JP2004334484A - Intrusion detecting device - Google Patents

Intrusion detecting device Download PDF

Info

Publication number
JP2004334484A
JP2004334484A JP2003128913A JP2003128913A JP2004334484A JP 2004334484 A JP2004334484 A JP 2004334484A JP 2003128913 A JP2003128913 A JP 2003128913A JP 2003128913 A JP2003128913 A JP 2003128913A JP 2004334484 A JP2004334484 A JP 2004334484A
Authority
JP
Japan
Prior art keywords
building
exhaust
anemometer
intake port
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003128913A
Other languages
Japanese (ja)
Inventor
Masahiro Tohara
正博 戸原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003128913A priority Critical patent/JP2004334484A/en
Publication of JP2004334484A publication Critical patent/JP2004334484A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intrusion detecting device for sufficiently identifying normality/abnormality even in the case of such small displacement volume or intake volume that it is not identifiable by a system for detecting an air pressure difference. <P>SOLUTION: This intrusion detecting device is provided with an exhaust port 2 and an exhaust system 3 for generating a pressure difference inside and outside a building 1, an intake port 4 of the building, an airflow meter or air speed meter 5 arranged in the intake port 4, a comparing means for comparing the value of the airflow meter or air speed meter 5 with a preliminarily decided judgement reference value and an alarm generating means for generating warning when the output of the comparison means is made different from the judgement reference value by a predetermine range or more. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、住居等の建物などの侵入検知装置に係り、特に建物などの所有者や管理者が不在時において、建物などの窓や扉の破損を検知する侵入検知装置に関する。
【0002】
【従来の技術】
従来の侵入検知装置としては、焦電素子を用いた人感センサ、可視光及び赤外線のカメラ及び赤外線等のビームを利用した光路遮断検知の光エリアセンサ及び窓やシャッタ等の開閉や破損を音や振動を検出する音波センサ等が用いられていた。
【0003】
また、最近では排気または吸気によって建物の内外の気圧差を発生させておき、その差圧の急変を検知して警報することが知られている(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開2001−243562号公報
【0005】
【発明が解決しようとする課題】
しかし、従来の侵入検知装置に使用される人感センサ等は建物の窓など開口部毎に設置する必要があり、開口部が多数ある建物の場合には、必要なセンサの数も多数となり設備が複雑で、センサ価格はもとより設置工事も含めて費用が多額となる問題があった。
【0006】
さらに、窓や室内などに多数のセンサを取り付け配線を行うことで、美観が損なわれるという問題もあった。無線化によって配線を無くして美観への影響を低減する方法もあるが、この場合にはセンサがバッテリ動作となり、定期的なバッテリ交換の手間とコスト、さらにはバッテリ交換忘れによる警備機能を失う懸念もある。
【0007】
また、窓の開閉センサでは窓ガラス破損は検知できない、或いは、センサを取付けていない壁面自体を壊して侵入された場合には検知できないという盲点があった。
【0008】
また、建物内外の気圧差の変動により検知する方式にあっては、上述の問題は解消されるものの、気圧差を利用するには排気装置または吸気装置の能力を相当高くしないと、正常/異常の正確な識別が出来る程度の気圧差が発生しない。そのため、排気装置または吸気装置の、エネルギーの損失が大きくなる問題がある。
【0009】
この理由は次ぎのように考えられる。住居等の換気装置を使用してその吸気口または排気口において差圧を測定する場合、その差圧ΔPと風量Qとの関係は、一種の絞り機構による流量測定と見なすことができ、次式で表される。Q∝ΔP1/2
即ち、差圧ΔPは風量Qよりも速くゼロに近づくため、低差圧の領域での測定が難しくなる。
【0010】
気圧差数十Pa程度は通常の差圧測定では測定誤差範囲となるため、例えば、1hPa程度の気圧差が必要である。この為の排気装置または吸気装置には大きなパワーが必要となる。
【0011】
排気装置または吸気装置の能力を小さくすると、発生する気圧差が小さくなるため検知感度が低下し、さらには、建物の外部が10m/s以上の強風下に有る場合には基準となる外部の気圧が1hPaを超えて大きく変動し、誤動作が発生しやすいという問題があった。
【0012】
本発明は、このような従来の問題点を解決するためになされたもので、従来の気圧差検出方式では識別出来ないほどの少量の排気量または吸気量であっても、十分に正常/異常が識別可能な建物などの侵入検知装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するために、外部とほぼ閉塞された設備空間の内外での圧力差を発生させるように設備空間に設けた吸気装置または排気装置と、前記吸気装置の吸気口または前記排気装置の排気口に備えた風量計または風速計と、前記風量計または前記風速計の値を予め定めた判定基準値と比較する比較手段と、前記比較手段の出力が前記判定基準値と所定の範囲以上異なったとき警報を発生する警報発生手段とを備えたことを特徴とする。
【0014】
したがって、風速計または風量計によれば、従来の気圧差検出方式では識別出来ない程度の排気量または吸気量であっても、十分な風速または風量が得られるので、正常異常が識別可能となる。したがって、排気装置または吸気装置の能力が小さいものであっても信頼性の高い建物などの侵入検知装置を提供することができる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0016】
(第1の実施の形態)
図1乃至図4を参照して説明する。図1は本発明の第1の実施の形態の建物の侵入検知装置の構成を示す概略側面図である。図1において、1は建物で侵入される可能性の有る窓12を備えている。
【0017】
この建物1に設置される建物の侵入検知装置は、建物1の内外の気圧差を設定するため、建物の一方の側壁に連通して取り付けられた排気口2、この排気口2に連接された排気装置3、建物の他の側壁に貫通して取り付けられた吸気口4、建物の内外の気圧差を検出する吸気口4内に併設された風速計5、風速計5の風速値を読み込み異常を検知し、且つこの建物の侵入検知装置全体を制御する詳細構成を後述する制御装置7、操作表示部8、風速の異常値が検知されたとき警報を発生する警報装置9及びその異常値を通信で知らせる通信インタフェース10とそのアンテナ11とから構成される。
【0018】
図2は、制御装置7の詳細構成図である。制御装置7は、風速計5からの信号が入力され、この信号をAD変換するA/D変換器71、A/D変換された信号を、CPUバス79を介してCPU73に送信する入力ポート72を備えている。
【0019】
また、通信インタフェース10と接続される通信インタフェース76、排気装置3及び警報表示装置9とのインタフェースとなる出力ポート77及び操作表示部6とのインタフェースとなる操作表示インタフェース78とを備え、さらに、これらの夫々のインタフェースはCPUバス79を介してCPU73に接続されている。また、このCPU73は、制御プログラムを格納するROM74、RAM75を備えている。
【0020】
次にこの様に構成される建物の侵入検知装置の動作原理について図3を参照して説明する。図3は、建物1の吸気口4から吸気し、排気装置3によって建物1内の排気を行う場合における、建物1内外の気圧差(Pa)と吸気口4の風量関係を示す図である。
【0021】
図3の横軸は排気装置3によって建物1内を排気した時の吸気口4の風量(m/h)、縦軸は建物1の内外の気圧差(Pa)を示し、円弧で示される実線で示したf1、f2は排気能力で、排気装置3の排気能力を変化させた場合の特性を示す。排気能力が大きくなるとf1となり、排気能力が小さくなるとf2のような小さな円弧にかわる。また、破線で示したg1、g2は吸気口4の抵抗曲線を示し、抵抗値が小さい場合にはg2、抵抗値が大きくなるとその傾斜が大きな抵抗曲線g1となる。
【0022】
例えば、建物1の排気能力がf1で、且つ抵抗曲線g1で運転されている場合、吸気口4の気圧差・風量特性は、両曲線の交点(Q0、P0)で運転される。このとき、建物1の窓12が破損したとすると、建物1の内外の気圧差(Pa)はP0からP1に低下し、吸気口4から吸引される風量(m/h)は、Q0からQ1に変化する。この変化を吸気口4内に設けられた風速計5によって検出し、窓12の破損の有無を検知する。
【0023】
次にこのような動作原理に基づく建物の侵入検知装置を効果的に動作させるための差圧の設定方法について説明する。最近の住宅においては、空気環境向上のため、例えば、壁面の1m当りの隙間相当面積は日本の新省エネルギー基準で5cm以下、またカナダのR2000住宅基準で0.9cm以下と1cm程度の気密性を備えた住宅も増えてきており、建物1は気密性を備えた言わば半密閉容器とみなせる構造物となっている。
【0024】
したがって、このような1cm/m以下の気密性を有する場合においては、総相当隙間面積は床面積100m程度の1棟あたりでも100cm程度となるので、通常建物1の排気としては建物1内を負圧に保つ第3種換気方式を採用し、建物1内を排気装置3によって強制的に排気する。
【0025】
このとき、例えば、排気口2の開口部面積を300cm、吸気口4の開口部面積を10cmとし、排気装置3によって吸気口4から所定の風量が得られるように、排気装置3の排気能力と吸気口4の配管抵抗を設定しておく。
【0026】
このように設定された建物1の窓12に、人が侵入する程度の、例えば、50×50cm=2500cmの破損が発生すると、排気装置3は一定の排気量で運転されているので、総相当隙間面積110cmが一挙に25倍増加するため吸気口4からの風量は1/25程度に激減する。この変化を風速計5で検出する。
【0027】
即ち、排気装置3の能力、吸気口4の抵抗値は、検出すべき建物1の総相当隙間面積と、建物1の侵入面積とから吸気口4に設ける風速計5で所定の感度が得られる様に予め設定しておく。
【0028】
次にこの様に設定された建物の侵入検知装置の動作について説明する。先ずその概略動作について説明する。制御装置7は、操作表示部8での操作によって「警備モード」に設定されると、例えば、1秒に1回程度、周期的に風速計5によって吸気口4の風速値を読み込み、これが予め設定した値以上で所定期間以上継続していれば異常なしと判断し、設定値以下で所定期間以上の継続があれば異常ありとして、警報を通信インタフェース10とアンテナ11を経由して、図示しない監視センターへ通報すると同時に、警報装置9によって近隣に警報を鳴動と表示で知らせる。
【0029】
換言すれば、風速計から出力される風速値を示す風速信号が、判定基準値以上又は以下によって異常値判定処理を行い、警報装置9の作動を行わせる。
【0030】
以下、制御装置7のCPUが行う制御動作フローについて図4を参照して説明する。制御装置7内のCPU73は、例えば1秒程度の周期で次の動作を行う。
【0031】
(1)操作表示部8の設定状態を、操作表示インタフェース78を介して読込み「警備モード」か、否かを判定する(ステップS01)。
【0032】
(2)「警備モード」となっていない場合には、「非警備モード」処理に移り、排気装置3の運転を停止する。既に運転停止中となっている場合には何もせず、警報も行わない。そして(1)に戻る(ステップS02)。
【0033】
(3)「警備モード」に設定されている場合は警備モード処理に移行し、排気装置3を運転する。既に運転中であった場合には、運転を継続する。(ステップS03)。
【0034】
(4)次に、風速測定処理に移る。風速計5から出力される風速信号を、A/D変換器71でデジタル信号に変換し、入力ポート72経由で風速信号を読み込む(ステップS04)。
【0035】
(5)風速信号が判定基準値以下であるか、否かを異常値判定処理で実行する。風速信号が、判定基準値以上であれば、建物1に侵入できる隙間は発生していないと判断して、警報発信しない。そして(1)へ戻る。判定基準値以下であれば、建物1に侵入できる程度の隙間が発生したと判断する(ステップS05)。
【0036】
(6)(5)でYesと判断されると警報処理を行う。出力ポート77を介して警報装置9に警報を送信するとともに、通信インタフェース10、アンテナ11を介して図示しない外部の警報センタに警報を発信する。そして(1)へ戻る。
【0037】
次に、判定基準値の設定方法について詳細に説明する。判定基準値は、排気装置3が稼動状態にある「警備モード」状態における風速計5で測定される風速値よりも小さく設定する。また、人間がかろうじて侵入できる開口面積よりも若干小さい開口面積が建物1に発生した場合に風速計5で測定される風速値よりも若干大きな値としておく。
【0038】
即ち、この条件に設定しておけば、実際に人間が通過できるような開口部が発生した場合には、風速計5で測定される風速値は判定基準値よりも小さな値となるため侵入の検知が可能となる。
【0039】
なお、誤検知を極力減らすためには、判定基準値の値としては、通常の風速値と、人間がかろうじて侵入できる開口面積が建物1に発生した場合の風速値との中間値に設定することが望ましい。
【0040】
次に、「警備モード」の設定と解除の方法について詳細に説明する。本第1の実施の形態では、操作表示部8が室内にあり、通常モードから警備モードに設定して外出する際のドア開放時にも誤検知してしまう、或いは帰宅時のドア開放でも誤検知してしまう可能性がある。
【0041】
これに対しては、例えば「警備モード」設定後30秒後に実際の「警備モード」への切換が行なわれるという時間差を設けてモード切換後30秒以内にドアから外出する、或いは異常を検知しても30秒間は警報を発信しないようにすればよい。また、帰宅時にはドアを開けてから30秒以内に操作表示部8で「非警備モード」に戻すといった処理にすることで、誤検知防止が可能である。また、操作表示部8の操作を建物外から無線で行えるようにすれば、上述のような時間差設定も不要となる。
【0042】
さらに、侵入の検知を確実に行うために、排気口2と吸気口4の設定位置関係は、建物1内では極力相互を離れた場所に設値し、新たな侵入開口部からの吸気が入りやすい場所にしておくことが望ましい。また、図3に示す様に、排気装置3の排気能力大きくし、且つ吸気口4にはダクトを設けて吸気時の抵抗を調整し、気圧差の変化を風量として大きく出きる様に設定する。吸気口の断面積が変らなければ風量と風速は比例する。
【0043】
この様にしておけば、新たな侵入開口部からの吸気が入りやすくなるので、吸気口4の風量はより顕著に低下するので、より小さな侵入開口面積まで検知することが可能となる。
【0044】
上述した本発明の第1の実施の形態によれば、1台の風速計又は風量計を吸気口4に設けるのみで、建物1全体の侵入検知を実現することができる。このため、従来のようなドアや窓の開閉センサ、窓ガラスの破損センサ及び室内外の人感センサなど、多数を侵入可能性のある全ての場所に配置しなくてもよいため、シンプルな構成で、且つ配線などの工事も削減できる。
【0045】
