JP2004333448A - Electromagnetic ultrasonic probe - Google Patents

Electromagnetic ultrasonic probe Download PDF

Info

Publication number
JP2004333448A
JP2004333448A JP2003133477A JP2003133477A JP2004333448A JP 2004333448 A JP2004333448 A JP 2004333448A JP 2003133477 A JP2003133477 A JP 2003133477A JP 2003133477 A JP2003133477 A JP 2003133477A JP 2004333448 A JP2004333448 A JP 2004333448A
Authority
JP
Japan
Prior art keywords
magnet
ultrasonic probe
auxiliary
magnets
electromagnetic ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003133477A
Other languages
Japanese (ja)
Other versions
JP3727933B2 (en
Inventor
Akira Jo
陽 徐
Akihiro Tagawa
明広 田川
Masashi Ueda
雅司 上田
Takuya Yamashita
卓哉 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Nuclear Cycle Development Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Nuclear Cycle Development Institute filed Critical Japan Nuclear Cycle Development Institute
Priority to JP2003133477A priority Critical patent/JP3727933B2/en
Publication of JP2004333448A publication Critical patent/JP2004333448A/en
Application granted granted Critical
Publication of JP3727933B2 publication Critical patent/JP3727933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve a flaw detection capability and a measurement capability by making a magnet structure stronger or smaller. <P>SOLUTION: The electromagnetic ultrasonic probe comprises one or more pairs of magnet arrangement units which periodically arrange many prism-shaped permanent magnets and apply a magnetic field to a member to be inspected, and a coil which generates or detects an eddy current in the member to be inspected. The magnet arrangement unit 30 comprises a periodic arrangement structure in which primary magnets 32a and auxiliary magnets 32b are combined with their height direction aligned, wherein the primary magnets 32a are magnetized in the height direction and are arranged so that their magnetization directions are alternatingly opposed, and the auxiliary magnets 32b are magnetized in the thickness direction and are placed between the primary magnets and at both the ends so that their magnetization directions are alternatingly reversed. The surface of the north pole side of the primary magnet which is in contact with the surface of the north pole side of the auxiliary magnet is set to be a magnet working surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、金属などの導電性被検査材を非接触で非破壊で検査或いは計測するのに用いる電磁超音波探触子に関し、更に詳しく述べると、縦方向(高さ方向)に磁化した主磁石と横方向(厚み方向)に磁化した補助磁石とを組み合わせ磁石配列ユニットとすることで高い超音波強度が得られるように工夫した電磁超音波探触子に関するものである。
【0002】
【従来の技術】
【特許文献1】
特開平10−282071号公報
【0003】
超音波探傷装置には各種の超音波変換素子が使用されており、その1つに電磁超音波探触子がある。電磁超音波探触子は、導電性を有する被検査材の表面近傍に位置するコイルに高周波電流を流し、それによって被検査材内に誘起される渦電流と探触子に設けられた永久磁石による磁場との相互作用により、被検査材内に直接超音波を発生させ、欠陥の検査や被検査材の厚みの測定などを行うデバイスである。例えば図5に示すように、電磁超音波探触子10は、被検査材(図示せず)に磁場を印加する磁石構造体12と、被検査材に渦電流を発生させる送信コイル(或いは被検査材の渦電流を検出する受信コイル)14を具備しており、そのコイル引出線16が高周波電流源或いは探傷器など(図示せず)に接続される。
【0004】
このような電磁超音波探触子は、永久磁石の構造・配置、及び渦電流励起用等のコイル構造の適切な組み合わせにより、各種モード送受信超音波探触子を簡単に構成できる。そのため、非接触・非破壊検査法として高温環境への使用や原子力プラント・鉄道探傷などの分野への応用が盛んに研究されてきた。
【0005】
電磁超音波探触子で磁場印加に用いられる従来の磁石配列ユニットは、通常、図6に示すように、高さ方向に着磁されている多数の角柱状永久磁石20を、隣接する磁石の磁化方向が互いに逆向きとなるように一列に配列した構造である。この磁石配列ユニット22の上下面のいずれか一方が磁石ワーキング面(被検査材に対向する面)となる。図中の矢印は磁化方向(S極からN極へ向かう方向)を示している。従って、磁石配列ユニットにおける各磁石は、磁石ワーキング面に対して垂直方向で交互に逆向きに磁化された状態となっている。このような磁石配列ユニット22は、1組のみでも磁石構造体を構成できる。また、このような磁石配列ユニット22を、2組、組同士で隣り合う磁石も磁化方向が互いに逆向きとなるように同数並べることで2列の磁石構造体24が得られる(図6のB参照)。更に、磁石配列ユニットを同様のルールで増やしてもよく、それによって多数列の磁石構造体が得られる。
【0006】
このような磁石構造体を用い、それに誘導電流の供給用コイル(送信探触子の場合)及び/又は渦電流の検出用コイル(受信探触子の場合)を組み合わせることによって電磁超音波探触子が構成されることになる。
【0007】
ところで、磁石配列ユニットの他の従来例として、永久磁石間に非磁性スペーサを介在させる構成も提案されている(特許文献1参照)。この構造では、スペーサを介在させることで該スペーサ内での磁気抵抗が増加し、被検査材に印加できる磁場強度が増加するため、感度が向上するとされている。
【0008】
【発明が解決しようとする課題】
いずれにしても、このような従来構造の磁石構造体では、上下面が磁気的に対称な構造であり、上下面のいずれを磁石ワーキング面としても磁気特性は同一である。そのため、磁石の持っている磁気エネルギーの半分しか電磁超音波探触子として利用できていない。
【0009】
また、従来の電磁超音波探触子の磁石構造体では、磁石高さ寸法Lの大きな構成(高い角柱状永久磁石を用いる構成)が採用されている。これは、磁石高さ寸法Lが小さいと、磁気特性が弱くなる恐れがあるからである。そこで磁石高さ寸法Lは、通常、磁石配置周期長さの2〜3倍程度、もしくはそれ以上に設定されている。そのため磁石が大型化するばかりでなく、重くなる欠点があった。
【0010】
本発明の目的は、探傷能力・計測能力を向上できる電磁超音波探触子を提供することである。本発明の他の目的は、より小型化、軽量化できる電磁超音波探触子を提供することである。
【0011】
【課題を解決するための手段】
厚み方向に磁化している磁石は、その厚みが薄い偏平状の場合に、反磁場の影響が大きく、磁石性能の低下が予想される。そのため、厚み方向に着磁されている偏平状磁石を電磁超音波探触子の磁石構造体に使用することは極力避けるべきであるというのが技術常識であった。しかし、本発明者等は、数値解析と実験試作を重ねた結果、高さ方向に着磁されている主磁石と厚み方向に着磁されている補助磁石を適正に組み合わせることで磁気特性が向上し、それによって超音波性能が高まることを見出した。本発明は、かかる知得に基づき完成されたものである。
【0012】
本発明は、多数の角柱状永久磁石を周期配列し被検査材に磁場を印加する1組乃至複数組の磁石配列ユニットと、被検査材に渦電流を発生させる或いは被検査材の渦電流を検出するコイルを具備している電磁超音波探触子において、磁石配列ユニットは、高さ方向に着磁され磁化方向が交互に逆向きとなるように配列されている主磁石と、厚み方向に着磁され磁化方向が交互に反対向きとなるように前記各主磁石の間及び両端に位置している補助磁石を、高さ方向を揃えて組み合わせた周期配列構造をなし、補助磁石のN極側の面に接する主磁石のN極側の面を磁石ワーキング面とすることを特徴とする電磁超音波探触子である。従って、更に付言すると、本明細書において高さ方向とは磁石ワーキング面に垂直な方向を意味し、厚み方向とは磁石配列方向を意味している。
【0013】
ここで磁石配列ユニットの両端に位置する端部補助磁石は、その磁石厚み寸法b′が、それ以外の補助磁石の磁石厚み寸法bの0.25〜1倍に設定されているのが好ましい。また磁石高さLは、磁石配列周期長T=2(a+b)の0.5〜1.5倍の寸法(但し、aは主磁石の厚み寸法)とするのが好ましい。更に、主磁石の磁石厚み寸法aと補助磁石の磁石厚み寸法bとを等しくするのが望ましい。これらは、主磁石と補助磁石が同一磁石材料からなる場合である。
【0014】
【発明の実施の形態】
本発明で用いる磁石構造体を構成する磁石配列ユニット及び各磁石の一例を図1に示す。磁石配列ユニット30は、多数の四角柱状(ここでは横断面が長方形の柱状体である)の永久磁石を周期配列した構造である。使用している磁石は、高さ方向(図面で縦方向)に着磁されている主磁石32aと、厚み方向(図面で横方向)に着磁されている補助磁石32bとの2種類であり、磁化の向きを考慮して周期的に配列する。具体的には、磁化方向が交互に逆向きとなるように配列されている主磁石32aと、磁化方向が交互に逆向きとなるように前記主磁石32aの間及び両端に位置している補助磁石32bとを、高さ方向を揃えて配列する。そして、補助磁石32bのN極側の面に接する主磁石32aのN極側の面を磁石ワーキング面に選定する。従って、図1では磁石配列ユニット30の下面が磁石ワーキング面となり、磁石の高さ方向が磁石ワーキング面に垂直方向、厚み方向が磁石配列方向となる。因みに、磁石配列ユニット30の上面では下面よりも遙かに磁束密度が低下する(上面と下面で磁気特性が非対称となる)ため、磁石ワーキング面としては使用しない。このような磁石配列ユニット30は、それ1個のみでも電磁超音波探触子の磁石構造体として機能する。
【0015】
図1のBは、この磁石配列状況を2次元で示したものである。図示のように、図面右手方向をx方向、上方向をy方向とするx−y座標系を設定する。上向き(y方向)に磁化している主磁石32aと、右向き(x方向)に磁化している補助磁石32bと、下向き(−y方向)に磁化している主磁石32aと、左向き(−x方向)に磁化している補助磁石32bとで1つの磁石配列周期Tが構成される。ここで、以下の説明のために、磁石の寸法を次のように定義する。
L:磁石の高さ寸法
a:主磁石の厚み寸法
b:補助磁石の厚み寸法
b′:端部補助磁石の厚み寸法
w:磁石の幅寸法
【0016】
電磁超音波探触子に組み込む磁石構造体は、磁石ワーキング面に垂直方向の磁束密度が、できる限り均一的周期性を保つようにする必要がある。そこで本発明では、前記のように、磁石構造体の両端部が補助磁石となるような構造にしている。両端部に補助磁石が無いと、磁束密度分布の均一的周期性が損なわれるからである。なお、両端部に配置した補助磁石(端部補助磁石)の磁化方向は、同一でもよいし、逆でもよい。主磁石と補助磁石とが同一磁石材料の場合、端部補助磁石の厚み寸法b′は、それ以外の補助磁石の厚み寸法bの0.25〜1倍とする。電磁超音波探触子は小さいリフトオフ距離(ワーキング面からの距離)で高性能を呈し、実測用リフトオフ距離は通常1.5mm程度以内であることから、上記のような範囲が適当なのである。ここで端部補助磁石の厚み寸法b′の最適値はリフトオフ距離に依存し、リフトオフ距離が短ければb′寸法を小さめに調整する。つまり、リフトオフ距離に応じたb′寸法を設定することで、磁束密度分布の均一性を改善できるのである。
【0017】
また、磁石高さLは、磁石配列周期長T=2(a+b)の0.5〜1.5倍とするのがよい。磁石高さLが小さすぎるとパワー不足となるし、逆に磁石高さLが大きすぎると大型化し重くなるし、磁石高さLがある程度大きくなると磁気特性は飽和してしまうからである。更に、主磁石の厚み寸法aと補助磁石の厚み寸法bの比を、1:1.5〜1.5:1の範囲とするのが好ましいが、ほぼ等しくする(1:1とする)のが最適である。その時に超音波強度を最も大きくできるからである。
【0018】
本発明で用いる磁石構造体においては、主磁石と補助磁石とで材質上の制限はなく、磁石材料が同じでもよいし、異なっていてもよい。異なっている場合、主磁石と補助磁石の最適な寸法関係は必ずしも上記と同じになるとは限らない。しかし、主磁石の厚みaと補助磁石の厚みbの異なる組み合わせにおいて、電磁超音波探触子の超音波強度が異なるだけであり、電磁超音波探触子としての機能が失われることはない。
【0019】
図2は本発明に用いる磁石構造体の他の例を示している。この磁石構造体34は、図1に示した如き磁石配列ユニット30を、2組、隣り合う関係にある主磁石32aの磁化の向きが互いに逆になり、且つ補助磁石32bの磁化の向きも互いに逆になるように組み合わせたものである。図示するのは省略するが、同様のルールによって磁石配列ユニットを3組以上並設することで、多数列の磁石構造体を構成することができる。
【0020】
図3及び図4は、磁石構造体とコイルの組み合わせを示している。図3は、1組の磁石配列ユニット30で磁石構造体が構成されている場合(図1参照)に有効な構造である。コイル40は、磁石構造体の上面から下面(ワーキング面)にかけてx−y平面にほぼ垂直な軸のまわりに線材を所定回数巻き付ける構造である。特に、ワーキング面に沿うコイル線の方向をx方向と平行にするのが好ましい。図4は、2組の磁石配列ユニットによって磁石構造体34が構成されている場合(図2参照)である。平面状コイル42を用い、それを磁石構造体の磁石ワーキング面(ここでは下面)に配置する。コイル幅方向の片側辺は一方の磁石配列ユニット直下に位置し、反対側辺は他方の磁石配列ユニット直下に位置するように設ける。
【0021】
このような電磁超音波探触子は、送信用及び受信用のいずれにも使用できる。また、送信コイルと受信コイルを重ねて(異なる巻数が可能であるし、異なる寸法とすることも可能である)配置することにより、送受信兼用の電磁超音波探触子を構成することもできる。これらについては、例えば特許文献1に記載されているような従来公知の手法で行える。このような磁石構造体及びコイルを電磁超音波探触子に組み込むことによって、電磁超音波探触子の小型化・高性能化が可能になる。
【0022】
【実施例】
磁石構造体についての解析結果について以下に説明する。図7は、y方向(ワーキング面に垂直方向)の磁束密度のリフトオフ距離依存性を示しており、横軸はx方向(ワーキング面に平行方向)沿いの磁石相対位置、縦軸はy方向の磁束密度Byである。Aは本発明品の解析結果、Bは従来品の解析結果であり、いずれもリフトオフ距離(ワーキング面からの距離)を0.1〜4.0mmの範囲で変化させて描いている。本発明品は、主磁石と補助磁石に同じ磁石材料を用い、磁石の高さL=7mm、主磁石の厚みa=1.25mm、補助磁石の厚みb=1.25mmである。従来品は、磁石の高さL=7mm、磁石の厚み=2.5mmである。これらの結果から、リフトオフ距離が小さいほどy方向の磁束密度Byが強くなる点では本発明品も従来品も同じであるが、同じリフトオフ距離で両者を対比すると、本発明品の方が磁束密度Byがはるかに増大していることが分かる。つまり、本発明品は従来品に比べて、より一層強力な磁気特性が発現している。
【0023】
また図示するのは省略するが、端部補助磁石が存在しない場合には、両端側の磁束密度分布は明らかに低くなり、全体的に均一性が欠けることが確認されている。図7のAでは、リフトオフ距離が0.1mm程度以内のように短い場合に磁束密度が均一的周期性を呈している。解析結果によれば、端部補助磁石の厚みb′=3b/4の場合、リフトオフ距離0.5mmにおける磁束密度の均一性が良好となり、リフトオフ距離0.5mm程度で測定する電磁超音波探触子に適すること、また端部補助磁石の厚みb′=b/2の場合、リフトオフ距離1.0mmにおける磁束密度の均一性が良好となり、リフトオフ距離1.0mm程度で測定する電磁超音波探触子に適することも確認されている。一般的に電磁超音波探触子は小さいリフトオフ距離で高性能を呈するので、例えば、ここで示した例では、700〜900kHzに適する電磁超音波探触子の場合、実測用リフトオフ距離は1.5mm程度以内と考えられる。これらのことから、端部補助磁石の厚みb′は0.25b〜bの範囲が適当ということになる。
【0024】
図8は、縦方向(高さ方向)に磁化している磁石の中心縦断面(図1のm−m断面)におけるy方向の磁束密度Byの磁石厚み寸法依存性を示し、横軸はy方向の相対位置、縦軸はy方向の磁束密度Byである。主磁石の厚みaと補助磁石の厚みb(端部補助磁石の厚みb′=b)との和が一定(ここではa+b=2.5mm)となる様々な組み合わせについて解析している。図の中心部にある縦線はワーキング面に相当し、その左側の領域が磁石内部に、右側の領域が磁石外部に相当する。磁石外部において、主磁石の厚みaが小さいほど磁石表面近傍においてy方向磁束密度が大きいが、リフトオフ距離の増加につれて減少し、それぞれの曲線が交差し逆転する場合もある。いずれにしても、多数の磁束密度分布曲線の中で一番下に位置するのはb=0の構造(即ち補助磁石が無い従来品)に相当し、従来品の磁束密度分布が一番弱いことを意味している。
【0025】
図9は、縦方向(高さ方向)に磁化している磁石の中心縦断面(図1のm−m断面)におけるy方向の磁束密度Byの磁石高さ寸法依存性を示し、横軸はy方向の相対位置、縦軸はy方向の磁束密度Byである。磁石高さ寸法Lを2〜10mmの範囲で変化させて解析している。図の中心部にある縦線はワーキング面に相当し、その左側の領域が磁石内部に、右側の領域が磁石外部に相当する。
【0026】
磁石内部においては磁石高さ寸法Lの影響により最高磁束密度は異なる。しかし磁石外部においては、L=5,7,10mmの場合、3つの曲線はほぼ重なっていて、L=3mmの場合の曲線から少し下がり始め、L=2.5mmとL=2mmの場合には明らかなパワー減少が見られる。結果として、y方向磁束密度は磁石高さ寸法Lには敏感でないことが分かった。言い換えれば、ある程度高さ寸法Lの小さい磁石を使用しても、高さ寸法Lの非常に大きい磁石とほぼ同じ磁気特性を有するので、適正な磁石高さに設定することで電磁超音波探触子の小型化・軽量化が簡単に達成できることが分かる。
【0027】
磁石の製作による性能ばらつきと表面加工層の性能低下、磁石組立の難易を考慮すると、磁石高さ寸法Lは磁石配列周期T=2(a+b)の0.5倍以上(つまり、ここではL≧2.5mm)が望ましく、また軽量化を考慮すると、高さが大きすぎると重くなるので、磁石高さ寸法Lは磁石配列周期Tの1.5倍以下(つまり、ここではL≦7.5mm)が望ましい。
【0028】
図10は、縦方向(高さ方向)に磁化している磁石の中心縦断面(図1のm−m断面)におけるy方向の磁束密度Byの磁石高さ寸法依存性を示し、横軸はy方向の相対位置、縦軸はy方向の磁束密度Byである。磁石高さ寸法Lを変化させて解析している。図の中心部にある縦線はワーキング面に相当し、その左側の領域が磁石内部に、右側の領域が磁石外部に相当する。ここでは磁石高さ寸法Lを5,7,10mmと変えた3種類の磁石構造体について、y方向の磁束密度Byの分布曲線を求めている。これは、図9を補足するもので、磁石ワーキング面側と共に、それと反対面側における磁束密度分布も示している。
【0029】
磁石外部において2組の曲線が観察されるが、上の曲線はワーキング面側におけるy方向磁束密度分布であり、下の曲線はワーキング面の反対面側におけるy方向磁束密度分布である。明らかに、ワーキング面側に比べてそれと反対面側の磁気特性が弱い。この弱い磁気特性は、ワーキング面側に強力な磁気特性が発現した結果である。従って本発明では、適切にワーキング面を選定することが必要であり、それによって同じ材質、ほぼ同じ磁石材料使用量であっても、より強力な電磁超音波探触子が構成できることが分かる。
【0030】
次に、本発明に係る電磁超音波探触子の超音波強度特性について説明する。解析条件は、磁石配置周期数8+補助磁石1個、周波数700kHz、磁石高さL=7mm、磁石配置周期長さ2(a+b)=5mmであり、伝播媒質材料はステンレス鋼(SUS304)である。図11では、主磁石の厚みaと補助磁石の厚みbの和(a+b)を一定とし、aとbの組み合わせを変化させた場合の超音波強度特性を示している。aとbの各組み合わせにおいて類似の超音波分布特性を示している。このことから、超音波分布特性はaとbの組み合わせの関数ではなく、a+bの合計値の関数であることが分かる。aとbの組合せが異なる場合、超音波強度のピーク値のみが変化し、指向性形状などは殆ど変化しない。なお、図において、一つの強力なメインローブピークと7つの弱いサイドローブピークが観察され、その合計数8は磁石配置周期数と一致している。強力なメインローブピークは鋭い超音波指向性を意味し、メインローブのピーク値は超音波強度として評価できる。なお、解析は相対超音波分布特性について行ったもので、図の縦軸及び横軸は相対値を示している。
【0031】
図12は、図11のデータを元に、超音波強度のピーク値と超音波屈折角を磁石厚みaの関数として再整理した結果である。aとbの差が大きいほど、超音波強度のピーク値が小さく、主磁石の厚み寸法aと補助磁石の厚み寸法bの比を、1:1.5〜1.5:1の範囲とすると良好な超音波強度が得られる。特に、両者が同じ場合(a=b=1.25mm)に一番強力な超音波強度が得られる。従って、本発明の電磁超音波探触子に用いた磁石配置構造の主磁石厚みaと補助磁石厚みbを変化することにより、探触子の出力を調整できることが分かる。なお、同図において、b=0の場合は従来の磁石構造体に相当する。両者の超音波強度のピーク値を比較すると、a=bの場合はb=0の場合の1.4倍の性能向上が達成できた。一方、超音波の屈折角の変化は、aとbの組合せにかかわらず僅か(0.3°範囲以内)であり、超音波指向性方向はあまり変化しないことも分かる。
【0032】
これらの解析結果から、本発明に係る電磁超音波探触子は、磁気特性の向上に伴い性能が飛躍的に高められることが明らかとなった。この性能向上は、重量軽減とパワーアップの両面で達成される。
【0033】
【発明の効果】
本発明は上記のように、縦方向に磁化している主磁石と横方向に磁化している補助磁石とを適正に組み合わせた磁石配列ユニットを用いる構成であるから、電磁超音波探触子の小型化、高性能化(探傷能力・計測能力の向上)を図ることができる。本発明により、より強力な電磁超音波探触子を必要とする検査・計測環境や、より小型の電磁超音波探触子を必要とする検査・計測環境において、電磁超音波による非破壊検査の欠陥検出性が向上し、また非破壊評価の測定精度が向上し、全体的に電磁超音波による非破壊検査・評価の信頼性が向上する。
【図面の簡単な説明】
【図1】本発明で用いる磁石構造体の一例を示す説明図。
【図2】本発明で用いる磁石構造体の他の例を示す説明図。
【図3】磁石構造体とコイルの組み合わせの一例を示す説明図。
【図4】磁石構造体とコイルの組み合わせの他の例を示す説明図。
【図5】電磁超音波探触子の構造例を示す説明図。
【図6】従来の電磁超音波探触子で用いる磁石構造体の一例を示す説明図。
【図7】y方向磁束密度Byのリフトオフ距離依存性の一例を示すグラフ。
【図8】y方向磁束密度Byの磁石厚み寸法依存性の例を示すグラフ。
【図9】y方向磁束密度Byの磁石高さ寸法依存性の一例を示すグラフ。
【図10】y方向磁束密度Byの磁石高さ寸法依存性の他の例を示すグラフ。
【図11】磁石寸法に対する超音波強度特性を示すグラフ。
【図12】磁石寸法に対する超音波強度のピーク値と超音波屈折角の関係を示すグラフ。
【符号の説明】
30 磁石配列ユニット
32a 主磁石
32b 補助磁石
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electromagnetic ultrasonic probe used for non-contact and non-destructive inspection or measurement of a conductive inspection material such as a metal. More specifically, the present invention relates to an electromagnetic ultrasonic probe which is magnetized in a vertical direction (height direction). The present invention relates to an electromagnetic ultrasonic probe devised so that a high ultrasonic intensity can be obtained by combining a magnet and an auxiliary magnet magnetized in a lateral direction (thickness direction) to form a magnet arrangement unit.
[0002]
[Prior art]
[Patent Document 1]
Japanese Patent Application Laid-Open No. H10-282071
Various ultrasonic transducers are used in an ultrasonic flaw detector, and one of them is an electromagnetic ultrasonic probe. An electromagnetic ultrasonic probe sends a high-frequency current to a coil located near the surface of a test object having conductivity, thereby causing an eddy current induced in the test material and a permanent magnet provided on the probe. This device generates ultrasonic waves directly in the material to be inspected by the interaction with the magnetic field, thereby inspecting the defect and measuring the thickness of the material to be inspected. For example, as shown in FIG. 5, the electromagnetic ultrasonic probe 10 includes a magnet structure 12 that applies a magnetic field to a material to be inspected (not shown), and a transmission coil (or a material that generates an eddy current to the material to be inspected). A receiving coil (detection coil) 14 for detecting an eddy current of the inspection material is provided, and the coil lead wire 16 is connected to a high-frequency current source or a flaw detector (not shown).
[0004]
In such an electromagnetic ultrasonic probe, various modes of transmitting and receiving ultrasonic probes can be easily configured by appropriately combining the structure and arrangement of the permanent magnets and the coil structure for eddy current excitation. For this reason, application to high temperature environments and applications to fields such as nuclear power plants and railway flaw detection as non-contact and non-destructive inspection methods have been actively studied.
[0005]
As shown in FIG. 6, a conventional magnet array unit used for applying a magnetic field in an electromagnetic ultrasonic probe usually includes a large number of prism-shaped permanent magnets 20 magnetized in a height direction, and the adjacent magnets 20 In this structure, the magnetization directions are arranged in a line so that they are opposite to each other. One of the upper and lower surfaces of the magnet array unit 22 is a magnet working surface (a surface facing the material to be inspected). The arrow in the figure indicates the magnetization direction (the direction from the S pole to the N pole). Therefore, each magnet in the magnet arrangement unit is in a state of being alternately magnetized in the direction perpendicular to the magnet working surface in the opposite direction. Such a magnet arrangement unit 22 can constitute a magnet structure by only one set. Further, two magnet arrays 24 are obtained by arranging the same number of such magnet arrangement units 22 so that the magnets adjacent to each other in the groups have the magnetization directions opposite to each other (B in FIG. 6). reference). Further, the magnet array units may be increased according to a similar rule, so that a multi-row magnet structure is obtained.
[0006]
By using such a magnet structure and combining it with a coil for supplying an induced current (in the case of a transmitting probe) and / or a coil for detecting an eddy current (in the case of a receiving probe), the electromagnetic ultrasonic probe is used. The child will be composed.
[0007]
Incidentally, as another conventional example of the magnet arrangement unit, a configuration in which a nonmagnetic spacer is interposed between permanent magnets has also been proposed (see Patent Document 1). In this structure, the interposition of the spacer increases the magnetic resistance in the spacer and increases the strength of the magnetic field that can be applied to the material to be inspected, thereby improving the sensitivity.
[0008]
[Problems to be solved by the invention]
In any case, in such a conventional magnet structure, the upper and lower surfaces are magnetically symmetrical, and the magnetic characteristics are the same regardless of which of the upper and lower surfaces is the magnet working surface. Therefore, only half of the magnetic energy of the magnet can be used as an electromagnetic ultrasonic probe.
[0009]
Further, in a conventional magnet structure of an electromagnetic ultrasonic probe, a configuration having a large magnet height L (a configuration using a high prismatic permanent magnet) is employed. This is because if the magnet height L is small, the magnetic properties may be weakened. Therefore, the magnet height L is usually set to about two to three times the magnet arrangement cycle length or more. As a result, not only is the magnet large, but also heavy.
[0010]
An object of the present invention is to provide an electromagnetic ultrasonic probe capable of improving flaw detection capability and measurement capability. Another object of the present invention is to provide an electromagnetic ultrasonic probe that can be reduced in size and weight.
[0011]
[Means for Solving the Problems]
When the magnet magnetized in the thickness direction has a thin and flat shape, the effect of the demagnetizing field is large, and a decrease in magnet performance is expected. For this reason, it was common technical knowledge that the use of a flat magnet magnetized in the thickness direction for the magnet structure of the electromagnetic ultrasonic probe should be avoided as much as possible. However, as a result of repeated numerical analysis and experimental trial production, the present inventors have improved magnetic properties by properly combining a main magnet magnetized in the height direction and an auxiliary magnet magnetized in the thickness direction. And found that it enhances the ultrasonic performance. The present invention has been completed based on this knowledge.
[0012]
The present invention provides one or more sets of magnet arrangement units for periodically arranging a large number of prismatic permanent magnets and applying a magnetic field to a material to be inspected, and generating an eddy current in the material to be inspected or generating an eddy current in the material to be inspected. In the electromagnetic ultrasonic probe having the coil to be detected, the magnet array unit has a main magnet that is magnetized in the height direction and is arranged so that the magnetization directions are alternately opposite to each other, and in the thickness direction. An auxiliary magnet positioned between the main magnets and at both ends so as to be magnetized and the magnetization directions alternately opposite is formed in a periodic array structure in which the height directions are aligned, and the N pole of the auxiliary magnet is formed. An electromagnetic ultrasonic probe characterized in that the surface on the N pole side of the main magnet that is in contact with the surface on the side is a magnet working surface. Therefore, to further add, in this specification, the height direction means a direction perpendicular to the magnet working surface, and the thickness direction means a magnet arrangement direction.
[0013]
Here, it is preferable that the end auxiliary magnets located at both ends of the magnet arrangement unit have the magnet thickness dimension b ′ set to 0.25 to 1 times the magnet thickness dimension b of the other auxiliary magnets. Further, the magnet height L is preferably set to a dimension of 0.5 to 1.5 times the magnet arrangement cycle length T = 2 (a + b) (where a is the thickness of the main magnet). Further, it is desirable to make the magnet thickness dimension a of the main magnet equal to the magnet thickness dimension b of the auxiliary magnet. In these cases, the main magnet and the auxiliary magnet are made of the same magnetic material.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an example of a magnet arrangement unit and each magnet constituting a magnet structure used in the present invention. The magnet arrangement unit 30 has a structure in which a large number of square pillar-shaped (here, a rectangular cross-section is a columnar body having a rectangular cross section) periodic arrangement of permanent magnets. The magnets used are of two types: a main magnet 32a magnetized in the height direction (vertical direction in the drawing) and an auxiliary magnet 32b magnetized in the thickness direction (horizontal direction in the drawing). Are periodically arranged in consideration of the direction of magnetization. More specifically, the main magnets 32a are arranged so that the magnetization directions are alternately opposite to each other, and the auxiliary magnets are located between and at both ends of the main magnets 32a so that the magnetization directions are alternately opposite to each other. The magnets 32b are arranged in the same height direction. Then, the N pole side surface of the main magnet 32a that is in contact with the N pole side surface of the auxiliary magnet 32b is selected as the magnet working surface. Therefore, in FIG. 1, the lower surface of the magnet arrangement unit 30 is the magnet working surface, the height direction of the magnet is the direction perpendicular to the magnet working surface, and the thickness direction is the magnet arrangement direction. Incidentally, since the magnetic flux density is much lower on the upper surface of the magnet array unit 30 than on the lower surface (the magnetic characteristics are asymmetric on the upper surface and the lower surface), it is not used as a magnet working surface. Such a magnet arrangement unit 30 alone functions as a magnet structure of the electromagnetic ultrasonic probe.
[0015]
FIG. 1B shows this magnet arrangement state in two dimensions. As shown in the figure, an xy coordinate system is set in which the right hand direction is the x direction and the upward direction is the y direction. A main magnet 32a magnetized upward (y direction), an auxiliary magnet 32b magnetized rightward (x direction), a main magnet 32a magnetized downward (-y direction), and a left magnet (-x The magnet arrangement period T is constituted by the auxiliary magnet 32b magnetized in the (direction). Here, for the following description, the dimensions of the magnet are defined as follows.
L: Height of magnet a: Thickness of main magnet b: Thickness of auxiliary magnet b ': Thickness of end auxiliary magnet w: Width of magnet
The magnet structure to be incorporated in the electromagnetic ultrasonic probe needs to keep the magnetic flux density perpendicular to the magnet working surface as periodic as possible. Therefore, in the present invention, as described above, the structure is such that both ends of the magnet structure serve as auxiliary magnets. This is because if there are no auxiliary magnets at both ends, the uniform periodicity of the magnetic flux density distribution is impaired. In addition, the magnetization directions of the auxiliary magnets (end auxiliary magnets) arranged at both ends may be the same or opposite. When the main magnet and the auxiliary magnet are made of the same magnetic material, the thickness b 'of the end auxiliary magnet is 0.25 to 1 times the thickness b of the other auxiliary magnets. The electromagnetic ultrasonic probe exhibits high performance at a small lift-off distance (distance from the working surface), and the actual measurement lift-off distance is usually within about 1.5 mm. Therefore, the above range is appropriate. Here, the optimum value of the thickness dimension b 'of the end auxiliary magnet depends on the lift-off distance. If the lift-off distance is short, the dimension b' is adjusted to be smaller. That is, the uniformity of the magnetic flux density distribution can be improved by setting the dimension b 'according to the lift-off distance.
[0017]
Further, the magnet height L is preferably 0.5 to 1.5 times the magnet arrangement cycle length T = 2 (a + b). If the magnet height L is too small, the power will be insufficient. Conversely, if the magnet height L is too large, the magnet will become large and heavy, and if the magnet height L is increased to some extent, the magnetic properties will be saturated. Further, it is preferable that the ratio of the thickness dimension a of the main magnet to the thickness dimension b of the auxiliary magnet be in the range of 1: 1.5 to 1.5: 1, but it is preferable that the ratio be approximately equal (1: 1). Is optimal. At that time, the ultrasonic intensity can be maximized.
[0018]
In the magnet structure used in the present invention, there is no restriction on the material of the main magnet and the auxiliary magnet, and the magnet materials may be the same or different. If different, the optimal dimensional relationship between the main magnet and the auxiliary magnet is not always the same as above. However, in different combinations of the thickness a of the main magnet and the thickness b of the auxiliary magnet, only the ultrasonic intensity of the electromagnetic ultrasonic probe is different, and the function as the electromagnetic ultrasonic probe is not lost.
[0019]
FIG. 2 shows another example of the magnet structure used in the present invention. In this magnet structure 34, two sets of magnet arrangement units 30 as shown in FIG. 1 are adjacent to each other, and the magnetization directions of the adjacent main magnets 32a are opposite to each other, and the magnetization directions of the auxiliary magnets 32b are also mutually opposite. They are combined in the opposite way. Although illustration is omitted, by arranging three or more sets of magnet array units in parallel according to the same rule, a multi-row magnet structure can be formed.
[0020]
3 and 4 show a combination of a magnet structure and a coil. FIG. 3 shows a structure that is effective when the magnet structure is constituted by one set of magnet arrangement units 30 (see FIG. 1). The coil 40 has a structure in which a wire is wound a predetermined number of times around an axis substantially perpendicular to the xy plane from the upper surface to the lower surface (working surface) of the magnet structure. In particular, it is preferable to make the direction of the coil wire along the working surface parallel to the x direction. FIG. 4 shows a case where the magnet structure 34 is constituted by two sets of magnet arrangement units (see FIG. 2). A planar coil 42 is used and placed on the magnet working surface (here, the lower surface) of the magnet structure. One side in the coil width direction is provided immediately below one magnet array unit, and the other side is provided immediately below the other magnet array unit.
[0021]
Such an electromagnetic ultrasonic probe can be used for both transmission and reception. Further, by arranging the transmission coil and the reception coil in an overlapping manner (different number of turns are possible and different dimensions are possible), it is also possible to configure a transmission / reception electromagnetic ultrasonic probe. These can be performed by a conventionally known method as described in Patent Document 1, for example. By incorporating such a magnet structure and a coil into an electromagnetic ultrasonic probe, the size and performance of the electromagnetic ultrasonic probe can be reduced.
[0022]
【Example】
The analysis result of the magnet structure will be described below. FIG. 7 shows the lift-off distance dependency of the magnetic flux density in the y-direction (perpendicular to the working plane). The horizontal axis is the relative position of the magnet along the x-direction (parallel to the working plane), and the vertical axis is the y-direction. This is the magnetic flux density By. A is the analysis result of the product of the present invention, and B is the analysis result of the conventional product. In each case, the lift-off distance (the distance from the working surface) is changed in the range of 0.1 to 4.0 mm. In the present invention, the same magnet material is used for the main magnet and the auxiliary magnet, and the height L of the magnet is 7 mm, the thickness a of the main magnet is 1.25 mm, and the thickness b of the auxiliary magnet is 1.25 mm. In the conventional product, the height L of the magnet is 7 mm and the thickness of the magnet is 2.5 mm. From these results, both the present invention and the conventional product are the same in that the smaller the lift-off distance is, the stronger the magnetic flux density By in the y direction becomes. However, when comparing the two at the same lift-off distance, the product of the present invention has a higher magnetic flux density. It can be seen that By is much increased. That is, the product of the present invention has stronger magnetic properties than the conventional product.
[0023]
Although illustration is omitted, it is confirmed that when the end auxiliary magnets are not present, the magnetic flux density distribution at both ends is clearly lower, and the whole lacks uniformity. In FIG. 7A, when the lift-off distance is as short as about 0.1 mm or less, the magnetic flux density exhibits uniform periodicity. According to the analysis results, when the thickness of the end auxiliary magnet is b '= 3b / 4, the uniformity of the magnetic flux density at the lift-off distance of 0.5 mm is good, and the electromagnetic ultrasonic probe is measured at the lift-off distance of about 0.5 mm. When the thickness of the auxiliary magnet is b '= b / 2, the uniformity of the magnetic flux density at a lift-off distance of 1.0 mm is good, and the electromagnetic ultrasonic probe is measured at a lift-off distance of about 1.0 mm. It has been confirmed that it is suitable for children. In general, an electromagnetic ultrasonic probe exhibits high performance at a small lift-off distance, so for example, in the example shown here, in the case of an electromagnetic ultrasonic probe suitable for 700 to 900 kHz, the actual measurement lift-off distance is 1. It is considered to be within about 5 mm. From these facts, it is appropriate that the thickness b 'of the end auxiliary magnet is in the range of 0.25b to b.
[0024]
FIG. 8 shows the magnet thickness dimension dependence of the magnetic flux density By in the y direction in the center longitudinal section (m-m section in FIG. 1) of the magnet magnetized in the vertical direction (height direction), and the horizontal axis represents y. The relative position in the direction and the vertical axis are the magnetic flux density By in the y direction. Various combinations in which the sum of the thickness a of the main magnet and the thickness b of the auxiliary magnet (thickness b '= b of the end auxiliary magnet) is constant (a + b = 2.5 mm in this case) are analyzed. The vertical line at the center of the figure corresponds to the working surface, and the left area corresponds to the inside of the magnet and the right area corresponds to the outside of the magnet. Outside the magnet, the smaller the thickness a of the main magnet, the greater the magnetic flux density in the y direction near the magnet surface, but decreases as the lift-off distance increases, and the curves may intersect and reverse. In any case, the bottom of many magnetic flux density distribution curves corresponds to the structure of b = 0 (that is, the conventional product without the auxiliary magnet), and the magnetic flux density distribution of the conventional product is the weakest. Means that.
[0025]
FIG. 9 shows the magnet height dimension dependence of the magnetic flux density By in the y direction in the center longitudinal section (m-m section in FIG. 1) of the magnet magnetized in the longitudinal direction (height direction), The relative position in the y direction and the vertical axis indicate the magnetic flux density By in the y direction. The analysis is performed by changing the magnet height L within a range of 2 to 10 mm. The vertical line at the center of the figure corresponds to the working surface, and the left area corresponds to the inside of the magnet and the right area corresponds to the outside of the magnet.
[0026]
Within the magnet, the maximum magnetic flux density differs due to the influence of the magnet height L. However, outside the magnet, when L = 5, 7, and 10 mm, the three curves are almost overlapped, and begin to fall slightly from the curve when L = 3 mm, and when L = 2.5 mm and L = 2 mm, There is a clear power reduction. As a result, it was found that the y-direction magnetic flux density was not sensitive to the magnet height L. In other words, even if a magnet having a small height L is used, the magnet has almost the same magnetic characteristics as a magnet having a very large height L. It can be seen that miniaturization and weight reduction of the child can be easily achieved.
[0027]
In consideration of the performance variation due to the manufacture of the magnet, the performance deterioration of the surface processing layer, and the difficulty of assembling the magnet, the magnet height L is 0.5 times or more of the magnet arrangement period T = 2 (a + b) (that is, here L ≧ 2.5 mm) is desirable, and in consideration of weight reduction, if the height is too large, the weight becomes heavy. Therefore, the magnet height L is 1.5 times or less the magnet arrangement period T (that is, L ≦ 7.5 mm here). ) Is desirable.
[0028]
FIG. 10 shows the magnet height dimension dependence of the magnetic flux density By in the y direction in the center longitudinal section (m-m section in FIG. 1) of the magnet magnetized in the longitudinal direction (height direction), The relative position in the y direction and the vertical axis indicate the magnetic flux density By in the y direction. The analysis is performed by changing the magnet height L. The vertical line at the center of the figure corresponds to the working surface, and the left area corresponds to the inside of the magnet and the right area corresponds to the outside of the magnet. Here, distribution curves of the magnetic flux density By in the y direction are obtained for three types of magnet structures in which the magnet height L is changed to 5, 7, and 10 mm. This complements FIG. 9 and shows the magnetic flux density distribution on the magnet working surface side as well as on the opposite surface side.
[0029]
Two sets of curves are observed outside the magnet. The upper curve is the y-direction magnetic flux density distribution on the working surface side, and the lower curve is the y-direction magnetic flux density distribution on the opposite surface side of the working surface. Obviously, the magnetic properties on the side opposite to the working side are weaker. This weak magnetic property is a result of the appearance of strong magnetic properties on the working surface side. Therefore, in the present invention, it is necessary to appropriately select a working surface, and it can be seen that a stronger electromagnetic ultrasonic probe can be configured even with the same material and substantially the same amount of magnet material used.
[0030]
Next, the ultrasonic intensity characteristics of the electromagnetic ultrasonic probe according to the present invention will be described. The analysis conditions are: magnet arrangement cycle number 8 + one auxiliary magnet, frequency 700 kHz, magnet height L = 7 mm, magnet arrangement cycle length 2 (a + b) = 5 mm, and the propagation medium material is stainless steel (SUS304). FIG. 11 shows the ultrasonic intensity characteristics when the sum (a + b) of the thickness a of the main magnet and the thickness b of the auxiliary magnet is fixed and the combination of a and b is changed. Each combination of a and b shows similar ultrasonic distribution characteristics. This indicates that the ultrasonic distribution characteristic is not a function of the combination of a and b, but a function of the sum of a + b. When the combination of a and b is different, only the peak value of the ultrasonic intensity changes, and the directivity shape and the like hardly change. In the figure, one strong main lobe peak and seven weak side lobe peaks are observed, and the total number 8 coincides with the magnet arrangement period number. A strong main lobe peak means sharp ultrasonic directivity, and the peak value of the main lobe can be evaluated as ultrasonic intensity. The analysis was performed on the relative ultrasonic distribution characteristics, and the vertical and horizontal axes in the figure show relative values.
[0031]
FIG. 12 shows the result of rearranging the peak value of the ultrasonic intensity and the ultrasonic refraction angle as a function of the magnet thickness a based on the data of FIG. As the difference between a and b is larger, the peak value of the ultrasonic intensity is smaller, and the ratio of the thickness dimension a of the main magnet to the thickness dimension b of the auxiliary magnet is in the range of 1: 1.5 to 1.5: 1. Good ultrasonic intensity can be obtained. In particular, when both are the same (a = b = 1.25 mm), the strongest ultrasonic intensity is obtained. Therefore, it is understood that the output of the probe can be adjusted by changing the thickness a of the main magnet and the thickness b of the auxiliary magnet of the magnet arrangement structure used in the electromagnetic ultrasonic probe of the present invention. Note that, in the figure, the case of b = 0 corresponds to a conventional magnet structure. Comparing the peak values of both ultrasonic intensities, it was possible to achieve a 1.4-fold improvement in performance when a = b as compared to when b = 0. On the other hand, the change in the angle of refraction of the ultrasonic waves is slight (within a range of 0.3 °) regardless of the combination of a and b, and it can be seen that the directionality of the ultrasonic waves does not change much.
[0032]
From these analysis results, it has been clarified that the performance of the electromagnetic ultrasonic probe according to the present invention is dramatically improved with the improvement of the magnetic characteristics. This performance improvement is achieved in both weight reduction and power up.
[0033]
【The invention's effect】
As described above, the present invention employs a magnet array unit that appropriately combines a main magnet that is vertically magnetized and an auxiliary magnet that is horizontally magnetized. It is possible to achieve miniaturization and high performance (improvement of flaw detection capability and measurement capability). According to the present invention, in an inspection / measurement environment that requires a stronger electromagnetic ultrasonic probe or an inspection / measurement environment that requires a smaller electromagnetic ultrasonic probe, a nondestructive inspection using electromagnetic ultrasonic waves can be performed. The defect detectability is improved, the measurement accuracy of the non-destructive evaluation is improved, and the reliability of the non-destructive inspection and evaluation using electromagnetic ultrasonic waves is improved as a whole.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an example of a magnet structure used in the present invention.
FIG. 2 is an explanatory view showing another example of the magnet structure used in the present invention.
FIG. 3 is an explanatory view showing an example of a combination of a magnet structure and a coil.
FIG. 4 is an explanatory view showing another example of a combination of a magnet structure and a coil.
FIG. 5 is an explanatory view showing a structural example of an electromagnetic ultrasonic probe.
FIG. 6 is an explanatory view showing an example of a magnet structure used in a conventional electromagnetic ultrasonic probe.
FIG. 7 is a graph showing an example of a lift-off distance dependency of a y-direction magnetic flux density By.
FIG. 8 is a graph showing an example of the dependence of the magnetic flux density By in the y direction on the thickness of the magnet.
FIG. 9 is a graph showing an example of the magnet height dimension dependency of the y-direction magnetic flux density By.
FIG. 10 is a graph showing another example of the dependence of the magnetic flux density By in the y direction on the height of the magnet.
FIG. 11 is a graph showing ultrasonic intensity characteristics with respect to magnet dimensions.
FIG. 12 is a graph showing a relationship between a peak value of an ultrasonic intensity and a refraction angle of an ultrasonic wave with respect to a magnet size.
[Explanation of symbols]
30 Magnet array unit 32a Main magnet 32b Auxiliary magnet

Claims (4)

多数の角柱状永久磁石を周期配列し被検査材に磁場を印加する1組乃至複数組の磁石配列ユニットと、被検査材に渦電流を発生させる或いは被検査材の渦電流を検出するコイルを具備している電磁超音波探触子において、
磁石配列ユニットは、高さ方向に着磁され磁化方向が交互に逆向きとなるように配列されている主磁石と、厚み方向に着磁され磁化方向が交互に反対向きとなるように前記各主磁石の間及び両端に位置している補助磁石を、高さ方向を揃えて組み合わせた周期配列構造をなし、補助磁石のN極側の面に接する主磁石のN極側の面を磁石ワーキング面とすることを特徴とする電磁超音波探触子。
One or a plurality of magnet arrangement units for periodically arranging a large number of prism-shaped permanent magnets and applying a magnetic field to a material to be inspected, and a coil for generating an eddy current in the material to be inspected or detecting an eddy current of the material to be inspected. In the equipped electromagnetic ultrasonic probe,
The magnet arrangement unit has a main magnet that is magnetized in the height direction and arranged so that the magnetization directions are alternately opposite to each other, and the main magnets are magnetized in the thickness direction and the magnetization directions are alternately opposite to each other. The auxiliary magnets located between and at both ends of the main magnet have a periodic array structure in which the height direction is combined, and the N pole side surface of the main magnet that is in contact with the N pole side surface of the auxiliary magnet is magnet working. An electromagnetic ultrasonic probe having a surface.
磁石配列ユニットの両端に位置する端部補助磁石は、その磁石厚み寸法b′が、それ以外の補助磁石の磁石厚み寸法bの0.25〜1倍に設定されている請求項1記載の電磁超音波探触子。2. The electromagnetic device according to claim 1, wherein the end auxiliary magnets located at both ends of the magnet array unit have a magnet thickness dimension b 'set to 0.25 to 1 times the magnet thickness dimension b of the other auxiliary magnets. Ultrasonic probe. 磁石高さLが、磁石配列周期長T=2(a+b)の0.5〜1.5倍の寸法(但し、aは主磁石の厚み寸法)である請求項2記載の電磁超音波探触子。3. The electromagnetic ultrasonic probe according to claim 2, wherein the magnet height L is 0.5 to 1.5 times the magnet arrangement cycle length T = 2 (a + b) (where a is the thickness of the main magnet). Child. 主磁石の磁石厚み寸法aと補助磁石の磁石厚み寸法bが等しい請求項3記載の電磁超音波探触子。4. The electromagnetic ultrasonic probe according to claim 3, wherein a magnet thickness dimension a of the main magnet is equal to a magnet thickness dimension b of the auxiliary magnet.
JP2003133477A 2003-05-12 2003-05-12 Electromagnetic ultrasonic probe Expired - Fee Related JP3727933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003133477A JP3727933B2 (en) 2003-05-12 2003-05-12 Electromagnetic ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003133477A JP3727933B2 (en) 2003-05-12 2003-05-12 Electromagnetic ultrasonic probe

Publications (2)

Publication Number Publication Date
JP2004333448A true JP2004333448A (en) 2004-11-25
JP3727933B2 JP3727933B2 (en) 2005-12-21

Family

ID=33508006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003133477A Expired - Fee Related JP3727933B2 (en) 2003-05-12 2003-05-12 Electromagnetic ultrasonic probe

Country Status (1)

Country Link
JP (1) JP3727933B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102157A (en) * 2012-11-20 2014-06-05 Toshiba Corp Electromagnetic acoustic transducer, and device and method for diagnosing material deterioration
CN104614444A (en) * 2015-02-16 2015-05-13 爱德森(厦门)电子有限公司 Method for improving electromagnetic ultrasonic detection precision
CN107421474A (en) * 2017-04-25 2017-12-01 武汉中科创新技术股份有限公司 A kind of electromagnetic ultrasonic thickness measuring probe for measuring thickness of workpiece
CN112284308A (en) * 2019-07-24 2021-01-29 中国石油天然气股份有限公司 Electromagnetic ultrasonic transverse wave thickness measuring probe
CN113310805A (en) * 2021-05-28 2021-08-27 湖北工业大学 Axial stress measuring device with novel electromagnetic ultrasonic longitudinal transducer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102157A (en) * 2012-11-20 2014-06-05 Toshiba Corp Electromagnetic acoustic transducer, and device and method for diagnosing material deterioration
CN104614444A (en) * 2015-02-16 2015-05-13 爱德森(厦门)电子有限公司 Method for improving electromagnetic ultrasonic detection precision
CN107421474A (en) * 2017-04-25 2017-12-01 武汉中科创新技术股份有限公司 A kind of electromagnetic ultrasonic thickness measuring probe for measuring thickness of workpiece
CN112284308A (en) * 2019-07-24 2021-01-29 中国石油天然气股份有限公司 Electromagnetic ultrasonic transverse wave thickness measuring probe
CN112284308B (en) * 2019-07-24 2023-04-07 中国石油天然气股份有限公司 Electromagnetic ultrasonic transverse wave thickness measuring probe
CN113310805A (en) * 2021-05-28 2021-08-27 湖北工业大学 Axial stress measuring device with novel electromagnetic ultrasonic longitudinal transducer

Also Published As

Publication number Publication date
JP3727933B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
KR101061590B1 (en) Magnetostrictive transducers, structural diagnostic devices and structural diagnostic methods using the same
US4127035A (en) Electromagnetic transducer
KR100561215B1 (en) Magnetostrictive Transducer for Generating and Sensing Elastic Ultrasonic waves, and Apparatus for Structural Diagnosis Using It
AU2005269701A1 (en) Flexible electromagnetic acoustic transducer sensor
Ma et al. Excitation and detection of shear horizontal waves with electromagnetic acoustic transducers for nondestructive testing of plates
Liu et al. Development of omnidirectional A0 mode EMAT employing a concentric permanent magnet pairs with opposite polarity for plate inspection
Dehui et al. A novel non-destructive testing method by measuring the change rate of magnetic flux leakage
Liu et al. A direction-tunable shear horizontal mode array magnetostrictive patch transducer
Jia et al. Optimal design of point-focusing shear vertical wave electromagnetic ultrasonic transducers based on orthogonal test method
JP6818977B2 (en) Electromagnetic ultrasonic sensor
Liu et al. Development of a shear horizontal wave electromagnetic acoustic transducer with periodic grating coil
Seher et al. Numerical design optimization of an EMAT for A0 Lamb wave generation in steel plates
CN112268954A (en) L based on electromagnetic ultrasonic phased array sensorCRWave sound beam deflection regulating and controlling method
JP2009204342A (en) Eddy current type sample measurement method and eddy current sensor
US20190094184A1 (en) Electro-Magnetic Acoustic Transducer (EMAT) for both Lamb and Shear Horizontal Wave Transduction
JP3727933B2 (en) Electromagnetic ultrasonic probe
US20110031966A1 (en) Non-contact type transducer having multi-loop coil for plate member
KR101328061B1 (en) Magnetostrictive transducer for omni-directional shear horizontal wave transduction
Kumar et al. Improvement in the signal strength of magnetostrictive ultrasonic guided wave transducers for pipe inspection using a soft magnetic ribbon-based flux concentrator
JP3504430B2 (en) Beveled electromagnetic ultrasonic transducer
KR101068148B1 (en) Self magnetization mss sensor for detecting circumference direction of examinee defect
RU2334981C1 (en) Electromagnet-acoustic transducer
Tu et al. A new magnetic configuration for a fast electromagnetic acoustic transducer applied to online steel pipe wall thickness measurements
JP2015040746A (en) Electromagnetic ultrasonic sensor, embrittlement evaluation device of metallic material and embrittlement evaluation method of metallic material
US20240013767A1 (en) Multi-element electromagnetic acoustic transducer for guided wave generation and detection

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees