JP2004333306A - Method for detecting damage position of shape memory alloy, self-sensing type heating control method, self-repairing method, panel made of composite material and shape memory alloy covered with insulating film - Google Patents

Method for detecting damage position of shape memory alloy, self-sensing type heating control method, self-repairing method, panel made of composite material and shape memory alloy covered with insulating film Download PDF

Info

Publication number
JP2004333306A
JP2004333306A JP2003129758A JP2003129758A JP2004333306A JP 2004333306 A JP2004333306 A JP 2004333306A JP 2003129758 A JP2003129758 A JP 2003129758A JP 2003129758 A JP2003129758 A JP 2003129758A JP 2004333306 A JP2004333306 A JP 2004333306A
Authority
JP
Japan
Prior art keywords
sma
resistance
self
time
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003129758A
Other languages
Japanese (ja)
Other versions
JP3882081B2 (en
Inventor
Tatsuo Sugiyama
龍男 杉山
Yoshio Akimune
淑雄 秋宗
Kazuo Matsuo
一雄 松尾
Ichiro Hagiwara
一郎 萩原
Yasuhiro Mori
泰裕 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003129758A priority Critical patent/JP3882081B2/en
Publication of JP2004333306A publication Critical patent/JP2004333306A/en
Application granted granted Critical
Publication of JP3882081B2 publication Critical patent/JP3882081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To rationalize a heating current or a heating time, without receiving the effects of the circumferential temperature or the like by determining the damage position of a panel by measuring the resistances of SMAs shape memory alloys (hereinafter to be referred to as SMAs) anytime, to calculate the time differentiation of the resistances, allowing a pulse current to flow to the SMA of which the damage is detected not only to heat the SMA, but also to measure the resistance of the SMA and cutting off the pulse current from the differentiation of the resistances in a panel, wherein SMAs covered with an insulating film are embedded in a composite material in a lattice-like state. <P>SOLUTION: In the panel wherein the SMA covered with the insulating film are embedded in the composite material in a lattice-like state, the damage position of the panel is decided from a time differentiation tolerance limit, by measuring the resistances of the SMAs at anytime and calculating the time differentiation of the resistances. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、SMAの抵抗変化を測定し抵抗の時間微分値より、損傷位置を検出し、SMAに通電加熱制御を行うことにより、マルテンサイト相からオーステナイト相への変態を検知制御することよって損傷拡大を防止するものであり、具体的には形状記憶合金の損傷位置検出方法、自己感知型加熱制御法及び自己修復方法並びに複合材料製パネル及び絶縁皮膜で覆った形状記憶合金に関する。
【0002】
【従来の技術】
SMA(形状記憶合金)の特異な物性値、強い力/重量比、加熱制御が簡単などの利便性により、多くの分野(機械、電気、自動車工学、宇宙航空工業、医療機器等)で多くの利用法が見出されつつあり、特に近年SMAをセンサーやアクチュエータとして埋め込んだスマートマテリアルが注目を集めている。
その理由は、スマートマテリアルは簡単な制御により、能動的な観測装置として利用できたり、また、環境に応じて自らを適合させたりできるからである。このような点から、構造物の自己補修、能動制振、騒音制御、ロボットの部品等への利用法が多数報告されている。
【0003】
従来、SMAを用いた損傷検出方法として、複合材料内に埋設したSMAの抵抗を測定し電気抵抗の変化から損傷を検知する方法が提案されている(特許文献1参照)。この方法では複合材パネル周囲の環境、特に温度の変化により抵抗値が変化するため損傷を検知の精度が悪く、パネルに損傷が生じたことは解っても発生した位置が不明であるという問題がある。
また、形状記憶合金部材の多数回の繰返し熱サイクル試験を行う場合に、これを短期間で簡単に行う方法として、形状記憶合金部材を通電加熱する方法が提案されている。この場合、抵抗値を測定することによって変形量を判別しようとするものである(特許文献2参照)。
【0004】
通常、SMAの変態は自己通電加熱(以下、加熱)により引き起こさせる。この場合、SMAは限界温度を超えて加熱され、マルテンサイト相からオーステナイト相へと変態する。このとき、最初に与えられていた非弾性歪が除かれて、より高い温度で設定されていた元の形状に戻る。
SMAを構造物の自己修復のような用途で使用する場合は、出来るだけ早く変態を起こさせる必要があり、そのためには大電流を流さなければならない。
しかし、大電流を流すと過加熱が生じ、形状記憶能力が失われたり、異常な変形やSMAの剥離が生じたり、ひどい場合には、周りが燃えたりするかもしれない。特に周囲温度や対流、放射熱の状態が不明な場合、定められた加熱電流で正確な加熱時間を決めることはきわめて困難である。
【0005】
【特許文献1】
特開平8−15208号公報
【特許文献2】
特開2001−99770号公報
【0006】
【発明が解決しようとする課題】
本発明は、絶縁皮膜で覆ったSMAを、複合材料内に格子状に埋設したパネルにおいて、パネルの損傷位置及び方向を、SMAの抵抗を随時測定し抵抗の時間微分をもとめ損傷位置等の判定を行い、損傷を検知したSMAにパルス電流を流しSMAの加熱を行うと共に抵抗測定を行い、抵抗の時間微分からパルス電流を遮断することで周囲温度等の影響を受けることなく加熱電流や加熱時間の適正化を図り、高速かつ過加熱することなく損傷の進展を阻止することができる形状記憶合金の損傷位置検出方法、自己感知型加熱制御法及び自己修復方法並びに複合材料製パネル及び絶縁皮膜で覆った形状記憶合金を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明は、SMAの抵抗変化を測定し抵抗の時間微分値より、損傷位置及び方向を検出し、SMAに通電加熱制御を行うことにより、マルテンサイト相からオーステナイト相への変態を検知・制御することができ、さらに損傷拡大を防止できるとの知見を得た。
本発明は、この知見に基づいて、
1.絶縁皮膜で覆ったSMAを複合材料内に格子状に埋設したパネルにおいて、パネルの損傷位置及び方向を、SMAの抵抗を随時測定し抵抗の時間微分をもとめ時間微分許容限度より損傷位置等の判定を行うことを特徴とする形状記憶合金の損傷位置検出方法
2.損傷位置検出過程でSMAの抵抗変化を測定し、比抵抗の時間微分を計算で求め、時間微分許容限度よりSMAのR相の有無にかかわらず、スマート複合材料の損傷位置及び方向を確認することを特徴とする上記1記載の形状記憶合金の損傷位置検出方法
3.絶縁皮膜で覆ったSMAを複合材料内に格子状に埋設したパネルにおいて、パネルの損傷位置を、SMAの抵抗を随時測定し抵抗の時間微分をもとめ時間微分許容限度より損傷位置等の判定を行い、損傷を検知したSMAに、パルス電流を流しSMAの加熱を行い、損傷の修復を行うことを特徴とする形状記憶合金の自己修復方法
4.損傷位置検出過程でSMAの抵抗変化を測定し、比抵抗の時間微分を計算で求め、時間微分許容限度よりSMAのR相の有無にかかわらず、スマート複合材料の損傷位置を確認することを特徴とする上記3記載の形状記憶合金の自己修復方法
5.絶縁皮膜で覆ったSMAを、複合材料内に格子状に埋設したパネルにおいて、パネルの損傷位置及び方向を、SMAの抵抗を随時測定し抵抗の時間微分をもとめ時間微分許容限度より損傷位置等の判定を行い、損傷を検知したSMAにパルス電流を流してSMAの高速加熱を行い、かつ同時に抵抗測定を行い、比抵抗の時間微分をもとめ、SMAのR相の有無にかかわらず、SMAの変態開始・終了を判定すること特徴とする形状記憶合金の自己感知型加熱制御法
6.絶縁皮膜で覆ったSMAを、複合材料内に格子状に埋設したパネルにおいて、パネルの損傷位置及び方向を、SMAの抵抗を随時測定し抵抗の時間微分をもとめ時間微分許容限度より損傷位置等の判定を行い、損傷を検知したSMAにパルス電流を流してSMAの高速加熱を行い、かつ同時に抵抗測定を行い、比抵抗の時間微分をもとめ時間微分規定値の範囲に入った時にパルス電流を遮断することにより過加熱することなく損傷の加熱による修復を終了させることを特徴とする形状記憶合金の自己修復方法
7.SMAの加熱を行うと共に同時に抵抗測定を行い、比抵抗の時間微分をもとめ、SMAのR相の有無にかかわらず、SMAの変態開始・終了を判定することを特徴とする上記6記載の形状記憶合金の自己修復方法
を提供する。
【0008】
さらに本発明は、
8.加熱過程でSMAにパルス電流を流し、SMAの加熱及び抵抗測定を行い、抵抗の時間微分値が時間微分規定値を超えた時にパルス電流を遮断することを特徴とする上記3〜7のいずれかに記載の自己感知型加熱制御法又は形状記憶合金の自己修復方法
9.抵抗の時間微分許容限度は、比抵抗の時間微分値をもとめ、その値の0.9%の以内とすることを特徴とする上記1〜8のいずれかに記載の形状記憶合金の損傷位置検出方法、自己感知型加熱制御法及び自己修復方法
10.抵抗の時間微分許容限度は、比抵抗の時間微分値をもとめ、その値の0.5%以内とすることを特徴とする上記1〜8のいずれかに記載の形状記憶合金の損傷位置検出方法、自己感知型加熱制御法及び自己修復方法
11.抵抗の時間微分規定値は、比抵抗の時間微分値をもとめ、その値の±60%の範囲とすることを特徴とする上記6〜10のいずれかに記載の形状記憶合金の自己感知型加熱制御法及び自己修復方法
12.抵抗の時間微分規定値は、比抵抗の時間微分値をもとめ、その値の±30%の範囲とすることを特徴とする上記6〜10のいずれかに記載の形状記憶合金の自己感知型加熱制御法及び自己修復方法
13.複合材料製パネルにカーボン繊維系複合材料又はガラス繊維系材料から形成したことを特徴とする上記1〜12のいずれかに記載の形状記憶合金の損傷位置検出方法、自己感知型加熱制御法及び自己修復方法に使用する複合材料製パネル
14.絶縁皮膜に、熱可塑性樹脂からなるポリイミド・ポリエーテルイミド・弗素樹脂を用いたことを特徴とする上記1〜13のいずれかに記載の形状記憶合金の損傷位置検出方法、自己感知型加熱制御法及び自己修復方法に使用する絶縁皮膜で覆った形状記憶合金
を提供する。
【0009】
【発明の実施の形態】
従来、SMAの損傷検出、加熱制御は、単独で行っている、これは簡便な方法ではあるが、SMA材料を有効に利用しているとは言えない。
図1に、SMA線2を埋め込んだスマートマテリアル、複合パネル1の模式図を示す。直交する2組のSMA線2は、互いに接触しないように配置され、SMA線2と複合パネル1は糊で固着されている。図1のスマートマテリアルのパネル表面に亀裂が入った場合、すなわち図2(a)に示すようにSMA線を埋め込んだパネルに亀裂3が入った場合、亀裂3の近傍のSMA線2を早急に加熱収縮させて亀裂3の進展を阻止 (自己補修)するためにSMA線に大電流を流さなければならない。
そのため、損傷位置を正確に把握しないと、損傷近傍のSMA線2を加熱収縮させることができない。また、加熱電流や加熱時間を余分に設定していると、SMAに過加熱が生じ、形状記憶能力が失われたり、異常な変形やSMAの剥離が生じたり、また、火災が生じる可能性もある。
【0010】
一般にSMA線の周囲温度や対流、放射熱の状態が不明な場合が多いので、定められた加熱電流で正確な加熱時間を決めることはきわめて困難である。
そこで、損傷位置を正確に把握しSMA線の高速加熱により、しかも過加熱することなく、早急に変態を起こし終了させる加熱制御法が必要である。
SMAはその金属相により、ヤング率、減衰、比熱、などの多くの物性値が異なる。その構造上の特徴により、SMAの抵抗値はマルテンサイト相からオーステナイト相へと変わるとき、これら2つの相の体積比に大きく依存する。
そこで、SMAの抵抗値を測定すればその体積比、すなわち、変態の過程を知ることができる。図2の(b)は、本発明によりEW2とNS3のSMA線を加熱し収縮させ、SMA線の相変態により亀裂の幅が狭まった様子を示す。
しかし、その抵抗値は温度に依存するだけでなく、熱処理によっても変わり、さらに、変態の繰り返しが多くなるとその抵抗値は変化していく。
【0011】
一例として、Ti−Ni合金の代表的な温度−比抵抗特性を図3に示す。このような変化は、SMAに加わる応力変化によっても生じる。
また、図3を見ると、比抵抗の変化は、マルテンサイト相に介在するR相の存在する場合は存在しない場合より大きいことが分かる。R相の有無はその熱処理に依存し、R相が存在すると、変態の繰り返しが多くなるに従い、比抵抗の再現性が悪くなり、抵抗値は温度により一様に変化しなくなる。
しかし、図3から分かるように、R相の有無にかかわらず、変態の始まりと終わりに明確な変曲点が存在する。
SMAの変態の開始と終了を求めるための時間に対する比抵抗の時間微分の計算値と実測値とを図4に示す。比抵抗の時間微分は変態の開始と終了の間で比抵抗の時間微分は最小値から最大値へと変化し、再び最小値へと変化する。
【0012】
一方、図5に示すように、加熱を続けたときの比抵抗の変化はその時間微分に比べさほど明確でないため、比抵抗の時間微分を使用する方が、制御に対し有効であり、抵抗変化は、温度に対する微分を見るのではなく、比抵抗の時間に対する微分を求めることで周囲環境の変動を除外することができ、変態開始と終了に対応する抵抗変化値を明確に検出できることから、その開始と終了を予測する制御方法と制御回路を創案した。
【0013】
格子状に埋設したSMAの抵抗値を順次測定し、比抵抗の時間微分値を計算する。外部から応力を受けることでSMAは比抵抗の時間微分値が大きく変化する。