また、通常の居住空間等の美観を損なうこともない。さらには、壁面破壊など想定外の侵入経路であっても検知することが可能となる。
【0046】
また、居住者が不在時の建物内のゆるやかな換気や、外出時の窓の閉め忘れの発見にも利用できる利点がある。
【0047】
(第2の実施の形態)
次に、本発明の第2の実施の形態について、図5乃至図7を参照して説明する。図5(a)は本発明の第2の実施の形態の建物1の侵入検知装置の構成を示す概略側面図で、同図(b)はその概略平面図ある。なお、図5において図1、図2と同一または対応する部分には、同一の番号を付してその説明を省略する。
【0048】
この第2の実施の形態の建物の侵入検知装置が第1の実施の形態と異なる点は、吸気口4を建物1の床下中央部に設け、建物1の周囲の風の影響による気圧の変動を極力抑える配置とした点である。
【0049】
図6は建物1周囲の風の影響と吸気口4に設けた風速計5の関係を示す図である。同図(a)は、周囲の風の影響が小さい場合の風速計5の出力で、同図(b)は周囲の風の影響が大きい場合の風速計5の出力を示す。
【0050】
同図(a)において、定常時には判定基準値VTH以上であった風速計5の出力は、時刻T1で窓12の破損が発生すると、破損から一定の時刻を経過すると風速計5の出力は低下したままで、この状態を検知することが可能である。
【0051】
しかし、同図(b)に示す様に、周囲の風の影響が大きい地域や場所に設ける場合には、窓12の破損の有無に係らず風速計5の出力は、判定基準値VTHを超えて変動する。
【0052】
そこで、図(5)(b)に示す様に、排気口2や吸気口4の外部に直接風が当たらないように排気口2の風除け2a、吸気口4の風除け4aをつける。そして、排気口2や吸気口4の位置を配慮し、外部の風の影響を低減する。さらに、吸気口4については床下中央部とし、建物1の周囲の風上側と風下側の気圧差の変動が小さくなる建物1の床下中央付近の値の場所で外気と通じるようにしておく。
【0053】
この様に排気口2、吸気口4設定することによって、吸気口4の風速に対する外気の風の影響を実用可能な程度に取り除くことが出来る。また、排気装置3を極力能力の大きなものとし通常時の差圧を大きくしておけば、マージンをより大きくすることができる。
【0054】
さらに、吸気口4に設ける風速計5の流路の出側にエアーダンパ、例えば、流路を構成するダクトの間に1m程度の空間を付加して、ダンピングすることで、風によって発生する細かな風速計5の出力変動を抑制し、瞬間的な強風による誤検知を防止することが可能となる。この様に設定した時の風速計5の出力例を図6(c)に示す。
【0055】
上述した本発明の第2の実施の形態によれば、建物1の周囲の風速の相違による気圧差があってもその影響を低減させることが出来るので、風の強い場所に置かれた建物1の侵入検知装置を安定に動作させることができる。
【0056】
また、このような床下中央部に吸気口4を設ける場合、風速計5に替えて、図7に示すような風止弁23とスイッチ24による侵入検知も有効である。ここで、21は床板、22は空気透過性床材で、床板21の一部に穴を設け、この穴で建物1の内外を連通する気流の流れを作る。そして、この穴を回動可能な、回動軸を床板に固定した風止弁23で塞ぎ、所定の静圧でスイッチ24が作動する様に風止弁23の重量を選定しておく。
【0057】
同様な機械的な検知手段として、このような床下部からの気流の風量を測定する方法として上方程管径が拡大するテーパ管と浮子と浮子の位置を検出するスイッチを用いた面積式流量計を利用することも可能である。
【0058】
このような構成の風止弁23とスイッチ24や面積式流量計によれば、コンパクトで、非電動型の侵入検知装置の検出、判定機能を構成することができる。
【0059】
(第3の実施の形態)
次に、本発明の第3の実施の形態について、図8乃至図10を参照して説明する。図8は本発明の第3の実施の形態の建物1の侵入検知装置の構成を示す概略側面図である。なお、図8において図1、図2と同一または対応する部分には、同一の番号を付してその説明を省略する。
【0060】
この第3の実施の形態の建物の侵入検知装置が第1の実施の形態と異なる点は、第1の実施の形態では、建物1内外の差圧を吸気口4に設けた風速計5で検出したが、本第3の実施の形態では排気装置3の排気口2に風速計5を設け、さらに吸気口4にシャッタ6を設けた点が異なっている。
【0061】
先ず、本第3の実施の形態の建物1の内外の差圧設定の方法について図9を参照して説明する。図8に示す様に、排気装置3による気流の発生と、風速計5による風速測定とは同一の開口部にて行う。図9はこの場合の排気装置3の排気特性である静圧・風量特性曲線を示す。なお、風速と風量は測定する開口部の断面積が一定であれば同様に扱える。
【0062】
この静圧・風量特性曲線は排気装置3の能力として定まる特性であり、第9図には一般的な排気装置3の特性例を示している。排気装置3の排気能力m1、m2は実線で示され、排気能力が大きくなるとm2からm1の様に変化する。排気装置3の能力が一定とした場合、建物1の気密度が変化すると、排気能力m1、m2の特性曲線に沿って静圧(Pa)と風量(m/h)が変化する。
【0063】
同図において、気密性が高い場合の建物1の場合、建物1の抵抗曲線はh1からh2に示すように変化するので、建物1の気密性の変化が静圧の変化としてP1からP2に変化すれば、この時の排気口2からの風量の変化がQ1からQ2に大きく変化する。この特性の関係から、排気装置3の排気能力を所定の風量が得られる様に選定しておく。
【0064】
次に本第3の実施の形態による動作の説明を図10及び図11動作フロー図を参照して説明する。この動作フロー図、図11は第1の実施の形態で説明したものと基本的には同じである。
【0065】
図11において、建物1の侵入検知装置は、建物1内部に人が居るときの「非警備モード」時の通常換気システムとしての動作と、建物1内部に人が不在になるときの「警備モード」時の警備換気システムとの2つの動作モードが存在する。2つのモードのいずれであるかを操作表示部8によって設定する。以下異なる動作について詳細を説明する。
【0066】
(1)先ず、操作表示部8の設定モードを確認する(ステップS11)。設定モードが「非警備モード」である場合には、シャッタ6は開状態となり、換気は主に吸気口4から吸気され、建物1内を循環した空気は排気装置3によって排気口2から排気される。いわゆる第3種換気システムで運転されている。このとき、制御装置7はシャッタ6を開に保つことと、排気装置3を稼動させればよい(ステップS12)。
【0067】
(2)次に、設定モードが「警備モード」である場合には、シャッタ6は閉状態とされ、その状態で排気装置3は一定のパワーの排気運転を行う(ステップS13)。
【0068】
(3)このときの吸気は建物1の総相当隙間面積に相当する隙間から行われ、排気口2から排出される。この場合の吸気流路の抵抗は、吸気口4が開であったときよりも大きいため、風速計5で測定される排気の流量Qは比較的小さな値Q1となる。この状態を図9及び図10に示す。
【0069】
(4)この状態において風速測定処理(ステップS14)を所定周期で行う。この状態で窓12が破壊され人が通れる程度の開口部が建物1に新たに形成されると、吸気の流路の抵抗は小さな値となり、風速計5で測定される排気の流量Qは急に大きな値Q2に変化する。
【0070】
(5)そこで、判定基準値QTHをQ1<QTH<Q2となるような所定値に設定し、異常値判定処理を実行する。通常、流量QはQTH未満である場合異常なしと判断されるが、流量QがQTHを超えると異常値とし異常値判定処理がされる(ステップS15)。
【0071】
(6)異常値が検出されると、警報を通信インタフェース10とアンテナ11介して図示しない監視センターへ通報すると同時に、警報表示装置9によって近隣に警報を表示と鳴動で発信する警報処理を実行する(ステップS16)。
【0072】
なお、このような排気システムは、排気口2と排気装置3は専用の設備を用意する必要はなく、通常の住居に設けられる換気設備を兼用して実現することが可能である。
【0073】
また、本第3の実施の形態の建物1の内外の差圧設定の方法は、建物1内を負圧とする排気装置3を使用した第3種換気システムを採用したが、建物1内を正圧とする吸気装置を使用した第2種換気システムの場合にも適用できる。この場合、排気口2と排気装置3を夫々吸気口と吸気装置とすれば、発生する気流の向きは反対になるが同様の効果が得られる。
【0074】
さらに、この発明は建物1の侵入検知装置に限定されるものではなく、ほぼ外部と閉塞された設備空間への侵入検知装置として、例えば各種の居住空間設備、貴金属等のショーケース、金庫、ロッカー、コンテナ、及び自動車、列車などの設備空間にも適用できる。この場合、これらの設備空間に適合する排気口と排気装置を設ければ良い。例えば、気密度の高い住空間設備の場合には、設備の鍵穴を吸気口または排気口として利用することも可能である。この場合、風速計は鍵と一体で製作することが必要であるが、熱線風速計等の原理を応用したコンパクトな風速計を採用すれば可能である。
【0075】
このように構成された第3の実施の形態によれば、第1の実施の形態同様に、1台の風速計又は風量計を排気口に4に設けるのみで、建物1などの侵入検知装置を実現することができる。
【0076】
また、排気口及び速度計、排気装置等の検出手段は、コンパクトな構成とすることが可能であるので、種々の設備空間の大きさと気密度に適合する建物などの侵入検知装置を構成できる。
【0077】
【発明の効果】
以上説明したように、本発明によれば、排気装置と風速計又は風量計を排気口または吸気口に設けるのみで、小空間から大空間までの建物などの侵入検知装置を実現することができる。
【0078】
また排気容量なども小容量とすることが可能なので、省エネの面でも有利である。
【0079】
また、風速計、排気口及び排気装置等の検出手段は、シンプルでコンパクトな構成とすることが可能であるので、種々の大きさと気密度を有する設備空間の建物などの侵入検知装置が実現できる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の構成図。
【図2】本発明の制御装置の構成図。
【図3】本発明の吸気口の静圧・風量特性と抵抗曲線の説明図。
【図4】本発明の第1の実施の形態の制御動作を説明するフロー図。
【図5】本発明の第2の実施の形態の構成図。
【図6】本発明の風速計、風量計のダンピング動作の説明図。
【図7】風止弁による異常検出の説明図。
【図8】本発明の第3の実施の形態の構成図。
【図9】本発明の第3の実施の形態の排気装置の静圧・風量特性の説明図。
【図10】本発明の第3の実施の形態の風速計の動作説明図。
【図11】本発明の第3の実施の形態の制御動作を説明するフロー図。
【符号の説明】
1 建物
2 排気口
3 排気装置
4 吸気口
5 風速計
6 シャッタ
7 制御装置
8 操作表示部
9 警報装置
10 通信インタフェース
11 アンテナ
12 窓
21 床板
22 空気透過性床材
23 風止弁
24 スイッチ
71 A/D変換機
72 前処理部
73 CPU
74 ROM
75 RAM
76 通信インタフェース
77 出力ポート
78 操作表示インタフェース
79 CPUバス
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an intrusion detection device for a building such as a dwelling, and more particularly to an intrusion detection device for detecting breakage of a window or a door of a building or the like when an owner or a manager of the building is absent.
[0002]
[Prior art]
Conventional intrusion detection devices include a human sensor using a pyroelectric element, a camera for visible light and infrared light, an optical area sensor for light path cutoff detection using beams such as infrared light, and the sound of opening and closing and damage to windows and shutters. And a sound wave sensor for detecting vibration.
[0003]
Also, recently, it has been known that a pressure difference between the inside and outside of a building is generated by exhaust air or intake air, and a sudden change in the pressure difference is detected and an alarm is issued (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP 2001-243562 A
[Problems to be solved by the invention]
However, human sensors used in conventional intrusion detection devices need to be installed for each opening, such as a building window. In a building with many openings, the number of required sensors is large and equipment However, there is a problem that the cost is large, including the installation cost, as well as the sensor price.
[0006]
Furthermore, there is also a problem that aesthetic appearance is impaired by mounting and wiring a large number of sensors in a window, a room, or the like. There is also a method to reduce the effect on aesthetics by eliminating wiring by wireless, but in this case the sensor operates on battery, the trouble and cost of regular battery replacement, and the possibility of losing the security function due to forgetting to replace the battery There is also.
[0007]
In addition, there is a blind spot that the window opening / closing sensor cannot detect the breakage of the window glass, or cannot detect the breakage if the wall itself to which the sensor is not attached is broken and invaded.
[0008]
Also, in the method of detecting by the fluctuation of the atmospheric pressure difference between the inside and outside of the building, although the above-mentioned problem is solved, if the capability of the exhaust device or the intake device is not considerably increased in order to use the atmospheric pressure difference, it is normal / abnormal. There is no pressure difference that can be accurately identified. Therefore, there is a problem that the energy loss of the exhaust device or the intake device increases.
[0009]
