JP2004333980A - Wdm signal controller - Google Patents

Wdm signal controller Download PDF

Info

Publication number
JP2004333980A
JP2004333980A JP2003131253A JP2003131253A JP2004333980A JP 2004333980 A JP2004333980 A JP 2004333980A JP 2003131253 A JP2003131253 A JP 2003131253A JP 2003131253 A JP2003131253 A JP 2003131253A JP 2004333980 A JP2004333980 A JP 2004333980A
Authority
JP
Japan
Prior art keywords
wavelength
signal
power
light
osnr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003131253A
Other languages
Japanese (ja)
Other versions
JP4216638B2 (en
Inventor
Takashi Kotanigawa
喬 小谷川
Toshiya Matsuda
俊哉 松田
Tomoyoshi Kataoka
智由 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003131253A priority Critical patent/JP4216638B2/en
Publication of JP2004333980A publication Critical patent/JP2004333980A/en
Application granted granted Critical
Publication of JP4216638B2 publication Critical patent/JP4216638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate unevenness of OSNR and path average light power of an optical wavelength multiplex transmission system which uses Raman amplification or Raman amplification and EDFA in combination. <P>SOLUTION: Denoting signal light loss and Raman stimulating light loss obtained from a previously measured transmission-loss wavelength dependence characteristic α(λ) as α(λs) and α(λp) and arbitrary transmission light power as P0, the optical signal-to-noise ratio OSNR and path average power Pave of one relay section are calculated and when a signal wavelength λs1 and an OSNR allowed deviation M1 giving a specified reference for OSNR, and a signal wavelength λs2 and a path average power allowed deviation M2 giving a specified reference for path average power are set, a range satisfying a transmission optical power relative value ΔP(λs) of signal light of each wavelength is found; and the transmission optical power relative value ΔP(λs) of signal light of each wavelength is controlled within the range of the transmission optical power relative value ΔP(λs). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、長距離大容量伝送を行う光波長多重伝送システムにおいて、波長多重信号光の伝送特性を均一にするWDM信号制御装置に関する。
【0002】
【従来の技術】
数千km以上の長距離光伝送実験の主な報告では、信号帯域として信号光の低損失波長領域であるC帯(1530nm〜1565nm)、L帯(1565nm〜1625nm)でのラマン増幅中継が用いられている(非特許文献1)。さらに、伝送容量を増大させるために、U帯(1625nm〜1675nm)を用いた伝送実験も報告されている(非特許文献2)。
【0003】
ラマン増幅は、励起光の波長よりも約 100nm長波長側に利得のピークが現れる。したがって、波長の異なる複数の励起光を用いると各励起光波長に対してそれぞれ利得ピークが現れるので、励起光波長に応じた任意の波長帯で利得帯域幅を拡大することができる。
【0004】
ところで、広帯域な波長多重信号光を同時に伝送した場合、各波長の信号光に重畳される光雑音特性や非線形効果などによる波形劣化の波長依存性に起因して、各波長の信号光が不均一な伝送特性になることが知られている。この不均一性を解消するために、受信側で伝送された波長多重信号光の光信号対雑音比(OSNR)を測定し、これが均一になるように送信側で送信光パワーを調整するプリエンファシス技術が提案されている。
【0005】
図7は、プリエンファシス技術を用いた従来の光波長多重伝送システムの構成例を示す(特許文献1)。図において、波長多重送信端局50の光送信器51−1〜51−nから出力される波長λ1〜λnの信号光は、光合波器52で波長多重して出力される。この波長多重信号光は、光ファイバ伝送路53および光増幅中継器54を介して波長多重受信端局55に伝送される。波長多重受信端局55では、波長多重信号光を光分波器56で各波長の信号光に分波し、それぞれ対応する光受信器57−1〜57−nで受信する。また、OSNR測定装置58で各信号チャネルのOSNRを測定し、波長多重送信端局50のプリエンファシス制御装置59にフィードバック伝送する。
【0006】
プリエンファシス制御装置59は、各信号チャネルのOSNRが均一になるように光送信器51−1〜51−nの各送信光パワーを制御する。例えば、OSNRが悪い信号チャネルほど送信光パワーが高くなるように制御する。
【0007】
【非特許文献1】
T.Matsuda et al.,”62×42.7Gbit/s(2.5Tbit/s) WDM signal transmission over 2200km with broadband distributed Raman amplification”, Electron. Lett., vol.38, no.15, pp.818−819, 2002
【非特許文献2】
T.Tanaka et al.,”200−nm Bandwidth WDM Transmission around 1.55μm using Distributed Raman Amplifier”, ECOC2002, PD4.6, 2002
【特許文献1】
特開平8−321824号公報
【0008】
【発明が解決しようとする課題】
プリエンファシス技術を用いた従来の光波長多重伝送システムは、各信号チャネルのOSNRの不均一性を解消するために、各送信光パワーを制御する構成であり、OSNRの悪い信号チャネルの送信光パワーが高くなりすぎることがある。その場合には、新たに非線形効果の影響による波形劣化が顕著になることがある。すなわち、従来の構成では、受信端におけるOSNRのみを考慮しており、非線形効果による波形劣化量に関係する経路平均パワー値の不均一性の解消については検討されていない。
【0009】
また、従来の構成では、経時劣化などを考慮して送信光パワーを所定の値に制御するためには、受信端でOSNRを常時モニタする必要があり、図7のようにフィードバック制御系が不可欠であった。
【0010】
また、図7に示す光増幅中継器54は、エルビウム添加光ファイバ増幅器(EDFA)や、低雑音性および広帯域性に優れるラマン増幅や、ラマン増幅とEDFAを組み合わせた構成である。
【0011】
本発明は、ラマン増幅またはラマン増幅とEDFAを併用した光波長多重伝送システムにおいて、信号光損失および励起光損失の波長依存性を考慮し、OSNRと経路平均光パワーの不均一性を解消し、さらに送信光パワーが経時変化した場合でもモニタリングなしにOSNRと経路平均光パワーが許容値から大きくずれないように制御できるWDM信号制御装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
(請求項1)
本発明のWDM信号制御装置は、ラマン増幅またはラマン増幅と光ファイバ増幅器を併用した光波長多重伝送システムにおいて、あらかじめ測定した伝送損失波長依存特性α(λ)から得られる信号光損失およびラマン励起光損失をα(λs) およびα(λp) とし(ただしλp=λs−100)、任意の送信光パワーをP0 としたときに、1中継区間の光信号対雑音比OSNR [α(λs),α(λp),P0]および経路平均パワーPave[α(λs),α(λp),P0]を計算する手段と、所定のOSNRの基準を与える信号波長λs1およびOSNR許容偏差M1 と、所定の経路平均パワーの基準を与える信号波長λs2および経路平均パワー許容偏差M2 を設定したときに、各波長の信号光の送信光パワー相対値ΔP(λs) について

Figure 2004333980
を満たす範囲を求め、その送信光パワー相対値ΔP(λs) の範囲内で各波長の信号光の送信光パワー相対値ΔP(λs) を制御する手段とを備える。
【0013】
(請求項2)
また、各波長の信号光の送信光パワー相対値ΔP(λs) について
Figure 2004333980
を満たす値を求め、その送信光パワー相対値ΔP(λs) に応じて各波長の信号光の送信光パワー相対値ΔP(λs) を制御する手段を用いてもよい。
【0014】
(請求項3)
本発明のWDM信号制御装置は、ラマン増幅と光ファイバ増幅器を併用し、ラマン増幅と光ファイバ増幅器の利得比率をrとする光波長多重伝送システムにおいて、あらかじめ測定した伝送損失波長依存特性α(λ)から得られる信号光損失およびラマン励起光損失をα(λs) およびα(λp) とし(ただしλp=λs−100)、任意の送信光パワーをP0 としたときに、1中継区間の光信号対雑音比OSNR [α(λs),α(λp),P0,r] および経路平均パワーPave[α(λs),α(λp),P0,r] を計算する手段と、所定のOSNRの基準を与える信号波長λs1およびOSNR許容偏差M1 と、所定の経路平均パワーの基準を与える信号波長λs2および経路平均パワー許容偏差M2 を設定したときに、各波長の信号光に対するラマン増幅と光ファイバ増幅器の相対利得比率Δr(λs) について
Figure 2004333980
を満たす範囲を求め、その相対利得比率Δr(λs) の範囲内で各波長の信号光の相対利得比率Δr(λs) を制御する手段とを備える。
【0015】
(請求項4)
また、各波長の信号光に対するラマン増幅と光ファイバ増幅器の相対利得比率Δr(λs) について
Figure 2004333980
満たす値を求め、その相対利得比率Δr(λs) に応じて各波長の信号光の相対利得比率Δr(λs) を制御する手段を用いてもよい。
【0016】
【発明の実施の形態】
(第1の実施形態)
図1は、本発明のWDM信号制御装置を用いた光波長多重伝送システムの第1の実施形態を示す。
【0017】
図において、光波長多重伝送システムは、波長多重送信端局10の光送信器11−1〜11−nから出力される波長λ1〜λnの信号光を光合波器12で波長多重し、光ファイバ伝送路13および光増幅中継器14を介して波長多重受信端局15に伝送する構成である。
【0018】
光増幅中継器14は、波長が異なる複数のラマン励起光源21−1〜21−mと、各波長のラマン励起光を合波する光合波器22−1と、合波された各ラマン励起光を光ファイバ伝送路13に入力する光合波器22−2と、光ファイバ伝送路13に挿入されるEDFA23により構成される。なお、全ラマン増幅を行う場合にはEDFA23は省略される。
【0019】
本発明のWDM信号制御装置30は、本実施形態では光送信器11−1〜11−nから出力される各送信光パワーを制御する構成であり、入力部31、計算部32および送信光パワー制御部33から構成される。
【0020】
入力部31は、あらかじめ測定した伝送損失波長依存特性α(λ)と、所定のOSNRの基準を与える信号波長λs1およびOSNR許容偏差M1 と、所定の経路平均パワーの基準を与える信号波長λs2および経路平均パワー許容偏差M2 を入力し、各入力値を保持している。
【0021】
計算部32は、この入力値をもとに、信号光損失をα(λs) 、ラマン励起光損失をα(λp) 、任意の送信光パワーをP0 としたときに、1中継区間のOSNR[α(λs), α(λp), P0] および経路平均パワーPave[α(λs), α(λp), P0]について計算し、さらに各波長の信号光の送信光パワー相対値ΔP(λs) について
Figure 2004333980
を満たす範囲を求める。なお、λp =λs −100 である。
【0022】
送信光パワー制御部33は、得られた送信光パワー相対値ΔP(λs) の範囲内で、各光送信器11−1〜11−nにおける送信光パワー相対値ΔP(λs) を制御する。例えば、各光送信器11−1〜11−nの送信光パワーを、得られた送信光パワー相対値ΔP(λs) の範囲内で極力均一になるように制御する。なお、送信光パワー相対値の制御は、光送信器11−1〜11−nに配置される可変減衰器の減衰量を制御するか、光源の出力パワーを直接制御する構成とする。
【0023】
ここで、後方励起による全ラマン増幅を用い、一様の光ファイバ(中継区間L=100 km)の伝送損失を補償する光増幅中継系における具体的な計算例について説明する。図2は、分散シフトファイバの伝送損失波長依存特性の測定結果を示す。
【0024】
この測定結果から伝送損失波長依存特性を簡単化するために、C帯とL帯の損失は0.23dB/kmで一定とする。1430nmから1530nmまでの損失は、[1430nm,0.35dB/km]、[1530nm,0.23dB/km]を結ぶ直線近似で
α(λ) =−1.2×10−3(λ−1430) +0.35
とする。U帯の損失は、[1625nm,0.23dB/km]、[1675nm,0.29dB/km]を結ぶ直線近似で
α(λ) =1.2×10−3(λ−1625) +0.23
とする。
【0025】
波長多重信号光の波長範囲として1530nm〜1650nmまでのC帯、L帯およびU帯を適用すると、励起光波長は信号光波長に対して 100nm短波長であり、λs1=1530nm、λs2=1625nmとし、M1 =0dB、M2 =0.5 dBと設定すると、式(1−1),(1−2) は
Figure 2004333980
と表される。これを満たす送信光パワー相対値ΔP(λs) の領域を図3に示す。
【0026】
送信光パワー制御部33は、送信光パワー相対値ΔP(λs) が図3の斜線部の範囲内になるように、各波長の送信光パワーを制御する。これにより、各波長の信号光のOSNRは、1530nmにおけるOSNRに比べてM1 (0dB)小さい許容値以上の範囲内に収まり、かつ各波長の信号光の経路平均パワーPave は、1625nmにおけるPave に比べてM2 (0.5dB)大きい許容値以下の範囲内に収まることになる。
【0027】
(第2の実施形態)
第1の実施形態と同様の構成において、計算部32は、1中継区間のOSNR [α(λs),α(λp),P0]および経路平均パワーPave[α(λs),α(λp),P0]について計算し、さらに各波長の信号光の送信光パワー相対値ΔP(λs) について、
Figure 2004333980
を満たす値を求める。なお、λp =λs −100 である。
【0028】
送信光パワー制御部33は、得られた送信光パワー相対値ΔP(λs) の値に応じて、各光送信器11−1〜11−nにおける送信光パワー相対値ΔP(λs) を制御する。なお、送信光パワー相対値の制御は、光送信器に配置される可変減衰器の減衰量を制御するか、光源の出力を直接制御する構成とする。
【0029】
第1の実施形態と同様に、波長多重信号光の波長範囲として1530nm〜1650nmまでのC帯、L帯およびU帯を適用すると、励起光波長は信号光波長に対して 100nm短波長であり、λs1=1530nm、λs2=1625nmとし、M1 =0dB、M2 =0.5 dBと設定すると、式(2−1) 〜(2−3) は
Figure 2004333980
と表される。これを満たす送信光パワー相対値ΔP(λs) を図3に破線で示す。
【0030】
送信光パワー制御部33は、送信光パワー相対値ΔP(λs) が図3の破線の値になるように各波長の送信光パワーを制御する。これにより、各波長の信号光のOSNRおよび経路平均パワーPave を上記の許容範囲内に納めることができる。なお、この場合には、各波長の送信光パワーが経時変化などによりずれたとしても、図3の斜線部の範囲内に維持しやすくなる。
【0031】
(第3の実施形態)
図4は、本発明のWDM信号制御装置を用いた光波長多重伝送システムの第3の実施形態を示す。
【0032】
図において、光波長多重伝送システムは、波長多重送信端局10の光送信器11−1〜11−nから出力される波長λ1〜λnの信号光を光合波器12で波長多重し、光ファイバ伝送路13および光増幅中継器14を介して波長多重受信端局15に伝送する構成である。
【0033】
光増幅中継器14は、波長が異なる複数のラマン励起光源21−1〜21−mと、各波長のラマン励起光を合波する光合波器22−1と、合波された各ラマン励起光を光ファイバ伝送路13に入力する光合波器22−2と、光ファイバ伝送路13に挿入されるEDFA23により構成される。
【0034】
本発明のWDM信号制御装置40は、本実施形態では各波長の信号光に対するラマン増幅とEDFAの利得比率rを制御することにより、OSNRおよびPave を変化させる構成であり、入力部41、計算部42および利得制御部43から構成される。
【0035】
入力部41は、あらかじめ測定した伝送損失波長依存特性α(λ)と、所定のOSNRの基準を与える信号波長λs1およびOSNR許容偏差M1 と、所定の経路平均パワーの基準を与える信号波長λs2および経路平均パワー許容偏差M2 を入力し、各入力値を保持している。
【0036】
計算部42は、この入力値をもとに、信号光損失をα(λs) 、ラマン励起光損失をα(λp) 、任意の送信光パワーをP0 としたときに、1中継区間のOSNR [α(λs),α(λp),P0,r] および経路平均パワーPave[α(λs),α(λp),P0,r] について計算し、さらに各波長の信号光に対するラマン増幅とEDFAの利得比率rの相対利得比率Δr(λs) について
Figure 2004333980
たす範囲を求める。なお、λp =λs −100 である。
【0037】
利得制御部43は、得られた相対利得比率Δr(λs) の範囲内で、各ラマン励起光源21−1〜21−mおよびEDFA23における相対利得比率Δr(λs) を制御する。例えば、各ラマン励起光源21−1〜21−mおよびEDFA23における相対利得比率Δr(λs) が、得られた相対利得比率Δr(λs) の範囲内で極力均一になるように制御する。なお、相対利得比率の制御は、ラマン励起光源およびEDFAにおける励起光源の出力を直接制御する構成とする。
【0038】
図5(a),(b) は、1580nmにおける利得比率rとOSNRの関係および利得比率rと経路平均パワーPave の関係を示す。この関係に基づく信号光損失および励起光損失の波長依存性から、λs1=1530nm、λs2=1625nmとし、M1 =0dB、M2 =0dBと設定すると、式(3−1),(3−2) は
Figure 2004333980
と表される。これを満たす相対利得比率Δr(λs) の領域を図6に示す。
【0039】
光パワー制御部43は、相対利得比率Δr(λs) が図6の斜線部の範囲内になるように、ラマン励起光源21−1〜21−mおよびEDFA23を制御する。これにより、各波長の信号光のOSNRは、1530nmにおけるOSNRに比べてM1 (0dB)小さい許容値以上の範囲内に収まり、かつ各波長の信号光の経路平均パワーPave は、1625nmにおけるPave に比べてM2 (0dB)大きい許容値以下の範囲内に収まることになる。
【0040】
(第4の実施形態)
第3の実施形態と同様の構成において、計算部42は、1中継区間のOSNR [α(λs),α(λp),P0,r] および経路平均パワーPave[α(λs),α(λp),P0,r] について計算し、さらに各波長の信号光に対するラマン増幅とEDFAの利得比率rの相対利得比率Δr(λs) について
Figure 2004333980
を満たす値を求める。なお、λp =λs −100 である。
【0041】
利得制御部43は、得られた相対利得比率Δr(λs) の値に応じて、ラマン励起光源21−1〜21−mおよびEDFA23における相対利得比率Δr(λs)を制御する。なお、相対利得比率の制御は、ラマン励起光源およびEDFAにおける励起光源の出力を直接制御する構成とする。
【0042】
第3の実施形態と同様に、波長多重信号光の波長範囲として1530nm〜1650nmまでのC帯、L帯およびU帯を適用すると、励起光波長は信号光波長に対して 100nm短波長であり、λs1=1530nm、λs2=1625nmとし、M1 =0dB、M2 =0dBと設定すると、式(4−1) 〜(4−3) は
Figure 2004333980
と表される。これを満たす相対利得比率Δr(λs) を図6に破線で示す。
【0043】
利得制御部43は、相対利得比率Δr(λs) が図6の破線の利得になるようにラマン励起光源21−1〜21−mおよびEDFA23を制御する。これにより、各波長の信号光のOSNRおよび経路平均パワーPave を上記の許容範囲内に納めることができる。なお、この場合には、各波長の利得比率が経時変化などによりずれたとしても、図6の斜線部の範囲内に維持しやすくなる。
【0044】
ところで、特定の波長のラマン励起光源を制御すれば、それに応じてラマン利得プロファイルの波長依存性も変化する一方で、EDFAの利得プロファイルの形状はほぼ一定であるので、全信号波長において任意に利得比率を変化させることが困難な場合がある。これを克服するには、EDFAに代えて集中増幅型のラマン増幅を併用する構成とすればよい。
【0045】
また、U帯においてEDFAを用いない場合に、全信号波長で任意に利得比率を変化させるには、同様に分布増幅型のラマン増幅と集中増幅型のラマン増幅を併用する構成とすればよい。
【0046】
【発明の効果】
以上説明したように、本発明のWDM信号制御装置を用いることにより、広帯域のWDM信号の伝送特性(光信号対雑音比OSNRおよび経路平均パワーPave )をほぼ均一にすることができる。また、各波長の信号光の送信光パワーが経時変化などによりずれたとしても、所定のOSNR許容値および経路平均パワー許容値内に保持することが容易になる。
【図面の簡単な説明】
【図1】本発明のWDM信号制御装置を用いた光波長多重伝送システムの第1の実施形態を示す図。
【図2】分散シフトファイバの伝送損失波長依存特性の測定結果を示す図。
【図3】各波長の信号光における送信光パワー相対値ΔP(λs) を示す図。
【図4】本発明のWDM信号制御装置を用いた光波長多重伝送システムの第3の実施形態を示す図。
【図5】1580nmにおける利得比率rとOSNRおよびPave の関係を示す図。
【図6】各波長の信号光における相対利得比率Δr(λs) を示す図。
【図7】プリエンファシス技術を用いた従来の光波長多重伝送システムの構成例を示す図。
【符号の説明】
10 波長多重送信端局
11 光送信器
12 光合波器
13 光ファイバ伝送路
14 光増幅中継器
15 波長多重受信端局
21 ラマン励起光源
22 光合波器
23 EDFA
30 WDM信号制御装置
31 入力部
32 計算部
33 送信光パワー制御部
40 WDM信号制御装置
41 入力部
42 計算部
43 利得制御部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a WDM signal control device for making transmission characteristics of wavelength multiplexed signal light uniform in an optical wavelength multiplex transmission system for performing long-distance large-capacity transmission.