そこで、SMAの時間微分値の挙動をモニターし、埋設したSMA個々の時間微分値を比較し、応力を受けたSMAを判定することで、損傷位置を精度良く検知することができる。
比抵抗の時間微分値が大きく変化したSMA線に加熱電流を流しながら抵抗値を測定し、比抵抗の時間微分値を計算し、その値が増加し始めると変曲点を通過し変態が始まり、減少し安定すると変態が終了したと判定し加熱電流を遮断することで自己修復を完了させる方法である。
これにより、周囲温度等の影響を受けることなく損傷位置を判定し加熱電流や加熱時間の適正化が図られ、SMAの変態を適切に行うことができ、損傷の進展を阻止することができる。また、過加熱を抑止することができ、形状記憶能力の消失、異常な変形、剥離を抑制することができ、また、火災の防止になる
【0014】
次に、本発明の実施例を説明する。なお、これらの実施例等は本発明とその効果を容易に理解できるようにするための説明であり、本発明はこれらの説明に限定されるものではない。したがって、本発明の技術思想に基づく変形、態様、及び他の実施例等はいずれも本発明に包含されるものである。
【0015】
(実施例)
熱可塑性樹脂からなるポリイミド・ポリエーテルイミド・弗素樹脂を用いた絶縁皮膜で覆った形状記憶合金を、カーボン繊維系複合材料やガラス繊維系材料に格子状に埋設したパネルを用い損傷の自己修復実験を行った。
図6に、複合材料パネル1に予亀裂4を入れ、引張り荷重を加え、亀裂4を進展させ、自己修復システムで損傷位置、方向を検知し、加熱制御を行い自己修復の確認を行った実験の概略図を示す。
図7は本実施例の制御回路5の概略図である。
【0016】
実験の概略手順は
1.デジタル I/Oの指令によりSWを開にし、スキャナでSMAを次々に選択しながら、SMAに流れる電流値を A/D 変換機で読みとり、これより、比抵抗の時間微分値を計算する。
2.直交する2本のSMAにおいて比抵抗の時間微分値が設定した許容限度を超えていれば、その直交点に損傷が発生していることになる。この場合は手順3.にいく。超えていなければ、手順1.に戻る。
3.直交点(この座標を(x,y)とする)の周り(x−1〜x+1,y−1〜y+1)に対応するSMAの比抵抗の時間微分値を比較すると、その大小により損傷の大きい方向が分かるので、損傷の大きい方のSMAと(x,y)に対応するSMAについて、加熱制御処置を施こす。
このとき、SWを閉じることで加熱電流が流れる。なお、そのSMAの変態がすでに終了していれば、その隣を加熱する。変態終了後、手順1.へ戻る。
【0017】
すなわち、SMA線の電圧VtstとVsmpをA/D変換器を通してパソコンに取り込みRsとVtst、VsmpからSMA線の抵抗値を測定し、比抵抗の時間微分を計算して、時間微分値の挙動をモニターを行い時間微分許容限度値と比較することで、損傷位置、方向の判定を行いながら、加熱制御を行うSMA線を決定し、決定したSMA線の加熱・抵抗値測定を行い比抵抗の時間微分を計算して、時間微分規定値に達するまでSMA線の加熱抵抗感知を繰り返すことにより自己修復を行う手順で実施した。
【0018】
図8は、複合材料パネル5の予亀裂4から亀裂が進展することにより、SMAが応力変動を受け、比抵抗の時間微分値が大きく変化する挙動をモニターした結果を示す例である。
時間微分許容限度値を0.5%に設定し、格子状に埋設したSMAの抵抗値を順次測定を行い、比抵抗の時間微分値の計算を行い時間微分値の挙動をモニターし埋設した個々のSMAを時間微分許容限度値と比較することで微小な損傷の位置、方向を検知することができた。
時間微分許容限度値が0.6〜0.9%では損傷が拡大するが損傷の位置より認知しやすくなる。
【0019】
また、時間微分限度値が1%以上になると複合材料パネル亀裂が進展し破断してしまう。時間微分規定値を±30%の範囲に設定し、格子状に埋設したSMAの抵抗値を順次測定を行い、比抵抗の時間微分値の計算を行い時間微分値の挙動をモニターし埋設した個々のSMAを比較することで正確に損傷位置を検知することができ、複合材料パネルの損傷部位のSMAに加熱電流を流し過加熱することなく加熱制御を行うことができ損傷の進展を阻止した。
【0020】
しかし、時間微分規定値を−40〜−60%の範囲においては、若干の過加熱が見られ、+70%以上では、変態が未完了の状態で自己修復が不完全であり、−70%以上では、形状記憶能力の消失、異常な変形、剥離に至る過加熱であった。
加熱制御の通電加熱電流を変えたときの変態終了時間の関係を図9に示す。通電加熱電流が大きいと変態終了時間が早くなり、この例のSMA変態終了温度である62°Cを超えると自動的に加熱電流が遮断制御され自己修復が完了した。
実験では、加熱期間は0.1秒としたが、変態終了時間を短縮したい場合は、加熱電流を多くし、加熱時間は精度に応じて決めると良い。
このように、加熱電流や加熱時間を自由に選べることが、本方法の有効性を示す点の一つである。
【0021】
【発明の効果】
本発明は、絶縁皮膜で覆ったSMAを、複合材料内に格子状に埋設したパネルにおいて、パネルの損傷位置をSMAの抵抗を随時測定し、抵抗の時間微分をもとめて損傷位置等の判定を行い、損傷を検知したSMAにパルス電流を流し、SMAの加熱及び抵抗測定を行い、抵抗の時間微分からパルス電流を遮断することによって、周囲温度等の影響を受けることなく加熱電流や加熱時間の適正化を図ることができる著しい効果を有する。
また、本発明によって、高速かつ過加熱することなく損傷の進展を阻止することができる。そして、このため形状記憶能力の消失、異常な変形、剥離を抑制することができ、また、火災の防止になるという優れた効果を有する。
さらに、本発明の制御方法と制御回路を用いると、周囲温度や対流、放射熱の状態が不明な場合でもSMAの相変態の状態を自動検知することができ、加熱電流や加熱時間はSMAの用途に応じ自由に設定できるので利用域が広く、SMAを目的に応じて変態させたいスマートマテリァルに対してすべて応用することができる。
【図面の簡単な説明】
【図1】SMA線を埋め込んだスマートマテリアル、複合パネルの模式図である。
【図2】SMA線を埋め込んだパネルに亀裂が入った場合(a)とEW2とNS3のSMA線を加熱し収縮させ、SMA線の相変態により亀裂の幅が狭まった様子(b)を示す模式図である。
【図3】Ti−Ni合金の代表的な温度−比抵抗特性を図である。
【図4】比抵抗の時間微分の計算値と実測値とを示す図である。
【図5】比抵抗の時間微分と比抵抗の変化を示す図である。
【図6】複合材料パネルに予亀裂を入れ、引張り荷重を印加し、亀裂を進展させ、自己修復システムで損傷位置を検知し、加熱制御を行い自己修復の確認を行った実験の概略説明図である。
【図7】本実施例の制御回路の概略図である。
【図8】亀裂が生じたときの時間微分のモニター例を示す図である。
【図9】加熱電流を変えたときの変態終了時間を示す図である。
【符号の説明】
1.複合パネル
2.SMA線
3.亀裂
4.予亀裂
5.制御回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention measures the damage by detecting the transformation from martensite phase to austenite phase by measuring the resistance change of the SMA, detecting the damage position from the time differential value of the resistance, and performing the electric heating control on the SMA. Specifically, the present invention relates to a method for detecting a damage position of a shape memory alloy, a self-sensing heating control method and a self-repair method, a composite material panel, and a shape memory alloy covered with an insulating film.
