, c, b, a), and FIG. Shown in Here, a, b, and c are arbitrary positive numbers.

Figure 2004335079
Figure 2004335079

本発明の実施の形態では、最尤復号部9は、表3、4および図17、18に示すような状態遷移則を用いた最尤復号を行ってもよい。   In the embodiment of the present invention, maximum likelihood decoding section 9 may perform maximum likelihood decoding using a state transition rule as shown in Tables 3 and 4 and FIGS.

なお、本実施の形態における記録パラメータは、記録マークのエッジの始終端の位置を制御するパラメータとしたが、本発明はこれに限定されない。例えば、図15で説明したマルチパルスを用いたレーザ発光を行う場合、先頭パルスの幅や、終端パルスの幅や、クーリングパルス幅を制御するパラメータを最尤復号結果の信頼性に基いて調整してもよい。   In the present embodiment, the recording parameter is a parameter for controlling the start and end positions of the edge of the recording mark, but the present invention is not limited to this. For example, when performing laser emission using multi-pulses described with reference to FIG. 15, parameters for controlling the width of the leading pulse, the width of the ending pulse, and the cooling pulse width are adjusted based on the reliability of the maximum likelihood decoding result. May be.

また、本発明の記録再生装置100の各構成要素は、ハードウェアにより実現されてもよいし、ソフトウェアにより実現されてもよい。例えば、整形部8、最尤復号部9、信頼性計算部10、調整部11のうちの少なくとも一つが実行する動作が、コンピュータにより実行可能なプログラムにより実現されてもよい。   Further, each component of the recording / reproducing apparatus 100 of the present invention may be realized by hardware or software. For example, the operations executed by at least one of the shaping unit 8, the maximum likelihood decoding unit 9, the reliability calculation unit 10, and the adjustment unit 11 may be realized by a program executable by a computer.

本発明によれば、波形が整形されたデジタル信号と最尤復号部が生成した2値化信号とに基づいて最尤復号の結果の信頼性を計算し、計算した信頼性に基づいて、情報記録媒体に情報を記録するための記録信号の形状を調整する。このことにより、最尤復号の結果の信頼性が高くなるように記録信号の形状を調整することができるので、最尤復号を行うときのエラーの発生確率を小さくすることができる。   According to the present invention, the reliability of the result of the maximum likelihood decoding is calculated based on the digital signal whose waveform is shaped and the binary signal generated by the maximum likelihood decoding unit, and the information is calculated based on the calculated reliability. The shape of a recording signal for recording information on a recording medium is adjusted. Thus, the shape of the recording signal can be adjusted so that the reliability of the result of the maximum likelihood decoding becomes high, so that the probability of occurrence of an error when performing the maximum likelihood decoding can be reduced.

本発明では、最尤復号法を用いた信号の復号時にエラーの発生する確率が最小となるように、最尤復号法に最適な記録パラメータを設定する。記録マークのエッジの始終端部分に相当し、且つ最尤復号法においてエラーの発生確率が高い信号部分について、最尤復号の結果の信頼性の演算を行う。この演算は、所定のマーク長とスペース長との組み合わせ毎に行う。その演算結果からエッジシフト位置を最適化する記録パラメータを求め、求めた記録パラメータを反映した記録を行う。このように、最尤復号時にエラーの発生確率が高くなる信号部分の記録パラメータを最適化することで、リーダビリティを向上させることができる。   In the present invention, an optimal recording parameter is set for the maximum likelihood decoding method so that the probability of an error occurring when decoding a signal using the maximum likelihood decoding method is minimized. For the signal portion corresponding to the start and end portions of the edge of the recording mark and having a high error occurrence probability in the maximum likelihood decoding method, the reliability of the result of the maximum likelihood decoding is calculated. This calculation is performed for each combination of a predetermined mark length and space length. A recording parameter for optimizing the edge shift position is obtained from the calculation result, and recording is performed by reflecting the obtained recording parameter. As described above, the readability can be improved by optimizing the recording parameters of the signal portion where the probability of occurrence of an error increases during maximum likelihood decoding.