[0002]
[Prior art]
In main reports of long-distance optical transmission experiments of several thousand km or more, Raman amplification relay in the C band (1530 nm to 1565 nm) and the L band (1565 nm to 1625 nm), which are low-loss wavelength regions of signal light, is used as a signal band. (Non-Patent Document 1). Furthermore, in order to increase the transmission capacity, a transmission experiment using the U band (1625 nm to 1675 nm) has been reported (Non-Patent Document 2).
[0003]
In Raman amplification, a gain peak appears on the longer wavelength side by about 100 nm than the wavelength of the pump light. Therefore, when a plurality of pump lights having different wavelengths are used, a gain peak appears for each pump light wavelength, so that the gain bandwidth can be expanded in an arbitrary wavelength band corresponding to the pump light wavelength.
[0004]
By the way, when simultaneously transmitting a wideband wavelength multiplexed signal light, the signal light of each wavelength becomes non-uniform due to the wavelength dependency of waveform deterioration due to optical noise characteristics and nonlinear effects superimposed on the signal light of each wavelength. It has been known that the transmission characteristics are excellent. In order to eliminate the non-uniformity, pre-emphasis measures the optical signal-to-noise ratio (OSNR) of the wavelength-division multiplexed signal light transmitted on the receiving side, and adjusts the transmission optical power on the transmitting side so that this becomes uniform. Technology has been proposed.
[0005]
FIG. 7 shows a configuration example of a conventional optical wavelength division multiplexing transmission system using a pre-emphasis technique (Patent Document 1). In the figure, signal lights of wavelengths λ1 to λn output from the optical transmitters 51-1 to 51-n of the wavelength multiplexing transmitting terminal 50 are wavelength-multiplexed by the optical multiplexer 52 and output. This wavelength multiplexed signal light is transmitted to the wavelength multiplexing receiving terminal 55 via the optical fiber transmission line 53 and the optical amplifier repeater 54. In the wavelength division multiplexing receiving terminal 55, the wavelength division multiplexed signal light is demultiplexed into signal lights of each wavelength by the optical demultiplexer 56, and received by the corresponding optical receivers 57-1 to 57-n. Further, the OSNR measuring device 58 measures the OSNR of each signal channel, and feeds it back to the pre-emphasis control device 59 of the wavelength division multiplexing transmitting terminal 50.
[0006]
The pre-emphasis control device 59 controls each transmission light power of the optical transmitters 51-1 to 51-n so that the OSNR of each signal channel becomes uniform. For example, control is performed such that the transmission optical power becomes higher as the signal channel has a lower OSNR.
[0007]
[Non-patent document 1]
T. Matsuda et al. , “62 × 42.7 Gbit / s (2.5 Tbit / s) WDM signal transmission over 2200 km with broadband distributed Raman amplification”, Electron. Lett. , Vol. 38, no. 15, pp. 818-819, 2002
[Non-patent document 2]
T. Tanaka et al. , "200-nm Bandwidth WDM Transmission around 1.55 μm using Distributed Distributed Raman Amplifier", ECOC2002, PD4.6, 2002.
[Patent Document 1]
JP-A-8-321824
[Problems to be solved by the invention]
The conventional optical wavelength division multiplexing transmission system using the pre-emphasis technique controls each transmission light power in order to eliminate the non-uniformity of the OSNR of each signal channel. May be too high. In such a case, waveform deterioration due to the effect of the nonlinear effect may become remarkable. That is, in the conventional configuration, only the OSNR at the receiving end is considered, and no consideration is given to eliminating the non-uniformity of the path average power value related to the waveform deterioration amount due to the nonlinear effect.
[0009]
Further, in the conventional configuration, it is necessary to constantly monitor the OSNR at the receiving end in order to control the transmission light power to a predetermined value in consideration of deterioration with time, and a feedback control system is indispensable as shown in FIG. Met.
[0010]
The optical amplifying repeater 54 shown in FIG. 7 has a configuration in which an erbium-doped optical fiber amplifier (EDFA), Raman amplification having excellent low-noise and wideband characteristics, and a combination of Raman amplification and EDFA are used.
[0011]
The present invention, in an optical wavelength division multiplexing transmission system using Raman amplification or Raman amplification and EDFA in combination, considers the wavelength dependence of signal light loss and pump light loss, and eliminates non-uniformity of OSNR and path average optical power. It is still another object of the present invention to provide a WDM signal control apparatus capable of controlling the OSNR and the path average optical power so as not to largely deviate from the allowable values without monitoring even if the transmission optical power changes with time.
[0012]
[Means for Solving the Problems]
(Claim 1)
A WDM signal control apparatus according to the present invention provides a signal light loss and Raman pump light obtained from a transmission loss wavelength dependent characteristic α (λ) measured in advance in an optical wavelength division multiplexing transmission system using Raman amplification or a combination of Raman amplification and an optical fiber amplifier. When the loss is α (λs) and α (λp) (where λp = λs−100) and the arbitrary transmission light power is P0, the optical signal to noise ratio OSNR [α (λs), α (Λp), P0] and means for calculating the path average power Pave [α (λs), α (λp), P0], the signal wavelength λs1 and the OSNR allowable deviation M1 that provide a predetermined OSNR reference, and a predetermined path. When the signal wavelength λs2 giving the reference of the average power and the path average power allowable deviation M2 are set, the transmission light power relative value ΔP (λs) of the signal light of each wavelength is
Figure 2004333980
And a means for controlling the transmission light power relative value ΔP (λs) of the signal light of each wavelength within the range of the transmission light power relative value ΔP (λs).
[0013]
(Claim 2)
Further, regarding the transmission light power relative value ΔP (λs) of the signal light of each wavelength,
Figure 2004333980
It is also possible to use means for determining a value that satisfies the following condition, and controlling the transmission light power relative value ΔP (λs) of the signal light of each wavelength according to the transmission light power relative value ΔP (λs).
[0014]
(Claim 3)
The WDM signal control device of the present invention uses a Raman amplification and an optical fiber amplifier together, and in a WDM transmission system in which the gain ratio of the Raman amplification and the optical fiber amplifier is r, the transmission loss wavelength dependence α (λ) measured in advance. ), Α (λs) and α (λp) (where λp = λs-100), and an arbitrary transmission light power P0, the optical signal of one relay section Means for calculating an OSNR [α (λs), α (λp), P0, r] and a path average power Pave [α (λs), α (λp), P0, r], and a predetermined OSNR reference When the signal wavelength λs1 and the OSNR allowable deviation M1 that provide the reference and the signal wavelength λs2 and the path average power allowable deviation M2 that provide a predetermined path average power reference are set, the signal of each wavelength is set. The relative gain ratio Δr Raman amplification optical fiber amplifier for ([lambda] s)
Figure 2004333980
And a means for controlling the relative gain ratio Δr (λs) of the signal light of each wavelength within the range of the relative gain ratio Δr (λs).
[0015]
(Claim 4)
Further, the relative gain ratio Δr (λs) between Raman amplification and optical fiber amplifier for signal light of each wavelength
Figure 2004333980
Means for determining a value to be satisfied and controlling the relative gain ratio Δr (λs) of the signal light of each wavelength according to the relative gain ratio Δr (λs) may be used.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
FIG. 1 shows a first embodiment of an optical wavelength division multiplexing transmission system using the WDM signal control device of the present invention.
[0017]
In the figure, an optical wavelength division multiplexing transmission system uses an optical multiplexer 12 to wavelength multiplex signal lights of wavelengths λ1 to λn output from optical transmitters 11-1 to 11-n of a wavelength division multiplexing transmission terminal 10, and In this configuration, the signal is transmitted to the wavelength division multiplexing receiving terminal 15 via the transmission line 13 and the optical amplification repeater 14.
[0018]
The optical amplification repeater 14 includes a plurality of Raman pump light sources 21-1 to 21-m having different wavelengths, an optical multiplexer 22-1 for multiplexing Raman pump light of each wavelength, and each multiplexed Raman pump light. And an EDFA 23 inserted into the optical fiber transmission line 13. The EDFA 23 is omitted when performing all Raman amplification.
[0019]
In the present embodiment, the WDM signal control device 30 of the present invention is configured to control each transmission light power output from the optical transmitters 11-1 to 11-n, and includes an input unit 31, a calculation unit 32, and a transmission light power It is composed of a control unit 33.
[0020]
The input unit 31 includes a transmission loss wavelength dependence characteristic α (λ) measured in advance, a signal wavelength λs1 and an OSNR allowable deviation M1 for giving a predetermined OSNR reference, a signal wavelength λs2 and a path for giving a predetermined path average power reference. The average power allowable deviation M2 is input and each input value is held.
[0021]
Based on the input values, the calculation unit 32 calculates the OSNR of one relay section when the signal light loss is α (λs), the Raman pumping light loss is α (λp), and the arbitrary transmission light power is P0. α (λs), α (λp), P0] and the average path power Pave [α (λs), α (λp), P0], and further, the transmission light power relative value ΔP (λs) of the signal light of each wavelength. about
Figure 2004333980
Find the range that satisfies Note that λp = λs−100.
[0022]
The transmission light power controller 33 controls the transmission light power relative value ΔP (λs) in each of the optical transmitters 11-1 to 11-n within the range of the obtained transmission light power relative value ΔP (λs). For example, the transmission light power of each of the optical transmitters 11-1 to 11-n is controlled to be as uniform as possible within the range of the obtained transmission light power relative value ΔP (λs). The transmission light power relative value is controlled by controlling the attenuation of variable attenuators arranged in the optical transmitters 11-1 to 11-n or by directly controlling the output power of the light source.
[0023]
Here, a specific calculation example in an optical amplification repeater system that compensates for transmission loss of a uniform optical fiber (relay section L = 100 km) using all Raman amplification by backward pumping will be described. FIG. 2 shows a measurement result of the transmission loss wavelength dependence of the dispersion shifted fiber.
[0024]
From this measurement result, the loss in the C band and the L band is fixed at 0.23 dB / km in order to simplify the transmission loss wavelength dependence. The loss from 1430 nm to 1530 nm is represented by a linear approximation connecting [1430 nm, 0.35 dB / km] and [1530 nm, 0.23 dB / km] to α (λ) = − 1.2 × 10 −3 (λ-1430). +0.35
And The loss in the U band is α (λ) = 1.2 × 10 −3 (λ-1625) +0.23 by a linear approximation connecting [1625 nm, 0.23 dB / km] and [1675 nm, 0.29 dB / km].
And
[0025]
When the C band, L band and U band from 1530 nm to 1650 nm are applied as the wavelength range of the wavelength multiplexed signal light, the excitation light wavelength is 100 nm shorter than the signal light wavelength, and λs1 = 1530 nm and λs2 = 1625 nm, When M1 = 0 dB and M2 = 0.5 dB, the equations (1-1) and (1-2) are
Figure 2004333980
It is expressed as FIG. 3 shows a region of the transmission light power relative value ΔP (λs) satisfying this.
[0026]
The transmission light power controller 33 controls the transmission light power of each wavelength so that the transmission light power relative value ΔP (λs) falls within the range of the hatched portion in FIG. As a result, the OSNR of the signal light of each wavelength falls within a range equal to or more than the allowable value smaller by M1 (0 dB) than the OSNR at 1530 nm, and the path average power Pave of the signal light of each wavelength is smaller than Pave at 1625 nm. Therefore, it falls within the range of M2 (0.5 dB) or more, which is larger than the allowable value.
[0027]
(Second embodiment)
In the same configuration as the first embodiment, the calculation unit 32 calculates the OSNR [α (λs), α (λp), P0] and the average path power Pave [α (λs), α (λp), P0], and a relative value ΔP (λs) of the transmission light power of the signal light of each wavelength,
Figure 2004333980
Find a value that satisfies Note that λp = λs−100.