[0002]
[Prior art]
Due to the unique physical properties of SMA (shape memory alloy), strong force / weight ratio, and the convenience of easy heating control, many fields (mechanical, electric, automotive engineering, aerospace industry, medical equipment, etc.) Usage is being found, and in particular, smart materials in which SMA is embedded as a sensor or actuator have recently been receiving attention.
The reason is that the smart material can be used as an active observation device by simple control, or can adapt itself to the environment. From such a point, many reports have been made on how to use the method for self-repair of structures, active vibration suppression, noise control, parts of robots, and the like.
[0003]
Conventionally, as a damage detection method using SMA, there has been proposed a method of measuring the resistance of SMA embedded in a composite material and detecting damage from a change in electric resistance (see Patent Document 1). In this method, the resistance value changes due to the environment around the composite material panel, especially the change in temperature, so the accuracy of detecting damage is poor, and the location of the damage is unknown even if it is known that the damage has occurred. is there.
Further, as a method of easily performing the heat cycle test many times for the shape memory alloy member in a short period of time, a method of electrically heating the shape memory alloy member has been proposed. In this case, an attempt is made to determine the amount of deformation by measuring the resistance value (see Patent Document 2).
[0004]
Usually, the transformation of the SMA is caused by self-heating (hereinafter, heating). In this case, the SMA is heated above the critical temperature and transforms from the martensite phase to the austenite phase. At this time, the initially applied inelastic strain is removed, and the shape returns to the original shape set at a higher temperature.
When SMA is used in applications such as self-healing of structures, it is necessary to cause the transformation as soon as possible, for which a large current must be applied.
However, when a large current is applied, overheating occurs, and the shape memory ability is lost, abnormal deformation or SMA peeling occurs, and in severe cases, the surroundings may burn. In particular, when the state of ambient temperature, convection, and radiant heat is unknown, it is extremely difficult to determine an accurate heating time with a predetermined heating current.
[0005]
[Patent Document 1]
JP-A-8-15208 [Patent Document 2]
JP 2001-99770 A
[Problems to be solved by the invention]
The present invention relates to a panel in which an SMA covered with an insulating film is embedded in a grid in a composite material, and determines the damage position and direction of the panel. The pulse current is applied to the SMA that has detected the damage, the SMA is heated, and the resistance is measured. The pulse current is cut off from the time derivative of the resistance, so that the heating current and the heating time are not affected by the ambient temperature and the like. The method for detecting the damage position of the shape memory alloy, the self-sensing type heating control method and the self-healing method, and the composite material panel and the insulating film which can prevent the propagation of damage at high speed and without overheating It is an object to provide a covered shape memory alloy.
[0007]
[Means for Solving the Problems]
The present invention detects and controls the transformation from a martensite phase to an austenite phase by measuring the resistance change of an SMA, detecting the damage position and direction from the time differential value of the resistance, and performing electric heating control on the SMA. And found that the damage could be prevented from spreading.
The present invention is based on this finding,
1. In a panel in which SMA covered with an insulating film is embedded in a grid in a composite material, the damage position and direction of the panel are measured at any time by measuring the resistance of the SMA, and the time derivative of the resistance is determined. 1. A method for detecting a damaged position of a shape memory alloy, characterized by performing Measure the SMA resistance change during the damage detection process, calculate the time derivative of the specific resistance, and confirm the damage position and direction of the smart composite material from the allowable time differential limit regardless of the presence or absence of the SMA R phase. 2. The method for detecting a damaged position of a shape memory alloy according to the above item 1, In a panel in which SMA covered with an insulating film is embedded in a grid in a composite material, the damage position of the panel is measured at any time, and the time derivative of the resistance is obtained. 3. A self-restoration method for a shape memory alloy, characterized in that a pulse current is applied to the SMA in which the damage is detected, and the SMA is heated to repair the damage. The feature is to measure the change of resistance of SMA in the damage location detection process, calculate the time derivative of specific resistance by calculation, and confirm the damage location of the smart composite material from the allowable time derivative limit regardless of the presence or absence of the SMA R phase. 4. The method for self-healing a shape memory alloy according to the above item 3. In a panel in which SMA covered with an insulating film is embedded in a grid in a composite material, the damage position and direction of the panel can be determined by measuring the resistance of the SMA at any time and determining the time derivative of the resistance. Judgment is made, a pulse current is applied to the SMA that has detected damage, high-speed heating of the SMA is performed, and resistance measurement is performed simultaneously. The time derivative of the specific resistance is obtained, and the transformation of the SMA is performed regardless of the presence or absence of the R phase of the SMA. 5. Self-sensing heating control method for shape memory alloy characterized by judging start / end In a panel in which SMA covered with an insulating film is embedded in a grid in a composite material, the damage position and direction of the panel can be determined by measuring the resistance of the SMA at any time and determining the time derivative of the resistance. Make a judgment, apply a pulse current to the SMA that has detected damage, perform high-speed heating of the SMA, measure the resistance at the same time, find the time differential of the specific resistance, and cut off the pulse current when it falls within the specified time differential value 6. A self-repairing method for a shape memory alloy, wherein the repair by damage heating is terminated without overheating by performing the heating. 7. The shape memory as described in (6) above, wherein the heating of the SMA and the resistance measurement are performed at the same time, the time differential of the specific resistance is obtained, and the transformation start / end of the SMA is determined regardless of the presence or absence of the R phase of the SMA. Provide a method for self-healing alloys.
[0008]
Further, the present invention
8. A pulse current is applied to the SMA during the heating process, the SMA is heated and the resistance is measured, and the pulse current is cut off when the time differential value of the resistance exceeds the specified time differential value. 8. Self-sensing heating control method or self-healing method for shape memory alloy according to 9. 9. The damage detection position of the shape memory alloy according to any one of 1 to 8 above, wherein the time differential allowable limit of the resistance is determined within 0.9% of the time differential value of the specific resistance. 9. Method, self-sensing heating control method and self-healing method 9. The method according to any one of claims 1 to 8, wherein the time derivative allowable limit of the resistance is obtained by calculating a time differential value of the specific resistance and setting the value within 0.5% of the value. 10. Self-sensing heating control method and self-healing method The self-sensing type heating of the shape memory alloy according to any one of the above items 6 to 10, wherein the specified value of the time differential of the resistance is obtained by calculating the time differential of the specific resistance and setting it within a range of ± 60% of the value. 11. Control method and self-healing method The self-sensing type heating of the shape memory alloy according to any one of the above items 6 to 10, wherein the specified value of the time differential of the resistance is obtained by calculating the time differential of the specific resistance and setting it within a range of ± 30% of the value. 12. Control method and self-healing method 13. The shape memory alloy damage position detecting method, the self-sensing type heating control method, and the self-detecting method according to any one of the above items 1 to 12, wherein the composite material panel is formed from a carbon fiber composite material or a glass fiber material. 13. Composite material panels used for restoration methods 14. A method for detecting a damage position of a shape memory alloy according to any one of the above items 1 to 13, wherein a polyimide / polyetherimide / fluororesin made of a thermoplastic resin is used as the insulating film. And a shape memory alloy covered with an insulating film for use in a self-healing method.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Conventionally, SMA damage detection and heating control are performed independently. Although this is a simple method, it cannot be said that the SMA material is effectively used.
FIG. 1 shows a schematic diagram of a smart material, composite panel 1 in which SMA wires 2 are embedded. The two orthogonal SMA wires 2 are arranged so as not to contact each other, and the SMA wires 2 and the composite panel 1 are fixed with glue. When a crack is formed on the panel surface of the smart material shown in FIG. 1, that is, when a crack 3 is formed in a panel in which an SMA wire is embedded as shown in FIG. 2 (a), the SMA wire 2 near the crack 3 is quickly changed. A large current must be applied to the SMA wire in order to prevent the crack 3 from growing by heat shrinkage (self-repair).
Therefore, unless the damage position is accurately grasped, the SMA wire 2 near the damage cannot be heated and shrunk. In addition, if the heating current and heating time are set excessively, the SMA may be overheated, resulting in loss of shape memory capability, abnormal deformation or SMA peeling, or fire. is there.
[0010]
In general, the state of the ambient temperature, convection, and radiant heat of the SMA wire is often unknown, so it is extremely difficult to determine an accurate heating time with a predetermined heating current.
Therefore, there is a need for a heating control method for accurately grasping the damage position and quickly transforming and terminating the transformation by high-speed heating of the SMA wire without overheating.
SMA differs in many physical properties such as Young's modulus, damping, specific heat, etc. depending on its metal phase. Due to its structural features, the resistance of SMA as it changes from the martensitic phase to the austenitic phase is highly dependent on the volume ratio of these two phases.
Therefore, by measuring the resistance value of the SMA, the volume ratio, that is, the transformation process can be known. FIG. 2B shows a state in which the SMA wires of EW2 and NS3 are heated and shrunk according to the present invention, and the width of the crack is reduced by the phase transformation of the SMA wires.
However, the resistance value depends not only on the temperature but also on the heat treatment, and further, the resistance value changes as the number of transformations increases.
[0011]
As an example, FIG. 3 shows typical temperature-resistivity characteristics of a Ti—Ni alloy. Such a change is also caused by a change in stress applied to the SMA.
Further, it can be seen from FIG. 3 that the change in the specific resistance is greater when the R phase intervening in the martensite phase is present than when it is not present. The presence or absence of the R phase depends on the heat treatment. When the R phase is present, the reproducibility of the specific resistance becomes worse as the number of transformations increases, and the resistance value does not change uniformly with temperature.
However, as can be seen from FIG. 3, there is a clear inflection point at the beginning and end of the transformation, regardless of the presence or absence of the R phase.
FIG. 4 shows the calculated value and the measured value of the time derivative of the resistivity with respect to the time for determining the start and end of the SMA transformation. The time derivative of the resistivity changes from the minimum value to the maximum value between the start and the end of the transformation, and again changes to the minimum value.
[0012]
On the other hand, as shown in FIG. 5, since the change in resistivity when heating is continued is not so clear as compared with the time derivative, it is more effective for control to use the time derivative of the resistivity, It is possible to exclude the fluctuation of the surrounding environment by finding the derivative of the resistivity with respect to time, instead of looking at the derivative with respect to temperature, and to clearly detect the resistance change value corresponding to the start and end of the transformation. A control method and control circuit for predicting the start and end were devised.
[0013]
The resistance value of the SMA embedded in a lattice is sequentially measured, and the time differential value of the specific resistance is calculated. When an external stress is applied to the SMA, the time differential value of the specific resistance greatly changes.
Therefore, by monitoring the behavior of the time derivative of the SMA, comparing the time derivative of each of the embedded SMAs, and determining the SMA subjected to the stress, the damage position can be accurately detected.
The resistance value is measured while applying a heating current to the SMA wire where the time differential value of the specific resistance has changed greatly, and the time differential value of the specific resistance is calculated. When the value starts to increase, it passes through the inflection point and the transformation starts. When the temperature decreases and stabilizes, it is determined that the transformation is completed, and the heating current is cut off to complete the self-repair.
This makes it possible to determine the damage position without being affected by the ambient temperature and the like, to optimize the heating current and the heating time, appropriately perform the transformation of the SMA, and prevent the damage from progressing. In addition, overheating can be suppressed, loss of shape memory capability, abnormal deformation and peeling can be suppressed, and fire can be prevented.
Next, examples of the present invention will be described. It should be noted that these examples and the like are for the purpose of facilitating understanding of the present invention and its effects, and the present invention is not limited to these descriptions. Therefore, all modifications, modes, and other examples based on the technical concept of the present invention are included in the present invention.
[0015]
(Example)
Self-healing test of damage using a panel in which a shape memory alloy covered with an insulating film made of thermoplastic resin polyimide, polyetherimide, and fluorine resin is embedded in a grid pattern in a carbon fiber composite material or glass fiber material. Was done.
Fig. 6 shows an experiment in which a pre-crack 4 was inserted into the composite material panel 1, a tensile load was applied to propagate the crack 4, the damage position and direction were detected by a self-healing system, heating was controlled, and self-healing was confirmed. FIG.
FIG. 7 is a schematic diagram of the control circuit 5 of the present embodiment.
[0016]
The outline procedure of the experiment is as follows. The SW is opened by the command of the digital I / O, and the current flowing through the SMA is read by the A / D converter while selecting the SMA one after another by the scanner, and the time differential value of the specific resistance is calculated based on the current.
2. If the time differential value of the specific resistance of two orthogonal SMAs exceeds the set permissible limit, it means that the orthogonal point has been damaged. In this case, step 3. go to. If not, proceed as follows: Return to
3. When the time derivative of the resistivity of the SMA corresponding to (x-1 to x + 1, y-1 to y + 1) around the orthogonal point (where the coordinates are (x, y)) is compared, the damage is greater due to the magnitude. Since the direction is known, the heating control is applied to the SMA having the larger damage and the SMA corresponding to (x, y).
At this time, the heating current flows by closing the SW. If the transformation of the SMA has already been completed, the next part is heated. After completion of the transformation, Return to
[0017]
That is, the voltages Vtst and Vsmp of the SMA line are taken into a personal computer through an A / D converter, the resistance value of the SMA line is measured from Rs, Vtst, and Vsmp, and the time derivative of the specific resistance is calculated. By monitoring and comparing with the time derivative allowable limit value, the SMA wire to be subjected to the heating control is determined while determining the damage position and direction, and the heating and resistance value of the determined SMA wire are measured and the time of the specific resistance is determined. The differentiation was calculated, and self-healing was performed by repeating the sensing of the heating resistance of the SMA wire until the time differentiation specified value was reached.
[0018]
FIG. 8 is an example showing a result of monitoring a behavior in which the SMA undergoes a stress fluctuation due to the propagation of a crack from the pre-crack 4 of the composite material panel 5 and the time differential value of the specific resistance greatly changes.
The time derivative allowable limit value is set to 0.5%, the resistance value of the SMA embedded in a lattice is sequentially measured, the time derivative value of the specific resistance is calculated, the behavior of the time derivative value is monitored, and the embedded individual is monitored. By comparing the SMA with the time derivative allowable limit value, the position and direction of minute damage could be detected.
When the time derivative allowable limit value is 0.6 to 0.9%, the damage is enlarged, but it becomes easier to recognize the position of the damage.
[0019]
Further, when the time differential limit value is 1% or more, the crack of the composite material panel progresses and breaks. The specified value of the time differential is set within the range of ± 30%, the resistance value of the SMA embedded in a lattice is measured sequentially, the time differential value of the specific resistance is calculated, the behavior of the time differential value is monitored, and the embedded individual is monitored. By comparing the SMAs of the composite material panels, the damage position could be accurately detected, and a heating current was applied to the SMA at the damaged portion of the composite material panel to perform heating control without overheating, thereby preventing the development of damage.
[0020]
However, when the time derivative specified value is in the range of -40 to -60%, slight overheating is observed. At + 70% or more, self-healing is incomplete while transformation is not completed, and -70% or more. Was overheating leading to loss of shape memory ability, abnormal deformation, and peeling.
FIG. 9 shows the relationship of the transformation end time when the energizing heating current of the heating control is changed. When the energizing heating current is large, the transformation end time is shortened. When the temperature exceeds 62 ° C., which is the SMA transformation end temperature in this example, the heating current is automatically cut off and the self-healing is completed.
In the experiment, the heating period was set to 0.1 second. However, if it is desired to shorten the transformation end time, the heating current should be increased and the heating time should be determined according to the accuracy.
Thus, the ability to freely select the heating current and the heating time is one of the points showing the effectiveness of the present method.
[0021]
【The invention's effect】
The present invention relates to a panel in which an SMA covered with an insulating film is embedded in a composite material in a lattice shape, and the damage position of the panel is measured at any time with respect to the resistance of the SMA, and the time derivative of the resistance is determined to determine the damage position and the like. By applying a pulse current to the SMA that has detected damage, heating and measuring the resistance of the SMA, and cutting off the pulse current from the time derivative of the resistance, the heating current and heating time can be measured without being affected by the ambient temperature. It has a remarkable effect that can be optimized.
Further, according to the present invention, it is possible to prevent the development of damage at high speed without overheating. Therefore, loss of shape memory capability, abnormal deformation, and peeling can be suppressed, and an excellent effect of preventing fire can be obtained.
Furthermore, when the control method and control circuit of the present invention are used, the state of the SMA phase transformation can be automatically detected even when the state of the ambient temperature, convection, and radiant heat is unknown. Since it can be set freely according to the application, it can be used in a wide range of applications, and can be applied to all SMAs that want to transform SMA according to the purpose.
[Brief description of the drawings]
FIG. 1 is a schematic view of a smart material and a composite panel in which an SMA wire is embedded.
FIG. 2 shows a case in which a crack is formed in a panel in which an SMA wire is embedded (a), and a case in which the SMA wire of EW2 and NS3 is heated and shrunk, and the width of the crack is reduced by phase transformation of the SMA wire (b). It is a schematic diagram.
FIG. 3 is a graph showing typical temperature-resistivity characteristics of a Ti—Ni alloy.
FIG. 4 is a view showing a calculated value and a measured value of a time derivative of specific resistance.
FIG. 5 is a diagram showing a time derivative of the specific resistance and a change in the specific resistance.
FIG. 6 is a schematic explanatory view of an experiment in which a pre-crack is applied to a composite material panel, a tensile load is applied, a crack is propagated, a damage position is detected by a self-healing system, heating is controlled, and self-healing is confirmed. It is.
FIG. 7 is a schematic diagram of a control circuit of the present embodiment.
FIG. 8 is a diagram showing an example of monitoring the time derivative when a crack occurs.
FIG. 9 is a diagram showing a transformation end time when a heating current is changed.
[Explanation of symbols]
1. Composite panel 2. 2. SMA wire Crack 4. Pre-crack5. Control circuit

Claims (14)

絶縁皮膜で覆った形状記憶合金(以下、SMA)を複合材料内に格子状に埋設したパネルにおいて、パネルの損傷位置を、SMAの抵抗を随時測定し抵抗の時間微分をもとめ時間微分許容限度より損傷位置等の判定を行うことを特徴とする形状記憶合金の損傷位置検出方法。For a panel in which a shape memory alloy (hereinafter referred to as SMA) covered with an insulating film is embedded in a grid in a composite material, the damage position of the panel can be measured from time to time by measuring the resistance of the SMA, and the time derivative of the resistance can be calculated from the allowable limit of time differentiation. A method for detecting a damaged position of a shape memory alloy, comprising determining a damaged position or the like. 損傷位置検出過程でSMAの抵抗変化を測定し、比抵抗の時間微分を計算で求め、時間微分許容限度よりSMAの菱面体相(以下、R相)の有無にかかわらず、スマート複合材料の損傷位置を確認することを特徴とする請求項1記載の形状記憶合金の損傷位置検出方法。The resistance change of the SMA is measured in the process of detecting the damage position, the time derivative of the specific resistance is calculated by calculation, and the damage of the smart composite material is determined from the allowable limit of the time derivative regardless of the presence or absence of the rhombohedral phase (hereinafter referred to as R phase) of the SMA. The method according to claim 1, wherein the position is confirmed. 絶縁皮膜で覆ったSMAを複合材料内に格子状に埋設したパネルにおいて、パネルの損傷位置を、SMAの抵抗を随時測定し抵抗の時間微分をもとめ時間微分許容限度より損傷位置等の判定を行い、損傷を検知したSMAに、パルス電流を流しSMAの加熱を行い、損傷の修復を行うことを特徴とする形状記憶合金の自己修復方法。In a panel in which SMA covered with an insulating film is embedded in a grid in a composite material, the damage position of the panel is measured at any time, and the time derivative of the resistance is obtained. A self-repairing method for a shape memory alloy, wherein a pulse current is applied to the SMA in which the damage is detected, and the SMA is heated to repair the damage. 損傷位置検出過程でSMAの抵抗変化を測定し、比抵抗の時間微分を計算で求め、時間微分許容限度よりSMAのR相の有無にかかわらず、スマート複合材料の損傷位置を確認することを特徴とする請求項3記載の形状記憶合金の自己修復方法。The feature is to measure the change of resistance of SMA in the damage location detection process, calculate the time derivative of specific resistance by calculation, and confirm the damage location of the smart composite material from the allowable time derivative limit regardless of the presence or absence of the SMA R phase. The method for self-healing a shape memory alloy according to claim 3. 絶縁皮膜で覆ったSMAを、複合材料内に格子状に埋設したパネルにおいて、パネルの損傷位置を、SMAの抵抗を随時測定し抵抗の時間微分をもとめ時間微分許容限度より損傷位置等の判定を行い、損傷を検知したSMAにパルス電流を流してSMAの高速加熱を行い、かつ同時に抵抗測定を行い、比抵抗の時間微分をもとめ、R相の有無にかかわらず、SMAの変態開始・終了を判定することを特徴とする形状記憶合金の自己感知型加熱制御法。In a panel in which the SMA covered with an insulating film is embedded in a grid in a composite material, the damage position of the panel is measured at any time, and the time derivative of the resistance is measured as needed to determine the damage position, etc. from the allowable time derivative limit. Performs high-speed heating of the SMA by applying a pulse current to the SMA that has detected damage, and simultaneously performs resistance measurement to determine the time derivative of the specific resistance, and starts and ends the transformation of the SMA regardless of the presence or absence of the R phase. A self-sensing heating control method for a shape memory alloy, characterized by determining. 絶縁皮膜で覆ったSMAを、複合材料内に格子状に埋設したパネルにおいて、パネルの損傷位置を、SMAの抵抗を随時測定し抵抗の時間微分をもとめ時間微分許容限度より損傷位置等の判定を行い、損傷を検知したSMAにパルス電流を流してSMAの高速加熱を行い、かつ同時に抵抗測定を行い、比抵抗の時間微分をもとめ時間微分規定値の範囲に入った時にパルス電流を遮断することにより過加熱することなく損傷の加熱による修復を終了させることを特徴とする形状記憶合金の自己修復方法。In a panel in which the SMA covered with an insulating film is embedded in a grid in a composite material, the damage position of the panel is measured at any time, and the resistance of the SMA is measured from time to time, and the time derivative of the resistance is determined to determine the damage position, etc. from the allowable limit of time differentiation. Performing high-speed heating of the SMA by applying a pulse current to the SMA that has detected damage, and simultaneously measuring the resistance, determining the time derivative of the specific resistance, and interrupting the pulse current when the specific value falls within the specified range of the time derivative. A method for self-healing a shape memory alloy, comprising: terminating repair of damage by heating without overheating by heating. SMAの加熱を行うと共に同時に抵抗測定を行い、比抵抗の時間微分をもとめ、SMAのR相の有無にかかわらず、SMAの変態開始・終了を判定することを特徴とする請求項6記載の形状記憶合金の自己修復方法。7. The shape according to claim 6, wherein the resistance of the SMA is measured at the same time as the heating of the SMA, and the time differentiation of the specific resistance is determined to determine the start / end of the transformation of the SMA regardless of the presence or absence of the R phase of the SMA. Self-healing method of memory alloy. 加熱過程でSMAにパルス電流を流し、SMAの加熱及び抵抗測定を行い、抵抗の時間微分値が時間微分規定値を超えた時にパルス電流を遮断することを特徴とする請求項3〜7のいずれかに記載の自己感知型加熱制御法又は形状記憶合金の自己修復方法。8. The method according to claim 3, wherein a pulse current is supplied to the SMA during the heating process, the SMA is heated and the resistance is measured, and the pulse current is cut off when a time differential value of the resistance exceeds a specified time differential value. Or a self-repairing method for a shape memory alloy. 抵抗の時間微分許容限度は、比抵抗の時間微分値をもとめ、その値の0.9%の以内とすることを特徴とする請求項1〜8のいずれかに記載の形状記憶合金の損傷位置検出方法、自己感知型加熱制御法及び自己修復方法。9. The damage position of the shape memory alloy according to claim 1, wherein a time differential allowable limit of the resistance is obtained by calculating a time differential value of the specific resistance and within 0.9% of the value. Detection method, self-sensing heating control method and self-healing method. 抵抗の時間微分許容限度は、比抵抗の時間微分値をもとめ、その値の0.5%以内とすることを特徴とする請求項1〜8のいずれかに記載の形状記憶合金の損傷位置検出方法、自己感知型加熱制御法及び自己修復方法。9. The damage position detection of a shape memory alloy according to claim 1, wherein the time differential allowable limit of the resistance is obtained by calculating the time differential value of the specific resistance and setting it within 0.5% of the value. Method, self-sensing heating control method and self-healing method. 抵抗の時間微分規定値は、比抵抗の時間微分値をもとめ、その値の±60%の範囲とすることを特徴とする請求項6〜10のいずれかに記載の形状記憶合金の自己感知型加熱制御法及び自己修復方法。The self-sensing shape memory alloy according to any one of claims 6 to 10, wherein the specified value of the time differential of the resistance is obtained by calculating the time differential of the specific resistance and within a range of ± 60% of the value. Heat control method and self-healing method. 抵抗の時間微分規定値は、比抵抗の時間微分値をもとめ、その値の±30%の範囲とすることを特徴とする請求項6〜10のいずれかに記載の形状記憶合金の自己感知型加熱制御法及び自己修復方法。The self-sensing shape memory alloy according to any one of claims 6 to 10, wherein the prescribed time differential value of the resistance is obtained by calculating the time differential value of the specific resistance and setting it within a range of ± 30% of the value. Heat control method and self-healing method. 複合材料製パネルにカーボン繊維系複合材料又はガラス繊維系材料から形成したことを特徴とする請求項1〜12のいずれかに記載の形状記憶合金の損傷位置検出方法、自己感知型加熱制御法及び自己修復方法に使用する複合材料製パネル。13. A method for detecting a damage position of a shape memory alloy according to claim 1, wherein the composite material panel is formed from a carbon fiber-based composite material or a glass fiber-based material. Composite panels used for self-healing methods. 絶縁皮膜に、熱可塑性樹脂からなるポリイミド・ポリエーテルイミド・弗素樹脂を用いたことを特徴とする請求項1〜13のいずれかに記載の形状記憶合金の損傷位置検出方法、自己感知型加熱制御法及び自己修復方法に使用する絶縁皮膜で覆った形状記憶合金。14. The method for detecting a damage position of a shape memory alloy according to claim 1, wherein the insulating film is made of a polyimide / polyetherimide / fluorine resin made of a thermoplastic resin. Memory alloy covered with an insulating film used in the self-healing method and the self-healing method.