このように本発明は、最尤復号法を用いた記録制御装置、記録再生装置および記録制御方法において特に有用である。   As described above, the present invention is particularly useful in a recording control device, a recording / reproducing device, and a recording control method using the maximum likelihood decoding method.

本発明の実施の形態における記録再生装置を示す図FIG. 1 shows a recording / reproducing apparatus according to an embodiment of the present invention. 本発明の実施の形態における最小極性反転間隔が2である記録符号と等化方式PR(1,2,2,1)とから定まる状態遷移則を示す図FIG. 4 is a diagram showing a state transition rule determined from a recording code having a minimum polarity reversal interval of 2 and an equalization method PR (1, 2, 2, 1) in the embodiment of the present invention. 本発明の実施の形態における図2に示す状態遷移則に対応するトレリス図を示す図FIG. 4 is a diagram showing a trellis diagram corresponding to the state transition rule shown in FIG. 2 according to the embodiment of the present invention. 本発明の実施の形態における最尤復号結果の信頼性を示すPa−Pbの分布を示す図FIG. 10 is a diagram showing a distribution of Pa-Pb indicating reliability of the maximum likelihood decoding result in the embodiment of the present invention. 本発明の実施の形態における特定8パターンを示す図The figure which shows the specific 8 pattern in embodiment of this invention. 本発明の実施の形態における特定パターンのうちのPattern1(パスAが正解の場合)における、再生波形と記録マークのズレとの相関を示す図FIG. 6 is a diagram showing a correlation between a reproduced waveform and a deviation of a recording mark in Pattern 1 (when path A is a correct answer) of a specific pattern according to the embodiment of the present invention. 本発明の実施の形態における特定パターンのうちのPattern1(パスBが正解の場合)における、再生波形と記録マークのズレとの相関を示す図FIG. 4 is a diagram showing a correlation between a reproduced waveform and a deviation of a recording mark in Pattern 1 (when path B is a correct answer) of a specific pattern according to the embodiment of the present invention. 最適化が必要とされる記録パラメータの一覧を示す図Diagram showing a list of recording parameters that require optimization 最適化が必要とされる記録パラメータを特定8パターンうちのどれで検出するかを示す図Diagram showing which of the eight specific patterns to detect the recording parameters that require optimization 本発明の実施の形態におけるエッジシフト検出回路を示す図FIG. 2 is a diagram illustrating an edge shift detection circuit according to the embodiment of the present invention. 本発明の実施の形態におけるエッジシフト検出回路の動作を示すタイミングチャート4 is a timing chart showing the operation of the edge shift detection circuit according to the embodiment of the present invention. 本発明の実施の形態における学習用記録パターンを示す図FIG. 4 is a diagram showing a recording pattern for learning according to the embodiment of the present invention. 本発明の実施の形態におけるエッジシフト検出回路を示す図FIG. 2 is a diagram illustrating an edge shift detection circuit according to the embodiment of the present invention. 従来の光ディスクドライブの構成を示す図Diagram showing the configuration of a conventional optical disk drive 従来の誤差検出回路の動作を示す図Diagram showing the operation of a conventional error detection circuit 従来の記録パラメータを求める動作を示すフローチャートFlowchart showing an operation for obtaining a conventional recording parameter 本発明の実施の形態における最小極性反転間隔が2の記録符号と等化方式PR(a,b,a)とから定まる状態遷移則を示す図FIG. 4 is a diagram showing a state transition rule determined by a recording code having a minimum polarity reversal interval of 2 and an equalization method PR (a, b, a) in the embodiment of the present invention. 本発明の実施の形態における最小極性反転間隔が2の記録符号と等化方式PR(a、b、c、b、a)とから定まる状態遷移則を示す図FIG. 3 is a diagram showing a state transition rule determined by a recording code having a minimum polarity inversion interval of 2 and an equalization method PR (a, b, c, b, a) in the embodiment of the present invention.

