JP2004334017A - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP2004334017A
JP2004334017A JP2003131733A JP2003131733A JP2004334017A JP 2004334017 A JP2004334017 A JP 2004334017A JP 2003131733 A JP2003131733 A JP 2003131733A JP 2003131733 A JP2003131733 A JP 2003131733A JP 2004334017 A JP2004334017 A JP 2004334017A
Authority
JP
Japan
Prior art keywords
transfer
voltage
image
resistance
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003131733A
Other languages
Japanese (ja)
Inventor
Kouji Nihonyanagi
亘児 二本柳
Toshio Miyamoto
敏男 宮本
Masahiko Suzumi
雅彦 鈴見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003131733A priority Critical patent/JP2004334017A/en
Publication of JP2004334017A publication Critical patent/JP2004334017A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image forming apparatus that can yield excellent images even when a transfer material having any resistance value is used. <P>SOLUTION: The image forming apparatus has: an image carrier; a transfer member which forms a press-contact nip part with the carrier and transfers a toner image on the image carrier to a transfer material inserted into the press-contact nip part; a voltage applying means of applying voltage to the transfer member; a current detecting circuit which detects the value of a current outputted from the voltage applying means; and a resistance detecting means of detecting the resistance of the transfer member before a printing operation. The image forming apparatus is further equipped with: a voltage correcting means of correcting the output voltage of the voltage applying means according to the current detection result of the current detecting circuit a certain time after the transfer material is inserted into the press-contact nip part; and a means of detecting the amount of use of the image carrier. The image forming apparatus varies a voltage correction value according to: the resistance detection result of the transfer member before the printing operation by the resistance detecting means; the current detection result; and the amount of use of the image carrier. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真、静電記録方式等の画像形成装置、例えば、複写機、プリンタ、ファクシミリ当に関し、特に像担持体上のトナー像を記録材に静電的に転写する手段に転写ローラを用いる画像形成装置に関する。
【0002】
【従来の技術】
従来、この種の画像形成装置においては、像担持体上のトナー像画を静電的に転写する手段として、コロナ放電を用いたコロナ転写装置、導電性の弾性ローラ(転写ローラ)にトナーと逆極性の転写バイアスを印加して記録材上に静電的に転写するローラ転写装置、ベルト状の回転体に記録材を静電的に吸着するとともに、ベルト状の回転体から静電気力によりトナー像を記録材に転写するベルト転写装置等が広く用いられている。これらのうちローラ転写装置は、オゾンの発生が少ないこと、転写ローラが記録材搬送用ローラを兼用できるために画像形成装置の構成を簡略化できること等の理由で、近年広く採用されている。
【0003】
ローラ転写方式は、接触転写部材として、抵抗を1×10 〜1×1010Ωに調整した中抵抗弾性層を有する転写ローラ(導電性弾性ローラ)を用い、これを像担持体(以下、感光ドラムと記す)上に当接させ、該感光ドラムと該転写ローラによって形成される圧接ニップ部である転写ニップ部で転写材を狭持搬送させながら、転写ローラに転写バイアスを印加することで転写材にトナー像とは逆極性の電荷を付与して感光ドラム上のトナー像を転写材に転写させるものである。
【0004】
上記の転写ローラは、ゴム・スポンジ等にカーボン等の無機導電性粒子を分散させたり、界面活性剤等を練り込んだイオン導電性のゴム等を用いる等、抵抗値を適宜調整した弾性層を有するローラであり、この転写ローラの抵抗値が製造時のばらつき、湿温度、長期使用(耐久)による抵抗値変化等で1桁以上変化することは周知のことである。
【0005】
このように抵抗変化する転写ローラに対し、常に最適な電流を流すためには「定電流印加方式」で転写ローラに対して転写電圧を印加することが考えられるが、この場合は、装置の最大通紙幅よりも幅の狭い小サイズ転写材が通紙使用されて転写ニップ部においてその長手に関して感光ドラムと転写ローラが直接接触する非通紙領域部ができたときに、ここへ集中的に電流が流れて転写材への電流供給が不足し、転写不良が発生するという問題があった。
【0006】
そのため、多くの画像形成装置では転写材サイズによらず適正電流を流すために「定電圧印加方式」を行っている。定電圧印加方式では製造条件や環境によって変化する転写ローラの抵抗値に対し適正な電流を流すために、転写動作以前に、通紙時に転写ローラへ流す一定電流値を転写ローラに流し、その時に発生する電圧を保持して転写時に印加するバイアス制御方式(ATVC制御方式:Active Transfer Voltage Control )や、通紙前に或る一定電流を転写ローラに流し、その時の発生電圧を予め決められた制御式に入れて算出した電圧を転写時に印加するバイアス制御方式(PTVC制御方式:Programmable Transfer Voltage Control )等によって通紙以前の転写の系のインピーダンスを検知し、適正範囲の電流が流れるような転写電圧を印加している(例えば、特許文献1参照)。
【0007】
特に、PTVC制御方式は、ハードウェア構成の回路から成り印加できるバイアス値が数個しか持てないATVC方式に比べて、より精密なバイアス制御を行うことができる。又、電圧制御のためのハードウェア回路を必要としないため、コスト的にも有利な電圧制御方式である。