JP2003129758A 2003-05-08 2003-05-08 Damage detection method for shape memory alloy, self-sensing heating control method, and panel self-repair method Expired - Lifetime JP3882081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129758A JP3882081B2 (en) 2003-05-08 2003-05-08 Damage detection method for shape memory alloy, self-sensing heating control method, and panel self-repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003129758A JP3882081B2 (en) 2003-05-08 2003-05-08 Damage detection method for shape memory alloy, self-sensing heating control method, and panel self-repair method

Publications (2)

Publication Number Publication Date
JP2004333306A true JP2004333306A (en) 2004-11-25
JP3882081B2 JP3882081B2 (en) 2007-02-14

Family

ID=33505466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129758A Expired - Lifetime JP3882081B2 (en) 2003-05-08 2003-05-08 Damage detection method for shape memory alloy, self-sensing heating control method, and panel self-repair method

Country Status (1)

Country Link
JP (1) JP3882081B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030351A (en) * 2006-07-31 2008-02-14 Satoshi Shimamoto Method of controlling shape recovery force of intellectual material and intellectual material
JP2009006497A (en) * 2007-06-26 2009-01-15 Yokohama Rubber Co Ltd:The Fiber reinforced plastic panel, method of detecting its defect, and fiber reinforced base
US9063625B2 (en) 2012-07-06 2015-06-23 Hyundai Motor Company Electronic device implementing a touch panel display unit
CN107207018A (en) * 2015-02-04 2017-09-26 川崎重工业株式会社 The state monitoring apparatus of the leaf spring of railcar bogie

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101929967B (en) * 2010-01-19 2012-06-06 南京钢铁股份有限公司 Method for detecting Nb (C, N) dissolving temperature of low-carbon microalloy steel by resistivity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030351A (en) * 2006-07-31 2008-02-14 Satoshi Shimamoto Method of controlling shape recovery force of intellectual material and intellectual material
JP2009006497A (en) * 2007-06-26 2009-01-15 Yokohama Rubber Co Ltd:The Fiber reinforced plastic panel, method of detecting its defect, and fiber reinforced base
US9063625B2 (en) 2012-07-06 2015-06-23 Hyundai Motor Company Electronic device implementing a touch panel display unit
CN107207018A (en) * 2015-02-04 2017-09-26 川崎重工业株式会社 The state monitoring apparatus of the leaf spring of railcar bogie
CN107207018B (en) * 2015-02-04 2020-05-01 川崎重工业株式会社 State monitoring device for leaf spring of railway vehicle bogie

Also Published As

Publication number Publication date
JP3882081B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
Sun et al. Cyclic plasticity modeling of nickel-based superalloy Inconel 718 under multi-axial thermo-mechanical fatigue loading conditions
Van Der Weijde et al. Self-sensing of deflection, force, and temperature for joule-heated twisted and coiled polymer muscles via electrical impedance
Song et al. Health monitoring and rehabilitation of a concrete structure using intelligent materials
Liu et al. Threshold stress intensity factor and crack growth rate prediction under mixed-mode loading
Thomas et al. Forming limits for electromagnetically expanded aluminum alloy tubes: Theory and experiment
Urbina et al. Effect of thermal cycling on the thermomechanical behaviour of NiTi shape memory alloys
Kyriakides et al. Localization and propagation of curvature under pure bending in steel tubes with Lüders bands
Badnava et al. Determination of combined hardening material parameters under strain controlled cyclic loading by using the genetic algorithm method
JP2004333306A (en) Method for detecting damage position of shape memory alloy, self-sensing type heating control method, self-repairing method, panel made of composite material and shape memory alloy covered with insulating film
Mammano et al. Functional fatigue of NiTi Shape Memory wires for a range of end loadings and constraints
JP2009125768A (en) Method of estimating hysteresis of temperature distribution
Ostropiko et al. Uniaxial high strain rate tension of a TiNi alloy provided by the magnetic pulse method
Yoshihiro et al. Thermo-elasto-viscoplastic deformation of polymeric bars under tension
CN109918788A (en) A kind of luffing multiaxis Life Prediction of Thermomechanical Fatigue method based on linear damage accumulation
Paluskiewicz et al. Crack closure of Ni-based superalloy 718 at high negative stress ratios
JP2005519300A (en) Method for determining the elastoplastic behavior of a component made of anisotropic material and method of using this method
JP4877950B2 (en) Method for controlling shape recovery force in intelligent material and intelligent material
Bees et al. The non-proportional behaviour of a nickel-based superalloy at room temperature, and characterisation of the additional hardening response by a modified cyclic hardening curve
JP2010197150A (en) Device and method for evaluating damage
RU2619046C1 (en) Method of mechanical properties determination of materials with shape memory
JP5504492B2 (en) Measuring method of axial force of tendon
JP5349563B2 (en) Shaft enlargement processing method
JP5688352B2 (en) Heat treatment method for piping
Noecker et al. Strain aging of C-Mn line pipe steels: an analytical approach to compare strain aging heat treatments
KR101956349B1 (en) Fatigue Life Prediction Method by High Frequency Heat Treatment of Automobile Drive Shaft Using Specimen and Specimen and Induction Heating Coil for Heat the Specimen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Ref document number: 3882081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term