符号の説明Explanation of reference numerals

1 情報記録媒体
2 光学ヘッド部
3 プリアンプ
4 AGC
5 波形等化器
6 A/D変換器
7 PLL回路
8 整形部
9 最尤復号部
10 信頼性計算部
11 パターン検出回路
12 エッジシフト検出回路
13 情報記録媒体コントローラ
14 パターン発生回路
15 記録補償回路
16 レーザ駆動回路
20 コンパレータ
21 位相比較器
22 LPF
23 VCO
DESCRIPTION OF SYMBOLS 1 Information recording medium 2 Optical head part 3 Preamplifier 4 AGC
Reference Signs List 5 waveform equalizer 6 A / D converter 7 PLL circuit 8 shaping section 9 maximum likelihood decoding section 10 reliability calculation section 11 pattern detection circuit 12 edge shift detection circuit 13 information recording medium controller 14 pattern generation circuit 15 recording compensation circuit 16 Laser drive circuit 20 Comparator 21 Phase comparator 22 LPF
23 VCO

Claims (14)

情報記録媒体から再生された情報を示すアナログ信号から生成されたデジタル信号を受け取り、前記デジタル信号の波形を整形する整形部と、
前記波形が整形されたデジタル信号を最尤復号し、前記最尤復号の結果を示す2値化信号を生成する最尤復号部と、
前記波形が整形されたデジタル信号と前記2値化信号とに基づいて前記最尤復号の結果の信頼性を計算する信頼性計算部と、
前記計算した信頼性に基づいて、前記情報記録媒体に前記情報を記録するための記録信号の形状を調整する調整部と
を備えた記録制御装置。
A shaping unit that receives a digital signal generated from an analog signal indicating information reproduced from the information recording medium, and shapes a waveform of the digital signal;
A maximum likelihood decoding unit that performs maximum likelihood decoding on the digital signal whose waveform is shaped, and generates a binary signal indicating a result of the maximum likelihood decoding;
A reliability calculation unit that calculates the reliability of the result of the maximum likelihood decoding based on the digital signal whose waveform is shaped and the binary signal,
A recording control device comprising: an adjusting unit that adjusts a shape of a recording signal for recording the information on the information recording medium based on the calculated reliability.
前記調整部は、前記記録信号の所定部分の形状を調整する、請求項1に記載の記録制御装置。   The recording control device according to claim 1, wherein the adjustment unit adjusts a shape of a predetermined portion of the recording signal. 前記調整部は、前記記録信号のエッジの位置を調整する、請求項1に記載の記録制御装置。   The recording control device according to claim 1, wherein the adjustment unit adjusts a position of an edge of the recording signal. 前記最尤復号部は、最小極性反転間隔が2である記録符号と等化方式PR(C0,C1,C0)とから定まる状態遷移則を用いて最尤復号を行う、請求項1に記載の記録制御装置。   2. The maximum likelihood decoding unit according to claim 1, wherein the maximum likelihood decoding unit performs maximum likelihood decoding using a state transition rule determined from a recording code having a minimum polarity inversion interval of 2 and an equalization scheme PR (C0, C1, C0). Recording control device. 前記最尤復号部は、最小極性反転間隔が2である記録符号と等化方式PR(C0,C1,C1,C0)とから定まる状態遷移則を用いて最尤復号を行う、請求項1に記載の記録制御装置。   2. The maximum likelihood decoding unit according to claim 1, wherein the maximum likelihood decoding unit performs maximum likelihood decoding using a state transition rule determined from a recording code having a minimum polarity inversion interval of 2 and an equalization scheme PR (C0, C1, C1, C0). The recording control device according to the above. 前記最尤復号部は、最小極性反転間隔が2である記録符号と等化方式PR(C0,C1,C2,C1,C0)とから定まる状態遷移則を用いて最尤復号を行う、請求項1に記載の記録制御装置。   The maximum likelihood decoding unit performs maximum likelihood decoding using a state transition rule determined from a recording code having a minimum polarity inversion interval of 2 and an equalization scheme PR (C0, C1, C2, C1, C0). 2. The recording control device according to 1. 前記信頼性計算部は、前記情報記録媒体に形成された記録マークの端部に対応するデジタル信号および2値化信号に基づいて前記信頼性を計算する、請求項1に記載の記録制御装置。   The recording control device according to claim 1, wherein the reliability calculation unit calculates the reliability based on a digital signal and a binary signal corresponding to an end of a recording mark formed on the information recording medium. 前記調整部は、前記信頼性が高くなるように前記記録信号の形状を調整する、請求項1に記載の記録制御装置。   The recording control device according to claim 1, wherein the adjustment unit adjusts the shape of the recording signal so that the reliability is improved. 前記調整部は、前記計算した信頼性の積算値および前記計算した信頼性の平均値のうちの一方を計算し、前記積算値および前記平均値のうちの一方に基づいて前記記録信号の形状を調整する、請求項1に記載の記録制御装置。   The adjusting unit calculates one of the integrated value of the calculated reliability and the average value of the calculated reliability, and calculates the shape of the recording signal based on one of the integrated value and the average value. The recording control device according to claim 1, wherein the adjustment is performed. 前記調整部は、記録マーク長とスペース長との組み合わせ毎に、前記積算値および前記平均値のうちの一方を計算する、請求項9に記載の記録制御装置。   The recording control device according to claim 9, wherein the adjustment unit calculates one of the integrated value and the average value for each combination of a recording mark length and a space length. 情報記録媒体から再生した情報を示すアナログ信号からデジタル信号を生成する再生部と、
前記デジタル信号を受け取って、前記デジタル信号の波形を整形する整形部と、
前記波形が整形されたデジタル信号を最尤復号し、前記最尤復号の結果を示す2値化信号を生成する最尤復号部と、
前記波形が整形されたデジタル信号と前記2値化信号とに基づいて前記最尤復号の結果の信頼性を計算する信頼性計算部と、
前記計算した信頼性に基づいて、前記情報記録媒体に前記情報を記録するための記録信号の形状を調整する調整部と、
前記記録信号の形状の調整結果に基づいて前記情報記録媒体に前記情報を記録する記録部と
を備えた記録再生装置。
A reproducing unit that generates a digital signal from an analog signal indicating information reproduced from the information recording medium,
Receiving the digital signal, a shaping unit for shaping the waveform of the digital signal,
A maximum likelihood decoding unit that performs maximum likelihood decoding on the digital signal whose waveform is shaped, and generates a binary signal indicating a result of the maximum likelihood decoding;
A reliability calculation unit that calculates the reliability of the result of the maximum likelihood decoding based on the digital signal whose waveform is shaped and the binary signal,
An adjusting unit that adjusts the shape of a recording signal for recording the information on the information recording medium based on the calculated reliability,
A recording unit that records the information on the information recording medium based on a result of adjusting the shape of the recording signal.
情報記録媒体から再生された情報を示すアナログ信号から生成されたデジタル信号を受け取り、前記デジタル信号の波形を整形するステップと、
前記波形が整形されたデジタル信号を最尤復号し、前記最尤復号の結果を示す2値化信号を生成するステップと、
前記波形が整形されたデジタル信号と前記2値化信号とに基づいて前記最尤復号の結果の信頼性を計算するステップと、
前記計算した信頼性に基づいて、前記情報記録媒体に前記情報を記録するための記録信号の形状を調整するステップと
を包含した記録制御方法。
Receiving a digital signal generated from an analog signal indicating information reproduced from the information recording medium, and shaping the waveform of the digital signal,
A step of performing maximum likelihood decoding on the digital signal whose waveform is shaped, and generating a binary signal indicating a result of the maximum likelihood decoding;
Calculating the reliability of the result of the maximum likelihood decoding based on the digital signal whose waveform is shaped and the binarized signal;
Adjusting the shape of a recording signal for recording the information on the information recording medium based on the calculated reliability.
前記調整するステップは、前記記録信号の所定部分の形状を調整するステップを包含する、請求項12に記載の記録制御方法。   The recording control method according to claim 12, wherein the adjusting step includes adjusting a shape of a predetermined portion of the recording signal. 前記調整するステップは、前記記録信号のエッジの位置を調整するステップを包含する、請求項12に記載の記録制御方法。   13. The recording control method according to claim 12, wherein the adjusting step includes adjusting an edge position of the recording signal.
JP2004117386A 2003-04-14 2004-04-12 Recording control unit, recording and reproducing device, and recording control method Withdrawn JP2004335079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004117386A JP2004335079A (en) 2003-04-14 2004-04-12 Recording control unit, recording and reproducing device, and recording control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003108821 2003-04-14
JP2004117386A JP2004335079A (en) 2003-04-14 2004-04-12 Recording control unit, recording and reproducing device, and recording control method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008204692A Division JP4633831B2 (en) 2003-04-14 2008-08-07 Recording control method

Publications (2)

Publication Number Publication Date
JP2004335079A true JP2004335079A (en) 2004-11-25
JP2004335079A5 JP2004335079A5 (en) 2008-05-15

Family

ID=33513116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004117386A Withdrawn JP2004335079A (en) 2003-04-14 2004-04-12 Recording control unit, recording and reproducing device, and recording control method

Country Status (1)

Country Link
JP (1) JP2004335079A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344339A (en) * 2005-06-10 2006-12-21 Matsushita Electric Ind Co Ltd Optical recording medium recording/reproducing device and its recording parametric correction method
JP2007128622A (en) * 2005-11-07 2007-05-24 Sony Corp Evaluation value calculating unit, recording and reproducing apparatus, evaluation value calculation method and recording method
JP2007317334A (en) * 2006-05-29 2007-12-06 Tdk Corp Method of setting recording condition of optical recording medium
JP2007323781A (en) * 2006-06-02 2007-12-13 Taiyo Yuden Co Ltd Optical information recording method and device, signal processing circuit, recording and reproduction program, and information recording medium
WO2008018356A1 (en) 2006-08-11 2008-02-14 Sony Nec Optiarc Inc. Recording/reproduction device, evaluation value calculation method, and evaluation value calculation device
EP1942498A2 (en) 2006-12-27 2008-07-09 Taiyoyuden Co., Ltd. Data recording evaluation method and optical disk recording and reproduction device
WO2008081820A1 (en) 2006-12-28 2008-07-10 Panasonic Corporation Information recording medium evaluation method, information recording medium, information recording medium manufacturing method, signal processing method, and access control device
JP2008217968A (en) * 2007-02-05 2008-09-18 Taiyo Yuden Co Ltd Recording condition adjustment method of optical disk recording/reproducing system, optical disk recording/reproducing device, and optical disk
JP2009129494A (en) * 2007-11-22 2009-06-11 Nec Corp Device and method for measuring signal quality and information recording/reproduction apparatus
JP2009176405A (en) * 2007-12-28 2009-08-06 Panasonic Corp Phase error detection device, waveform shaping device and optical disk device
WO2009107399A1 (en) * 2008-02-28 2009-09-03 パナソニック株式会社 Signal evaluation method and signal evaluation device
WO2009122642A1 (en) * 2008-03-31 2009-10-08 パナソニック株式会社 Reproduction signal quality evaluation device and method
WO2010001588A1 (en) 2008-07-01 2010-01-07 パナソニック株式会社 Method for evaluating reproduced signal, reproduced signal evaluation device and optical disc device equipped with the same
WO2010038427A1 (en) 2008-10-02 2010-04-08 パナソニック株式会社 Reproduced signal evaluating method, information recording medium, reproducing device, and recording device
WO2010038397A1 (en) 2008-10-01 2010-04-08 パナソニック株式会社 Information recording medium and recording/reproducing device
WO2010038432A1 (en) * 2008-10-02 2010-04-08 パナソニック株式会社 Reproduced signal evaluating method, information recording medium, reproducing device, and recording device
WO2010038398A1 (en) * 2008-10-01 2010-04-08 パナソニック株式会社 Information recording medium and recording/reproducing device
WO2010041404A1 (en) 2008-10-09 2010-04-15 パナソニック株式会社 Optical recording method, optical recording device, master medium exposure device, optical information recording medium, and reproducing method
US7715294B2 (en) 2006-02-24 2010-05-11 Sony Corporation Optical recording and reproducing apparatus and optical recording and reproducing method
WO2010067496A1 (en) * 2008-12-09 2010-06-17 パナソニック株式会社 Optical recording method, optical recording device, master medium exposure device, optical information recording medium, and reproducing method
US7760605B2 (en) 2005-02-24 2010-07-20 Taiyo Yuden Co., Ltd. Optical information recording device, optical information recording method, and signal processing circuit
WO2010090136A1 (en) * 2009-02-03 2010-08-12 日立コンシューマエレクトロニクス株式会社 Method of evaluating readout signal, and optical disc device
WO2010089987A1 (en) 2009-02-03 2010-08-12 パナソニック株式会社 Read-back signal evaluation method, read-back signal evaluation device, and optical disc device provided with same
JP2010186558A (en) * 2010-06-03 2010-08-26 Hitachi Ltd Method of evaluating reproduction signal and optical disk device
US7916590B2 (en) 2005-04-14 2011-03-29 Panasonic Corporation Method for optimizing recording pulse condition in data recording onto optical information recording media
US8179760B2 (en) 2008-10-02 2012-05-15 Panasonic Corporation Reproduction signal evaluation method, information recording medium, reproduction apparatus and recording apparatus
US8289829B2 (en) 2008-10-01 2012-10-16 Panasonic Corporation Information recording medium and recording/reproduction apparatus
US8363530B2 (en) 2010-04-20 2013-01-29 Panasonic Corporation Information reproduction method, information recording method, and information recording medium
JP2019160370A (en) * 2018-03-14 2019-09-19 パナソニックIpマネジメント株式会社 Information recording/reproducing device and information recording/reproducing method

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7760605B2 (en) 2005-02-24 2010-07-20 Taiyo Yuden Co., Ltd. Optical information recording device, optical information recording method, and signal processing circuit
US7916590B2 (en) 2005-04-14 2011-03-29 Panasonic Corporation Method for optimizing recording pulse condition in data recording onto optical information recording media
JP2006344339A (en) * 2005-06-10 2006-12-21 Matsushita Electric Ind Co Ltd Optical recording medium recording/reproducing device and its recording parametric correction method
JP2007128622A (en) * 2005-11-07 2007-05-24 Sony Corp Evaluation value calculating unit, recording and reproducing apparatus, evaluation value calculation method and recording method
JP4655892B2 (en) * 2005-11-07 2011-03-23 ソニー株式会社 Recording / reproducing apparatus and recording method
US7715294B2 (en) 2006-02-24 2010-05-11 Sony Corporation Optical recording and reproducing apparatus and optical recording and reproducing method
US7916602B2 (en) 2006-02-24 2011-03-29 Sony Corporation Optical recording and reproducing apparatus and optical recording and reproducing method
JP2007317334A (en) * 2006-05-29 2007-12-06 Tdk Corp Method of setting recording condition of optical recording medium
JP4556912B2 (en) * 2006-05-29 2010-10-06 Tdk株式会社 Recording condition setting method for optical recording medium
JP2007323781A (en) * 2006-06-02 2007-12-13 Taiyo Yuden Co Ltd Optical information recording method and device, signal processing circuit, recording and reproduction program, and information recording medium
JP4597911B2 (en) * 2006-06-02 2010-12-15 太陽誘電株式会社 Optical recording / reproducing method and apparatus, signal processing circuit, optical recording / reproducing program, and information recording medium
US7940622B2 (en) 2006-08-11 2011-05-10 Sony Nec Optiarc Inc. Recording/reproduction device, evaluation value calculation method, and evaluation value calculation device
JP2008047181A (en) * 2006-08-11 2008-02-28 Sony Nec Optiarc Inc Recording/reproducing apparatus, evaluation value calculating method, and evaluation value calculation unit
WO2008018356A1 (en) 2006-08-11 2008-02-14 Sony Nec Optiarc Inc. Recording/reproduction device, evaluation value calculation method, and evaluation value calculation device
JP2008165863A (en) * 2006-12-27 2008-07-17 Taiyo Yuden Co Ltd Data recording evaluating method, and optical disk recording and reproducing device
US7965600B2 (en) 2006-12-27 2011-06-21 Taiyo Yuden Co., Ltd. Data recording evaluation method and optical disk recording and reproduction device
EP1942498A2 (en) 2006-12-27 2008-07-09 Taiyoyuden Co., Ltd. Data recording evaluation method and optical disk recording and reproduction device
JP4523583B2 (en) * 2006-12-27 2010-08-11 太陽誘電株式会社 Data recording evaluation method and optical disk recording / reproducing apparatus
KR100951629B1 (en) * 2006-12-27 2010-04-09 다이요 유덴 가부시키가이샤 Data record evaluation method and optical disc record playback apparatus
US8254234B2 (en) 2006-12-28 2012-08-28 Panasonic Corporation Information recording medium evaluation method, information recording medium, method for manufacturing information recording medium, signal processing method and access control apparatus
JPWO2008081820A1 (en) * 2006-12-28 2010-04-30 パナソニック株式会社 Information recording medium evaluation method, information recording medium, information recording medium manufacturing method, signal processing method, and access control apparatus
JP5042236B2 (en) * 2006-12-28 2012-10-03 パナソニック株式会社 Information recording medium evaluation method, information recording medium, information recording medium manufacturing method, signal processing method, and access control apparatus
WO2008081820A1 (en) 2006-12-28 2008-07-10 Panasonic Corporation Information recording medium evaluation method, information recording medium, information recording medium manufacturing method, signal processing method, and access control device
JP4576436B2 (en) * 2007-02-05 2010-11-10 太陽誘電株式会社 Recording condition adjusting method for optical disc recording / reproducing system, optical disc recording / reproducing apparatus, and optical disc
JP2008217968A (en) * 2007-02-05 2008-09-18 Taiyo Yuden Co Ltd Recording condition adjustment method of optical disk recording/reproducing system, optical disk recording/reproducing device, and optical disk
JP2009129494A (en) * 2007-11-22 2009-06-11 Nec Corp Device and method for measuring signal quality and information recording/reproduction apparatus
US8184515B2 (en) 2007-12-28 2012-05-22 Panasonic Corporation Phase error detecting device, waveform shaping device and optical disc device
JP2009176405A (en) * 2007-12-28 2009-08-06 Panasonic Corp Phase error detection device, waveform shaping device and optical disk device
US7869327B2 (en) 2007-12-28 2011-01-11 Panasonic Corporation Phase error detecting device, waveform shaping device and optical disc device
US8098557B2 (en) 2008-02-28 2012-01-17 Panasonic Corporation Signal evaluation method and signal evaluation apparatus
WO2009107399A1 (en) * 2008-02-28 2009-09-03 パナソニック株式会社 Signal evaluation method and signal evaluation device
US8068399B2 (en) 2008-02-28 2011-11-29 Panasonic Corporation Signal evaluation method and signal evaluation apparatus
WO2009122642A1 (en) * 2008-03-31 2009-10-08 パナソニック株式会社 Reproduction signal quality evaluation device and method
WO2010001588A1 (en) 2008-07-01 2010-01-07 パナソニック株式会社 Method for evaluating reproduced signal, reproduced signal evaluation device and optical disc device equipped with the same
US8514682B2 (en) 2008-07-01 2013-08-20 Panasonic Corporation Reproduction signal evaluation method, reproduction signal evaluation unit, and optical disk device adopting the same
US8159918B2 (en) 2008-07-01 2012-04-17 Panasonic Corporation Reproduction signal evaluation method, reproduction signal evaluation unit, and optical disk device adopting the same
WO2010038398A1 (en) * 2008-10-01 2010-04-08 パナソニック株式会社 Information recording medium and recording/reproducing device
US8446810B2 (en) 2008-10-01 2013-05-21 Panasonic Corporation Information recording medium having recording condition for adjusting the position of cooling pulse
US8289829B2 (en) 2008-10-01 2012-10-16 Panasonic Corporation Information recording medium and recording/reproduction apparatus
WO2010038397A1 (en) 2008-10-01 2010-04-08 パナソニック株式会社 Information recording medium and recording/reproducing device
WO2010038432A1 (en) * 2008-10-02 2010-04-08 パナソニック株式会社 Reproduced signal evaluating method, information recording medium, reproducing device, and recording device
US8179760B2 (en) 2008-10-02 2012-05-15 Panasonic Corporation Reproduction signal evaluation method, information recording medium, reproduction apparatus and recording apparatus
WO2010038427A1 (en) 2008-10-02 2010-04-08 パナソニック株式会社 Reproduced signal evaluating method, information recording medium, reproducing device, and recording device
US8243571B2 (en) 2008-10-02 2012-08-14 Panasonic Corporation Reproduced signal evaluating method, information recording medium, reproducing device, and recording device
US8355307B2 (en) 2008-10-09 2013-01-15 Panasonic Corporation Optical recording method, optical recording device, master medium exposure device, optical information recording medium, and reproducing method
JP4733234B2 (en) * 2008-10-09 2011-07-27 パナソニック株式会社 Optical recording method, optical recording apparatus, master exposure apparatus, optical information recording medium, and reproducing method
WO2010041404A1 (en) 2008-10-09 2010-04-15 パナソニック株式会社 Optical recording method, optical recording device, master medium exposure device, optical information recording medium, and reproducing method
US8149673B2 (en) 2008-10-09 2012-04-03 Panasonic Corporation Optical recording method, optical recording device, master medium exposure device, optical information recording medium, and reproducing method
JP2011081901A (en) * 2008-10-09 2011-04-21 Panasonic Corp Optical recording method, optical recording device, master medium exposure device, optical information recording medium, and reproducing method
WO2010067496A1 (en) * 2008-12-09 2010-06-17 パナソニック株式会社 Optical recording method, optical recording device, master medium exposure device, optical information recording medium, and reproducing method
US8274873B2 (en) 2008-12-09 2012-09-25 Panasonic Corporation Optical recording method, optical recording apparatus, apparatus for manufacturing a master through exposure process, optical information recording medium and reproduction method
US8248902B2 (en) 2009-02-03 2012-08-21 Panasonic Corporation Reproduction signal evaluation method, reproduction signal evaluation unit, and optical disk device adopting the same
WO2010090136A1 (en) * 2009-02-03 2010-08-12 日立コンシューマエレクトロニクス株式会社 Method of evaluating readout signal, and optical disc device
WO2010089987A1 (en) 2009-02-03 2010-08-12 パナソニック株式会社 Read-back signal evaluation method, read-back signal evaluation device, and optical disc device provided with same
JP2010182342A (en) * 2009-02-03 2010-08-19 Hitachi Ltd Method of evaluating reproduced signal and optical disk drive
US8363530B2 (en) 2010-04-20 2013-01-29 Panasonic Corporation Information reproduction method, information recording method, and information recording medium
JP2010186558A (en) * 2010-06-03 2010-08-26 Hitachi Ltd Method of evaluating reproduction signal and optical disk device
JP2019160370A (en) * 2018-03-14 2019-09-19 パナソニックIpマネジメント株式会社 Information recording/reproducing device and information recording/reproducing method

Similar Documents

Publication Publication Date Title
JP4870833B2 (en) Recording control apparatus, recording / reproducing apparatus, and recording control method
JP2004335079A (en) Recording control unit, recording and reproducing device, and recording control method
US7095696B2 (en) Recording/reproducing device
JP3926688B2 (en) Reproduction signal quality evaluation method and information reproduction apparatus
US20100054097A1 (en) Recording/reproduction apparatus, recording/reproduction method, program, and recording power adjustment apparatus
JP5054521B2 (en) Recording / reproducing apparatus, recording condition adjusting apparatus, and recording / reproducing method
KR100951629B1 (en) Data record evaluation method and optical disc record playback apparatus
KR20070007927A (en) Dc-controlled encoding for optical storage system
US8305858B2 (en) Variable delay circuit, recording apparatus, and delay amount calibration method
JP4501960B2 (en) Viterbi detector and information reproducing apparatus
JP4350024B2 (en) Recording power control method, recording method, recording power control device, recording device, and power control program
JP2007280492A (en) Recording or reproducing device, method, program, and recording signal regulating device, method, program
JP2006344339A (en) Optical recording medium recording/reproducing device and its recording parametric correction method
JP2006302479A (en) Method and device for recording/reproducing optical recording medium, and method and device for reproducing optical recording medium
JP2011192357A (en) Recording control method
JP2004348942A (en) Apparatus and method for controlling recording or reproduction, apparatus for performing recording or reproduction, and apparatus for identfying information recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

A131 Notification of reasons for refusal

Effective date: 20090206

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090402