JP2004333468A - Metal structure superior in corrosion resistance, material for manufacturing the metal structure and manufacturing method for the metal structure - Google Patents

Metal structure superior in corrosion resistance, material for manufacturing the metal structure and manufacturing method for the metal structure Download PDF

Info

Publication number
JP2004333468A
JP2004333468A JP2003358855A JP2003358855A JP2004333468A JP 2004333468 A JP2004333468 A JP 2004333468A JP 2003358855 A JP2003358855 A JP 2003358855A JP 2003358855 A JP2003358855 A JP 2003358855A JP 2004333468 A JP2004333468 A JP 2004333468A
Authority
JP
Japan
Prior art keywords
metal structure
intermediate layer
functional layer
conductive intermediate
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003358855A
Other languages
Japanese (ja)
Other versions
JP4430372B2 (en
Inventor
Tatsuya Yasunaga
龍哉 安永
Kyosuke Fujisawa
匡介 藤沢
Jun Shimojo
純 下条
Masahiro Furuya
正裕 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Kobe Steel Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Kobe Steel Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP2003358855A priority Critical patent/JP4430372B2/en
Publication of JP2004333468A publication Critical patent/JP2004333468A/en
Application granted granted Critical
Publication of JP4430372B2 publication Critical patent/JP4430372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide firstly, a metal structure superior in corrosion resistance used under irradiation of electromagnetic wave, secondly, a material for manufacturing metal structure and thirdly, a manufacturing method for the metal structure. <P>SOLUTION: The metal structure used under irradiation of electromagnetic wave is provided with a function layer generating electrons by radiating electromagnetic wave to a part of or whole base material by way of conductive intermediate layer for raising adhesion. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電磁波の照射下で使用される金属構造体、該金属構造体を製造するための材料および前記金属構造体の製法に関するものである。   The present invention relates to a metal structure used under irradiation of electromagnetic waves, a material for producing the metal structure, and a method for producing the metal structure.

原子力発電プラントでは、その構成材料として炭素鋼やステンレス鋼,ニッケル合金などが用いられ、原子炉冷却材として水が用いられる。この冷却水は、放射線の照射を受けると放射線分解し、酸素や過酸化水素などの酸化性物質を生成する。生成したこれらの酸化性物質は冷却水中に溶解し、原子炉自体や水冷却系配管などの構造体に腐食あるいは応力腐食割れを生じさせる原因になることが知られている。しかし、構造体に腐食や応力腐食割れが生じても、補修・交換するには原子炉を停止する必要があり、実操業では頻繁に補修・交換するのは困難である。   In a nuclear power plant, carbon steel, stainless steel, nickel alloy or the like is used as a constituent material, and water is used as a reactor coolant. This cooling water undergoes radiolysis when irradiated with radiation, and generates oxidizing substances such as oxygen and hydrogen peroxide. These generated oxidizing substances are known to dissolve in cooling water and cause corrosion or stress corrosion cracking in structures such as the reactor itself and water cooling system piping. However, even if corrosion or stress corrosion cracking occurs in the structure, it is necessary to stop the reactor for repair and replacement, and it is difficult to frequently repair and replace in actual operation.

また、原子力発電プラントからは使用済核燃料が排出されるが、この使用済核燃料を貯蔵あるいは輸送するための密封容器(キャニスタ)などの構造体を構成する材料としても、炭素鋼やステンレス鋼などが用いられており、この密封容器に結露等が生じたときも、該容器に付着した水が放射線の照射によって分解して酸化性物質を生成する。さらに、一般的に用いられているコンクリートキャスクは、コンクリートキャスク本体(遮蔽体)とキャニスタの間に外気を対流させることにより除熱しているが、このとき外気に塩化物イオン等の高腐食性物質が含まれていると(例えば、潮風)、この物質は密封容器表面に付着して腐食あるいは応力腐食割れを生じる可能性がある。しかし、容器内に使用済核燃料を貯蔵している場合は、密閉容器に腐食や応力腐食割れが生じても、補修・交換できないのが現状である。   Spent nuclear fuel is discharged from nuclear power plants, and carbon steel, stainless steel, etc. are also used as materials for structures such as sealed containers (canisters) for storing or transporting spent nuclear fuel. Even when condensation or the like occurs in the sealed container, water adhering to the container is decomposed by irradiation with radiation to generate an oxidizing substance. Furthermore, generally used concrete cask removes heat by convection of the outside air between the concrete cask main body (shielding body) and the canister. At this time, highly corrosive substances such as chloride ions are added to the outside air. If it is included (eg, sea breeze), this material may adhere to the surface of the sealed container and cause corrosion or stress corrosion cracking. However, in the case where spent nuclear fuel is stored in the container, even if corrosion or stress corrosion cracking occurs in the sealed container, it cannot be repaired or replaced.

ところで、腐食あるいは応力腐食割れの発生およびこれらの進展には腐食電位が影響を及ぼし、環境の腐食電位が低いほど腐食あるいは応力腐食割れを起こし難くなることが知られている。そして、腐食あるいは応力腐食割れの低減対策としては、原子炉内で受ける光や放射線の照射により起電する光触媒物質を、原子炉構造材の表面に付着させておくことによって、発生した電子を構造材へ供給し、該環境の腐食電位を低くすることで腐食あるいは応力腐食割れの発生を抑制する技術が開示されている(例えば、特許文献1や特許文献2等)。これらの技術では、原子炉構造材の表面に光触媒物質を直接付着させる方法として、(1)光触媒物質を注入した冷却水を原子炉構造材内に循環させて付着させる方法や、(2)ロボットなどを用いて光触媒物質を所定の部位に吹き付ける方法、(3)原子炉構造材の表面にPVD法やCVD法などで光触媒物質膜を直接形成する方法、などが例示されている。   By the way, it is known that the occurrence of corrosion or stress corrosion cracking and the development thereof affect the corrosion potential, and the lower the corrosion potential of the environment, the less likely the corrosion or stress corrosion cracking occurs. As a measure to reduce corrosion or stress corrosion cracking, the generated electrons are structured by attaching a photocatalytic substance that is generated by irradiation with light or radiation received in the reactor to the surface of the reactor structural material. A technology for suppressing the occurrence of corrosion or stress corrosion cracking by supplying to a material and lowering the corrosion potential of the environment is disclosed (for example, Patent Document 1 and Patent Document 2). In these technologies, as a method of directly attaching the photocatalytic substance to the surface of the nuclear reactor structural material, (1) a method of circulating cooling water injected with the photocatalytic substance into the nuclear reactor structural material and (2) a robot Examples are a method of spraying a photocatalytic substance on a predetermined site using a method such as (3) a method of directly forming a photocatalytic substance film on the surface of a nuclear reactor structure material by a PVD method, a CVD method, or the like.

しかし本発明者らが検討したところ、上記(1)の方法では、光触媒物質の適切な注入量を定めることは難しく、また原子炉構造材の表面に光触媒物質が確実に付着しているかどうかを確認することも困難であった。上記(2)の方法では、光触媒物質を所定の部位に付着させることはできるものの、光触媒物質と原子炉構造材との密着性が悪いため光触媒物質が剥離し易い。上記(3)の方法においては、PVD法やCVD法で光触媒物質膜を直接形成する際には、チャンバー中で減圧処理する必要があり、原子炉構造材の特定部位に光触媒物質膜を密着性良く付着させることは容易でない。よって、上記特許文献1や2に提案されている技術では、原子炉構造材の腐蝕電位を低くできない場合があり、腐蝕あるいは応力腐蝕割れの発生を充分に抑制できないことがあった。   However, the present inventors have examined that in the method (1), it is difficult to determine an appropriate injection amount of the photocatalytic substance, and whether the photocatalytic substance is reliably attached to the surface of the reactor structural material. It was also difficult to confirm. In the method (2), the photocatalytic substance can be attached to a predetermined site, but the photocatalytic substance is easily peeled off due to poor adhesion between the photocatalytic substance and the reactor structural material. In the method (3), when the photocatalytic material film is directly formed by the PVD method or the CVD method, it is necessary to reduce the pressure in the chamber, and the photocatalytic material film is adhered to a specific part of the reactor structural material. It is not easy to adhere well. Therefore, in the techniques proposed in Patent Documents 1 and 2, the corrosion potential of the reactor structural material may not be lowered, and the occurrence of corrosion or stress corrosion cracking may not be sufficiently suppressed.

また、光触媒物質膜の形成は難しく、膜欠陥を生じると基材からの剥離と相俟って構造材の耐食性を劣化させるという問題があった。
特開2001-4789号公報([特許請求の範囲]、[0018]、[0049]〜[0050]、[0081]〜[0083]参照) 特開2001-276628号公報([特許請求の範囲]、[0029]、[0034]〜[0035]、[0087]参照)
In addition, it is difficult to form a photocatalytic material film, and when a film defect occurs, there is a problem that the corrosion resistance of the structural material is deteriorated in combination with peeling from the substrate.
JP 2001-4789 A (see [Claims], [0018], [0049] to [0050], [0081] to [0083]) JP 2001-276628 A (see [Claims], [0029], [0034] to [0035], [0087])

本発明は、この様な状況に鑑みてなされたものであり、第一の目的は、電磁波の照射下で使用される場合でも良好な耐食性を示す金属構造体を提供することにある。第二の目的は、前記金属構造体を製造するために好適に用いることのできる材料を提供することにある。第三の目的は、前記金属構造体の製法を提供することにある。   This invention is made | formed in view of such a condition, and the 1st objective is to provide the metal structure which shows favorable corrosion resistance, even when used under irradiation of electromagnetic waves. The second object is to provide a material that can be suitably used for producing the metal structure. A third object is to provide a method for producing the metal structure.

上記課題を解決することのできた本発明に係る耐食性に優れた金属構造体とは、電磁波の照射下で使用される金属構造体であって、基材の一部または全部に、耐食性を高めるための導電性中間層を介して、電磁波の照射によって電子を発生する機能層が設けられている点に要旨を有する。   The metal structure excellent in corrosion resistance according to the present invention that has solved the above problems is a metal structure that is used under irradiation of electromagnetic waves, in order to enhance corrosion resistance in part or all of the substrate. The point is that a functional layer for generating electrons by irradiation of electromagnetic waves is provided through the conductive intermediate layer.

前記耐食性に優れた金属構造体を製造するために好適に用いることのできる材料とは、基材の一部または全部に、耐食性を高めるための導電性中間層を介して、電磁波の照射によって電子を発生する機能層が設けられている点に要旨を有する。   The material that can be suitably used for producing the metal structure having excellent corrosion resistance is an electron by irradiation of electromagnetic waves through a conductive intermediate layer for enhancing corrosion resistance on a part or all of the base material. The gist of the present invention is that a functional layer that generates the above is provided.

前記導電性中間層としては、Fe,Cu,Ni,Co,Cr,TiおよびZrよりなる群から選ばれる1種以上を含むものが好ましい。また、前記導電性中間層としては、腐食電位を低下させる作用を有するものが好ましい。前記導電性中間層の厚みは0.05μm以上であり、且つ、前記機能層の厚みは1μm〜13mmであるものが好ましい。前記機能層としては、金属酸化物,金属炭化物および金属窒化物よりなる群から選ばれる少なくとも1種を含むものが好ましい。   The conductive intermediate layer preferably contains one or more selected from the group consisting of Fe, Cu, Ni, Co, Cr, Ti and Zr. Further, the conductive intermediate layer preferably has an action of reducing the corrosion potential. The conductive intermediate layer preferably has a thickness of 0.05 μm or more, and the functional layer preferably has a thickness of 1 μm to 13 mm. The functional layer preferably contains at least one selected from the group consisting of metal oxides, metal carbides, and metal nitrides.

前記耐食性に優れた金属構造体を製造するための方法とは、基材表面の一部または全部に、耐食性を高めるための導電性中間層を設け、さらに該導電性中間層の表面に、電磁波の照射によって電子を発生する機能層を設ける点に要旨を有する。   The method for producing a metal structure having excellent corrosion resistance is a method in which a conductive intermediate layer for enhancing corrosion resistance is provided on a part or all of the surface of the base material, and an electromagnetic wave is further formed on the surface of the conductive intermediate layer. The main point is that a functional layer for generating electrons by irradiation is provided.

本発明によれば、電磁波の照射下で使用される場合でも良好な耐食性を示す金属構造体を提供することができる。また、前記金属構造体を製造するための材料を提供することができる。さらに、前記金属構造体の製法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even when used under irradiation of electromagnetic waves, the metal structure which shows favorable corrosion resistance can be provided. Moreover, the material for manufacturing the said metal structure can be provided. Furthermore, the manufacturing method of the said metal structure can be provided.

上述した様に、原子炉構造材と光触媒物質との密着性は良好とは言えず、光触媒物質が剥離すると防食効果が発揮されなくなる。また、光触媒物質膜の形成は難しく、膜欠陥が生じると構造材からの剥離と相俟って構造材表面が腐食環境下に曝され、構造材の耐食性を著しく劣化させる原因となる。その一方で、放射線の照射下で使用される構造体を補修・交換することは非常に難しい。   As described above, the adhesion between the nuclear reactor structural material and the photocatalytic substance cannot be said to be good, and when the photocatalytic substance is peeled off, the anticorrosion effect is not exhibited. In addition, it is difficult to form a photocatalytic material film, and when a film defect occurs, the surface of the structural material is exposed to a corrosive environment in combination with peeling from the structural material, which causes a significant deterioration in the corrosion resistance of the structural material. On the other hand, it is very difficult to repair and replace structures used under radiation.

そこで本発明者らは、構造材の耐食性向上を目指して、様々な角度から検討してきた。その結果、構造材を構成する材料と光触媒物質の間に、耐食性を高めるための導電性中間層を設けてやれば良いことを見出し、本発明を完成した。以下、本発明の作用効果について説明する。   Therefore, the present inventors have studied from various angles with the aim of improving the corrosion resistance of the structural material. As a result, it has been found that a conductive intermediate layer for enhancing corrosion resistance may be provided between the material constituting the structural material and the photocatalytic substance, and the present invention has been completed. Hereinafter, the function and effect of the present invention will be described.

本発明の金属構造体とは、基材の一部または全部に、耐食性を高めるための導電性中間層を介して、電磁波の照射によって電子を発生する機能層が設けられているものである。   The metal structure of the present invention is one in which a functional layer that generates electrons by irradiation of electromagnetic waves is provided on a part or all of a base material via a conductive intermediate layer for enhancing corrosion resistance.

電磁波の照射によって電子を発生する機能層とは、エネルギーが比較的高い電磁波の照射により価電子帯から伝導帯へ励起されて電子を放出する層である。後述する様に、機能層で発生した電子が、機能層から導電性中間層を通して基材へ供給されることにより、基材でのカソード反応が促進されて腐食電位が低下し、基材の腐食および応力腐蝕割れ(以下「腐食」で代表する場合がある)が大幅に抑制されるのである。   A functional layer that generates electrons when irradiated with electromagnetic waves is a layer that emits electrons by being excited from a valence band to a conduction band when irradiated with electromagnetic waves having relatively high energy. As will be described later, electrons generated in the functional layer are supplied from the functional layer to the base material through the conductive intermediate layer, whereby the cathode reaction in the base material is promoted and the corrosion potential is lowered. In addition, stress corrosion cracking (hereinafter sometimes referred to as “corrosion”) is greatly suppressed.

ここで、エネルギーが比較的高い電磁波とは、波長が400nm以下の電磁波(即ち、可視光線よりも波長の短い電磁波)であり、具体的には、紫外線や放射線(例えば、α線やβ線、γ線、X線、中性子線等)などが含まれる。   Here, an electromagnetic wave having a relatively high energy is an electromagnetic wave having a wavelength of 400 nm or less (that is, an electromagnetic wave having a shorter wavelength than visible light), and specifically, ultraviolet rays or radiation (for example, α rays, β rays, γ rays, X rays, neutron rays, etc.).

機能層を設ける位置やその面積は特に限定されず、基材の一部に設けても良いし、基材の全部に設けても良い。但し、機能層を基材の全部(全面)に設けるとコスト高となるので、機能層は基材の一部に設けることが好ましい。特に、腐食や応力腐食割れは基材同士を接続した溶接部等の部位で発生し易いので、基材同士の接続部近傍の周囲に機能層を設けることが推奨される。また、機能層は基材の片面(おもて面又はうら面)のみに設けても良いし、両面(おもて面とうら面)に設けても構わないが、水と接触する面に設ける必要がある。   The position and area of the functional layer are not particularly limited, and may be provided on a part of the base material or on the entire base material. However, if the functional layer is provided on the entire base material (entire surface), the cost increases. Therefore, the functional layer is preferably provided on a part of the base material. In particular, since corrosion and stress corrosion cracking are likely to occur at a site such as a welded portion where the substrates are connected to each other, it is recommended to provide a functional layer around the connection between the substrates. In addition, the functional layer may be provided only on one side (front side or back side) of the base material, or may be provided on both sides (front side and back side). It is necessary to provide it.

本発明の金属構造体は、前記機能層と前記基材の間に、基材の耐食性を高めるための導電性中間層を設けることが重要である。中間層として導電性の層を設けることによって機能層で発生した電子が導電性中間層を通って基材へ供給され、基材におけるカソード反応が促進されて腐食電位を低下し、防食効果が得られるからである。そして、機能層と基材の間に導電性中間層を設けることによって、上記機能層に多少の欠陥が生じても基材表面が腐食環境下に曝されることはなく、金属構造体の耐食性を高めることができる。   In the metal structure of the present invention, it is important to provide a conductive intermediate layer for enhancing the corrosion resistance of the base material between the functional layer and the base material. By providing a conductive layer as an intermediate layer, electrons generated in the functional layer are supplied to the base material through the conductive intermediate layer, the cathode reaction in the base material is promoted, the corrosion potential is lowered, and an anticorrosive effect is obtained. Because it is. By providing a conductive intermediate layer between the functional layer and the base material, the surface of the base material is not exposed to the corrosive environment even if some defects occur in the functional layer, and the corrosion resistance of the metal structure. Can be increased.

従って、上記導電性中間層は、機能層で発生した電子が基材へ移動するのを遮断しないものであれば特に限定されず、良導体のみならず半導体であってもよい。つまり、導電性中間層は、機能層で発生した電子がわずかでも基材へ供給されればよいのである。但し、基材と同一組成の材料を中間層として設けたとしても機能層との密着性向上効果は望めないので、基材と同一組成の材料は除かれる。   Therefore, the conductive intermediate layer is not particularly limited as long as it does not block electrons generated in the functional layer from moving to the base material, and may be a semiconductor as well as a good conductor. That is, the conductive intermediate layer only needs to supply even a small amount of electrons generated in the functional layer to the base material. However, even if a material having the same composition as that of the base material is provided as an intermediate layer, the effect of improving the adhesion with the functional layer cannot be expected, and thus the material having the same composition as that of the base material is excluded.

なお、基材の種類は特に限定されず、炭素鋼やステンレス鋼、ニッケル合金、ジルカロイ(ジルコニウム金属)などの金属が一般に用いられる。   In addition, the kind of base material is not specifically limited, Metals, such as carbon steel, stainless steel, nickel alloy, a zircaloy (zirconium metal), are generally used.

本発明の金属構造体は、後述する様に、金属構造体の一部または全部に、上記導電性中間層を介して機能層を設けても製造できるが、基材の一部または全部に、耐食性を高めるための導電性中間層を介して、電磁波の照射によって電子を発生する機能層が設けられている金属構造体用材料を用いて製造しても構わない。即ち、この金属構造体用材料は、温度や雰囲気等を厳密に管理した環境下で基材表面に導電性中間層や機能層を設けることができるので、密着性が良好で欠陥の少ない材料を得ることができる。その結果、この金属構造体用材料を用いて製造される金属構造体は、耐食性に優れたものとなる。   As will be described later, the metal structure of the present invention can be produced by providing a functional layer on a part or all of the metal structure via the conductive intermediate layer. You may manufacture using the material for metal structures provided with the functional layer which generate | occur | produces an electron by irradiation of electromagnetic waves through the electroconductive intermediate | middle layer for improving corrosion resistance. That is, this metal structure material can be provided with a conductive intermediate layer and a functional layer on the surface of the substrate in an environment in which the temperature and atmosphere are strictly controlled. Can be obtained. As a result, the metal structure manufactured using this metal structure material has excellent corrosion resistance.

ところで、導電性中間層の構成素材としては、Fe,Cu,Ni,Co,Cr,TiおよびZrよりなる群から選ばれる1種以上を含むものが好ましい。これらの元素を含む層は、酸化物等よりも欠陥の発生が少なく、特に金属は延性が高いため成膜の際の熱応力を緩和できるので、機能層に欠陥が生じたとしても基材が腐食環境下に露出し難く、基材の耐食性が向上するからである。   By the way, as a constituent material of the conductive intermediate layer, a material containing at least one selected from the group consisting of Fe, Cu, Ni, Co, Cr, Ti and Zr is preferable. Layers containing these elements have fewer defects than oxides and the like, and metals are particularly ductile, so thermal stress during film formation can be relieved. This is because it is difficult to be exposed in a corrosive environment, and the corrosion resistance of the base material is improved.

より好ましくはNi,Co,Cr,TiおよびZrよりなる群から選ばれる1種以上を含むものがよい。これらの元素は、環境の腐食電位を低下させる作用を有するからである。   More preferably, it contains at least one selected from the group consisting of Ni, Co, Cr, Ti and Zr. This is because these elements have the effect of reducing the corrosion potential of the environment.

Fe,Cu,Ni,Co,Cr,TiおよびZrよりなる群から選ばれる元素の含量は特に限定されないが、これらの元素を導電性中間層に対して10質量%程度以上含有してやれば導電性が良好となるので好ましい。より好ましくは20質量%程度以上、さらに好ましくは50質量%程度以上である。なお、残部は特に限定されないが、例えば、酸化物等が挙げられる。   The content of an element selected from the group consisting of Fe, Cu, Ni, Co, Cr, Ti, and Zr is not particularly limited. However, if these elements are contained in an amount of about 10% by mass or more with respect to the conductive intermediate layer, conductivity is improved. Since it becomes favorable, it is preferable. More preferably, it is about 20 mass% or more, More preferably, it is about 50 mass% or more. The remainder is not particularly limited, and examples thereof include oxides.

より具体的には、(1)Fe,Cu,Ni,Co,Cr,TiまたはZrのいずれか1種を50質量%以上含む鉄合金,銅合金,ニッケル合金,コバルト合金,クロム合金,チタン合金またはジルコニウム合金、(2)Fe,Cu,Ni,Co,Cr,TiおよびZrよりなる群から選ばれる1種を90質量%以上含む金属、(3)Fe,Cu,Ni,Co,Cr,TiおよびZrよりなる群から選ばれる1種を99質量%以上含む純鉄や純銅,純ニッケル,純コバルト,純クロム,純チタン,純ジルコニウム、などが例示される。   More specifically, (1) an iron alloy, a copper alloy, a nickel alloy, a cobalt alloy, a chromium alloy, a titanium alloy containing 50 mass% or more of any one of Fe, Cu, Ni, Co, Cr, Ti, or Zr Or a zirconium alloy, (2) a metal containing 90% by mass or more of one selected from the group consisting of Fe, Cu, Ni, Co, Cr, Ti and Zr, and (3) Fe, Cu, Ni, Co, Cr, Ti And pure iron, pure copper, pure nickel, pure cobalt, pure chromium, pure titanium, pure zirconium, etc. containing 99% by mass or more of one selected from the group consisting of Zr.

また、導電性中間層は、上記元素群から任意に選択される2種以上を含む合金でも良く、例えば、ニッケルとコバルトの合金,コバルトとクロムの合金,クロムとニッケルの合金などが挙げられる。このときの合金組成は特に限定されず、例えばCoとCrの組成が50質量%:50質量%であっても構わない。特にCo,NiまたはCrを主体として含む金属は、機能層との密着を高める作用に加えて耐食性も高めるので導電性中間層として好適に用いることができる。またCoは、中性子の照射により下記式の様に放射化し、60Coはγ線源となる。よって、導電性中間層としてCoを含有させることで、Coを予め放射化させるか、使用中に中性子を照射することによりγ線源とすることが期待でき、この層自体からγ線が発生して機能層の電子を励起させることも可能となる。
59Co+n→60Co
The conductive intermediate layer may be an alloy containing two or more elements arbitrarily selected from the above element group, and examples thereof include nickel and cobalt alloys, cobalt and chromium alloys, and chromium and nickel alloys. The alloy composition at this time is not particularly limited. For example, the composition of Co and Cr may be 50% by mass: 50% by mass. In particular, a metal mainly containing Co, Ni, or Cr can be suitably used as a conductive intermediate layer because it enhances the corrosion resistance in addition to the effect of increasing the adhesion with the functional layer. Co is activated by neutron irradiation as shown below, and 60 Co becomes a γ-ray source. Therefore, by including Co as a conductive intermediate layer, it can be expected that the Co will be activated in advance or that it will be used as a γ-ray source by irradiating neutrons during use. It is also possible to excite electrons in the functional layer.
59 Co + n → 60 Co

導電性中間層の厚みは、基材と機能層の密着性を高めると共に、機能層で発生した電子の流れを遮断しない範囲であれば特に限定されないが、後述する実施例から明らかな様に、これらの効果を有効に発揮させるには厚みを0.05μm以上とするのが好ましい。より好ましくは0.05μm超、さらに好ましくは0.1μm以上、一層好ましくは0.5μm以上、特に好ましくは1μm以上、とするのが望ましい。しかし導電性中間層が厚くなり過ぎると、機能層との密着性は劣化しないものの該中間層自体が抵抗となって、機能層で励起生成した電子が基材へ到達し難くなり、また、コスト高となるので導電性中間層の厚みは1.3mm以下とするのがよい。より好ましくは1.0mm未満、さらに好ましくは0.5mm以下、一層好ましくは0.3mm以下、とするのが良い。最も好ましくは20〜100μmの範囲である。   The thickness of the conductive intermediate layer is not particularly limited as long as it increases the adhesion between the base material and the functional layer and does not block the flow of electrons generated in the functional layer, but as is apparent from the examples described below, In order to exhibit these effects effectively, the thickness is preferably 0.05 μm or more. More preferably, it is more than 0.05 μm, more preferably 0.1 μm or more, still more preferably 0.5 μm or more, and particularly preferably 1 μm or more. However, if the conductive intermediate layer becomes too thick, the adhesion with the functional layer does not deteriorate, but the intermediate layer itself becomes a resistance, making it difficult for electrons excited and generated in the functional layer to reach the substrate, and the cost. Since it becomes high, the thickness of the conductive intermediate layer is preferably 1.3 mm or less. More preferably, it is less than 1.0 mm, more preferably 0.5 mm or less, and still more preferably 0.3 mm or less. Most preferably, it is the range of 20-100 micrometers.

一方、機能層の厚みは、電磁波の照射により電子を発生できる程度であれば特に限定されないが、後述する実施例から明らかな様に、この効果を有効に発揮させるには厚みを1μm以上とするのが好ましい。より好ましくは10μm以上、さらに好ましくは50μm以上とするのが望ましい。但し、機能層が厚くなり過ぎると、機能層自体の剥離を生じるので、厚みは13mm以下とするのが好ましい。より好ましくは10mm以下、さらに好ましくは5mm以下、特に好ましくは1mm以下とするのが良い。   On the other hand, the thickness of the functional layer is not particularly limited as long as electrons can be generated by the irradiation of electromagnetic waves. However, as apparent from the examples described later, the thickness is set to 1 μm or more in order to effectively exhibit this effect. Is preferred. More preferably, it is 10 μm or more, and further preferably 50 μm or more. However, if the functional layer becomes too thick, the functional layer itself is peeled off. Therefore, the thickness is preferably 13 mm or less. More preferably, it is 10 mm or less, more preferably 5 mm or less, and particularly preferably 1 mm or less.

機能層の好ましい構成素材としては、光触媒として用いられる金属酸化物,金属炭化物および金属窒化物よりなる群から選ばれる少なくとも1種を含むものを挙げることができ、これらを任意に組み合わせた2種以上を混合した層を設けても良い。金属酸化物としては、例えば、TiO2やZrO2,Al23,PbO,BaTiO3,Bi23,ZnO,WO3,SrTiO3,Fe23,FeTiO3,KTaO3,MnTiO3,SnO2などが挙げられる。金属炭化物としては、例えば、Al43やUC,U23,CaC2,SiC,ZrC,W2C,WC,TaC,TiC,Fe3C,HfC,B4C,Mn3Cなどが挙げられる。金属窒化物としては、例えば、AlNやCrN,SiN4,BN,Mg32,Li3Nなどが挙げられる。 Examples of preferable constituent materials of the functional layer include those containing at least one selected from the group consisting of metal oxides, metal carbides and metal nitrides used as photocatalysts, and two or more kinds arbitrarily combining these You may provide the layer which mixed. As the metal oxide, e.g., TiO 2 or ZrO 2, Al 2 O 3, PbO, BaTiO 3, Bi 2 O 3, ZnO, WO 3, SrTiO 3, Fe 2 O 3, FeTiO 3, KTaO 3, MnTiO 3 , SnO 2 and the like. Examples of the metal carbide include Al 4 C 3 , UC, U 2 C 3 , CaC 2 , SiC, ZrC, W 2 C, WC, TaC, TiC, Fe 3 C, HfC, B 4 C, and Mn 3 C. Is mentioned. Examples of the metal nitride include AlN, CrN, SiN 4 , BN, Mg 3 N 2 , and Li 3 N.

上記機能層の中でも結晶格子の酸素サイトに空孔が生じやすいという理由で、金属酸化物を含む層がより好ましく、金属酸化物の中でも酸化チタン(TiO2),酸化ジルコニウム(ZrO2)および酸化アルミニウム(Al23)より選ばれる1種以上を含む層がさらに好ましい。特に好ましくはZrO2である。ZrO2はバンドギャップが大きいため、一旦励起された電子を無駄なく利用できるからである。即ち、励起された電子が基材へ供給されることにより環境の腐食電位を低下させ、腐食を抑制できる。またZrO2は、水の分解に起因する水素発生電位と酸素発生電位との間にまたがる領域にバンドギャップを有しているため、腐食の進行を一層効率良く抑制できる。なお、ジルコニウム系の金属は、原子炉内で使用されるチャンネルボックスや燃料被覆管などの材料としても既に実用化されており、原子炉内での使用実績もある。この様な観点からも、前記機能層としては、ZrO2を採用することが最も好ましい。 Among the functional layers, a layer containing a metal oxide is more preferable because vacancies are likely to occur in the oxygen sites of the crystal lattice. Among the metal oxides, titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), and oxidation are more preferable. A layer containing one or more selected from aluminum (Al 2 O 3 ) is more preferable. Particularly preferred is ZrO 2 . This is because ZrO 2 has a large band gap, so that once excited electrons can be used without waste. That is, by supplying excited electrons to the substrate, the corrosion potential of the environment can be lowered, and corrosion can be suppressed. Moreover, since ZrO 2 has a band gap in a region extending between the hydrogen generation potential and the oxygen generation potential due to the decomposition of water, the progress of corrosion can be suppressed more efficiently. Zirconium-based metals have already been put into practical use as materials for channel boxes and fuel cladding tubes used in nuclear reactors, and have been used in nuclear reactors. From this point of view, it is most preferable to use ZrO 2 as the functional layer.

本発明の金属構造体は、上述した様に、基材表面に導電性中間層を介して機能層を設けた金属構造体用材料を用いて製造することができるが、基材表面の一部または全部に、耐食性を高めるための導電性中間層を設け、さらに該導電性中間層の表面に、電磁波の照射によって電子を発生する機能層を設けることによっても製造できる。   As described above, the metal structure of the present invention can be produced using a metal structure material in which a functional layer is provided on the surface of a base material via a conductive intermediate layer. Alternatively, it can also be produced by providing a conductive intermediate layer for enhancing corrosion resistance and providing a functional layer for generating electrons upon irradiation of electromagnetic waves on the surface of the conductive intermediate layer.

導電性中間層や機能層を形成する方法としては、例えば、溶射や蒸着[物理的蒸着(PVD)や化学的蒸着(CVD)など]、スパッタリングなど公知の方法が採用できる。また、シート状に形成した導電性中間層(または機能層)を基材(または導電性中間層)の表面に設けても良い。特に、本発明の金属構造体用材料は、基材表面に導電性中間層と機能層を設ける際に、温度や雰囲気等を管理できるので、性状が良好な材料となる。   As a method for forming the conductive intermediate layer or the functional layer, for example, a known method such as thermal spraying, vapor deposition [physical vapor deposition (PVD), chemical vapor deposition (CVD), etc.], sputtering, or the like can be employed. In addition, a conductive intermediate layer (or functional layer) formed in a sheet shape may be provided on the surface of the substrate (or conductive intermediate layer). In particular, the material for a metal structure of the present invention is a material having good properties because the temperature and atmosphere can be managed when the conductive intermediate layer and the functional layer are provided on the substrate surface.

本発明における金属構造体とは、主として原子力発電プラント内で冷却水や水溶液と接触する環境下で用いられる構造物であり、例えば、チャンネルボックスやシュラウド、原子炉容器、原子炉容器の蓋、水冷却配管などの金属構造体を指す。また、使用済核燃料を輸送あるいは貯蔵するための密封容器(キャニスタ)の様に、大気中で用いられる金属構造体も本発明の金属構造体に含まれる。キャニスタに結露等が生じ、該容器が水と接触することがあるからである。   The metal structure in the present invention is a structure mainly used in an environment in contact with cooling water or an aqueous solution in a nuclear power plant. For example, a channel box, a shroud, a reactor vessel, a reactor vessel lid, water Refers to metal structures such as cooling pipes. Further, a metal structure used in the atmosphere, such as a sealed container (canister) for transporting or storing spent nuclear fuel, is also included in the metal structure of the present invention. This is because condensation can occur in the canister and the container may come into contact with water.

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.

実施例1
厚みを種々変化させた導電性中間層と機能層を基材表面に設けた試験片を作製し、この試験片に電磁波を照射したときの自然浸漬電位を測定し、この電位に基づいて腐食電位低下性(耐応力腐食割れ性)を評価した。なお、電磁波照射の影響を充分無視できるように参照電極は鉛ブロックで遮蔽している。
Example 1
A test piece having a conductive intermediate layer and a functional layer with various thicknesses provided on the substrate surface was prepared, and the natural immersion potential when this test piece was irradiated with electromagnetic waves was measured. Based on this potential, the corrosion potential was measured. Degradability (stress corrosion cracking resistance) was evaluated. The reference electrode is shielded with a lead block so that the influence of electromagnetic wave irradiation can be sufficiently ignored.

また、作製した試験片を90°に折り曲げ、機能層の剥離状態から機能層との密着性を評価した。   Further, the produced test piece was bent at 90 °, and the adhesion with the functional layer was evaluated from the peeled state of the functional layer.

基材としては、JIS規格のSUS316Lを用いた。基材の大きさは、20mm×20mm×1mm(L×W×T)である。   As the base material, JIS standard SUS316L was used. The size of the substrate is 20 mm × 20 mm × 1 mm (L × W × T).

この基材の表面(おもて面)に、導電性中間層としてCoCr合金を被覆した後、機能層としてZrO2を被覆して試験片を得た。導電性中間層と機能層の厚みを夫々下記表1に示す。なお、CoCr合金の組成は、CoとCrが50質量%:50質量%である。また、おもて面のうち機能層を設けていない端面と、基材のうら面にはマスキングしている。 The surface (front surface) of this substrate was coated with a CoCr alloy as a conductive intermediate layer, and then coated with ZrO 2 as a functional layer to obtain a test piece. The thicknesses of the conductive intermediate layer and the functional layer are shown in Table 1 below. The composition of the CoCr alloy is 50% by mass: 50% by mass of Co and Cr. Further, masking is performed on the end surface of the front surface on which the functional layer is not provided and the back surface of the base material.

得られた試験片をアルゴンガスで脱気した0.05mol/LのNa2SO4溶液に浸漬し、この試験片に電磁波を照射した。電磁波としては60Coを線源とするγ線を照射した。照射強度600Gy/hでγ線を照射した後、23時間経過後に試験片から自然発生する電位(自然浸漬電位)を測定した。なお、23時間経過後に自然浸漬電位を測定する理由は、効果発現のために機能層中へ電解質溶液が浸透する時間が必要であることが実験的に確かめられているからである。 The obtained test piece was immersed in a 0.05 mol / L Na 2 SO 4 solution deaerated with argon gas, and the test piece was irradiated with electromagnetic waves. As an electromagnetic wave, γ rays using 60 Co as a radiation source were irradiated. After irradiating γ rays at an irradiation intensity of 600 Gy / h, the potential (natural immersion potential) that spontaneously occurs from the test piece after 23 hours was measured. The reason for measuring the natural immersion potential after 23 hours is that it has been experimentally confirmed that the time required for the electrolyte solution to penetrate into the functional layer is required for the effect to be exhibited.

測定された自然浸漬電位に基づいて腐食電位低下性を評価した。自然浸漬電位に基づいて腐食電位低下性を評価できる理由は、電磁波の照射により機能層で自然発生する電子が多いほど、該電子が機能層→導電性中間層を通して基材(金属構造体)へ多く到達するからであり、これにより腐食電位が低下するからである。腐食電位低下性の評価基準は次の通りである。評価結果を下記表1に併せて示す。なお自然浸漬電位は、水素電極基準電位である。   The corrosion potential lowering property was evaluated based on the measured natural immersion potential. The reason why the corrosion potential lowering ability can be evaluated based on the natural immersion potential is that the more electrons that are spontaneously generated in the functional layer by the irradiation of electromagnetic waves, the more the electrons are transferred from the functional layer to the conductive intermediate layer to the base material (metal structure). This is because it reaches a large amount, and this reduces the corrosion potential. The evaluation criteria for the corrosion potential lowering property are as follows. The evaluation results are also shown in Table 1 below. The natural immersion potential is a hydrogen electrode reference potential.

<腐食電位低下性の評価基準>
◎◎:非常に優れている(自然浸漬電位が、−350mV以下)
◎ :優れている(自然浸漬電位が、−350mV超〜−300mV)
○ :良好(自然浸漬電位が、−300mV超〜−250mV)
△ :普通(自然浸漬電位が、−250mV超〜−200mV)
□ :効果はあるが小さい(自然浸漬電位が、−200mV超)
<Evaluation criteria for corrosion potential reduction>
◎: Excellent (natural immersion potential is -350 mV or less)
A: Excellent (natural immersion potential is over -350 mV to -300 mV)
○: Good (natural immersion potential is over -300 mV to -250 mV)
Δ: Normal (natural immersion potential is over -250 mV to -200 mV)
□: Although effective, small (natural immersion potential exceeds -200 mV)

一方、上記で得られた試験片を90°に折り曲げて機能層との密着性を評価した。評価基準は次の通りであり、評価結果を下記表1に併せて示す。   On the other hand, the test piece obtained above was bent at 90 ° to evaluate the adhesion with the functional layer. The evaluation criteria are as follows, and the evaluation results are also shown in Table 1 below.

<密着性の評価基準>
◎:剥離面積が10%以下(良好)
○:剥離面積が10%超〜20%
△:剥離面積が20%超〜50%
□:剥離面積が50%超〜60%
×:剥離面積が60%超(不良)
<Adhesion evaluation criteria>
A: Peeling area is 10% or less (good)
○: Peeling area exceeds 10% to 20%
Δ: Peeling area exceeds 20% to 50%
□: peeling area is over 50% to 60%
×: Peeling area exceeds 60% (defect)

Figure 2004333468
Figure 2004333468

表1から明らかな様に、機能層と基材の間に導電性中間層を設けることによって、環境の腐食電位を低下させることができると共に、機能層との密着性を高めることができる。   As is apparent from Table 1, by providing a conductive intermediate layer between the functional layer and the substrate, the corrosion potential of the environment can be lowered and the adhesion with the functional layer can be increased.

実施例2
次に、基材表面に設ける導電性中間層と機能層の種類を変えた試験片を作製し、この試験片について腐食電位低下性と密着性を評価した。
Example 2
Next, test pieces in which the types of the conductive intermediate layer and the functional layer provided on the surface of the base material were changed were produced, and the corrosion potential lowering property and adhesiveness of the test pieces were evaluated.

基材は、大きさが20mm×20mm×1mm(L×W×T)のステンレス鋼(SUS316L)を用いた。   As the base material, stainless steel (SUS316L) having a size of 20 mm × 20 mm × 1 mm (L × W × T) was used.

この基材の表面に、下記表2に示す導電性中間層を被覆形成した。導電性中間層としては、純Fe,純Cu,純Ni,純Co,純Cr,純Ti,純Zr,CoCr合金またはNiCr合金を用いた。純とは各元素含量が99質量%以上を指す。CoCr合金の組成はCoとCrが50質量%:50質量%、NiCr合金の組成はNiとCrが50質量%:50質量%である。なお、導電性中間層の厚みは全て10μmである。   A conductive intermediate layer shown in Table 2 below was coated on the surface of the substrate. As the conductive intermediate layer, pure Fe, pure Cu, pure Ni, pure Co, pure Cr, pure Ti, pure Zr, CoCr alloy or NiCr alloy was used. Pure means that the content of each element is 99% by mass or more. The composition of the CoCr alloy is 50 mass%: 50 mass% for Co and Cr, and the composition of the NiCr alloy is 50 mass%: 50 mass% for Ni and Cr. The thickness of the conductive intermediate layer is all 10 μm.

この導電性中間層の表面に、下記表2に示す機能層を被覆形成した。機能層としては、WO3,TiO2,ZrO2またはAl23のいずれかを被覆形成した。なお、機能層の厚みは全て100μmである。 A functional layer shown in Table 2 below was formed on the surface of the conductive intermediate layer. As the functional layer, either WO 3 , TiO 2 , ZrO 2 or Al 2 O 3 was formed by coating. The thickness of each functional layer is 100 μm.

得られた試験片について腐食電位低下性と密着性を、上記実施例1と同じ条件で試験して評価した。評価結果を下記表2に併せて示す。   About the obtained test piece, the corrosion potential lowering property and adhesion were tested and evaluated under the same conditions as in Example 1. The evaluation results are also shown in Table 2 below.

Figure 2004333468
Figure 2004333468

表2から明らかな様に、機能層と基材の間に導電性中間層を設けることによって、腐食電位を低下させることができると共に、機能層との密着性を高めることができる。特に導電性中間層としてNi,Co,Cr,TiまたはZrを含む層を設けると、機能層との密着性を一段と高めることができる。   As is apparent from Table 2, by providing a conductive intermediate layer between the functional layer and the substrate, the corrosion potential can be lowered and the adhesion with the functional layer can be increased. In particular, when a layer containing Ni, Co, Cr, Ti, or Zr is provided as the conductive intermediate layer, the adhesion with the functional layer can be further enhanced.

Claims (7)

電磁波の照射下で使用される金属構造体であって、
基材の一部または全部に、耐食性を高めるための導電性中間層を介して、電磁波の照射によって電子を発生する機能層が設けられていることを特徴とする耐食性に優れた金属構造体。
A metal structure used under the irradiation of electromagnetic waves,
A metal structure having excellent corrosion resistance, wherein a functional layer for generating electrons upon irradiation with electromagnetic waves is provided on a part or all of a substrate via a conductive intermediate layer for enhancing corrosion resistance.
請求項1に記載の金属構造体を製造するための材料であって、
基材の一部または全部に、耐食性を高めるための導電性中間層を介して、電磁波の照射によって電子を発生する機能層が設けられていることを特徴とする耐食性に優れた金属構造体用材料。
A material for producing the metal structure according to claim 1,
For metal structures with excellent corrosion resistance, characterized in that a functional layer that generates electrons upon irradiation with electromagnetic waves is provided on a part or all of the base material through a conductive intermediate layer for enhancing corrosion resistance. material.
前記導電性中間層が、Fe,Cu,Ni,Co,Cr,TiおよびZrよりなる群から選ばれる1種以上を含むものである請求項1または2に記載の金属構造体または金属構造体用材料。   The metal structure or metal structure material according to claim 1 or 2, wherein the conductive intermediate layer contains at least one selected from the group consisting of Fe, Cu, Ni, Co, Cr, Ti, and Zr. 前記導電性中間層が、腐食電位を低下させる作用を有するものである請求項1〜3のいずれかに記載の金属構造体または金属構造体用材料。   The metal structure or metal structure material according to any one of claims 1 to 3, wherein the conductive intermediate layer has an action of reducing a corrosion potential. 前記導電性中間層の厚みが0.05μm以上であり、且つ、前記機能層の厚みが1μm〜13mmである請求項1〜4のいずれかに記載の金属構造体または金属構造体用材料。   5. The metal structure or metal structure material according to claim 1, wherein the conductive intermediate layer has a thickness of 0.05 μm or more, and the functional layer has a thickness of 1 μm to 13 mm. 前記機能層が、金属酸化物,金属炭化物および金属窒化物よりなる群から選ばれる少なくとも1種を含むものである請求項1〜5のいずれかに記載の金属構造体または金属構造体用材料。   The metal structure or metal structure material according to claim 1, wherein the functional layer contains at least one selected from the group consisting of metal oxides, metal carbides, and metal nitrides. 請求項1に記載の金属構造体を製造するための方法であって、
基材表面の一部または全部に、耐食性を高めるための導電性中間層を設け、さらに該導電性中間層の表面に、電磁波の照射によって電子を発生する機能層を設けることを特徴とする耐食性に優れた金属構造体の製法。
A method for manufacturing a metal structure according to claim 1, comprising:
Corrosion resistance, characterized in that a conductive intermediate layer for enhancing corrosion resistance is provided on part or all of the substrate surface, and further a functional layer for generating electrons upon irradiation of electromagnetic waves is provided on the surface of the conductive intermediate layer. The manufacturing method of the metal structure excellent in.
JP2003358855A 2003-04-15 2003-10-20 Metal structure excellent in corrosion resistance, material for producing the metal structure, and method for producing the metal structure Expired - Lifetime JP4430372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003358855A JP4430372B2 (en) 2003-04-15 2003-10-20 Metal structure excellent in corrosion resistance, material for producing the metal structure, and method for producing the metal structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003110023 2003-04-15
JP2003358855A JP4430372B2 (en) 2003-04-15 2003-10-20 Metal structure excellent in corrosion resistance, material for producing the metal structure, and method for producing the metal structure

Publications (2)

Publication Number Publication Date
JP2004333468A true JP2004333468A (en) 2004-11-25
JP4430372B2 JP4430372B2 (en) 2010-03-10

Family

ID=33513157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003358855A Expired - Lifetime JP4430372B2 (en) 2003-04-15 2003-10-20 Metal structure excellent in corrosion resistance, material for producing the metal structure, and method for producing the metal structure

Country Status (1)

Country Link
JP (1) JP4430372B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194873A (en) * 2004-12-30 2006-07-27 General Electric Co <Ge> Dielectric coating for surface exposed to high temperature water
JP2006241487A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Steel product and manufacturing method therefor
JP2006242577A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Radiation-resistant member and nuclear power generation system using it
JP2006241488A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Nonferrous metal product and manufacturing method therefor
JP2006343202A (en) * 2005-06-08 2006-12-21 Central Res Inst Of Electric Power Ind Reactor structure material
JP2009047692A (en) * 2007-08-16 2009-03-05 Ge-Hitachi Nuclear Energy Americas Llc Protective coating applied to metallic reactor component for reducing corrosion product released into nuclear reactor environment
JP2009222442A (en) * 2008-03-13 2009-10-01 Central Res Inst Of Electric Power Ind Canister and concrete cask
JP2010060560A (en) * 2008-09-03 2010-03-18 Ge-Hitachi Nuclear Energy Americas Llc Method of protecting nuclear reactor component from contamination
WO2012141323A1 (en) * 2011-04-12 2012-10-18 Jfeスチール株式会社 Method for evaluating corrosion resistance of molded can against content
JP2015175609A (en) * 2014-03-13 2015-10-05 日立Geニュークリア・エナジー株式会社 Nuclear power plant and anticorrosion method for nuclear power plant
US10847273B2 (en) 2014-01-17 2020-11-24 Ge-Hitachi Nuclear Energy Americas Llc Steam separator and nuclear boiling water reactor including the same
CN117229664A (en) * 2023-11-16 2023-12-15 北京航空航天大学 Corrosion control method of marine environment-resistant stealth material system based on mixed potential

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8675806B2 (en) 2004-12-30 2014-03-18 General Electric Company Dielectric coating for surfaces exposed to high temperature water
JP2006194873A (en) * 2004-12-30 2006-07-27 General Electric Co <Ge> Dielectric coating for surface exposed to high temperature water
JP2006241487A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Steel product and manufacturing method therefor
JP2006242577A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Radiation-resistant member and nuclear power generation system using it
JP2006241488A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Nonferrous metal product and manufacturing method therefor
JP4623502B2 (en) * 2005-02-28 2011-02-02 財団法人電力中央研究所 Radiation resistant member and nuclear power generation system using the same
JP2006343202A (en) * 2005-06-08 2006-12-21 Central Res Inst Of Electric Power Ind Reactor structure material
JP4623510B2 (en) * 2005-06-08 2011-02-02 財団法人電力中央研究所 Reactor structural material
JP2009047692A (en) * 2007-08-16 2009-03-05 Ge-Hitachi Nuclear Energy Americas Llc Protective coating applied to metallic reactor component for reducing corrosion product released into nuclear reactor environment
JP2009222442A (en) * 2008-03-13 2009-10-01 Central Res Inst Of Electric Power Ind Canister and concrete cask
TWI470649B (en) * 2008-09-03 2015-01-21 Ge Hitachi Nucl Energy America Method of protecting reactor components from fouling
JP2010060560A (en) * 2008-09-03 2010-03-18 Ge-Hitachi Nuclear Energy Americas Llc Method of protecting nuclear reactor component from contamination
JP2012220394A (en) * 2011-04-12 2012-11-12 Jfe Steel Corp Method of evaluating corrosion resistance of can molding with respect to content
CN103460019A (en) * 2011-04-12 2013-12-18 杰富意钢铁株式会社 Method for evaluating corrosion resistance of molded can against content
WO2012141323A1 (en) * 2011-04-12 2012-10-18 Jfeスチール株式会社 Method for evaluating corrosion resistance of molded can against content
US8906212B2 (en) 2011-04-12 2014-12-09 Jfe Steel Corporation Method for evaluating corrosion resistance of cans to contents
CN103460019B (en) * 2011-04-12 2016-11-16 杰富意钢铁株式会社 Evaluate the jug forming body method to the corrosion resistance of content
US10847273B2 (en) 2014-01-17 2020-11-24 Ge-Hitachi Nuclear Energy Americas Llc Steam separator and nuclear boiling water reactor including the same
JP2015175609A (en) * 2014-03-13 2015-10-05 日立Geニュークリア・エナジー株式会社 Nuclear power plant and anticorrosion method for nuclear power plant
CN117229664A (en) * 2023-11-16 2023-12-15 北京航空航天大学 Corrosion control method of marine environment-resistant stealth material system based on mixed potential
CN117229664B (en) * 2023-11-16 2024-02-23 北京航空航天大学 Corrosion control method of marine environment-resistant stealth material system based on mixed potential

Also Published As

Publication number Publication date
JP4430372B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
TW457490B (en) Reactor structure material and method for reducing corrosion of reactor structure material
JP4430372B2 (en) Metal structure excellent in corrosion resistance, material for producing the metal structure, and method for producing the metal structure
JP6348227B2 (en) Composite nuclear fuel cladding, its preparation method and its use to prevent oxidation / hydrogenation
Wang et al. Oxidation resistance improvement of Zr-4 alloy in 1000° C steam environment using ZrO2/FeCrAl bilayer coating
Långberg et al. Redefining passivity breakdown of super duplex stainless steel by electrochemical operando synchrotron near surface X-ray analyses
Doyle et al. Evaluation of the effects of neutron irradiation on first-generation corrosion mitigation coatings on SiC for accident-tolerant fuel cladding
Kayali et al. Investigation of corrosion behaviors at different solutions of boronized AISI 316L stainless steel
US4268586A (en) Corrosion resistant zirconium alloy structural components and process
JP4233027B2 (en) Anticorrosion member and metal structure having the anticorrosion member attached
Vetrivendan et al. Argon shrouded plasma spraying of tantalum over titanium for corrosion protection in fluorinated nitric acid media
US20060188056A1 (en) Method for forming coatings on structural components with corrosion-mitigating materials
Zhang et al. The effect of alloy elements on corrosion and oxidative resistance of W-based alloy films
Dai et al. Al2O3–TiO2 composite coatings with enhanced anticorrosion properties for 316L stainless steel
JP2003232886A (en) Corrosion reduction method for metallic material
Garg et al. Electrochemical and adhesion properties of hydrothermally deposited nano-ZrO2 coatings on oxide layers of stainless steel
JP4059772B2 (en) Structure cleaning method and anticorrosion method, and structure using them
Zhang et al. Effects of hydrogen on passivation and semiconductive properties of passive film on Fe-based amorphous coatings
Hur et al. Effect of gadolinium addition on the corrosion behavior and oxide properties of titanium in boric acid solution at 50 C
Farmer et al. Corrosion resistance of amorphous Fe49. 7Cr17. 7Mn1. 9Mo7. 4W1. 6B15. 2C3. 8Si2. 4 coating: a new criticality control material
SE433408B (en) NUCLEAR FUEL ELEMENT AND PROCEDURE FOR ITS MANUFACTURING
Kamachi Mudali et al. Nanostructured coatings for corrosion protection in reprocessing plants
JPH08201578A (en) Structural material for reactor and method for preventing it form corroding
Sathasivam et al. Prolonged and enhanced protection against corrosion over titanium oxide-coated 304L stainless steels having been irradiated with ultraviolet
DINIAȘI12 et al. Research on corrosion testing and characterization of protective chromium coatings deposited on Zy-4 substrate
Raj et al. Nanotechnologies in Sodium‐Cooled Fast Spectrum Reactor and Closed Fuel Cycle Sustainable Nuclear Energy System

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040813

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4430372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term