The reason is considered as follows. When measuring the differential pressure at the intake port or exhaust port using a ventilation device such as a house, the relationship between the differential pressure ΔP and the air volume Q can be regarded as a flow rate measurement by a kind of throttle mechanism. Is represented by Q∝ΔP 1/2
That is, since the differential pressure ΔP approaches zero faster than the air volume Q, measurement in a low differential pressure region becomes difficult.
[0010]
Since a pressure difference of about several tens Pa is a measurement error range in ordinary differential pressure measurement, for example, a pressure difference of about 1 hPa is required. For this purpose, a large power is required for the exhaust device or the intake device.
[0011]
When the capacity of the exhaust device or the intake device is reduced, the detection sensitivity is reduced because the generated air pressure difference is reduced, and furthermore, when the outside of the building is under a strong wind of 10 m / s or more, the reference external air pressure is used. Fluctuates greatly beyond 1 hPa, and there is a problem that a malfunction is likely to occur.
[0012]
The present invention has been made in order to solve such a conventional problem. Even if the exhaust gas amount or the intake air amount is too small to be identified by the conventional pressure difference detection method, the normal / abnormal state is sufficiently obtained. It is an object of the present invention to provide an intrusion detection device for a building or the like which can be identified.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, an intake device or an exhaust device provided in the equipment space so as to generate a pressure difference between the outside and the inside of the almost closed equipment space, and an intake port or the exhaust device of the intake device. An anemometer or anemometer provided at an exhaust port, comparing means for comparing the value of the anemometer or the anemometer with a predetermined reference value, and an output of the comparing means being equal to or more than a predetermined range from the reference value. Alarm generating means for generating an alarm when different from each other.
[0014]
Therefore, according to the anemometer or the anemometer, a sufficient wind speed or an air volume can be obtained even with an exhaust air volume or an intake air volume that cannot be identified by the conventional pressure difference detection method, so that a normal abnormality can be identified. . Therefore, it is possible to provide an intrusion detection device for a building or the like which has high reliability even if the capability of the exhaust device or the intake device is small.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0016]
(First Embodiment)
This will be described with reference to FIGS. FIG. 1 is a schematic side view showing a configuration of a building intrusion detection device according to a first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a window 12 which can be intruded in a building.
[0017]
An intrusion detection device for a building installed in the building 1 has an exhaust port 2 connected to one side wall of the building and connected to the exhaust port 2 to set a pressure difference between the inside and the outside of the building 1. Abnormalities are read by reading the exhaust device 3, an intake port 4 penetrating through the other side wall of the building, an anemometer 5 attached to the intake port 4 for detecting a pressure difference between the inside and outside of the building, and an anemometer 5. A control device 7, an operation display unit 8, an alarm device 9 for generating an alarm when an abnormal value of wind speed is detected, and an abnormal device for detecting an abnormal value of the wind intrusion detecting device. It comprises a communication interface 10 for informing by communication and its antenna 11.
[0018]
FIG. 2 is a detailed configuration diagram of the control device 7. The control device 7 receives an input of a signal from the anemometer 5, an A / D converter 71 for AD-converting the signal, and an input port 72 for transmitting the A / D-converted signal to the CPU 73 via the CPU bus 79. It has.
[0019]
Further, a communication interface 76 connected to the communication interface 10, an output port 77 serving as an interface with the exhaust device 3 and the alarm display device 9, and an operation display interface 78 serving as an interface with the operation display unit 6 are provided. Are connected to the CPU 73 via the CPU bus 79. The CPU 73 has a ROM 74 and a RAM 75 for storing a control program.
[0020]
Next, the principle of operation of the intrusion detection device for a building thus constructed will be described with reference to FIG. FIG. 3 is a diagram showing the relationship between the air pressure difference between the inside and outside of the building 1 (Pa) and the air volume of the intake port 4 when air is taken in from the intake port 4 of the building 1 and the exhaust device 3 exhausts the inside of the building 1.
[0021]
The horizontal axis in FIG. 3 indicates the air volume (m 3 / h) of the intake port 4 when the inside of the building 1 is exhausted by the exhaust device 3, and the vertical axis indicates the pressure difference (Pa) between the inside and outside of the building 1, which is indicated by an arc. F1 and f2 shown by solid lines are exhaust capacities, and show characteristics when the exhaust capacity of the exhaust device 3 is changed. When the exhaust capacity is increased, the arc becomes f1, and when the exhaust capacity is decreased, the arc changes to a small arc like f2. Further, g1 and g2 indicated by broken lines indicate resistance curves of the intake port 4. The resistance curve is g2 when the resistance value is small, and the resistance curve g1 has a large slope when the resistance value is large.
[0022]
For example, when the exhaust capacity of the building 1 is operated at f1 and the resistance curve g1 is operated, the pressure difference / air volume characteristic of the intake port 4 is operated at the intersection (Q0, P0) of both curves. At this time, if the window 12 of the building 1 is damaged, the pressure difference (Pa) between the inside and the outside of the building 1 decreases from P0 to P1, and the air volume (m 3 / h) sucked from the intake port 4 increases from Q0. It changes to Q1. This change is detected by an anemometer 5 provided in the intake port 4 to detect whether or not the window 12 is damaged.
[0023]
Next, a method of setting a differential pressure for effectively operating the intrusion detection device for a building based on such an operation principle will be described. In recent residential, for the air environment improvement, for example, a gap equivalent to the area of 1m 2 per wall is 5cm 2 or less in the new energy-saving standards of Japan, also 0.9cm 2 below and 1cm 2 about in R2000 housing standards of Canada The number of houses having airtightness is increasing, and the building 1 is a structure that can be regarded as a so-called semi-closed container having airtightness.
[0024]
Therefore, in the case of having such an airtightness of 1 cm 2 / m 2 or less, the total equivalent clearance area is about 100 cm 2 even for a single building having a floor area of about 100 m 2, and therefore, the exhaust of the building 1 is usually a building. A third type ventilation system for maintaining the inside of the building 1 at a negative pressure is adopted, and the inside of the building 1 is forcibly exhausted by the exhaust device 3.
[0025]
