JP2004333173A - Multi-optical axis photoelectric sensor - Google Patents

Multi-optical axis photoelectric sensor Download PDF

Info

Publication number
JP2004333173A
JP2004333173A JP2003125853A JP2003125853A JP2004333173A JP 2004333173 A JP2004333173 A JP 2004333173A JP 2003125853 A JP2003125853 A JP 2003125853A JP 2003125853 A JP2003125853 A JP 2003125853A JP 2004333173 A JP2004333173 A JP 2004333173A
Authority
JP
Japan
Prior art keywords
light
light receiving
optical axis
output
photoelectric sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003125853A
Other languages
Japanese (ja)
Inventor
Masaharu Fukada
正治 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Sunx Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunx Ltd filed Critical Sunx Ltd
Priority to JP2003125853A priority Critical patent/JP2004333173A/en
Publication of JP2004333173A publication Critical patent/JP2004333173A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-optical axis photoelectric sensor for avoiding an increase in the size of a light source or a light receiving unit, and for detecting incident light/shielded light with optimum detection sensitivity for each light axis. <P>SOLUTION: The multi-optical axis photoelectric sensor has an output means for outputting a digital output signal D' to an external equipment 10 according to the quantity of received light by respective light receiving elements 12a-12d detected by a light reception operation. Accordingly, a user can adjust a reference value for detecting incident light/shielded light for each of respective light axes N1-N4 in the external equipment 10 by operating the external equipment 10 and can detect incident light/shielded light. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複数の投光素子及び受光素子を備えて、各受光素子での受光量に基づいてそれぞれの投光素子及び受光素子が形成する各光軸の入光/遮光を検出する多光軸光電センサに関する。
【0002】
【従来の技術】
この種の多光軸光電センサは、例えば複数の投光素子を有する投光器と、その投光器と検出領域を挟んで対向配置され、各投光素子と対をなす複数の受光素子を有する受光器とを備えている。そして、多光軸光電センサは、上記各投光素子を順次投光させるとともに、それと対をなす受光素子からの受光信号を順次有効化させて、その有効化された受光信号を例えばコンパレータにて所定の基準値と比較することで、対をなす投光素子及び受光素子が形成する各光軸の入光/遮光を検出する。そして、その入光/遮光の検出結果に応じた信号を例えば制御装置等の外部機器に出力したり、或いは、受光器に設けた動作表示灯に点灯動作を行わせたりするようになっている。
【0003】
ところで、投光素子及び受光素子の特性にはばらつきがあり、各光軸について同一の基準値に基づいて入光/遮光の検出を行う構成では、光軸毎に検出感度のばらつきが生じ、誤検出を招くおそれがある。
【0004】
そこで、この問題に対処するものとして、光軸毎に最適な検出感度を満たす所定の基準値を設けて、各光軸についての入光/遮光の検出結果に応じた検出信号を外部に出力する構成がある(下記、特許文献1参照)。
【0005】
【特許文献1】
実開平3−60005号公報
【0006】
【発明が解決しようとする課題】
ところが、光軸毎の検出感度のばらつきの原因は、上述した素子特性のばらつきに限られない。即ち、例えば多光軸光電センサの使用環境なども原因となり得る。具体的には、例えば、複数の受光素子のうち一部の受光素子に、他の受光素子よりも明るい光が周囲から入光するような場合や、複数の光軸のうち一部の光軸に対して水などがかかるような場合である。このような場合には、各光軸毎に固定の基準値を設けた上述の構成では、やはり最適な検出感度を得ることができない。
【0007】
そこで、例えば受光器側にボリューム等の調整手段を設けて、多光軸光電センサを実際に使用する使用者側で使用環境に応じて各光軸に対応する基準値を調整する構成が考えられる。しかしながら、このような構成では、ボリュームなど調整手段を構成する部品が必要となり、部品点数の増加や多光軸光電センサの小型化の障害となり得る。また、例えば多光軸光電センサのなかには、使用環境に応じて耐水性をも要求されるものがあり、このようなものについて、調整手段としてボリュームを用いた構成とすると、そのボリュームと受光器本体との間から浸水するおそれがあり、それに対処するための部品が更に必要になり望ましくない。
【0008】
本発明は、上記事情に鑑みてなされたもので、その目的は、投光器または受光器の大型化を抑制しつつ、各光軸毎について最適な検出感度で入光/遮光の検出を行えるようにするための多光軸光電センサを提供するところにある。
【0009】
【課題を解決するための手段】
上記の目的を達成するための手段として、請求項1の発明に係る多光軸光電センサは、互いに対向配置される投光器及び受光器とを有し、前記投光器には複数の投光素子と、前記複数の投光素子に順次投光動作をさせる投光制御手段とが備えられ、前記受光器には、前記複数の投光素子のそれぞれと対をなす複数の受光素子と、前記各投光動作に同期して、予め定められた順番で前記各受光素子での受光量を順次検知する受光動作を行う受光制御手段とを有してなる多光軸光電センサにおいて、前記各受光動作において検知される前記各受光素子での受光量に応じた出力信号を外部機器に出力可能な出力手段を備えている構成としたところに特徴を有する。
【0010】
請求項2の発明に係る多光軸光電センサは、請求項1に記載のものにおいて、前記出力手段は、前記出力信号をデジタル信号として出力するところに特徴を有する。
【0011】
請求項3の発明に係る多光軸光電センサは、請求項1または請求項2に記載のものにおいて、前記出力手段は、前記各受光素子に対応する出力信号を、共通の出力端子を介して順次出力するところに特徴を有する。
【0012】
請求項4の発明に係る多光軸光電センサは、請求項1ないし請求項3のいずれかに記載のものにおいて、前記出力手段は、互いに異なる基準レベルに設定され、前記受光制御手段によって検知される受光量を、それぞれの基準レベルと比較する複数の比較手段と、前記複数の比較手段の比較結果に基づいて各受光素子での受光量が予め定めた多段階レベルのうちのどのレベルになるかを判定し、それに応じた出力信号を出力するレベル判定手段とを備えている構成としたところに特徴を有する。
【0013】
【発明の作用及び効果】
<請求項1の発明>
本構成によれば、各受光素子での受光量に応じた出力信号を外部機器に出力する構成である。従って、使用者側は、これらの出力信号を例えばパーソナルコンピュータ等の外部機器に取り込んで、その外部機器において各光軸毎に入光/遮光検出のための基準値を調整しつつ、入光/遮光検出を行うことが可能となる。
【0014】
<請求項2の発明>
本構成によれば、出力手段から出力される出力信号は、デジタル信号であるから、アナログ信号である場合に比べて耐ノイズ性が高く、各受光素子での受光量に応じた正確な出力信号を外部機器に与えることができる。
【0015】
<請求項3の発明>
本構成によれば、各受光素子に対応する出力信号を、共通の出力端子を介して順次出力するようになっている。従って、受光素子のそれぞれに対応する複数の出力信号を1本の信号線を介して外部機器に出力することが可能となり、その分だけ配線数を削減でき、コストの抑制や配線作業の簡素化を図ることができる。
【0016】
【発明の実施の形態】
本発明の一実施形態について図1ないし図4を参照しつつ説明する。
本発明に係る多光軸光電センサは、図1に示すように、例えば4個の投光素子(例えばLED)11a〜11dが一列に配列された投光器11と、前記投光器11とケーブルL1により接続され、投光器11の4個の投光素子11a〜11dのそれぞれと対をなす例えば4個の受光素子(例えばフォトダイオード)12a〜12dが配列された受光器12とを所定の検出領域を挟んで対向配置された構成をなす。
【0017】
(1)多光軸光電センサの電気的構成
図2には、多光軸光電センサの電気的構成が示されている。
投光器11には上述した投光素子11a〜11dをそれぞれ点灯させるための駆動回路13a〜13dが備えられ、各駆動回路13a〜13dはAND回路14a〜14dからのオン信号P1〜P4を受けるとそれに連なる投光素子11a〜11dにそれぞれ駆動電流を供給する。各AND回路14a〜14dは、その一方の入力端子が投光側CPU15に接続され、投光側CPU15から所定のタイミングで順次出力される投光タイミング信号P0が入力される。また、他方の入力端子はシフトレジスタ16の4つの出力端子にそれぞれ接続されている。シフトレジスタ16は投光側CPU15からのシフト信号S0を受ける毎に、信号出力をさせる出力端子を切り換えて、上記AND回路14a〜14dに順番にシフト出力信号S1〜S4を与えるよう動作する。
【0018】
以上のような構成により、各AND回路14a〜14dの両入力端子が同時に上記投光タイミング信号P0及びシフト出力信号S1〜S4を受けたときに、それに対応する駆動回路13a〜13dにオン信号P1〜P4を与えてそれに連なる投光素子11a〜11dに投光動作を行わせる。
【0019】
一方、受光器12には、上述した受光素子12a〜12dからのそれぞれの信号を増幅して受光量に応じたアナログ受光信号A1〜A4を出力する受光回路17a〜17dが備えられている。各受光回路17a〜17dの出力はスイッチ素子18a〜18dを介して信号線に共通接続されており、その信号線はA/D変換器19の入力側に接続される。各スイッチ素子18a〜18dはそれぞれAND回路21a〜21dからのオン信号G1〜G4を受けることによりオン動作をして、受光回路17a〜17dからのアナログ受光信号A1〜A4を順次有効化させる。
【0020】
AND回路21a〜21dは、一方の入力端子が受光側CPU22に接続され、受光側CPU22から所定のタイミング(上記投光タイミングと同期したタイミング。以下、「受光タイミング」という)で順次出力される受光タイミング信号G0を入力する。また、他方の入力端子はシフトレジスタ23の4つの出力端子にそれぞれ接続されている。シフトレジスタ23は受光側CPU22からのシフト信号T0を受ける毎に、信号出力をさせる出力端子を切り換えて、上記AND回路21a〜21dに順番にシフト出力信号T1〜T4を与えるよう動作する。
【0021】
以上のような構成により、各AND回路21a〜21dの両入力端子が同時に上記受光タイミング信号G0及びシフト出力信号T1〜T4を受けたときに、それに対応する受光回路17a〜17dからのアナログ受光信号A1〜A4が順次A/D変換器19に与えられる。A/D変換器19は、受けたアナログ受光信号A1〜A4をデジタル受光信号Dに変換し、その変換したデジタル受光信号Dを受光側CPU22に出力する。
【0022】
<投光側CPU及び受光側CPUの処理動作>
多光軸光電センサを起動させると、投光側CPU15は、受光側CPU22にケーブルL1を介して同期信号D0を出力し、これに続いて、順次投光タイミング信号P0をAND回路14a〜14dに出力する。また、これと同期して投光側CPU15はシフトレジスタ16にシフト信号S0を順次出力する。これによりシフトレジスタ16は4つの出力端子を切り換えて、上記AND回路14a〜14dに順番にシフト出力信号S1〜S4を与えるよう動作する。そしてAND回路14a〜14dから出力される駆動信号がそれぞれ対応する駆動回路13a〜13dに与えられると投光素子11a〜11dが上記投光タイミングで順番に投光する。
【0023】
一方、受光側CPU22は、投光側CPU15からの上記同期信号D0を受け取ると、これに続いて、順次受光タイミング信号G0をAND回路21a〜21dに出力する。また、これと同期して、受光側CPU22はシフトレジスタ23にシフト信号T0を順次出力する。これによりシフトレジスタ23は4つの出力端子を切り換えて、上記AND回路21a〜21dに順番にシフト出力信号T1〜T4を与え、スイッチ素子18a〜18dをオン動作させる。そして、受光素子12a〜12dから受光された光は、スイッチ素子18a〜18dのオン動作で有効化され、順次A/D変換器19に入力される。
【0024】
ここで、受光側CPU22は、受光制御手段によって検知される受光量とそれぞれ異なる基準レベルとの比較を行う複数の比較手段、前記複数の比較手段の比較結果に基づいて、各受光素子での受光量が予め定めた多段階レベル(例えば、16段階)のうちのどのレベルになるかを判定し、それに応じた出力信号を出力するレベル判定手段を備えた本発明の「出力手段」として機能する。
具体的には、このA/D変換器19でアナログ受光信号A1〜A4から順次A/D変換されたデジタル受光信号Dを入力し、それら各デジタル受光信号D毎に、図3(a)に示す16段階のどのレベルに該当するかを判定し、その判定結果に応じた4ビットのデジタル出力信号D’に変換する。そして、受光側CPU22は、図3(b)に示すように、まずスタートパルス信号を出力し、続いて受光素子12a〜12dに対応するそれぞれ4ビットのデジタル出力信号D’を順番に外部出力端子E(本発明の「共通の出力端子」に相当する)に出力する。
【0025】
(2)多光軸光電センサの検出対象物Wの検出及び検出感度調整方法
以下の説明において投光素子11a〜11dのそれぞれと対をなす受光素子12a〜12dで形成される光軸について、符号N1〜N4を付して説明する。
【0026】
ここでは、例えば多光軸光電センサの4つの光軸N1〜N4のうち上側の2つの光軸N1,N2に水がかかり、それらの2つの光軸N1,N2の受光素子12a,12bの受光量が減少した場合について説明する。
使用者は、まず受光器12の外部出力端子Eに、ケーブルL2を介して、例えばパーソナルコンピュータである外部機器10を接続する。
【0027】
<検出感度調整時>
使用者は、検出対象物Wを配置しない状態で、外部機器10と多光軸光電センサを起動させる。そうすると、多光軸光電センサの外部出力端子Eから出力されたデジタル出力信号D’が外部機器10内に取りこまれ、外部機器10のディスプレイ10a上に検出感度調整画面25が表示される。
【0028】
この検出感度調整画面25は、各受光素子12a〜12dにおける受光量レベルが表示されるとともに、各受光素子12a〜12dにおける入光/遮光の検出を行うために基準となる変更可能な基準値が予め設定されている。具体的には、図4(a)に示すように、各受光素子12a〜12dについての(16段階に分けられた)受光量レベルと、その受光量のグラフが表示される。また、予め設定される基準値は、例えば何ら光軸N1〜N4が他から影響を受けていない場合の受光量レベル12と、検出対象物Wが存在し、遮光されるときのレベル0の中間レベルである受光量レベル6がこの基準値として設定されている。
【0029】
ここで、この多光軸光電センサの4つの光軸N1〜N4のうち上側の2つの光軸N1,N2に水がかかっており、それに応じて上側の2つの受光素子12a,12bの受光量が減少している。そのため、下側の2つの受光素子12c,12dは受光量レベル12であるのに対して、上側の2つの受光素子12a,12bは受光量レベル8となり、水の影響を受けた分だけ受光量レベルが減少してしまっている。このままの基準値で物体を検出しようとすると、その基準値の受光量レベル6は、上側の2つの受光素子12a,12bの受光量レベル8の中間の値ではなくなってしまっているため、受光素子12a,12bの受光感度が他の受光素子12c,12dの受光感度よりも悪くなってしまう。これでは、例えばノイズ等を受けた場合には、検出対象物Wの検出感度が各受光素子12a〜12d毎にばらつきを生じてしまう。
【0030】
このような場合には、入光/遮光の検出を行うために基準となる基準値を変更して検出感度の調整を行う。例えば、減少した受光量が受光量レベル8であった場合には、その受光量の中間の受光量レベル4を新たな基準値として受光量レベルが減少した2つの受光素子12a,12bについて設定する。そうすると、各受光素子12a〜12d毎に検出感度にばらつきを生じることがなくなり、ノイズ等を受けた場合にも、各受光素子12a〜12d毎にばらつきのない精度で検出対象物Wの有無の検出ができるようになる。
【0031】
<物体検出時>
次に、使用者は、図1の点線に示すように、検出対象物Wが多光軸光電センサの光軸を横切るように配置し(ここでは、光軸N2,N3を横切るように配置する)、多光軸光電センサと外部機器10とを起動させる。そうすると、多光軸光電センサの外部出力端子Eから出力されたデジタル出力信号D’が外部機器10内に取りこまれ、外部機器10のディスプレイ10a上に物体検出画面26が表示される。
【0032】
この物体検出画面26では、図4(b)に示すように、各受光素子12a〜12dにおける受光量レベルとそのグラフが表示されるとともに、検出感度調整画面25で設定した基準値が表示される。また、各受光素子12a〜12dごとに、入光/遮光の検出結果が表示される。
【0033】
この検出は具体的には、各受光素子12a〜12dごとに、既に設定した基準値の受光量レベルと、検出対象物Wを配置した状態で受光している受光量レベルとを比較する。そして、検出対象物Wを配置した状態で受光している受光量レベルが、設定した基準値よりも大きい場合には、その光軸N1〜N4上については、検出対象物Wが存在しないとする(物体検出画面26上で「無」の表示)。一方、検出対象物Wを配置した状態で受光している受光量レベルが、設定した基準値よりも小さい場合には、その光軸N1〜N4上については、遮光状態にあると検出される(物体検出画面26上で「有」の表示)。
【0034】
このように、各受光素子12a〜12dでの受光量に応じたデジタル出力信号D’を外部機器10に出力する構成としたから、使用者は、外部機器10において各光軸N1〜N4毎に入光/遮光検出のための基準値を、外部機器10を操作することにより調整しつつ、入光/遮光検出を行うことが可能となる。
また、外部出力端子Eから外部機器10に出力される信号は、デジタル出力信号D’であるから、アナログ信号で出力する場合に比べて耐ノイズ性が高く、各受光素子12a〜12dでの受光量に応じた正確な出力信号を外部機器10に与えることができる。さらに、複数の出力信号を共通の外部出力端子Eを介して1本のケーブルL2(信号線)によって順次外部機器10に出力することで、その分だけ配線数を削減でき、コストの抑制や配線作業の簡素化を図ることができる。
【0035】
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)本実施形態では受光回路17a〜17dからアナログ受光信号A1〜A4が出力されることとしたが、A/D変換器を備えた受光回路17a〜17dからデジタル信号が出力されてもよい。このときA/D変換器19は不要となる。
(2)本実施形態ではA/D変換器19から出力されたデジタル受光信号Dは受光側CPU22に入力する構成としたが、受光側CPU22を通さず、A/D変換器19から出力されたデジタル受光信号Dをそのまま外部機器10に出力してもよい。
【0036】
(3)本実施形態では受光回路17a〜17dから出力されたアナログ受光信号A1〜A4を、デジタル信号に変換してから外部機器10に出力したが、アナログ受光信号A1〜A4をそのまま外部機器10に直接出力してもよい。ただし、本実施形態のように、デジタル信号に変換してから出力したほうがアナログ受光信号A1〜A4のまま出力するよりもノイズに強い効果がある。
(4)本実施形態では、投光器11と受光器12にそれぞれCPUを設けたが、投光器11若しくは受光器12のいずれか一方にのみCPUを設ける構成としてもよい。この場合には、CPUが設けられた側の投光器11若しくは受光器12にA/D変換器19を設ける構成が望ましい。
【0037】
(5)各受光素子12a〜12dにおける受光量を所定の基準値と比較するコンパレータを別途設け、各受光素子12a〜12dにおける受光量を所定の基準値と比較する構成を加えてもよい。
(6)本実施形態では各受光素子12a〜12dに対応する出力信号はケーブルL2によって、順次出力されることとしたが、複数の信号線を設け、各受光素子12a〜12dに対応する出力信号をそれぞれ別々に出力してもよい。
【0038】
(7)本実施形態では外部機器10としては、パーソナルコンピュータを例示したが、これに限らず、パーソナルコンピュータ以外の他の汎用器でもよい。また、汎用器に限らず、この多光軸光電センサを操作するための専用のコントロールボックス等の専用器でもよい。すなわち、出力手段からの各出力信号に基づき各受光素子12a〜12dでの受光量を表示させる表示手段と、出力信号に基づき各受光素子12a〜12dごとの受光量を基準値とそれぞれ比較する比較手段と、前記比較手段における基準値を各受光素子12a〜12dごとに変更設定可能な基準値変更手段とを備えたものであればよい。
(8)本実施形態では4つの投光素子11a〜11dと4つの受光素子12a〜12dがそれぞれ対向配置された構成としたが、それ以上もしくはそれ以下の数の投光素子と受光素子を対向配置する構成としてもよい。
【図面の簡単な説明】
【図1】本実施形態の多光軸光電センサと外部機器を示す全体図
【図2】本実施形態の多光軸光電センサの電気的構成を示す図
【図3】(a)デジタル出力信号と受光量レベルの関係を示す図
(b)デジタル出力信号の波形を示す図
【図4】(a)検出感度調整画面の図
(b)物体検出画面の図
【符号の説明】
10…外部機器
11…投光器
11a〜11d…投光素子
12…受光器
12a〜12d…受光素子
15…投光側CPU
19…A/D変換器
22…受光側CPU
25…検出感度調整画面
26…物体検出画面
A1〜A4…アナログ受光信号
D …デジタル受光信号
D’…デジタル出力信号
E…外部出力端子
L1,L2…ケーブル
W…検出対象物
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention has a plurality of light emitting elements and a plurality of light receiving elements, and detects light entering / shading of each optical axis formed by each of the light emitting elements and the light receiving elements based on the amount of light received by each light receiving element. The present invention relates to an axial photoelectric sensor.
[0002]
[Prior art]
This type of multi-optical axis photoelectric sensor is, for example, a light emitter having a plurality of light emitting elements, and a light receiver having a plurality of light receiving elements that are arranged to face each other with the light emitting element and the detection area interposed therebetween and form a pair with each light emitting element. It has. The multi-optical axis photoelectric sensor sequentially emits light from each of the light emitting elements, sequentially activates light receiving signals from the light receiving elements forming a pair with the light emitting elements, and, for example, compares the activated light receiving signals with a comparator. By comparing with a predetermined reference value, light incident / shielding of each optical axis formed by the light emitting element and the light receiving element forming a pair is detected. Then, a signal corresponding to the detection result of the light incident / shielding is output to an external device such as a control device or the like, or an operation indicator light provided in the light receiver performs a lighting operation. .
[0003]
By the way, the characteristics of the light projecting element and the light receiving element vary, and in the configuration in which the detection of light incidence / shielding is performed on the basis of the same reference value for each optical axis, the detection sensitivity varies for each optical axis. Detection may be caused.
[0004]
To cope with this problem, a predetermined reference value that satisfies the optimum detection sensitivity is provided for each optical axis, and a detection signal corresponding to the result of detection of light input / shielding for each optical axis is output to the outside. There is a configuration (see Patent Document 1 below).
[0005]
[Patent Document 1]
Published Japanese Utility Model Application No. Hei 3-60005
[Problems to be solved by the invention]
However, the cause of the variation in detection sensitivity for each optical axis is not limited to the above-described variation in element characteristics. That is, for example, the environment in which the multi-optical axis photoelectric sensor is used may be a cause. Specifically, for example, a case in which light that is brighter than other light receiving elements enters some of the plurality of light receiving elements from the surroundings, or a case in which some of the plurality of optical axes This is the case where water or the like is sprayed on. In such a case, with the above-described configuration in which a fixed reference value is provided for each optical axis, an optimum detection sensitivity cannot be obtained.
[0007]
Therefore, for example, a configuration is conceivable in which an adjusting means such as a volume is provided on the light receiving device side, and a user who actually uses the multi-optical axis photoelectric sensor adjusts a reference value corresponding to each optical axis according to a use environment. . However, in such a configuration, a component such as a volume, which constitutes an adjusting unit, is required, which may hinder the increase in the number of components and the miniaturization of the multi-optical axis photoelectric sensor. Also, for example, some multi-optical axis photoelectric sensors are required to have water resistance depending on the use environment. For such a case, if a configuration using a volume as an adjusting means is used, the volume and the light receiver main body are used. There is a danger that water will be immersed in the space between them, and it is not desirable because more parts are required to deal with the water.
[0008]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to make it possible to detect incident / shielded light with optimal detection sensitivity for each optical axis while suppressing an increase in the size of a projector or a receiver. To provide a multi-optical axis photoelectric sensor.
[0009]
[Means for Solving the Problems]
As a means for achieving the above object, a multi-optical axis photoelectric sensor according to the invention of claim 1 includes a light emitter and a light receiver that are arranged to face each other, and the light emitter includes a plurality of light emitting elements, Light-projecting control means for sequentially causing the plurality of light-projecting elements to perform a light-projecting operation; and the light-receiving device includes a plurality of light-receiving elements forming a pair with each of the plurality of light-projecting elements, and A multi-axis photoelectric sensor comprising: a light receiving control means for performing a light receiving operation for sequentially detecting a light receiving amount of each of the light receiving elements in a predetermined order in synchronization with the operation. It is characterized in that it comprises an output means capable of outputting an output signal corresponding to the amount of light received by each of the light receiving elements to an external device.
[0010]
A multi-optical axis photoelectric sensor according to a second aspect of the present invention is characterized in that, in the first aspect, the output means outputs the output signal as a digital signal.
[0011]
A multi-optical axis photoelectric sensor according to a third aspect of the present invention is the multi-optical axis photoelectric sensor according to the first or second aspect, wherein the output means outputs an output signal corresponding to each of the light receiving elements via a common output terminal. It has the feature that it outputs sequentially.
[0012]
A multi-optical axis photoelectric sensor according to a fourth aspect of the present invention is the multi-optical axis photoelectric sensor according to any one of the first to third aspects, wherein the output means are set to different reference levels and detected by the light receiving control means. A plurality of comparing means for comparing the amount of received light with the respective reference levels, and the light receiving amount of each light receiving element based on a comparison result of the plurality of comparing means becomes any of predetermined multi-level levels And a level determining means for outputting an output signal corresponding to the determination.
[0013]
Function and effect of the present invention
<Invention of claim 1>
According to this configuration, an output signal corresponding to the amount of light received by each light receiving element is output to the external device. Therefore, the user side captures these output signals into an external device such as a personal computer, and adjusts the reference value for detecting the light input / shielding for each optical axis in the external device, while controlling the light input / output. It is possible to detect light shielding.
[0014]
<Invention of Claim 2>
According to this configuration, since the output signal output from the output unit is a digital signal, it has higher noise resistance than an analog signal, and an accurate output signal corresponding to the amount of light received by each light receiving element. Can be given to an external device.
[0015]
<Invention of Claim 3>
According to this configuration, output signals corresponding to the respective light receiving elements are sequentially output via the common output terminal. Therefore, it is possible to output a plurality of output signals corresponding to each of the light receiving elements to an external device via one signal line, thereby reducing the number of wirings, reducing costs and simplifying wiring work. Can be achieved.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, a multi-optical axis photoelectric sensor according to the present invention is connected to a light projector 11 in which, for example, four light emitting elements (for example, LEDs) 11a to 11d are arranged in a line, and is connected to the light projector 11 by a cable L1. Then, the light receiving device 12 in which, for example, four light receiving devices (for example, photodiodes) 12a to 12d are paired with each of the four light emitting devices 11a to 11d of the light emitting device 11 with a predetermined detection area interposed therebetween. It is configured to be opposed.
[0017]
(1) Electrical configuration of multi-optical axis photoelectric sensor FIG. 2 shows the electrical configuration of the multi-optical axis photoelectric sensor.
The projector 11 is provided with driving circuits 13a to 13d for lighting the above-described light projecting elements 11a to 11d, respectively. When the driving circuits 13a to 13d receive the ON signals P1 to P4 from the AND circuits 14a to 14d, the driving circuits 13a to 13d A drive current is supplied to each of the continuous light emitting elements 11a to 11d. Each of the AND circuits 14a to 14d has one input terminal connected to the light-emitting side CPU 15, and receives a light-emitting timing signal P0 sequentially output from the light-emitting side CPU 15 at a predetermined timing. The other input terminals are connected to four output terminals of the shift register 16, respectively. Each time the shift register 16 receives the shift signal S0 from the light emitting side CPU 15, the shift register 16 switches the output terminal for outputting the signal, and operates so as to sequentially apply the shift output signals S1 to S4 to the AND circuits 14a to 14d.
[0018]
With the above configuration, when both input terminals of each of the AND circuits 14a to 14d receive the light emitting timing signal P0 and the shift output signals S1 to S4 at the same time, the corresponding drive circuits 13a to 13d send the ON signal P1 To P4 to cause the light emitting elements 11a to 11d connected thereto to perform the light emitting operation.
[0019]
On the other hand, the light receiver 12 is provided with light receiving circuits 17a to 17d that amplify the respective signals from the light receiving elements 12a to 12d and output analog light receiving signals A1 to A4 corresponding to the amounts of received light. The outputs of the light receiving circuits 17a to 17d are commonly connected to signal lines via switch elements 18a to 18d, and the signal lines are connected to the input side of the A / D converter 19. Each of the switch elements 18a to 18d performs an ON operation by receiving ON signals G1 to G4 from the AND circuits 21a to 21d, respectively, and sequentially activates the analog light receiving signals A1 to A4 from the light receiving circuits 17a to 17d.
[0020]
One of the input terminals of the AND circuits 21a to 21d is connected to the light receiving side CPU 22, and the light receiving side sequentially output from the light receiving side CPU 22 at a predetermined timing (timing synchronized with the above light emitting timing; hereinafter, referred to as "light receiving timing"). The timing signal G0 is input. The other input terminals are connected to four output terminals of the shift register 23, respectively. Each time the shift register 23 receives the shift signal T0 from the light receiving side CPU 22, the shift register 23 operates to switch the output terminal for outputting the signal, and to sequentially apply the shift output signals T1 to T4 to the AND circuits 21a to 21d.
[0021]
With the above configuration, when both input terminals of the AND circuits 21a to 21d simultaneously receive the light receiving timing signal G0 and the shift output signals T1 to T4, the analog light receiving signals from the corresponding light receiving circuits 17a to 17d. A1 to A4 are sequentially supplied to the A / D converter 19. The A / D converter 19 converts the received analog light receiving signals A1 to A4 into a digital light receiving signal D, and outputs the converted digital light receiving signal D to the light receiving side CPU 22.
[0022]
<Processing operation of light emitting CPU and light receiving CPU>
When the multi-optical axis photoelectric sensor is activated, the light emitting side CPU 15 outputs a synchronization signal D0 to the light receiving side CPU 22 via the cable L1, and subsequently, sequentially transmits the light emitting timing signal P0 to the AND circuits 14a to 14d. Output. In synchronization with this, the light emitting side CPU 15 sequentially outputs the shift signal S0 to the shift register 16. As a result, the shift register 16 operates so as to switch the four output terminals and sequentially apply the shift output signals S1 to S4 to the AND circuits 14a to 14d. When the drive signals output from the AND circuits 14a to 14d are applied to the corresponding drive circuits 13a to 13d, the light emitting elements 11a to 11d sequentially emit light at the above light emitting timing.
[0023]
On the other hand, when receiving the synchronization signal D0 from the light-emitting side CPU 15, the light-receiving side CPU 22 sequentially outputs a light-receiving timing signal G0 to the AND circuits 21a to 21d. In synchronization with this, the light receiving side CPU 22 sequentially outputs the shift signal T0 to the shift register 23. Thus, the shift register 23 switches the four output terminals, sequentially applies the shift output signals T1 to T4 to the AND circuits 21a to 21d, and turns on the switch elements 18a to 18d. The light received from the light receiving elements 12a to 12d is enabled by the ON operation of the switch elements 18a to 18d, and is sequentially input to the A / D converter 19.
[0024]
Here, the light-receiving-side CPU 22 includes a plurality of comparing means for comparing the amount of light detected by the light-receiving control means with different reference levels. It functions as an “output unit” of the present invention including a level determination unit that determines which level the amount will be in a predetermined multi-level level (for example, 16 levels) and outputs an output signal according to the determined level. .
Specifically, the digital light receiving signals D, which are sequentially A / D converted from the analog light receiving signals A1 to A4 by the A / D converter 19, are inputted, and for each of the digital light receiving signals D, FIG. It is determined which of the 16 levels it corresponds to, and converted into a 4-bit digital output signal D 'according to the result of the determination. Then, the light receiving side CPU 22 first outputs a start pulse signal and then sequentially outputs a 4-bit digital output signal D 'corresponding to the light receiving elements 12a to 12d as shown in FIG. E (corresponding to the “common output terminal” of the present invention).
[0025]
(2) Detection Method of Detection Target W and Detection Sensitivity Adjustment Method of Multi-Optical-Axis Photoelectric Sensor In the following description, reference numerals are used for optical axes formed by light receiving elements 12a to 12d that form a pair with each of light projecting elements 11a to 11d. A description will be given with reference to N1 to N4.
[0026]
Here, for example, water is applied to the upper two optical axes N1 and N2 of the four optical axes N1 to N4 of the multi-optical axis photoelectric sensor, and the light receiving elements 12a and 12b of the two optical axes N1 and N2 receive light. The case where the amount is reduced will be described.
First, the user connects the external device 10 such as a personal computer to the external output terminal E of the light receiver 12 via the cable L2.
[0027]
<At the time of detection sensitivity adjustment>
The user activates the external device 10 and the multi-optical axis photoelectric sensor without disposing the detection target W. Then, the digital output signal D ′ output from the external output terminal E of the multi-optical axis photoelectric sensor is taken into the external device 10, and the detection sensitivity adjustment screen 25 is displayed on the display 10a of the external device 10.
[0028]
The detection sensitivity adjustment screen 25 displays the light reception level in each of the light receiving elements 12a to 12d, and displays a changeable reference value serving as a reference for detecting light input / shielding in each of the light receiving elements 12a to 12d. It is set in advance. Specifically, as shown in FIG. 4A, a graph of the received light amount level (divided into 16 stages) for each of the light receiving elements 12a to 12d and a graph of the received light amount are displayed. The preset reference value is, for example, an intermediate value between the light receiving amount level 12 when the optical axes N1 to N4 are not affected by others and the level 0 when the detection target object W exists and is shielded. The received light level 6 which is a level is set as the reference value.
[0029]
Here, the upper two optical axes N1 and N2 of the four optical axes N1 to N4 of this multi-optical axis photoelectric sensor are covered with water, and accordingly, the light receiving amounts of the upper two light receiving elements 12a and 12b. Is decreasing. Therefore, the lower two light receiving elements 12c and 12d have the light receiving amount level 12, whereas the upper two light receiving elements 12a and 12b have the light receiving amount level 8, and the light receiving amount is affected by the influence of the water. The level has decreased. When an object is to be detected with the reference value as it is, the light receiving level 6 of the reference value is not an intermediate value of the light receiving level 8 of the upper two light receiving elements 12a and 12b. The light receiving sensitivity of 12a, 12b becomes worse than the light receiving sensitivity of the other light receiving elements 12c, 12d. In this case, for example, when noise or the like is received, the detection sensitivity of the detection target W varies among the light receiving elements 12a to 12d.
[0030]
In such a case, the detection sensitivity is adjusted by changing a reference value serving as a reference in order to detect light entry / shielding. For example, when the decreased light reception amount is the light reception amount level 8, the light reception amount level 4 in the middle of the light reception amount is set as a new reference value for the two light receiving elements 12a and 12b whose light reception amount levels have decreased. . Then, the detection sensitivity does not vary for each of the light receiving elements 12a to 12d, and the detection of the presence / absence of the detection target W can be performed with no variation even for each of the light receiving elements 12a to 12d even when noise is received. Will be able to
[0031]
<During object detection>
Next, as shown by the dotted line in FIG. 1, the user arranges the detection target W so as to cross the optical axis of the multi-optical axis photoelectric sensor (here, the detection object W is arranged to cross the optical axes N2 and N3). ), The multi-optical axis photoelectric sensor and the external device 10 are activated. Then, the digital output signal D ′ output from the external output terminal E of the multi-optical axis photoelectric sensor is taken into the external device 10, and the object detection screen 26 is displayed on the display 10a of the external device 10.
[0032]
On the object detection screen 26, as shown in FIG. 4 (b), the light reception level of each of the light receiving elements 12a to 12d and its graph are displayed, and the reference value set on the detection sensitivity adjustment screen 25 is displayed. . In addition, the detection result of light input / shielding is displayed for each of the light receiving elements 12a to 12d.
[0033]
Specifically, for this detection, for each of the light receiving elements 12a to 12d, the light reception level of the reference value already set and the light reception level of the light received in the state where the detection target W is arranged are compared. If the level of the amount of light received while the detection target W is disposed is larger than the set reference value, it is determined that the detection target W does not exist on the optical axes N1 to N4. ("None" is displayed on the object detection screen 26). On the other hand, if the level of the amount of light received while the detection target W is disposed is smaller than the set reference value, it is detected that the optical axes N1 to N4 are in the light-shielded state ( "Yes" is displayed on the object detection screen 26).
[0034]
As described above, since the digital output signal D ′ corresponding to the amount of light received by each of the light receiving elements 12a to 12d is output to the external device 10, the user can use the external device 10 for each of the optical axes N1 to N4. It is possible to perform light-in / light-out detection while adjusting the reference value for light-in / light-out detection by operating the external device 10.
Further, since the signal output from the external output terminal E to the external device 10 is a digital output signal D ′, the noise resistance is higher than in the case where the signal is output as an analog signal, and the light received by each of the light receiving elements 12 a to 12 d is received. An accurate output signal corresponding to the amount can be provided to the external device 10. Further, by sequentially outputting a plurality of output signals to the external device 10 through one common cable L2 (signal line) via the common external output terminal E, the number of wirings can be reduced by that much, and cost reduction and wiring can be suppressed. Work can be simplified.
[0035]
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and furthermore, besides the following, within the scope not departing from the gist. Can be implemented with various modifications.
(1) In the present embodiment, the analog light receiving signals A1 to A4 are output from the light receiving circuits 17a to 17d. However, digital signals may be output from the light receiving circuits 17a to 17d including A / D converters. . At this time, the A / D converter 19 becomes unnecessary.
(2) In this embodiment, the digital light receiving signal D output from the A / D converter 19 is input to the light receiving CPU 22. However, the digital light receiving signal D is output from the A / D converter 19 without passing through the light receiving CPU 22. The digital light receiving signal D may be output to the external device 10 as it is.
[0036]
(3) In this embodiment, the analog light receiving signals A1 to A4 output from the light receiving circuits 17a to 17d are converted into digital signals and then output to the external device 10, but the analog light receiving signals A1 to A4 are directly output to the external device 10. May be output directly. However, as in the present embodiment, the output after conversion into a digital signal has a stronger effect on noise than outputting the analog light reception signals A1 to A4 as they are.
(4) In the present embodiment, a CPU is provided for each of the light projector 11 and the light receiver 12, but a CPU may be provided for only one of the light projector 11 and the light receiver 12. In this case, it is desirable that the A / D converter 19 be provided in the light projector 11 or the light receiver 12 on the side where the CPU is provided.
[0037]
(5) A comparator for comparing the amount of light received by each of the light receiving elements 12a to 12d with a predetermined reference value may be separately provided, and a configuration for comparing the amount of light received by each of the light receiving elements 12a to 12d with a predetermined reference value may be added.
(6) In the present embodiment, the output signals corresponding to the respective light receiving elements 12a to 12d are sequentially output by the cable L2. However, a plurality of signal lines are provided, and the output signals corresponding to the respective light receiving elements 12a to 12d are provided. May be output separately.
[0038]
(7) In the present embodiment, the personal computer is exemplified as the external device 10, but the present invention is not limited to this, and a general-purpose device other than the personal computer may be used. Further, the device is not limited to a general-purpose device, and may be a dedicated device such as a dedicated control box for operating the multi-optical axis photoelectric sensor. That is, a display unit that displays the amount of light received by each of the light receiving elements 12a to 12d based on each output signal from the output unit, and a comparison that compares the amount of light received by each of the light receiving elements 12a to 12d with a reference value based on the output signal. And a reference value changing means capable of changing and setting the reference value of the comparing means for each of the light receiving elements 12a to 12d.
(8) In this embodiment, the four light projecting elements 11a to 11d and the four light receiving elements 12a to 12d are arranged to face each other. It is good also as a structure to arrange.
[Brief description of the drawings]
FIG. 1 is an overall view showing a multi-optical axis photoelectric sensor of this embodiment and an external device. FIG. 2 is a diagram showing an electrical configuration of the multi-optical axis photoelectric sensor of this embodiment. FIG. 3 (a) Digital output signal FIG. 4B is a diagram showing a waveform of a digital output signal. FIG. 4A is a diagram of a detection sensitivity adjustment screen. FIG. 4B is a diagram of an object detection screen.
DESCRIPTION OF SYMBOLS 10 ... External apparatus 11 ... Light projector 11a-11d ... Light emitting element 12 ... Light receiver 12a-12d ... Light receiving element 15 ... Light emitting side CPU
19 A / D converter 22 CPU on the light receiving side
25 detection sensitivity adjustment screen 26 object detection screens A1 to A4 analog light reception signal D digital light reception signal D 'digital output signal E external output terminals L1 and L2 cable W detection target

Claims (4)

互いに対向配置される投光器及び受光器を有し、
前記投光器には複数の投光素子と、前記複数の投光素子に順次投光動作をさせる投光制御手段とが備えられ、
前記受光器には、前記複数の投光素子のそれぞれと対をなす複数の受光素子と、
前記各投光動作に同期して、予め定められた順番で前記各受光素子での受光量を順次検知する受光動作を行う受光制御手段とを有してなる多光軸光電センサにおいて、
前記各受光動作において検知される前記各受光素子での受光量に応じた出力信号を外部機器に出力可能な出力手段を備えていることを特徴とする多光軸光電センサ。
Having a light emitter and a light receiver that are arranged to face each other,
The light projector is provided with a plurality of light emitting elements, and light emitting control means for sequentially performing the light emitting operation to the plurality of light emitting elements,
The light receiver, a plurality of light receiving elements paired with each of the plurality of light emitting elements,
A multi-optical axis photoelectric sensor, comprising: a light receiving control unit that performs a light receiving operation for sequentially detecting a light receiving amount in each of the light receiving elements in a predetermined order in synchronization with each of the light projecting operations.
A multi-optical axis photoelectric sensor, comprising: output means capable of outputting an output signal corresponding to an amount of light received by each of the light receiving elements detected in each of the light receiving operations to an external device.
前記出力手段は、前記出力信号をデジタル信号として出力することを特徴とする請求項1記載の多光軸光電センサ。2. The multi-optical axis photoelectric sensor according to claim 1, wherein said output means outputs said output signal as a digital signal. 前記出力手段は、前記各受光素子に対応する出力信号を、共通の出力端子を介して順次出力することを特徴とする請求項1または請求項2記載の多光軸光電センサ。3. The multi-optical axis photoelectric sensor according to claim 1, wherein the output unit sequentially outputs output signals corresponding to the respective light receiving elements via a common output terminal. 前記出力手段は、互いに異なる基準レベルに設定され、前記受光制御手段によって検知される受光量を、それぞれの基準レベルと比較する複数の比較手段と、
前記複数の比較手段の比較結果に基づいて各受光素子での受光量が予め定めた多段階レベルのうちのどのレベルになるかを判定し、それに応じた出力信号を出力するレベル判定手段とを備えていることを特徴とする請求項1ないし請求項3のいずれかに記載の多光軸光電センサ。
The output unit is set to different reference levels from each other, a plurality of comparison units that compares the amount of light received by the light reception control unit with each reference level,
Level determining means for determining which one of predetermined multi-levels the amount of light received by each light receiving element is based on a comparison result of the plurality of comparing means, and outputting an output signal corresponding thereto. The multi-optical axis photoelectric sensor according to any one of claims 1 to 3, further comprising:
JP2003125853A 2003-04-30 2003-04-30 Multi-optical axis photoelectric sensor Pending JP2004333173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003125853A JP2004333173A (en) 2003-04-30 2003-04-30 Multi-optical axis photoelectric sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125853A JP2004333173A (en) 2003-04-30 2003-04-30 Multi-optical axis photoelectric sensor

Publications (1)

Publication Number Publication Date
JP2004333173A true JP2004333173A (en) 2004-11-25

Family

ID=33502987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125853A Pending JP2004333173A (en) 2003-04-30 2003-04-30 Multi-optical axis photoelectric sensor

Country Status (1)

Country Link
JP (1) JP2004333173A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010154352A (en) * 2008-12-25 2010-07-08 Sunx Ltd Multiple optical axis photoelectric sensor and photodetector
JP2012230872A (en) * 2011-04-27 2012-11-22 Panasonic Industrial Devices Sunx Co Ltd Multiple optic-axial photoelectric sensor
JP2019190861A (en) * 2018-04-19 2019-10-31 竹中エンジニアリング株式会社 Detection device
KR20200111765A (en) * 2018-03-30 2020-09-29 파나소닉 디바이스 썬크스 주식회사 Photoelectric sensor and multi-beam photoelectric sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010154352A (en) * 2008-12-25 2010-07-08 Sunx Ltd Multiple optical axis photoelectric sensor and photodetector
JP2012230872A (en) * 2011-04-27 2012-11-22 Panasonic Industrial Devices Sunx Co Ltd Multiple optic-axial photoelectric sensor
KR20200111765A (en) * 2018-03-30 2020-09-29 파나소닉 디바이스 썬크스 주식회사 Photoelectric sensor and multi-beam photoelectric sensor
KR102445339B1 (en) * 2018-03-30 2022-09-20 파나소닉 디바이스 썬크스 주식회사 Photoelectric sensors and multi-axis photoelectric sensors
JP2019190861A (en) * 2018-04-19 2019-10-31 竹中エンジニアリング株式会社 Detection device

Similar Documents

Publication Publication Date Title
TWI445993B (en) Time of flight (tof) transceivers system and method for use in calibrating the same
KR101618881B1 (en) Proximity sensors with improved ambient light rejection
TW200627302A (en) Information detection device and information detection display device
US6720545B2 (en) Photoelectric sensor, control method therefor and semiconductor integrated circuit therefor
US20200400819A1 (en) Time of flight device and time of flight method
JP2008167178A (en) Image data generator, and photoreceptor device
JP7222745B2 (en) flicker detector
JPWO2018211831A1 (en) Photodetectors and portable electronics
WO2015037293A1 (en) Optical sensor and electronic device
JP5078790B2 (en) Optical semiconductor device and mobile device
TW202004463A (en) Optical touch sensor devices and systems and detectors and controllers thereof
JP2011138503A (en) Object detection device
JP2004333173A (en) Multi-optical axis photoelectric sensor
TW200607340A (en) Interactive device capable of improving image processing
US7247834B2 (en) Photoelectric sensor for detecting presence/absence of object
JP2007067354A (en) Infrared communication device
JP3960856B2 (en) Illumination light control device for display unit using optical sensor
JP4846325B2 (en) Multi-optical axis photoelectric sensor, projector, and light receiver
JP2007201170A (en) Mobile-body detecting photo-interruptor and electronic equipment using it
JP7317600B2 (en) Infrared measuring device and its measuring method
US20110025661A1 (en) Light sensor noise suppression arrangement and method therefor
JP5391127B2 (en) Time measuring device and distance measuring device
US20110141020A1 (en) Optical navigation device
JP3783618B2 (en) Photodetection IC and photodetector using the IC
US20080150896A1 (en) Optical mouse with selectable dual light source device and detection method for the same