[0028]
The transmission light power controller 33 controls the transmission light power relative value ΔP (λs) in each of the optical transmitters 11-1 to 11-n according to the obtained transmission light power relative value ΔP (λs). . The transmission light power relative value is controlled by controlling the attenuation of a variable attenuator disposed in the optical transmitter or by directly controlling the output of the light source.
[0029]
As in the first embodiment, when the C band, L band, and U band from 1530 nm to 1650 nm are applied as the wavelength range of the wavelength multiplexed signal light, the excitation light wavelength is 100 nm shorter than the signal light wavelength, When λs1 = 1530 nm, λs2 = 1625 nm, and M1 = 0 dB and M2 = 0.5 dB, the expressions (2-1) to (2-3) are obtained.
Figure 2004333980
It is expressed as The transmission light power relative value ΔP (λs) that satisfies this is shown by a broken line in FIG.
[0030]
The transmission light power controller 33 controls the transmission light power of each wavelength such that the transmission light power relative value ΔP (λs) becomes the value indicated by the broken line in FIG. Thus, the OSNR and the path average power Pave of the signal light of each wavelength can be kept within the above-mentioned allowable range. Note that, in this case, even if the transmission light power of each wavelength shifts due to a change with time or the like, it becomes easy to maintain the transmission light power within the range of the hatched portion in FIG.
[0031]
(Third embodiment)
FIG. 4 shows a third embodiment of the optical wavelength division multiplexing transmission system using the WDM signal control device of the present invention.
[0032]
In the figure, an optical wavelength division multiplexing transmission system uses an optical multiplexer 12 to wavelength multiplex signal lights of wavelengths λ1 to λn output from optical transmitters 11-1 to 11-n of a wavelength division multiplexing transmission terminal 10, and In this configuration, the signal is transmitted to the wavelength division multiplexing receiving terminal 15 via the transmission line 13 and the optical amplification repeater 14.
[0033]
The optical amplification repeater 14 includes a plurality of Raman pump light sources 21-1 to 21-m having different wavelengths, an optical multiplexer 22-1 for multiplexing Raman pump light of each wavelength, and each multiplexed Raman pump light. And an EDFA 23 inserted into the optical fiber transmission line 13.
[0034]
In the present embodiment, the WDM signal control device 40 of the present invention has a configuration in which the OSNR and the Pave are changed by controlling the gain ratio r of the Raman amplification and the EDFA with respect to the signal light of each wavelength. 42 and a gain control unit 43.
[0035]
The input unit 41 includes a transmission loss wavelength dependence characteristic α (λ) measured in advance, a signal wavelength λs1 and OSNR allowable deviation M1 for giving a predetermined OSNR reference, a signal wavelength λs2 and a path for giving a predetermined path average power reference. The average power allowable deviation M2 is input and each input value is held.
[0036]
Based on the input values, the calculation unit 42 calculates the OSNR of one relay section when the signal light loss is α (λs), the Raman pumping light loss is α (λp), and an arbitrary transmission light power is P0. α (λs), α (λp), P0, r] and average path power Pave [α (λs), α (λp), P0, r], and further calculate Raman amplification and EDFA of signal light of each wavelength. Relative gain ratio Δr (λs) of gain ratio r
Figure 2004333980
Find the range to add. Note that λp = λs−100.
[0037]
The gain control unit 43 controls the relative gain ratio Δr (λs) in each of the Raman excitation light sources 21-1 to 21-m and the EDFA 23 within the range of the obtained relative gain ratio Δr (λs). For example, control is performed so that the relative gain ratio Δr (λs) in each of the Raman pumping light sources 21-1 to 21-m and the EDFA 23 becomes as uniform as possible within the range of the obtained relative gain ratio Δr (λs). The relative gain ratio is controlled by directly controlling the outputs of the Raman pump light source and the pump light source in the EDFA.
[0038]
5A and 5B show the relationship between the gain ratio r and the OSNR at 1580 nm, and the relationship between the gain ratio r and the path average power Pave. From the wavelength dependence of the signal light loss and the pumping light loss based on this relationship, when λs1 = 1530 nm, λs2 = 1625 nm, and M1 = 0 dB and M2 = 0 dB, the equations (3-1) and (3-2) are obtained.
Figure 2004333980
It is expressed as FIG. 6 shows a region of the relative gain ratio Δr (λs) satisfying this.
[0039]
The optical power control unit 43 controls the Raman pump light sources 21-1 to 21-m and the EDFA 23 such that the relative gain ratio Δr (λs) falls within the range of the hatched portion in FIG. As a result, the OSNR of the signal light of each wavelength falls within a range equal to or more than the allowable value smaller by M1 (0 dB) than the OSNR at 1530 nm, and the path average power Pave of the signal light of each wavelength is smaller than Pave at 1625 nm. Therefore, it falls within a range of M2 (0 dB) or more, which is larger than the allowable value.
[0040]
(Fourth embodiment)
In a configuration similar to that of the third embodiment, the calculation unit 42 determines the OSNR [α (λs), α (λp), P0, r] and the average path power Pave [α (λs), α (λp , P0, r], and further, the relative gain ratio Δr (λs) of the Raman amplification and the EDFA gain ratio r for the signal light of each wavelength.
Figure 2004333980
Find a value that satisfies Note that λp = λs−100.
[0041]
The gain control unit 43 controls the relative gain ratio Δr (λs) in the Raman pump light sources 21-1 to 21-m and the EDFA 23 according to the obtained value of the relative gain ratio Δr (λs). The relative gain ratio is controlled by directly controlling the outputs of the Raman pump light source and the pump light source in the EDFA.
[0042]
As in the third embodiment, when the C band, L band and U band from 1530 nm to 1650 nm are applied as the wavelength range of the wavelength multiplexed signal light, the excitation light wavelength is 100 nm shorter than the signal light wavelength, When λs1 = 1530 nm, λs2 = 1625 nm, and M1 = 0 dB and M2 = 0 dB, the equations (4-1) to (4-3) are obtained.
Figure 2004333980
It is expressed as The relative gain ratio Δr (λs) satisfying this is shown by a broken line in FIG.
[0043]
The gain control unit 43 controls the Raman pump light sources 21-1 to 21-m and the EDFA 23 such that the relative gain ratio Δr (λs) becomes the gain indicated by the broken line in FIG. Thus, the OSNR and the path average power Pave of the signal light of each wavelength can be kept within the above-mentioned allowable range. Note that, in this case, even if the gain ratio of each wavelength shifts due to a change over time or the like, it is easy to maintain the gain ratio within the range of the hatched portion in FIG.
[0044]
By the way, if the Raman pump light source of a specific wavelength is controlled, the wavelength dependence of the Raman gain profile changes accordingly, but the shape of the gain profile of the EDFA is almost constant. It may be difficult to change the ratio. To overcome this, a configuration may be adopted in which lumped amplification type Raman amplification is used in place of the EDFA.
[0045]
In addition, when the EDFA is not used in the U band, the gain ratio can be arbitrarily changed at all signal wavelengths by using a combination of the distributed amplification type Raman amplification and the centralized amplification type Raman amplification.
[0046]
【The invention's effect】
As described above, by using the WDM signal control device of the present invention, the transmission characteristics (optical signal-to-noise ratio OSNR and path average power Pave) of a wideband WDM signal can be made substantially uniform. Further, even if the transmission light power of the signal light of each wavelength is shifted due to a change with time, it becomes easy to maintain the transmission light power within the predetermined allowable OSNR value and the allowable path average power value.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of an optical wavelength division multiplexing transmission system using a WDM signal control device of the present invention.
FIG. 2 is a diagram showing a measurement result of a transmission loss wavelength dependence characteristic of a dispersion-shifted fiber.
FIG. 3 is a diagram showing a transmission light power relative value ΔP (λs) in signal light of each wavelength.
FIG. 4 is a diagram showing a third embodiment of the optical wavelength division multiplexing transmission system using the WDM signal control device of the present invention.
FIG. 5 is a diagram showing a relationship between a gain ratio r at 1580 nm and OSNR and Pave.
FIG. 6 is a diagram showing a relative gain ratio Δr (λs) in signal light of each wavelength.
FIG. 7 is a diagram showing a configuration example of a conventional optical wavelength division multiplexing transmission system using a pre-emphasis technique.
[Explanation of symbols]
Reference Signs List 10 wavelength multiplexing transmitting terminal 11 optical transmitter 12 optical multiplexer 13 optical fiber transmission line 14 optical amplification repeater 15 wavelength multiplexing receiving terminal 21 Raman pumping light source 22 optical multiplexer 23 EDFA
Reference Signs List 30 WDM signal control device 31 Input unit 32 Calculation unit 33 Transmission light power control unit 40 WDM signal control device 41 Input unit 42 Calculation unit 43 Gain control unit

Claims (4)

ラマン増幅またはラマン増幅と光ファイバ増幅器を併用した光波長多重伝送システムにおいて、
あらかじめ測定した伝送損失波長依存特性α(λ)から得られる信号光損失およびラマン励起光損失をα(λs) およびα(λp) とし(ただしλp=λs−100)、任意の送信光パワーをP0 としたときに、1中継区間の光信号対雑音比OSNR [α(λs),α(λp),P0]および経路平均パワーPave[α(λs),α(λp),P0]を計算する手段と、
所定のOSNRの基準を与える信号波長λs1およびOSNR許容偏差M1 と、所定の経路平均パワーの基準を与える信号波長λs2および経路平均パワー許容偏差M2 を設定したときに、各波長の信号光の送信光パワー相対値ΔP(λs) について
Figure 2004333980
を満たす範囲を求め、その送信光パワー相対値ΔP(λs) の範囲内で各波長の信号光の送信光パワー相対値ΔP(λs) を制御する手段と
を備えたことを特徴とするWDM信号制御装置。
In an optical wavelength division multiplexing transmission system using Raman amplification or Raman amplification and an optical fiber amplifier together,
The signal light loss and the Raman pumping light loss obtained from the transmission loss wavelength dependence characteristic α (λ) measured in advance are α (λs) and α (λp) (where λp = λs-100), and an arbitrary transmission light power is P0. Means for calculating the optical signal-to-noise ratio OSNR [α (λs), α (λp), P0] and the average path power Pave [α (λs), α (λp), P0] in one relay section. When,
When a signal wavelength λs1 and an OSNR allowable deviation M1 that provide a predetermined OSNR reference and a signal wavelength λs2 and a path average power allowable deviation M2 that provide a predetermined path average power reference are set, the transmission light of the signal light of each wavelength is set. Power relative value ΔP (λs)
Figure 2004333980
And a means for controlling the relative transmission light power ΔP (λs) of the signal light of each wavelength within the range of the relative transmission light power ΔP (λs). Control device.
ラマン増幅またはラマン増幅と光ファイバ増幅器を併用した光波長多重伝送システムにおいて、
あらかじめ測定した伝送損失波長依存特性α(λ)から得られる信号光損失およびラマン励起光損失をα(λs) およびα(λp) とし(ただしλp=λs−100)、任意の送信光パワーをP0 としたときに、1中継区間の光信号対雑音比OSNR [α(λs),α(λp),P0]および経路平均パワーPave[α(λs),α(λp),P0]を計算する手段と、
所定のOSNRの基準を与える信号波長λs1およびOSNR許容偏差M1 と、所定の経路平均パワーの基準を与える信号波長λs2および経路平均パワー許容偏差M2 を設定したときに、各波長の信号光の送信光パワー相対値ΔP(λs) について
Figure 2004333980
を満たす値を求め、その送信光パワー相対値ΔP(λs) に応じて各波長の信号光の送信光パワー相対値ΔP(λs) を制御する手段と
を備えたことを特徴とするWDM信号制御装置。
In an optical wavelength division multiplexing transmission system using Raman amplification or Raman amplification and an optical fiber amplifier together,
The signal light loss and the Raman pumping light loss obtained from the transmission loss wavelength dependence characteristic α (λ) measured in advance are α (λs) and α (λp) (where λp = λs-100), and an arbitrary transmission light power is P0. Means for calculating the optical signal-to-noise ratio OSNR [α (λs), α (λp), P0] and the average path power Pave [α (λs), α (λp), P0] in one relay section. When,
When a signal wavelength λs1 and an OSNR allowable deviation M1 that provide a predetermined OSNR reference and a signal wavelength λs2 and a path average power allowable deviation M2 that provide a predetermined path average power reference are set, the transmission light of the signal light of each wavelength is set. Power relative value ΔP (λs)
Figure 2004333980
Means for obtaining a value that satisfies the following condition, and for controlling the transmission light power relative value ΔP (λs) of the signal light of each wavelength in accordance with the transmission light power relative value ΔP (λs). apparatus.