At this time, for example, the opening area of the exhaust port 2 is set to 300 cm 2 , the opening area of the intake port 4 is set to 10 cm 2 , and the exhaust device 3 is exhausted so that a predetermined air volume can be obtained from the intake port 4 by the exhaust device 3. The capacity and the pipe resistance of the intake port 4 are set in advance.
[0026]
In this way the window 12 of the set building 1, to the extent that people entering, for example, when the 50 × 50cm 2 = 2500cm 2 corruption, since the exhaust system 3 is operated at a constant displacement volume, Since the total equivalent clearance area 110 cm 2 is increased 25 times at a stroke, the air volume from the intake port 4 is drastically reduced to about 1/25. This change is detected by the anemometer 5.
[0027]
That is, the sensitivity of the exhaust device 3 and the resistance value of the intake port 4 can be given a predetermined sensitivity by the anemometer 5 provided at the intake port 4 based on the total equivalent clearance area of the building 1 to be detected and the intrusion area of the building 1. In advance as described above.
[0028]
Next, the operation of the building intrusion detection device set as described above will be described. First, the general operation will be described. When the control device 7 is set to the “security mode” by an operation on the operation display unit 8, the wind speed value of the intake port 4 is periodically read by the anemometer 5, for example, about once every second, and this is read in advance. It is determined that there is no abnormality if the value is equal to or more than the set value and continues for a predetermined period or more. If the value is equal to or less than the set value and continues for a predetermined period or more, it is determined that there is an abnormality. At the same time as notifying the surveillance center, the alarm device 9 alerts the neighborhood by sounding and displaying an alarm.
[0029]
In other words, when the wind speed signal indicating the wind speed value output from the anemometer is equal to or greater than the determination reference value, the abnormal value determination process is performed, and the alarm device 9 is activated.
[0030]
Hereinafter, a control operation flow performed by the CPU of the control device 7 will be described with reference to FIG. The CPU 73 in the control device 7 performs the following operation at a cycle of, for example, about 1 second.
[0031]
(1) The setting state of the operation display unit 8 is read via the operation display interface 78, and it is determined whether or not the security mode is set (step S01).
[0032]
(2) If not in the “security mode”, the process proceeds to the “non-security mode” process, and the operation of the exhaust device 3 is stopped. If the operation is already stopped, nothing is done and no alarm is issued. Then, the process returns to (1) (step S02).
[0033]
(3) If the security mode is set, the process proceeds to security mode processing, and the exhaust device 3 is operated. If the vehicle has already been operated, the operation is continued. (Step S03).
[0034]
(4) Next, the process proceeds to wind speed measurement processing. The wind speed signal output from the anemometer 5 is converted into a digital signal by the A / D converter 71, and the wind speed signal is read via the input port 72 (step S04).
[0035]
(5) An abnormal value determination process determines whether the wind speed signal is equal to or less than a determination reference value. If the wind speed signal is equal to or greater than the determination reference value, it is determined that there is no gap that can enter the building 1, and no alarm is issued. Then, the process returns to (1). If it is equal to or smaller than the determination reference value, it is determined that a gap large enough to enter the building 1 has occurred (step S05).
[0036]
(6) If Yes is determined in (5), an alarm process is performed. An alarm is transmitted to the alarm device 9 via the output port 77, and an alarm is transmitted to an external alarm center (not shown) via the communication interface 10 and the antenna 11. Then, the process returns to (1).
[0037]
Next, a method for setting the determination reference value will be described in detail. The determination reference value is set to be smaller than the wind speed value measured by the anemometer 5 in the “security mode” in which the exhaust device 3 is operating. In addition, when an opening area slightly smaller than the opening area that a human can barely enter is generated in the building 1, the value is set to be slightly larger than the wind speed value measured by the anemometer 5.
[0038]
In other words, if these conditions are set, if an opening that allows a person to actually pass through occurs, the wind speed value measured by the anemometer 5 will be smaller than the determination reference value, so that the Detection becomes possible.
[0039]
In order to reduce erroneous detection as much as possible, the value of the criterion value should be set to an intermediate value between the normal wind speed value and the wind speed value when the opening area in which the human can barely enter the building 1 occurs. Is desirable.
[0040]
Next, a method for setting and canceling the “security mode” will be described in detail. In the first embodiment, the operation display unit 8 is located indoors, and a false detection is performed when the door is opened when the user goes out after setting the security mode from the normal mode, or a false detection is performed when the door is opened when returning home. Could be done.
[0041]
In response to this, for example, there is a time difference that switching to the actual “security mode” is performed 30 seconds after the “security mode” is set, so that the user goes out of the door within 30 seconds after the mode switching or detects an abnormality. However, the alarm may not be issued for 30 seconds. In addition, when returning to the home, erroneous detection can be prevented by performing a process of returning to the “non-security mode” on the operation display unit 8 within 30 seconds after opening the door. Further, if the operation of the operation display unit 8 can be performed wirelessly from outside the building, the time difference setting as described above is not required.
[0042]
Furthermore, in order to reliably detect the intrusion, the set positional relationship between the exhaust port 2 and the intake port 4 is set as far away from each other as possible in the building 1, and the intake air from the new intrusion opening enters. It is desirable to keep it in an easy place. As shown in FIG. 3, the exhaust capacity of the exhaust device 3 is increased, and a duct is provided in the intake port 4 to adjust the resistance at the time of intake, so that the change in the pressure difference can be set to be large as the air volume. . If the cross-sectional area of the intake port does not change, the air volume and the wind speed are proportional.
[0043]
By doing so, the intake air from the new entry opening becomes easier to enter, so that the air volume at the intake port 4 decreases more remarkably, so that it is possible to detect even a smaller entry opening area.
[0044]
According to the above-described first embodiment of the present invention, intrusion detection of the entire building 1 can be realized only by providing one anemometer or an anemometer at the air inlet 4. For this reason, it is not necessary to arrange a large number of sensors, such as conventional door and window open / close sensors, window glass breakage sensors, and indoor / outdoor motion sensors, in all places where intrusion is possible. In addition, construction work such as wiring can be reduced.
[0045]
In addition, the aesthetic appearance of a normal living space or the like is not impaired. Further, it is possible to detect an unexpected intrusion route such as a wall destruction.
[0046]
In addition, there is an advantage that it can be used for gradual ventilation in the building when the resident is absent, and for finding out that the windows have been forgotten to be closed when going out.
[0047]
(Second embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 5A is a schematic side view showing a configuration of an intrusion detection device for a building 1 according to a second embodiment of the present invention, and FIG. 5B is a schematic plan view thereof. In FIG. 5, the same or corresponding parts as those in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof is omitted.
[0048]
The difference between the building intrusion detection device of the second embodiment and the first embodiment is that the intake port 4 is provided in the center of the building 1 under the floor, and the air pressure fluctuation due to the wind around the building 1 is affected. The point is that the arrangement is as small as possible.
[0049]
FIG. 6 is a diagram showing the relationship between the influence of the wind around the building 1 and the anemometer 5 provided at the intake port 4. FIG. 2A shows the output of the anemometer 5 when the influence of the surrounding wind is small, and FIG. 2B shows the output of the anemometer 5 when the influence of the surrounding wind is large.
[0050]
In FIG. 6A , the output of the anemometer 5 which was equal to or higher than the determination reference value V TH at the time of steady state is determined as follows. It is possible to detect this condition while it remains low.
[0051]
However, as shown in FIG. 6B, when the wind turbine is installed in an area or place where the influence of the surrounding wind is large, the output of the anemometer 5 is determined by the determination reference value V TH regardless of whether the window 12 is damaged. Fluctuate beyond.
[0052]
Therefore, as shown in FIGS. 5 (b) and 5 (b), the windshield 2 a of the exhaust port 2 and the windshield 4 a of the intake port 4 are provided so that the wind does not directly hit the outside of the exhaust port 2 and the intake port 4. Then, the position of the exhaust port 2 and the intake port 4 is taken into consideration, and the influence of external wind is reduced. Further, the air intake port 4 is located at the center under the floor, and communicates with the outside air at a value near the center under the floor of the building 1 where the fluctuation of the pressure difference between the windward side and the leeward side around the building 1 becomes small.
[0053]
By setting the exhaust port 2 and the intake port 4 in this manner, the influence of the outside air on the wind speed of the intake port 4 can be removed to a practical extent. Further, if the exhaust device 3 is made as large as possible and the differential pressure during normal operation is increased, the margin can be further increased.
[0054]
Further, an air damper, for example, a space of about 1 m 2 is added between the ducts constituting the flow path on the exit side of the flow path of the anemometer 5 provided at the intake port 4 and damping is performed by the wind. It is possible to suppress the output fluctuation of the fine anemometer 5 and prevent erroneous detection due to an instantaneous strong wind. FIG. 6C shows an output example of the anemometer 5 when the setting is made in this manner.
[0055]
According to the above-described second embodiment of the present invention, even if there is a pressure difference due to a difference in wind speed around the building 1, the influence can be reduced, and therefore the building 1 placed in a strong wind place Can be operated stably.
[0056]
When the intake port 4 is provided in the central portion under the floor, an intrusion detection by a wind stop valve 23 and a switch 24 as shown in FIG. Here, 21 is a floor plate, 22 is an air-permeable floor material, and a hole is provided in a part of the floor plate 21, and the hole creates a flow of an air flow communicating inside and outside the building 1. Then, this hole is closed with a rotatable, wind-control valve 23 whose rotation axis is fixed to the floor plate, and the weight of the wind-control valve 23 is selected so that the switch 24 operates at a predetermined static pressure.
[0057]
As a similar mechanical detection means, as a method for measuring the airflow of the airflow from the lower part of the floor, an area type flow meter using a taper pipe whose pipe diameter increases upward and a switch detecting the position of the float and the float. It is also possible to use.
[0058]
According to the wind stop valve 23, the switch 24, and the area type flow meter having such a configuration, it is possible to configure a detection and determination function of a compact, non-motorized intrusion detection device.
[0059]
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a schematic side view showing the configuration of the intrusion detection device for the building 1 according to the third embodiment of the present invention. In FIG. 8, the same or corresponding parts as those in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof will be omitted.
[0060]
The point that the intrusion detection device for a building according to the third embodiment is different from that of the first embodiment is that, in the first embodiment, an anemometer 5 provided with a differential pressure between the inside and outside of the building 1 at an intake port 4. However, the third embodiment differs from the third embodiment in that an anemometer 5 is provided at the exhaust port 2 of the exhaust device 3 and a shutter 6 is provided at the intake port 4.
[0061]
First, a method of setting a differential pressure between the inside and outside of the building 1 according to the third embodiment will be described with reference to FIG. As shown in FIG. 8, the generation of the airflow by the exhaust device 3 and the measurement of the wind speed by the anemometer 5 are performed at the same opening. FIG. 9 shows a static pressure / air volume characteristic curve which is an exhaust characteristic of the exhaust device 3 in this case. Note that the wind speed and the air volume can be handled in the same manner as long as the cross-sectional area of the opening to be measured is constant.
[0062]
The static pressure / air volume characteristic curve is a characteristic determined as the capacity of the exhaust device 3, and FIG. 9 shows an example of the characteristic of a general exhaust device 3. Exhaust capacities m1 and m2 of the exhaust device 3 are shown by solid lines, and change from m2 to m1 as the exhaust capacities increase. Assuming that the capacity of the exhaust device 3 is constant, when the air density of the building 1 changes, the static pressure (Pa) and the air volume (m 3 / h) change along the characteristic curve of the exhaust capabilities m1 and m2.
[0063]
In the figure, in the case of the building 1 in which the airtightness is high, the resistance curve of the building 1 changes from h1 to h2, so that the airtightness of the building 1 changes from P1 to P2 as a change in static pressure. Then, the change in the air volume from the exhaust port 2 at this time greatly changes from Q1 to Q2. From the relationship between the characteristics, the exhaust capacity of the exhaust device 3 is selected so that a predetermined air volume can be obtained.
[0064]
Next, the operation of the third embodiment will be described with reference to FIGS. 10 and 11. This operation flowchart and FIG. 11 are basically the same as those described in the first embodiment.
[0065]
In FIG. 11, the intrusion detection device of the building 1 operates as a normal ventilation system in “non-security mode” when a person is inside the building 1 and “security mode” when a person is absent inside the building 1. There are two modes of operation with the security ventilation system. One of the two modes is set by the operation display unit 8. Hereinafter, different operations will be described in detail.
[0066]
(1) First, the setting mode of the operation display unit 8 is confirmed (step S11). When the setting mode is the “non-security mode”, the shutter 6 is opened, the ventilation is mainly taken in from the intake port 4, and the air circulating in the building 1 is exhausted from the exhaust port 2 by the exhaust device 3. You. It is operated by a so-called type 3 ventilation system. At this time, the control device 7 may keep the shutter 6 open and operate the exhaust device 3 (step S12).
[0067]
(2) Next, when the setting mode is the "security mode", the shutter 6 is closed, and in this state, the exhaust device 3 performs an exhaust operation with a constant power (step S13).
[0068]
(3) At this time, the intake air is taken from a gap corresponding to the total equivalent gap area of the building 1 and is exhausted from the exhaust port 2. In this case, since the resistance of the intake passage is larger than when the intake port 4 is open, the flow rate Q of the exhaust gas measured by the anemometer 5 is a relatively small value Q1. This state is shown in FIG. 9 and FIG.
[0069]
(4) In this state, the wind speed measurement process (Step S14) is performed at a predetermined cycle. In this state, when the window 12 is broken and an opening is formed in the building 1 so that a person can pass through, the resistance of the intake passage becomes a small value, and the flow rate Q of the exhaust measured by the anemometer 5 is abrupt. To a large value Q2.
[0070]
(5) Therefore, the determination reference value Q TH is set to a predetermined value that satisfies Q1 <Q TH <Q2, and an abnormal value determination process is performed. Normally, when the flow rate Q is less than QTH, it is determined that there is no abnormality. However, when the flow rate Q exceeds QTH , an abnormal value is determined and an abnormal value determination process is performed (step S15).
[0071]
(6) When an abnormal value is detected, an alarm is notified to a monitoring center (not shown) via the communication interface 10 and the antenna 11 and, at the same time, an alarm display device 9 is used to execute an alarm process of displaying an alarm and transmitting an alarm to the neighborhood by sounding. (Step S16).
[0072]
In addition, in such an exhaust system, it is not necessary to prepare a dedicated facility for the exhaust port 2 and the exhaust device 3, and it is possible to realize the exhaust system by also using the ventilation facility provided in a normal house.
[0073]
Further, the method of setting the differential pressure between the inside and outside of the building 1 according to the third embodiment adopts the third type ventilation system using the exhaust device 3 which makes the inside of the building 1 a negative pressure. The present invention is also applicable to a type 2 ventilation system using an intake device having a positive pressure. In this case, if the exhaust port 2 and the exhaust device 3 are an intake port and an intake device, respectively, the directions of the generated airflows are opposite, but the same effect can be obtained.
[0074]
Further, the present invention is not limited to the intrusion detection device of the building 1, but may be an intrusion detection device for an almost closed external equipment space, for example, various living space facilities, showcases of precious metals and the like, safes, lockers, and the like. , Containers, and equipment spaces such as automobiles and trains. In this case, an exhaust port and an exhaust device suitable for these equipment spaces may be provided. For example, in the case of a living space facility having high airtightness, a keyhole of the facility can be used as an intake port or an exhaust port. In this case, it is necessary to manufacture the anemometer integrally with the key, but it is possible to adopt a compact anemometer applying the principle of a hot wire anemometer or the like.
[0075]
According to the third embodiment configured as described above, similarly to the first embodiment, only one anemometer or an anemometer is provided at the exhaust port 4, and the intrusion detection device for the building 1 or the like is provided. Can be realized.
[0076]
In addition, since the exhaust port, the speedometer, the exhaust device, and other detection means can be configured in a compact configuration, an intrusion detection device such as a building adapted to the size and airtightness of various equipment spaces can be configured.
[0077]
【The invention's effect】
As described above, according to the present invention, an intrusion detection device such as a building from a small space to a large space can be realized only by providing an exhaust device and an anemometer or an anemometer at an exhaust port or an intake port. .
[0078]
In addition, since the exhaust capacity and the like can be made small, it is also advantageous in terms of energy saving.
[0079]
In addition, since detection means such as an anemometer, an exhaust port, and an exhaust device can have a simple and compact configuration, an intrusion detection device such as a building in a facility space having various sizes and air tightness can be realized. .
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a first embodiment of the present invention.
FIG. 2 is a configuration diagram of a control device of the present invention.
FIG. 3 is an explanatory diagram of a static pressure / air volume characteristic and a resistance curve of an intake port of the present invention.
FIG. 4 is a flowchart illustrating a control operation according to the first embodiment of the present invention.
FIG. 5 is a configuration diagram of a second embodiment of the present invention.
FIG. 6 is an explanatory diagram of a damping operation of the anemometer and the anemometer according to the present invention.
FIG. 7 is an explanatory diagram of abnormality detection by a wind stop valve.
FIG. 8 is a configuration diagram of a third embodiment of the present invention.
FIG. 9 is an explanatory diagram of static pressure / air volume characteristics of an exhaust device according to a third embodiment of the present invention.
FIG. 10 is an explanatory diagram of an operation of the anemometer according to the third embodiment of the present invention.
FIG. 11 is a flowchart illustrating a control operation according to a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Building 2 Exhaust port 3 Exhaust device 4 Inlet port 5 Anemometer 6 Shutter 7 Control device 8 Operation display unit 9 Alarm device 10 Communication interface 11 Antenna 12 Window 21 Floor plate 22 Air-permeable floor material 23 Wind stop valve 24 Switch 71 A / D converter 72 Preprocessing unit 73 CPU
74 ROM
75 RAM
76 communication interface 77 output port 78 operation display interface 79 CPU bus

Claims (5)

外部とほぼ閉塞された設備空間の内外での圧力差を発生させるように設備空間に設けた吸気装置または排気装置と、
前記吸気装置の吸気口または前記排気装置の排気口に備えた風量計または風速計と、
前記風量計または前記風速計の値を予め定めた判定基準値と比較する比較手段と、
前記比較手段の出力が前記判定基準値と所定の範囲以上異なったとき警報を発生する警報発生手段とを
備えたことを特徴とする侵入検知装置。
An intake device or an exhaust device provided in the equipment space so as to generate a pressure difference between the outside and the inside and outside of the almost closed equipment space,
An air flow meter or an anemometer provided at an intake port of the intake device or an exhaust port of the exhaust device,
Comparison means for comparing the value of the anemometer or the anemometer with a predetermined determination reference value,
An intrusion detection device, comprising: an alarm generation unit that generates an alarm when an output of the comparison unit differs from the determination reference value by a predetermined range or more.
前記吸気口を設備空間の中央部の床下に備えたことを特徴とする請求項2に記載の侵入検知装置。3. The intrusion detection device according to claim 2, wherein the intake port is provided under a floor at a central portion of the equipment space. 前記吸気口または前記排気口には空気ダンパを備えたことを特徴とする請求項1に記載の侵入検知装置。The intrusion detection device according to claim 1, wherein an air damper is provided at the intake port or the exhaust port. 前記吸気口または前記排気口には風除けを備えたことを特徴とする請求項1に記載の侵入検知装置。The intrusion detection device according to claim 1, wherein a windshield is provided at the intake port or the exhaust port. 設備空間に設けた鍵穴を前記吸気口または前記排気口とし、鍵穴に風速計を備えたことを特徴とすると請求項1に記載の侵入検知装置。2. The intrusion detection device according to claim 1, wherein a keyhole provided in a facility space is the intake port or the exhaust port, and the keyhole is provided with an anemometer.
JP2003128913A 2003-05-07 2003-05-07 Intrusion detecting device Pending JP2004334484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003128913A JP2004334484A (en) 2003-05-07 2003-05-07 Intrusion detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003128913A JP2004334484A (en) 2003-05-07 2003-05-07 Intrusion detecting device

Publications (1)

Publication Number Publication Date
JP2004334484A true JP2004334484A (en) 2004-11-25

Family

ID=33504909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003128913A Pending JP2004334484A (en) 2003-05-07 2003-05-07 Intrusion detecting device

Country Status (1)

Country Link
JP (1) JP2004334484A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007219592A (en) * 2006-02-14 2007-08-30 Aichi Tokei Denki Co Ltd Entering/leaving detection sensor and entering/leaving detection method
US11512861B2 (en) 2020-07-01 2022-11-29 International Business Machines Corporation Anomaly detection based on airflow measurement
US11585557B2 (en) 2020-07-01 2023-02-21 International Business Machines Corporation Anomaly detection based on airflow alerters
US11790744B1 (en) 2022-04-26 2023-10-17 International Business Machines Corporation Intrusion movement prediction

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007219592A (en) * 2006-02-14 2007-08-30 Aichi Tokei Denki Co Ltd Entering/leaving detection sensor and entering/leaving detection method
US11512861B2 (en) 2020-07-01 2022-11-29 International Business Machines Corporation Anomaly detection based on airflow measurement
US11585557B2 (en) 2020-07-01 2023-02-21 International Business Machines Corporation Anomaly detection based on airflow alerters
US11790744B1 (en) 2022-04-26 2023-10-17 International Business Machines Corporation Intrusion movement prediction

Similar Documents

Publication Publication Date Title
US10488837B2 (en) Systems, devices and methods for controlling and utilizing smart windows
US8456305B2 (en) Redundant security system
EP2320397B1 (en) Fire sensor and method for detecting fire
US4853690A (en) Security alarm process and apparatus
US20080186171A1 (en) Light powered perimeter alarm monitoring system
KR101294992B1 (en) Fire monitoring sensor
CN106124816A (en) A kind of ammeter box remote monitoring system
JP2004334484A (en) Intrusion detecting device
JP2007198722A (en) Continuous ventilation system for building, and dwelling house provided therewith
US20080237435A1 (en) Air conditioner anti-theft
JP4933359B2 (en) Security system
US20080055079A1 (en) Alarm system with air pressure detector
US3829851A (en) Intrusion detection apparatus employing a pressure-differential detector
CN207976978U (en) A kind of household safe detection device
CN108445774A (en) A kind of intelligent home control system
CN209657451U (en) Novel antitheft alarm system
JP2007155180A (en) Air conditioner
JPH1061273A (en) Guard system for sliding door
EP3246890B1 (en) Security system with shielded devices
JP2004164603A (en) Guard device for building
CN213876412U (en) Intelligent PLC remote monitoring device of thing networking
JP2002015379A (en) Wind pressure type abnormality sensing device
JP2563642Y2 (en) Moving object detection device
TWI712994B (en) Access control system with fire alarm and fire alarm method
CN212322393U (en) Smoke detection device for fire early warning

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A621 Written request for application examination

Effective date: 20060216

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203