【0008】
このPTVC制御方式をいま少し詳しく説明すると、プリント前の非通紙時に感光ドラム表面を帯電させた状態で一定電流を目的にPWM信号(パルス幅変調信号:Pulse Width Modulation)を段階的に上げて転写ローラに電圧を印加し、目標電流値に到達した電圧値をVt0としてホールドする。そのVt0値と、予め制御回路のCPU内にメモリしておいた転写出力テーブルとから、前記Vt0値に適した印加時の転写電圧Vtを決定し、印加時にはその転写電圧Vtに対応したPWM信号を出力して転写ローラにVtを印加する制御方式である。
【0009】
このように、一定電流値に対する各転写ローラの発生電圧Vt0を参照して印字時の転写電圧Vtを決定することで、転写ローラの抵抗値に応じて最適電圧を印字時に印加することができ、広い範囲の抵抗値の転写ローラで良好な画像を得ることができる。
【0010】
【特許文献1】
特開平2−123385号公報(第3−5項、第4図)
【発明が解決しようとする課題】
しかしながら、上記従来例では以下に示すような欠点があり、転写ローラ抵抗値と記録材の抵抗値に応じて最適な転写電圧を決定することが難しかった。
【0011】
近年の印刷速度アップに伴いプロセススピードが上がることによって、転写に必要な転写電流が増えている、その対策として転写印加電圧値を大きくすることや、転写ローラ抵抗値を小さくすることで対応している。
【0012】
しかし、転写電流の増加に伴って、前記PTVC制御方式でのVt0の値を大きくすると、転写ニップに記録材が通紙されていない状態であるので、感光ドラムへ流れる電流が多くなり、ドラムメモリーが発生してしまう。よって、プロセススピードが速くなり、転写ローラ抵抗値を低くした場合には、Vt0の値を小さくし、転写電圧Vtは大きくしなければならない。更に、この画像形成装置を高温・高湿な環境下で使用した場合は、転写の系全体に流れる電流が多くなるので、Vt0の値は非常に小さくなる。このようにVt0の値が小さくなっていくと、転写電流回路の保護抵抗の影響を受けて正確な環境検知が行えなくなり、転写電流不足による転写不良等の問題を起こしてしまう。
【0013】
上記問題を防止するために、記録材が転写ローラと感光ドラムとの間に形成される転写ニップ部に突入した時に、予め定められた転写バイアス値を発生して、記録材に流れる電流値をモニタし、そのモニタ結果に応じて記録材へのトナー像転写中の転写ローラへの印加電圧値を補正する方法がある。
【0014】
しかし、上記方法でも上記転写ニップへ記録材の通紙が重ねられていくに従って感光ドラム表層(電荷輸送層)が削られ、ドラム容量が増加するために記録材に流れる電流が増えてしまう問題がある。
【0015】
本発明は上記問題に鑑みてなされたもので、その目的とする処は、何れの抵抗値の転写材でも良好な画像を得ることができる画像形成装置を提供することにある。
【0016】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の発明は、像担持体と、前記担持体と圧接ニップ部を形成し該圧接ニップ部に挿入された転写材に像担持体上のトナー像を転写させる転写部材と、前記転写部材に電圧を印加する電圧印加手段と、前記電圧印加手段から出力される電流値を検知する電流検知回路と、印字動作前の前記転写部材の抵抗の検知する抵抗検知手段とを有する画像形成装置において、前記圧接ニップ部に転写材が挿入されてから一定時間後の前記電流検出回路の電流検出結果に応じて前記電圧印加手段の出力電圧を補正する電圧補正手段と、前記像担持体の使用量を検知する手段を有し、前記抵抗検出手段による印字動作前の前記転写部材の抵抗検知結果と、前記電流検知結果と、前記像担持体の使用量に応じて前記電圧補正値を変化させることを特徴とする。
【0017】
請求項2記載の発明は、請求項1記載の発明において、前記電圧補正手段は、前記記録材先端が前記転写ニップ部に到達したときに前記転写ローラに印加する転写電圧値を、前記像担持体と前記転写ローラの抵抗測定結果に応じて予め設定しておくことを特徴とする。
【0018】
請求項3記載の発明は、請求項1又は2記載の発明において、前記像担時体の表面電位を変えることで、画像濃度設定を変更して画像形成を行う画像形成装置であって、前記画像濃度設定に応じて前記転写電圧補正値を変化させることを特徴とする。
【0019】
従って、本発明によれば、PTVC制御により転写電圧を決定する転写制御方式に加えて、転写材先端が像担持体と転写部材との圧接ニップ部に挿入された直後の転写電流の変化をモニタして転写材抵抗値を検出し、その結果に基づいて転写電圧を補正するようにしたため、何れの抵抗値の転写材でも良好な画像を得ることができる。
【0020】
又、像担持体の使用量が増し、転写材先端が像担持体と転写部材との圧接ニップ部に挿入された直後の転写電流が増加した場合、転写電圧の補正方法を変えることで、該像担持体の寿命を延命することが可能である。
【0021】
【発明の実施の形態】
以下に本発明の実施の形態を添付図面に基づいて説明する。
【0022】
<実施の形態1>
図1は本発明に係る画像形成装置の略断面図である。
【0023】
図1において、1は像担持体たる感光ドラムであり、OPC、アモルファスSi等の感光材料をアルミニウムやニッケル等のシリンダ状の基板上に形成して構成されており、駆動手段Aにより矢印の時計方向aに所定の周速度で回転駆動される。
【0024】
2は回転する感光ドラム1の周囲を所定の極性・電位に一様に帯電処理する帯電手段であり、本例では帯電ローラを使用した接触帯電装置を用いている。
【0025】
3は画像情報露光手段であり、本例ではレーザビームスキャナーを用いている。このスキャナー3は、半導体レーザ、ポリゴンミラー、F・θレンズ等を有しており、不図示のホスト装置から送られてきた画像情報に応じてON/OFF制御されたレーザビームLを出射して感光ドラム1の一様の帯電された表面を走査露光し、静電潜像を形成する。
【0026】
4は現像装置であり、感光ドラム1上の静電潜像をトナー像として現像する。現像方法としては、ジャンピング現像法、2成分現像法が用いられ、イメージ露光と反転現像との組み合わせで用いられることが多い。
【0027】
5は弾性層を有する回転体形状の接触帯電部材としての転写ローラであり、感光ドラム1に対して加圧接触させて転写ニップ部Nを形成させてあり、駆動手段Bにより矢印の時計方向bに所定の周速度で回転駆動される。この転写ローラ5の構成・作用等については後述する。
【0028】
回転感光ドラム1上に形成されたトナー像は、該転写ニップ部Nに対して給紙部から給紙された記録材P(転写材)に対して順次静電転写される。
【0029】
給紙部から給紙された記録材Pは、プレフィードセンサー10で待機した後に、レジストローラ11、レジストセンサ12、転写前ガイド13を通過して転写ニップ部N(画像形成部)に給紙される。記録材Pは、レジストセンサ12によって感光ドラム1の表面に形成されるトナー像と同期取りされて、感光ドラム1と転写ローラ5とで形成される転写ニップ部に供給される。
【0030】
転写ニップ部Nにおいてトナー像の転写を受け、転写ニップ部Nを通過した記録材Pは、感光ドラム1の面から分離され、シートパス17を通って定着装置18へ搬送される。
【0031】
本例の定着装置18は加熱フィルムユニット18aと加圧ローラ18bの圧接ローラ対から成るフィルム加熱方式の定着装置であり、トナー層を保持した記録材Pは、加熱フィルムユニット18aと加圧ローラ18bの圧接部である定着ニップ部Tで狭持搬送されて過熱・加圧を受けることでトナー像が記録材P上に定着され永久画像となる。トナー像が定着された記録材Pは、排紙ローラ19に従って機外に排出される。
【0032】
一方、記録材Pに対するトナー像転写後の感光ドラム1の表面は、クリーニング装置6により転写残留トナーの除去を受けて清掃されて繰り返して作像に供される。本例のクリーニング装置6はブレードクリーニング装置であり、6aはそのクリーニングブレードである。
【0033】
図2は転写ローラ部分の一端側の拡大模型図、図3は転写ローラの途中部分省略の正面模型図である。
【0034】
転写ローラ5は鉄、SUS等の芯金5a上にEPDM、シリコーン、NBR、ウレタン等のソリッド状或は左記ゴムを発泡させたスポンジ状の弾性体を形成し、ローラ硬度は20〜70度(Asker C 1kg荷重時)の範囲、抵抗値1×10 〜1×1010[Ω]の範囲のものを使用する。
【0035】
21は転写電圧印加電源であり、この電源21から導電性加圧バネ5d・軸受け部材5c・芯金5aを介して転写ローラ5に対して転写電圧が印加される。又、22は転写電流回路の保護抵抗であり、抵抗値は100[MΩ]である。給紙部から所定の制御タイミングで転写ニップ部Nに給紙された記録材Pは、転写ニップ部Nで狭持搬送される間、転写電圧印加電源21よりローラ5に対して感光ドラム1上のトナー像と逆極性の所望の電圧が印加されて、転写ニップ部N内で記録材Pに電荷が付与されて感光ドラム1上のトナー像が記録材P側に順次静電転写される。
【0036】
しかし、従来から用いられてきたPTVCによる定電圧制御方式には単なる定電流制御に対して記録材に所望の電流を流すことが可能で、比較的安定した転写電圧を与えられることが可能であった。しかしながら、記録材の種類は多種多様で、その表面抵抗値は様々な値があり、厚みのある紙でも低抵抗であったり、薄手の記録材であっても高抵抗であったり、表面性や坪量だけではその記録材の物理的特性ははかり知ることができず、定電圧制御方式を用いた場合、その記録材の抵抗値に応じて転写電流量が変化してしまい、時として転写電流不足のよる転写不良等の問題を生じてしまうことがあり、記録材の抵抗値を含めた系全体に適正電流を通電させることができる適正電圧を知る必要がある。
【0037】
特に、使用する雰囲気環境によって転写ローラの抵抗値が2桁以上変化するため、PTVC制御方式では、先ずプリント前の非通紙時に感光ドラム表面を帯電させた状態で一定電流値を目標にPWM信号を段階的に上げて転写ローラに電圧を印加し、目標電流値に達成した電圧値をVt0としてホールドする。
【0038】
次に、このVt0値と、予めプリンタ本体に内蔵されている主記憶装置内にメモリしておいた転写出力テーブルとから、Vt0に適した印字時の転写電圧Vtを決定するとともに、印字時にはその転写電圧Vtに対応したPWM信号を出力して転写ローラに転写電圧Vtを印加するようにすることで、転写ローラの抵抗値変化に対応している。
【0039】
しかし、環境が変わると転写ローラ抵抗値だけではなく、記録材の抵抗値も変化する。そうすると、環境によってはVt0から設定した転写電圧Vtでは転写電流が不足し、転写不良が発生する場合がある。
【0040】
ここで、転写ローラのプロセススピードを130[mm/sec]として、常温・常湿(25℃・50%:以下、N/Nと記す)、高温・高湿(32℃・80%:以下、H/Hと記す)、高温・低湿(32℃・20%:以下、H/Lと記す)の各環境でのVt0と適正な転写電圧値Vtを調べた。
【0041】
又、記録材にはレターサイズのもので坪量は75[g/m ]を用いた。
【0042】
その結果の転写電圧値VtとVt0の関係を図4に示す。
【0043】
図中の斜線部分が各環境下における適正転写電圧値を表している。又、各環境下での記録材が感光ドラムと転写ローラの間の圧接ニップに突入した時に流れる転写電流値(紙先端電流値)を表1に示す。
【0044】
ここで、図4においてVt0が1〜1. 2kVの範囲にある場合、H/L、N/N、H/Hの各環境下で適正な転写電圧値Vtの値が異なっている。又、表1より各環境下で紙先端での転写電流値が異なることから、紙先端での転写電流値をモニタしその結果に応じて転写電圧値Vtの補正を行う。この補正を行うことによって、各環境に対応した適正な転写電圧を印加することが可能となる。
【0045】
【表1】

Figure 2004334017
更に、カートリッジメモリ内の感光ドラム回転数情報により、感光ドラムの使用量を検知し、その使用量に応じて転写電圧値Vtの補正方法を変える。
【0046】
感光ドラムは通紙により表層(電荷輸送層)が削れ、ドラムの抵抗値が低下していく。従って、通紙を重ねることによって転写電流値は増加していく。この場合、PTVC制御方式により転写ニップに記録材が突入する前に、転写の系全体のインピーダンスを測定することで、適正な転写電圧値Vtを出力していた。
【0047】
しかしながら、印刷速度のスピードアップに伴って転写電圧値を大きくし、転写ローラ抵抗値を小さくした場合には、ドラムメモリー防止のためPTVC制御方式におけるVt0の値を小さくしなければならない。そのため、Vt0の値と転写電圧値Vtの値の差が大きくなり、転写電流回路の保護抵抗の影響を受けてしまい、正確に転写ローラの抵抗負荷や感光ドラムの抵抗負荷を検知できなくなってしまう。
【0048】
表2に転写ローラのプロセススピードを130[mm/sec]として、N/NとH/Hの各環境での記録材が転写ニップに突入した時に流れる紙先端の転写電流値と通紙枚数の関係を示す。又、記録材にはレターサイズのもので坪量は75[g/m ]を用いた。
【0049】
【表2】
Figure 2004334017
表2より、N/N環境で15000枚以上通紙した感光ドラムを用いた場合と、H/H環境で10000枚まで通紙した感光ドラムを用いた場合では、紙先端電流値の検知により適切な転写電圧値補正を行うことができない。
【0050】
従って、カートリッジメモリー内のドラム回転情報により、感光ドラムの使用量に応じて、N/NとH/Hの環境を切り分ける、紙先端電流の閾値を変えることで、通紙が重ねられた感光ドラムを使用しても、常に適正な転写電圧値Vtを印加することができる。
【0051】
以上、本実施の形態では、感光ドラムが通紙により表層が削られても、カートリッジメモリー内のドラム回転情報により、感光ドラムの使用量を検知し、その使用量に応じて転写電圧値Vtの補正方法を変えることで、通紙枚数によらず良好な画像が得られる。
【0052】
<実施の形態2>
次に、本発明の実施の形態2について説明する。
【0053】
本実施の形態に係る画像形成装置全体の構成は、前記実施の形態1で示したのと同様であるため説明を省く。
【0054】
ユーザーが画像濃度設定を変更して印刷を行った場合、現像バイアス及び感光ドラムの電位が変化する。今、画像濃度を濃くなるように設定した場合、感光ドラムの表面電位と転写印加電圧の電位差が大きくなるため、記録材が転写ニップに突入した時に流れる紙先端の転写電流値が大きくなる。
【0055】
ここで、転写ローラのプロセススピードを130[mm/sec]として、N/N環境下で画像濃度設定をF1(濃い)〜F9(薄い)まで変えたときの、記録材が転写ニップに突入した時に流れる紙先端電流値を測定した。その結果を表3に示す。又、記録材にはレターサイズのもので坪量は75[g/m ]を用いた。
【0056】
【表3】
Figure 2004334017
表3より、N/N環境下でユーザーが画像濃度設定を変更して印刷を行うと、使用環境を誤検知してしまう可能性がある。よって、画像濃度設定を変更した場合には、記録材が転写ニップに突入した時の転写電流をモニタし、転写電圧を補正する時の補正値及び環境を切り分ける紙先端電流の閾値を変更することによって、画像濃度設定を変更しても適切な転写電圧を印加することができる。
【0057】
【発明の効果】
以上の説明で明らかなように、本発明によれば、像担持体と、前記担持体と圧接ニップ部を形成し該圧接ニップ部に挿入された転写材に担持体上のトナー像を転写させる転写部材と、前記転写部材に電圧を印加する電圧手段と、前記電圧印加手段から出力される電流値を検出する電流回路と、印字動作前の前記転写部材の抵抗を検知する抵抗検知手段とを有する画像形成装置において、前記圧接ニップ部に転写材が挿入されてから一定時間後の前記電流検知回路の電流検知結果に応じて前記電圧印加手段の出力電圧を補正する電圧補正手段を有し、前記電圧補正値を前記抵抗検知手段により印字動作前の前記転写部材の抵抗検知結果と、前記電流検知結果に応じて転写印加電圧を補正するようにしたため、該画像形成装置が使用されている環境に応じて最適な転写バイアス定電圧制御が可能となり、文字画像での飛び散りやハーフトーン画像での突き抜け、ドラムメモリー等の現像を防止することができる。
【0058】
又、カートリッジメモリー内のドラム回転情報により、感光ドラムの使用量を検知し、その使用量に応じて転写電圧値Vtの補正方法を変えることで、通紙枚数によらず良好な画像が得られる。
【図面の簡単な説明】
【図1】本発明に係る画像形成装置要部の断面図である。
【図2】本発明に係る画像形成装置の転写ローラ部分の一端拡大図である。
【図3】本発明に係る画像形成装置の転写ローラの途中部分省略の正面図である。
【図4】本発明に係る画像形成装置の適正転写電圧値の関係図である。
【符号の説明】
1 感光ドラム
2 帯電ローラ
3 半導体レーザ
4 現像器
5 転写ローラ
6 クリーニング容器
11 転写前ローラ
12 トップセンサ
13 転写下ガイド
18 定着器
19 排紙ローラ
20 排紙ガイド
21 転写高圧回路
22 転写電流回路安全抵抗
P 記録材
N 転写ニップ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an image forming apparatus such as an electrophotographic or electrostatic recording method, for example, a copying machine, a printer, and a facsimile, and more particularly, to a transfer roller for electrostatically transferring a toner image on an image carrier to a recording material. And an image forming apparatus using the same.
[0002]
[Prior art]
Conventionally, in an image forming apparatus of this type, as a means for electrostatically transferring a toner image on an image carrier, a corona transfer device using corona discharge, a toner is applied to a conductive elastic roller (transfer roller). A roller transfer device that applies a transfer bias of opposite polarity to electrostatically transfer the recording material onto the recording material. The recording material is electrostatically attracted to the belt-like rotating body, and the toner is generated by electrostatic force from the belt-like rotating body. A belt transfer device or the like that transfers an image to a recording material is widely used. Among these, the roller transfer device has been widely used in recent years because of the low generation of ozone and the simplification of the configuration of the image forming apparatus because the transfer roller can also serve as the recording material conveying roller.
[0003]
In the roller transfer method, a transfer roller (conductive elastic roller) having a medium resistance elastic layer whose resistance is adjusted to 1 × 10 6 to 1 × 10 10 Ω is used as a contact transfer member, and this is used as an image carrier (hereinafter, referred to as an image carrier). (Hereinafter referred to as a photosensitive drum), and a transfer bias is applied to the transfer roller while the transfer material is held and conveyed in a transfer nip portion which is a pressure contact nip portion formed by the photosensitive drum and the transfer roller. This is to impart a charge having a polarity opposite to that of the toner image to the transfer material and transfer the toner image on the photosensitive drum to the transfer material.
[0004]
The above transfer roller has an elastic layer whose resistance value is appropriately adjusted, for example, by dispersing inorganic conductive particles such as carbon in rubber or sponge, or using an ion conductive rubber or the like kneaded with a surfactant or the like. It is well known that the transfer roller has a resistance value that changes by one digit or more due to variations during manufacturing, humidity temperature, resistance value change due to long-term use (durability), and the like.
[0005]
It is conceivable to apply a transfer voltage to the transfer roller by a “constant current application method” in order to always supply an optimum current to the transfer roller that changes in resistance as described above. When a small-size transfer material having a width smaller than the paper passing width is used for paper passing and a non-paper passing area where the photosensitive drum and the transfer roller are in direct contact with each other in the length of the transfer nip portion, current is concentrated here. Flows, the current supply to the transfer material is insufficient, and transfer failure occurs.
[0006]
For this reason, many image forming apparatuses employ a “constant voltage application method” in order to allow an appropriate current to flow regardless of the transfer material size. In the constant voltage application method, a constant current value to be passed to the transfer roller when passing paper is passed through the transfer roller before the transfer operation in order to pass an appropriate current to the resistance value of the transfer roller that changes depending on manufacturing conditions and environment. A bias control method (ATVC control method: Active Transfer Voltage Control) in which the generated voltage is held and applied at the time of transfer, or a certain constant current is supplied to the transfer roller before the paper is passed, and the generated voltage at that time is controlled in advance. The transfer system detects the impedance of the transfer system before paper passing by a bias control method (PTVC control method: Programmable Transfer Voltage Control) or the like that applies the voltage calculated in the formula at the time of transfer, and transfers the transfer voltage in a proper range of current. (For example, see Patent Document 1). .
[0007]
In particular, the PTVC control method can perform more precise bias control than the ATVC method, which is composed of a circuit having a hardware configuration and has only a few bias values that can be applied. Further, since a hardware circuit for voltage control is not required, the voltage control method is advantageous in terms of cost.
[0008]
The PTVC control method will be described in more detail. The PWM signal (Pulse Width Modulation: Pulse Width Modulation) is stepwise increased for a constant current in a state where the surface of the photosensitive drum is charged when paper is not passed before printing. A voltage is applied to the transfer roller, and the voltage value that has reached the target current value is held as Vt0. From the Vt0 value and a transfer output table stored in advance in the CPU of the control circuit, a transfer voltage Vt at the time of application suitable for the Vt0 value is determined, and at the time of application, a PWM signal corresponding to the transfer voltage Vt is determined. Is output to apply Vt to the transfer roller.
[0009]
As described above, by determining the transfer voltage Vt at the time of printing with reference to the generated voltage Vt0 of each transfer roller for a constant current value, an optimum voltage can be applied at the time of printing according to the resistance value of the transfer roller. A good image can be obtained with a transfer roller having a wide range of resistance values.
[0010]
[Patent Document 1]
JP-A-2-123385 (Section 3-5, FIG. 4)
[Problems to be solved by the invention]
However, the above-described conventional example has the following drawbacks, and it is difficult to determine an optimum transfer voltage in accordance with the transfer roller resistance value and the recording material resistance value.
[0011]
The transfer current required for transfer is increasing due to the increase in process speed accompanying the recent increase in printing speed. To cope with this, increase the transfer application voltage value and decrease the transfer roller resistance value. I have.
[0012]
However, if the value of Vt0 in the PTVC control method is increased with an increase in the transfer current, the recording material is not passed through the transfer nip. Will occur. Therefore, when the process speed is increased and the transfer roller resistance value is reduced, the value of Vt0 must be reduced and the transfer voltage Vt must be increased. Furthermore, when this image forming apparatus is used in a high-temperature and high-humidity environment, the current flowing through the entire transfer system increases, so that the value of Vt0 becomes extremely small. When the value of Vt0 becomes smaller as described above, accurate environmental detection cannot be performed due to the influence of the protection resistance of the transfer current circuit, and a problem such as transfer failure due to insufficient transfer current occurs.
[0013]
In order to prevent the above problem, when the recording material enters a transfer nip formed between the transfer roller and the photosensitive drum, a predetermined transfer bias value is generated, and a current value flowing through the recording material is reduced. There is a method of monitoring and correcting a voltage value applied to a transfer roller during transfer of a toner image to a recording material according to the monitoring result.
[0014]
However, even with the above method, the surface layer (charge transport layer) of the photosensitive drum is scraped as the recording material passes through the transfer nip, and the current flowing through the recording material increases because the drum capacity increases. is there.
[0015]
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and a purpose thereof is to provide an image forming apparatus capable of obtaining a good image with a transfer material having any resistance value.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, an image carrier, a press nip portion formed with the carrier, and a toner image on the image carrier is transferred to a transfer material inserted into the press nip portion. A transfer member to be applied, a voltage application unit for applying a voltage to the transfer member, a current detection circuit for detecting a current value output from the voltage application unit, and a resistance detection for detecting a resistance of the transfer member before a printing operation. Means for correcting the output voltage of the voltage applying means according to a current detection result of the current detection circuit after a predetermined time after the transfer material is inserted into the pressure contact nip portion, and A means for detecting the amount of use of the image carrier, the resistance detection result of the transfer member before the printing operation by the resistance detection means, the current detection result, according to the amount of use of the image carrier The voltage correction And wherein the changing the.
[0017]
According to a second aspect of the present invention, in the first aspect of the present invention, the voltage correction unit sets a transfer voltage value to be applied to the transfer roller when the leading end of the recording material reaches the transfer nip portion, by the image carrier. It is characterized in that it is set in advance according to the resistance measurement results of the body and the transfer roller.
[0018]
According to a third aspect of the present invention, there is provided the image forming apparatus according to the first or second aspect, wherein an image density setting is changed by changing a surface potential of the image bearing member to form an image. The transfer voltage correction value is changed according to the image density setting.
[0019]
Therefore, according to the present invention, in addition to the transfer control method in which the transfer voltage is determined by PTVC control, the change in the transfer current immediately after the leading end of the transfer material is inserted into the press-contact nip portion between the image carrier and the transfer member is monitored. Then, the transfer material resistance value is detected, and the transfer voltage is corrected based on the result, so that a good image can be obtained with the transfer material having any resistance value.
[0020]
Further, when the amount of use of the image carrier increases and the transfer current immediately after the leading end of the transfer material is inserted into the press-contact nip portion between the image carrier and the transfer member increases, the transfer voltage correction method is changed. It is possible to extend the life of the image carrier.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0022]
<Embodiment 1>
FIG. 1 is a schematic sectional view of an image forming apparatus according to the present invention.
[0023]
In FIG. 1, reference numeral 1 denotes a photosensitive drum serving as an image carrier, which is formed by forming a photosensitive material such as OPC or amorphous Si on a cylindrical substrate such as aluminum or nickel. It is rotationally driven at a predetermined peripheral speed in the direction a.
[0024]
Reference numeral 2 denotes a charging unit for uniformly charging the periphery of the rotating photosensitive drum 1 to a predetermined polarity and potential. In this embodiment, a contact charging device using a charging roller is used.
[0025]
Reference numeral 3 denotes an image information exposure unit, which uses a laser beam scanner in this example. The scanner 3 has a semiconductor laser, a polygon mirror, an F / θ lens, etc., and emits a laser beam L that is ON / OFF controlled according to image information sent from a host device (not shown). The uniformly charged surface of the photosensitive drum 1 is scanned and exposed to form an electrostatic latent image.
[0026]
A developing device 4 develops the electrostatic latent image on the photosensitive drum 1 as a toner image. As a developing method, a jumping developing method or a two-component developing method is used, and a combination of image exposure and reversal developing is often used.
[0027]
Reference numeral 5 denotes a transfer roller as a rotating body-shaped contact charging member having an elastic layer. The transfer roller 5 is brought into pressure contact with the photosensitive drum 1 to form a transfer nip portion N. At a predetermined peripheral speed. The configuration and operation of the transfer roller 5 will be described later.
[0028]
The toner image formed on the rotating photosensitive drum 1 is sequentially electrostatically transferred to a recording material P (transfer material) fed from a paper feed unit to the transfer nip N.
[0029]
The recording material P fed from the paper feeding unit is fed to the transfer nip N (image forming unit) after passing through the registration roller 11, the registration sensor 12, and the pre-transfer guide 13 after waiting by the pre-feed sensor 10. Is done. The recording material P is supplied to a transfer nip formed by the photosensitive drum 1 and the transfer roller 5 in synchronization with a toner image formed on the surface of the photosensitive drum 1 by the registration sensor 12.
[0030]
The recording material P that has received the transfer of the toner image at the transfer nip N and has passed through the transfer nip N is separated from the surface of the photosensitive drum 1, and is conveyed to the fixing device 18 through the sheet path 17.
[0031]
The fixing device 18 of this embodiment is a film heating type fixing device including a pressure roller pair of a heating film unit 18a and a pressure roller 18b. The recording material P holding the toner layer is heated by the heating film unit 18a and the pressure roller 18b. The toner image is fixed on the recording material P by being nipped and conveyed in the fixing nip portion T, which is a pressure contact portion, and subjected to overheating and pressurization, and becomes a permanent image. The recording material P on which the toner image has been fixed is discharged out of the apparatus according to a discharge roller 19.
[0032]
On the other hand, the surface of the photosensitive drum 1 after the transfer of the toner image to the recording material P is cleaned by removing the transfer residual toner by the cleaning device 6, and is repeatedly provided for image formation. The cleaning device 6 of this example is a blade cleaning device, and 6a is its cleaning blade.
[0033]
FIG. 2 is an enlarged model diagram of one end side of the transfer roller portion, and FIG. 3 is a front model diagram of the transfer roller with an intermediate portion omitted.
[0034]
The transfer roller 5 is formed from a solid metal such as EPDM, silicone, NBR, urethane, or the like or a sponge-like elastic body obtained by foaming the above rubber on a core metal 5a such as iron or SUS, and has a roller hardness of 20 to 70 degrees ( Asker C (with a load of 1 kg) and a resistance value within a range of 1 × 10 6 to 1 × 10 10 [Ω] are used.
[0035]
Reference numeral 21 denotes a transfer voltage application power supply, and a transfer voltage is applied from the power supply 21 to the transfer roller 5 via the conductive pressure spring 5d, the bearing member 5c, and the cored bar 5a. Reference numeral 22 denotes a protection resistor for the transfer current circuit, and the resistance value is 100 [MΩ]. The recording material P fed to the transfer nip N at a predetermined control timing from the paper feed unit is conveyed by the transfer voltage applying power supply 21 to the roller 5 from the transfer drum 21 while being conveyed by the transfer nip N. Is applied to the recording material P in the transfer nip N, and the toner image on the photosensitive drum 1 is sequentially electrostatically transferred to the recording material P side.
[0036]
However, in the conventional constant voltage control method using PTVC, a desired current can be applied to the recording material in comparison with simple constant current control, and a relatively stable transfer voltage can be given. Was. However, there are various types of recording materials, and their surface resistance values have various values. Even if the paper is thick, the resistance is low. Even if the recording material is thin, the resistance is high. The basis weight alone cannot measure the physical properties of the recording material, and when the constant voltage control method is used, the transfer current varies depending on the resistance of the recording material. Insufficiency may cause problems such as transfer failure, and it is necessary to know an appropriate voltage that allows an appropriate current to flow through the entire system including the resistance value of the recording material.
[0037]
In particular, since the resistance value of the transfer roller changes by two digits or more depending on the atmosphere environment to be used, in the PTVC control method, the PWM signal is first targeted at a constant current value in a state where the surface of the photosensitive drum is charged when paper is not passed before printing. , And a voltage is applied to the transfer roller, and the voltage value attained to the target current value is held as Vt0.
[0038]
Next, from the Vt0 value and a transfer output table stored in advance in a main storage device built in the printer body, a transfer voltage Vt for printing suitable for Vt0 is determined. By outputting a PWM signal corresponding to the transfer voltage Vt and applying the transfer voltage Vt to the transfer roller, it is possible to cope with a change in the resistance value of the transfer roller.
[0039]
However, when the environment changes, not only the transfer roller resistance value but also the recording material resistance value changes. Then, depending on the environment, the transfer current may be insufficient at the transfer voltage Vt set from Vt0, and transfer failure may occur.
[0040]
Here, assuming that the process speed of the transfer roller is 130 [mm / sec], normal temperature and normal humidity (25 ° C. and 50%: hereinafter, referred to as N / N), and high temperature and high humidity (32 ° C. and 80%: below) Vt0 and an appropriate transfer voltage value Vt in respective environments of H / H), high temperature and low humidity (32 ° C., 20%; hereinafter, referred to as H / L) were examined.
[0041]
The recording material had a letter size of 75 g / m 2 .
[0042]
FIG. 4 shows the resulting relationship between the transfer voltage values Vt and Vt0.
[0043]
The hatched portions in the figure represent the appropriate transfer voltage values under each environment. Table 1 shows the transfer current value (paper tip current value) that flows when the recording material enters the pressure nip between the photosensitive drum and the transfer roller under each environment.
[0044]
Here, in FIG. In the range of 2 kV, the appropriate transfer voltage value Vt is different under the respective environments of H / L, N / N, and H / H. Further, since the transfer current value at the leading edge of the paper differs under each environment from Table 1, the transfer current value at the leading edge of the paper is monitored, and the transfer voltage value Vt is corrected according to the result. By performing this correction, it becomes possible to apply an appropriate transfer voltage corresponding to each environment.
[0045]
[Table 1]
Figure 2004334017
Further, the usage amount of the photosensitive drum is detected based on the photosensitive drum rotation speed information in the cartridge memory, and the method of correcting the transfer voltage value Vt is changed according to the usage amount.
[0046]
The surface layer (charge transport layer) of the photosensitive drum is scraped by passing the paper, and the resistance value of the drum decreases. Therefore, the transfer current value increases as the sheets are passed. In this case, the proper transfer voltage value Vt is output by measuring the impedance of the entire transfer system before the recording material enters the transfer nip by the PTVC control method.
[0047]
However, when the transfer voltage value is increased and the transfer roller resistance value is decreased with increasing printing speed, the value of Vt0 in the PTVC control method must be reduced in order to prevent drum memory. For this reason, the difference between the value of Vt0 and the value of the transfer voltage value Vt becomes large, and is affected by the protection resistance of the transfer current circuit, so that the resistance load of the transfer roller and the resistance load of the photosensitive drum cannot be accurately detected. .
[0048]
In Table 2, the process speed of the transfer roller is 130 [mm / sec], and the transfer current value of the leading edge of the paper flowing when the recording material enters the transfer nip in each of the N / N and H / H environments and the number of passed sheets are shown. Show the relationship. The recording material had a letter size of 75 g / m 2 .
[0049]
[Table 2]
Figure 2004334017
According to Table 2, when the photosensitive drum that has passed 15,000 sheets or more in the N / N environment and when the photosensitive drum that has passed up to 10,000 sheets in the H / H environment is used, the detection of the paper leading end current value is more appropriate. Transfer voltage correction cannot be performed.
[0050]
Therefore, according to the drum rotation information in the cartridge memory, the environment of N / N and H / H is separated according to the usage amount of the photosensitive drum, and the threshold value of the paper leading end current is changed to change the threshold value of the paper leading end current. Is used, an appropriate transfer voltage value Vt can always be applied.
[0051]
As described above, in the present embodiment, even if the surface layer of the photosensitive drum is cut by passing the paper, the usage amount of the photosensitive drum is detected based on the drum rotation information in the cartridge memory, and the transfer voltage value Vt is determined in accordance with the usage amount. By changing the correction method, a good image can be obtained regardless of the number of sheets passed.
[0052]
<Embodiment 2>
Next, a second embodiment of the present invention will be described.
[0053]
The configuration of the entire image forming apparatus according to the present embodiment is the same as that described in the first embodiment, and a description thereof will not be repeated.
[0054]
When the user changes the image density setting and performs printing, the developing bias and the potential of the photosensitive drum change. If the image density is set to be high, the potential difference between the surface potential of the photosensitive drum and the transfer applied voltage becomes large, so that the transfer current value at the leading edge of the paper flowing when the recording material enters the transfer nip becomes large.
[0055]
Here, when the process speed of the transfer roller was set to 130 [mm / sec] and the image density setting was changed from F1 (dark) to F9 (light) under the N / N environment, the recording material entered the transfer nip. The current value of the paper tip flowing at that time was measured. Table 3 shows the results. The recording material had a letter size of 75 g / m 2 .
[0056]
[Table 3]
Figure 2004334017
From Table 3, if the user changes the image density setting and performs printing under the N / N environment, there is a possibility that the usage environment is erroneously detected. Therefore, when the image density setting is changed, the transfer current when the recording material enters the transfer nip should be monitored, and the correction value for correcting the transfer voltage and the threshold value of the paper leading end current for separating the environment should be changed. Accordingly, an appropriate transfer voltage can be applied even when the image density setting is changed.
[0057]
【The invention's effect】
As is apparent from the above description, according to the present invention, an image carrier, a press-contact nip portion with the carrier, and a toner image on the carrier are transferred to a transfer material inserted into the press-nip portion. A transfer member, a voltage unit for applying a voltage to the transfer member, a current circuit for detecting a current value output from the voltage application unit, and a resistance detection unit for detecting a resistance of the transfer member before a printing operation. An image forming apparatus comprising: a voltage correction unit that corrects an output voltage of the voltage application unit in accordance with a current detection result of the current detection circuit after a predetermined time after a transfer material is inserted into the pressure contact nip, The voltage correction value is corrected by the resistance detection unit in accordance with the resistance detection result of the transfer member before the printing operation and the current detection result, so that the transfer application voltage is corrected. Optimum transfer bias voltage control becomes possible, and penetration of at scattering or halftone image in the character image, it is possible to prevent the development of such a drum memory according to.
[0058]
Further, by detecting the usage amount of the photosensitive drum based on the drum rotation information in the cartridge memory and changing the correction method of the transfer voltage value Vt according to the usage amount, a good image can be obtained regardless of the number of sheets passed. .
[Brief description of the drawings]
FIG. 1 is a sectional view of a main part of an image forming apparatus according to the present invention.
FIG. 2 is an enlarged view of one end of a transfer roller portion of the image forming apparatus according to the present invention.
FIG. 3 is a front view of a transfer roller of the image forming apparatus according to the present invention, in which an intermediate portion is omitted.
FIG. 4 is a diagram illustrating a relationship between appropriate transfer voltage values of the image forming apparatus according to the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 photosensitive drum 2 charging roller 3 semiconductor laser 4 developing device 5 transfer roller 6 cleaning container 11 pre-transfer roller 12 top sensor 13 transfer lower guide 18 fixing device 19 discharge roller 20 discharge guide 21 transfer high voltage circuit 22 transfer current circuit safety resistance P Recording material N Transfer nip

Claims (3)

像担持体と、前記担持体と圧接ニップ部を形成し該圧接ニップ部に挿入された転写材に像担持体上のトナー像を転写させる転写部材と、前記転写部材に電圧を印加する電圧印加手段と、前記電圧印加手段から出力される電流値を検知する電流検知回路と、印字動作前の前記転写部材の抵抗の検知する抵抗検知手段とを有する画像形成装置において、
前記圧接ニップ部に転写材が挿入されてから一定時間後の前記電流検出回路の電流検出結果に応じて前記電圧印加手段の出力電圧を補正する電圧補正手段と、前記像担持体の使用量を検知する手段を有し、前記抵抗検出手段による印字動作前の前記転写部材の抵抗検知結果と、前記電流検知結果と、前記像担持体の使用量に応じて前記電圧補正値を変化させることを特徴とする画像形成装置。
An image carrier, a transfer member that forms a pressure nip with the carrier and transfers a toner image on the image carrier to a transfer material inserted into the pressure nip, and a voltage application that applies a voltage to the transfer member Means, a current detecting circuit for detecting a current value output from the voltage applying means, and a resistance detecting means for detecting the resistance of the transfer member before a printing operation, the image forming apparatus,
A voltage correction unit that corrects an output voltage of the voltage application unit according to a current detection result of the current detection circuit after a predetermined time after the transfer material is inserted into the pressure contact nip, and a usage amount of the image carrier. Detecting means for detecting the resistance of the transfer member before the printing operation by the resistance detecting means, the current detection result, and changing the voltage correction value according to the usage amount of the image carrier. Characteristic image forming apparatus.
前記電圧補正手段は、前記記録材先端が前記転写ニップ部に到達したときに前記転写ローラに印加する転写電圧値を、前記像担持体と前記転写ローラの抵抗測定結果に応じて予め設定しておくことを特徴とする請求項1記載の画像形成装置。The voltage correction unit sets a transfer voltage value to be applied to the transfer roller when the leading end of the recording material reaches the transfer nip portion in advance according to a resistance measurement result of the image carrier and the transfer roller. The image forming apparatus according to claim 1, wherein: 前記像担時体の表面電位を変えることで、画像濃度設定を変更して画像形成を行う画像形成装置であって、前記画像濃度設定に応じて前記転写電圧補正値を変化させることを特徴とする請求項1又は2記載の画像形成装置。An image forming apparatus that performs image formation by changing an image density setting by changing a surface potential of the image bearing member, wherein the transfer voltage correction value is changed according to the image density setting. The image forming apparatus according to claim 1, wherein:
JP2003131733A 2003-05-09 2003-05-09 Image forming apparatus Withdrawn JP2004334017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003131733A JP2004334017A (en) 2003-05-09 2003-05-09 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131733A JP2004334017A (en) 2003-05-09 2003-05-09 Image forming apparatus

Publications (1)

Publication Number Publication Date
JP2004334017A true JP2004334017A (en) 2004-11-25

Family

ID=33506834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131733A Withdrawn JP2004334017A (en) 2003-05-09 2003-05-09 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP2004334017A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111087A1 (en) * 2006-03-27 2007-10-04 Kabushiki Kaisha Toshiba Pattern forming apparatus and pattern forming method
JP2010002434A (en) * 2008-06-18 2010-01-07 Konica Minolta Business Technologies Inc Image forming apparatus
US8059979B2 (en) 2007-12-27 2011-11-15 Brother Kogyo Kabushiki Kaisha Control of a power supply for a transfer unit in an image forming apparatus
US8229311B2 (en) 2009-07-07 2012-07-24 Brother Kogyo Kabushiki Kaisha Image forming device for determining transfer current based on ambient conditions
CN102608896A (en) * 2011-01-20 2012-07-25 富士施乐株式会社 Image forming apparatus and image forming method
JP2021067791A (en) * 2019-10-23 2021-04-30 株式会社リコー Image forming apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111087A1 (en) * 2006-03-27 2007-10-04 Kabushiki Kaisha Toshiba Pattern forming apparatus and pattern forming method
US8059979B2 (en) 2007-12-27 2011-11-15 Brother Kogyo Kabushiki Kaisha Control of a power supply for a transfer unit in an image forming apparatus
JP2010002434A (en) * 2008-06-18 2010-01-07 Konica Minolta Business Technologies Inc Image forming apparatus
US8229311B2 (en) 2009-07-07 2012-07-24 Brother Kogyo Kabushiki Kaisha Image forming device for determining transfer current based on ambient conditions
CN102608896A (en) * 2011-01-20 2012-07-25 富士施乐株式会社 Image forming apparatus and image forming method
US8787784B2 (en) 2011-01-20 2014-07-22 Fuji Xerox Co., Ltd. Image forming apparatus and image forming method for adjusting voltage applied to a transfer unit
CN102608896B (en) * 2011-01-20 2016-04-27 富士施乐株式会社 Image processing system and image forming method
JP2021067791A (en) * 2019-10-23 2021-04-30 株式会社リコー Image forming apparatus
JP7358905B2 (en) 2019-10-23 2023-10-11 株式会社リコー Image forming device

Similar Documents

Publication Publication Date Title
US8831452B2 (en) Image forming apparatus with transfer voltage detection
JP4532629B2 (en) Image forming apparatus
US7844200B2 (en) Image forming apparatus with a pre-exposure light control feature
US6205299B1 (en) Image forming apparatus in which whether transfer member should be constant-current-controlled or constant-voltage-controlled is selected depending on thickness of transfer material
JP2001305837A (en) Image forming device and process cartridge
US11644766B2 (en) Image forming apparatus that controls voltages to reduce image fogging
JP2004310060A (en) Cleaning device and image forming apparatus
US9927731B2 (en) Image forming apparatus having an electrifying member for electrifying an image carrier
JP4227446B2 (en) Image forming apparatus
JP2004334017A (en) Image forming apparatus
JP2012203178A (en) Image forming apparatus
JP4323775B2 (en) Image forming apparatus
JP2010224460A (en) Image forming apparatus
JP2003302846A5 (en)
JPH11219042A (en) Image forming device
US6334040B1 (en) Transfer roller whose non-driving-side end portion has a smaller diameter
JP2006072207A (en) Image forming apparatus
JP3524528B2 (en) Image forming device
JP4917317B2 (en) Image forming apparatus
JP2005173002A (en) Image forming apparatus
JP4510249B2 (en) Image forming apparatus
JP2006276703A (en) Image density control method and image forming apparatus
JP6269567B2 (en) Image forming apparatus
JPH11258920A (en) Image forming device
JP3660192B2 (en) Image forming apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060201

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801