ラマン増幅と光ファイバ増幅器を併用し、ラマン増幅と光ファイバ増幅器の利得比率をrとする光波長多重伝送システムにおいて、
あらかじめ測定した伝送損失波長依存特性α(λ)から得られる信号光損失およびラマン励起光損失をα(λs) およびα(λp) とし(ただしλp=λs−100)、任意の送信光パワーをP0 としたときに、1中継区間の光信号対雑音比OSNR [α(λs),α(λp),P0,r] および経路平均パワーPave[α(λs),α(λp),P0,r] を計算する手段と、
所定のOSNRの基準を与える信号波長λs1およびOSNR許容偏差M1 と、所定の経路平均パワーの基準を与える信号波長λs2および経路平均パワー許容偏差M2 を設定したときに、各波長の信号光に対するラマン増幅と光ファイバ増幅器の相対利得比率Δr(λs) について
Figure 2004333980
を満たす範囲を求め、その相対利得比率Δr(λs) の範囲内で各波長の信号光の相対利得比率Δr(λs) を制御する手段と
を備えたことを特徴とするWDM信号制御装置。
In an optical wavelength division multiplexing transmission system in which Raman amplification and an optical fiber amplifier are used together and the gain ratio between the Raman amplification and the optical fiber amplifier is r,
The signal light loss and the Raman pumping light loss obtained from the transmission loss wavelength dependence characteristic α (λ) measured in advance are α (λs) and α (λp) (where λp = λs-100), and an arbitrary transmission light power is P0. , The optical signal-to-noise ratio OSNR [α (λs), α (λp), P0, r] and the average path power Pave [α (λs), α (λp), P0, r] Means for calculating
When a signal wavelength λs1 and an OSNR allowable deviation M1 that provide a predetermined OSNR reference and a signal wavelength λs2 and a path average power allowable deviation M2 that provide a predetermined path average power reference are set, Raman amplification of the signal light of each wavelength is performed. And the relative gain ratio Δr (λs) of the optical fiber amplifier
Figure 2004333980
Means for obtaining a range that satisfies the following condition, and for controlling the relative gain ratio Δr (λs) of the signal light of each wavelength within the range of the relative gain ratio Δr (λs).
ラマン増幅と光ファイバ増幅器を併用し、ラマン増幅と光ファイバ増幅器の利得比率をrとする光波長多重伝送システムにおいて、
あらかじめ測定した伝送損失波長依存特性α(λ)から得られる信号光損失およびラマン励起光損失をα(λs) およびα(λp) とし(ただしλp=λs−100)、任意の送信光パワーをP0 としたときに、1中継区間の光信号対雑音比OSNR [α(λs),α(λp),P0,r] および経路平均パワーPave[α(λs),α(λp),P0,r] を計算する手段と、
所定のOSNRの基準を与える信号波長λs1およびOSNR許容偏差M1 と、所定の経路平均パワーの基準を与える信号波長λs2および経路平均パワー許容偏差M2 を設定したときに、各波長の信号光に対するラマン増幅と光ファイバ増幅器の相対利得比率Δr(λs) について
Figure 2004333980
満たす値を求め、その相対利得比率Δr(λs) に応じて各波長の信号光の相対利得比率Δr(λs) を制御する手段と
を備えたことを特徴とするWDM信号制御装置。
In an optical wavelength division multiplexing transmission system in which Raman amplification and an optical fiber amplifier are used together and the gain ratio between the Raman amplification and the optical fiber amplifier is r,
The signal light loss and the Raman pumping light loss obtained from the transmission loss wavelength dependence characteristic α (λ) measured in advance are α (λs) and α (λp) (where λp = λs-100), and an arbitrary transmission light power is P0. , The optical signal-to-noise ratio OSNR [α (λs), α (λp), P0, r] and the average path power Pave [α (λs), α (λp), P0, r] Means for calculating
When a signal wavelength λs1 and an OSNR allowable deviation M1 that provide a predetermined OSNR reference and a signal wavelength λs2 and a path average power allowable deviation M2 that provide a predetermined path average power reference are set, Raman amplification of the signal light of each wavelength is performed. And the relative gain ratio Δr (λs) of the optical fiber amplifier
Figure 2004333980
Means for determining a value to be satisfied and controlling the relative gain ratio Δr (λs) of the signal light of each wavelength according to the relative gain ratio Δr (λs).
JP2003131253A 2003-05-09 2003-05-09 WDM signal control device Expired - Fee Related JP4216638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003131253A JP4216638B2 (en) 2003-05-09 2003-05-09 WDM signal control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131253A JP4216638B2 (en) 2003-05-09 2003-05-09 WDM signal control device

Publications (2)

Publication Number Publication Date
JP2004333980A true JP2004333980A (en) 2004-11-25
JP4216638B2 JP4216638B2 (en) 2009-01-28

Family

ID=33506482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131253A Expired - Fee Related JP4216638B2 (en) 2003-05-09 2003-05-09 WDM signal control device

Country Status (1)

Country Link
JP (1) JP4216638B2 (en)

Also Published As

Publication number Publication date
JP4216638B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
US6891661B2 (en) Optical amplifier with pump light source control for Raman amplification
JP4671478B2 (en) Wavelength multiplexing optical communication system and wavelength multiplexing optical communication method
US6885499B1 (en) Optical amplifying apparatus for amplifying wide-wavelength-band light, optical sending apparatus, optical transmission system, and optical amplifying method
JP4498509B2 (en) Control device and control method of wavelength division multiplexing optical amplifier
US7119950B2 (en) Amplification method and optical amplifier for wavelength division multiplexed signal light
JP5292731B2 (en) Optical transmission equipment
JP4665344B2 (en) Optical transmission device that compensates for inter-wavelength level deviation and optical SN deviation
US6741389B2 (en) Optical transmission system and optical transmission method utilizing Raman amplification
US7650072B2 (en) Method of upgrading optical node, and an optical node apparatus
JP5135849B2 (en) Gain control device, optical transmission device, and gain control method for optical amplifier
US7233432B2 (en) Pre-emphasized optical communication
US20040240042A1 (en) Optical amplifier, communication system and method for control tilt of a communication system
JP2002196379A (en) Light amplifying transmission system
US20030152388A1 (en) Optical transmission equipment for suppressing a four wave mixing and optical transmission system
JP2008503886A (en) Wavelength division multiplexing (WDM) optical demultiplexer
JP2002232362A (en) Optical relay transmission system and optical relay transmitting method
US9520694B2 (en) Optical amplifier with loss adjustment unit based on gain
US20100040373A1 (en) Optical transmission device
JP3999629B2 (en) Wavelength division multiplexing optical transmission system and its relay station
JP6422799B2 (en) Optical transmission system, optical transmitter and control method thereof
JP4216638B2 (en) WDM signal control device
JP3369096B2 (en) Optical amplifier
WO2004075363A1 (en) Method and system for optical transmission
JPH11252048A (en) Wavelength multiplex optical transmission system
JP2005051189A (en) Optical multiplexing/demultiplexing apparatus, and optical wavelength multiplexing transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees