JP2004332846A - Inscribed engagement planetary gear structure with eccentric cam - Google Patents

Inscribed engagement planetary gear structure with eccentric cam Download PDF

Info

Publication number
JP2004332846A
JP2004332846A JP2003130549A JP2003130549A JP2004332846A JP 2004332846 A JP2004332846 A JP 2004332846A JP 2003130549 A JP2003130549 A JP 2003130549A JP 2003130549 A JP2003130549 A JP 2003130549A JP 2004332846 A JP2004332846 A JP 2004332846A
Authority
JP
Japan
Prior art keywords
sliding surface
input shaft
eccentric cam
eccentric
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003130549A
Other languages
Japanese (ja)
Other versions
JP4163043B2 (en
Inventor
Akira Yamamoto
章 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2003130549A priority Critical patent/JP4163043B2/en
Publication of JP2004332846A publication Critical patent/JP2004332846A/en
Application granted granted Critical
Publication of JP4163043B2 publication Critical patent/JP4163043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Retarders (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the performance and durability of a speed reducer with an inscribed engagement planetary gear structure by facilitating the installation and loading capacity of the eccentric body or an external gear of the planetary gear structure. <P>SOLUTION: Rolling elements comprise a first sliding surface S1 on the eccentric bodies 103a and 103b side and a third sliding surface S3 on the external gear side (S1 = S3), and are formed in a convex shape in a plane including the axis O1 of an input shaft 101. The second sliding surface S2 of the external gear slidably moving on the first sliding surface S1 is formed in a convex shape. On the other hand, the fourth sliding surface S4 of the eccentric bodies 103a and 103b slidably moving on the third sliding surface S3 is formed in a convex shape on the eccentric bodies 103a and 103b side. The radius of curvature of the convex shape on the fourth sliding surface S4 is slightly smaller than the radius of curvature of the convex shape on the third sliding surface S3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は内接噛合形遊星歯車構造に関する。
【0002】
【従来の技術】
従来、入力軸、偏心カム、及び僅少の歯数差を有する外歯歯車及び内歯歯車を備え、前記外歯歯車が、前記偏心カムを介して前記入力軸の軸心に対して偏心揺動しながら前記内歯歯車に内接噛合する構成とされた偏心カムを有する内接噛合遊星歯車構造が広く知られている(例えば特許文献1参照)。
【0003】
図6及び図7に、この構造を減速機に適用した例を示す。
【0004】
入力軸1には所定位相差(この例では180°)をもって偏心体(偏心カム)3a、3bが嵌合されている。この偏心体3a、3bは、それぞれ入力軸1(軸心O1)に対して偏心量eだけ偏心している(中心O2)。それぞれの偏心体3a、3bにはころ状の転動体4a、4bを介して2枚の外歯歯車5a、5bが複列に取付けられている。この外歯歯車5a、5bには内ローラ孔6a、6bが複数設けられ、内ピン7及び内ローラ8が嵌入されている。
【0005】
外歯歯車を2枚(複列)にしているのは、主に伝達容量の増大、強度の維持、回転バランスの保持を図るためである。外歯歯車5a、5bの外周にはトロコイド歯形や円弧歯形等の外歯9が設けられている。この外歯9はケーシング12に固定された内歯歯車10と内接噛合している。内歯歯車10の内歯は、具体的には外ピン11が外ピン穴13に遊嵌され、回転し易く保持された構造となっている。前記外歯歯車5a、5bを貫通する内ピン7は、出力軸2に固着又は嵌入されている。
【0006】
入力軸1が一回転すると偏心体3a、3bが一回転する。この偏心体3a、3bの一回転により、外歯歯車5a、5bは入力軸1の周りで揺動回転を行おうとするが、内歯歯車10によってその自転が拘束されるため、外歯歯車5a、5bは、この内歯歯車10に内接しながら殆ど揺動のみを行うことになる。
【0007】
いま、例えば外歯歯車5a、5bの歯数をN、内歯歯車10の歯車をN+1とした場合、その歯数差は1である。そのため、入力軸1の一回転毎に外歯歯車5a、5bはケーシング12に固定された内歯歯車10に対して1歯分だけずれる(自転する)ことになる。これは入力軸1の一回転が外歯歯車5a、5bの−1/Nの回転に減速されたことを意味する。なお、マイナスの符号は外歯歯車5a、5bの回転が入力軸1の回転と逆になることを示している。
【0008】
この外歯歯車5a、5bの回転は内ローラ孔6a、6b及び内ピン7(内ローラ8)の隙間によってその揺動成分が吸収され、自転成分のみが内ピン7を介して出力軸2へと伝達される。この結果、結局減速比−1/Nの減速が達成される。
【0009】
上述した内接噛合遊星歯車構造は、現在種々の減速機あるいは増速機に適用されている。例えば、全く同じ構造で、前記出力軸2を固定するとともに、代わりに前記内歯歯車10を出力軸としても、減速機を構成することが可能である。また、入・出力軸を逆転させることにより、「増速機」を構成することもできる。
【0010】
更には、上述した内接噛合遊星歯車構造のほか、例えば、入力軸から歯車を介して複数の偏心体軸に動力を振り分け、該偏心体軸にそれぞれ装着した同位相の複数の偏心体を介して外歯歯車を複数箇所において同時に偏心駆動するような振分けタイプの内接噛合遊星歯車構造も公知である。
【0011】
ところで、入力軸1を回転させると、偏心体3a、3bが回転し、この偏心体3a、3bの回転は、転動体4a、4bを介して2枚の外歯歯車5a、5bを揺動運動させようとするが、このとき外歯歯車5a、5bと転動体4a、4bの間及び転動体4a、4bと偏心体3a、3bとの間にはトルクの伝達負荷(荷重)が発生する。
【0012】
転動体4a、4bは入力軸1に嵌合された偏心体3a、3bに組付けられているため、該転動体4a、4bに荷重が発生すると偏心体3a、3bを介して入力軸1にモーメントが発生し、入力軸1が傾く(ミスアラインメント)。入力軸1が傾くと、これに嵌合された偏心体3a、3b全体が傾き、結果として偏心体3a、3bと転動体4a、4bと外歯歯車5a、5bは傾いた状態で互いに荷重を及ぼし合いながら回転を伝えることになる。この状態が継続すると片当りが発生するようになるため、転動体4a、4bの寿命が短くなり、高負荷に対応できなくなる。
【0013】
従来、この片当りすることによる短寿命化に対しては転動体4a、4bの外周端面にクラウニングや特殊熱処理等を施してその発生を回避するようにしているが、クラウニングによってミスアラインメントを吸収できる量にはおのずと限界があり、更なる高負荷能力化には対応できなかった。
【0014】
このような問題に対し、前記特許文献1においては、偏心体と外歯歯車間に介在する転動体が1つの曲率半径で形成され、かつ偏心体外周と外歯歯車内周とが転動体の曲率に添った形状で構成されている例が開示されている。
【0015】
【特許文献1】
特開2000−249200号公報
【0016】
【発明が解決しようとする課題】
しかしながら、この方法では、結局凹面と凹面との間に挟まれた空間に転動体を組み込む必要があったことから、各部材の組付けがし難く、組付けコストが増大するという問題があった。また、この組み付けの困難性と関係して、転動体のラジアル方向の隙間を大きくとる必要があることから、組み込み可能な転動体の数が制限され、結果として少ない数の転動体で荷重を持たねばならず、性能及び寿命の改善がなお十分には図れないという問題もあった。
【0017】
更に、転動体の摺動部が互いに同一の曲率の面同士で形成されていたため、設計上においては片当りが生じないようになってはいるものの、現実的には転動体の端部において製造誤差に起因して片当たりが発生し、これによりエッジ応力が発生するという懸念もあった。
【0018】
本発明は、このような従来の問題を解消するために創案されたものであって、各部材の組付けが容易で且つ動力伝達の負荷能力が高く、ひいては、この種の歯車構造を有する減速機等の性能及び耐久性の向上を図ることができる内接噛合遊星歯車歯車構造を得ることをその課題としている。
【0019】
【課題を解決するための手段】
本発明は、入力軸、偏心カム、内歯歯車及び該内歯歯車と僅少の歯数差を有する外歯歯車を備え、前記外歯歯車が、前記偏心カムを介して前記入力軸の軸心に対して偏心揺動しながら前記内歯歯車に内接噛合する構成とされた偏心カムを有する内接噛合遊星歯車構造において、前記偏心カムと前記外歯歯車との間に転動体を備え、前記転動体の外歯歯車側の第1の摺動面を、前記入力軸の軸心を含む面内において凸状に形成すると共に、該第1の摺動面と摺動する前記外歯歯車側の第2の摺動面を、前記入力軸の軸心を含む面内において軸に平行な直線又は凸状のいずれかで形成し、且つ、前記転動体の偏心カム側の第3の摺動面を、前記入力軸の軸心を含む面内において凸状に形成すると共に、該第3の摺動面と摺動する前記偏心カム側の第4の摺動面を、前記入力軸の軸心を含む面内において凹状に形成したことにより、上記課題を解決したものである。
【0020】
転動体と外歯歯車との摺動面は、入力軸と直角な面内での接触を考慮すると、凸と凹の接触態様となっている。そのため、この部分での摺動負荷はもともとそれほど高いものではなく、接触面圧的に元々有利である。一方、転動体と偏心カムとの摺動面は、入力軸と直角な面内において凸と凸の摺動態様となっており、耐久性上より厳しい状況にある。
【0021】
本発明は、こうした状況を考慮して、耐久性を確実に確保しながら、転動体の外歯歯車側の摺動面の摺動状況の有利さを(過剰品質のままとせずに)、合理的且つ積極的に組付けの容易性に振り向けたものと言える。
【0022】
即ち、本発明によれば、転動体の第1の摺動面と外歯歯車側の第2の摺動面が、入力軸の軸心を含む面内において凸と直線の接触態様、或いは凸と凸の接触態様とされる。この構成により、転動体の組みつけが極めて容易になる。これは実際の組み付け試験によっても確認されている。また、組み付けが容易になることから転動体のラジアル方向の隙間を大きくとる必要がなく、組み込み可能な転動体の数を増大でき、回転性能及び耐久性の向上を図ることができる。
【0023】
その一方で、耐久性上厳しい状況にある転動体と偏心カムとの側の摺動面は入力軸の軸心を含む面内において凹と凸の接触態様が維持されており、片当たりの発生に伴ってエッジ応力が発生するのが確実に防止され、回転の円滑性の確保及び耐久性の向上が図れる。
【0024】
なお、第2の摺動面は、前記外歯歯車そのものに形成されていてもよく、また別の部材で形成されていてもよい。
【0025】
又、前記第4の摺動面の曲率半径を、前記第3の摺動面の曲率半径より、小さい値とすると、製造誤差等に起因した片当たり等も生じず、また、製造誤差や動力伝達時の弾性変形によるミスアライメントも吸収できる。そのため片当たりの発生に伴って局所的に高いエッジ応力が発生するのを一層確実に防止でき、更なる回転の円滑性の確保及び耐久性の向上が図れる。
【0026】
なお、第3の摺動面及び第4の摺動面の間の接触面圧が、前記第1の摺動面及び第2の摺動面の間の接触面圧の0.8〜1.6倍の範囲に収まるように、前記各摺動面の曲率半径を設定するとよい(後述)。
【0027】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0028】
図1は本発明の実施形態が適用された減速機の要部を拡大図示したものである。この減速機Gは、入力軸101、偏心体(偏心カム)103a、103b、内歯歯車(図示略)、及びこの内歯歯車と僅少の歯数差を有する外歯歯車105a、105bを備え、前記外歯歯車105a、105bが、前記偏心体103a、103bを介して前記入力軸101の軸心O3に対して偏心揺動しながら内歯歯車に内接噛合する構成とされた偏心体103a、103bを有する内接噛合遊星歯車構造を備える。
【0029】
なお、偏心体103a、103bと外歯歯車105a、105bとの間の摺動構成以外の構成については、基本的に既に説明した従来の減速機の構成と特に異ならないため、重複説明は省略する。
【0030】
偏心体103a、103bと前記外歯歯車105a、105bとの間には、複数の転動体104a、104bが介在されている。転動体104a、104bは、そのひとつひとつが樽形のころ形状とされ、外歯歯車105a、105b側に第1の摺動面S1を有し、偏心体103a、103b側に第3の摺動面S3を有する。
【0031】
但し、この実施形態における転動体104a、104bは、偏心体103a、103bと外歯歯車105a、105bとの間で回転するものであるため、この第1、第3の摺動面S1、S3は、実際には同一(単一)の摺動面であり(S1=S3)、ともに、前記入力軸101の軸心O3を含む面内において凸状に形成されている。
【0032】
なお、各転動体104a、104bの各々の軸心は入力軸101の軸心O3と平行である。
【0033】
転動体104a、104bの第1の摺動面S1と摺動する外歯歯車105a、105bの第2の摺動面S2は、入力軸101の軸心O3を含む面内において凸状に形成されている。
【0034】
一方、転動体104a、104bの第3の摺動面S3と摺動する偏心体103a、103bの第4の摺動面S4は、入力軸101の軸心O3を含む面内において凹状に形成されており、且つ、図2に拡大図示するように、該第3の摺動面S3の曲率半径(rc1)は、前記第4の摺動面S4の曲率半径(−re1)より、僅かに小さい値に設定されている。
【0035】
この曲率半径rc1、−re1の定義、或いは意義については後に詳述する。
【0036】
なお、前記第2の摺動面S2の形状は、図3に示されるように、これを、入力軸101の軸心O3を含む面内において直線で形成するようにしてもよい。即ち、この例では、外歯歯車205a、205bの第2の摺動面S20を直線(円筒面)で形成している。
【0037】
この第2の摺動面S2(S20)を円筒面で形成するか、あるいは凸面で形成するか、凸面で形成する場合にどの程度の曲率半径とするかという問題を含め、各部材の曲率半径は、以下に説明するヘルツの接触理論に基づき、「転動体104a、104bと偏心体103a、103bとの接触面圧が、転動体104a、104bと外歯歯車105a、105bとの接触面圧とほぼ同等かやや大きくなるよう(0.8〜1.6倍程度)に設定する。」という観点で決定される。
【0038】
即ち、転動体104a、104bと偏心体103a、103bの接触面圧、及び転動体104a、104bと外歯歯車105a、105bとの接触面圧は、ヘルツの点接触理論に基づき、次のようにして求めることができる。
【0039】
ヘルツの点接触理論では、図4に示されるように、2つの回転楕円体X,Yが押し付け力Qで互いに押し付けられているときには、接触面が長径2a、短径2bの楕円になるとして、各要素の関係をモデル化している。
【0040】
回転楕円体X、Yは、互いに直交する2つの主曲率面P1、P2を持ち、回転楕円体Xは接触部近傍においてこの主曲率面P1、P2内において最小曲率半径rx1、最大曲率半径rx2を有する。一方、回転楕円体Yは、接触部近傍においてこの同じ主曲率面P1、P2内において最小曲率半径ry1、最大曲率半径ry2を有する。なお、曲率半径の中心が物体の内側にあれば(凸面の場合は)+の符号をつけ、物体の外側にあれば(凹面の場合は)−の符号を付けるように規定されている。
【0041】
接触面が楕円の場合、その面積(接触面積)Fはπabとなるが、このa、bに関して、ヘルツは、2つの回転楕円体X、Yのヤング率Eとポアソン比1/mが等しいことを条件として、(1)、(2)式を与えている。
【0042】
【数1】

Figure 2004332846
【0043】
(1)、(2)式において、Σρは、(3)式で与えられる曲率和である。
【0044】
Σρ=ρx1+ρx2+ρy1+ρy2 (3)
ここでρx1、ρx2、ρy1、ρy2は、曲率半径rx1、rx2、ry1、ry2に対応する曲率(rx1、rx2、ry1、ry2の逆数)である。
【0045】
(1)式、(2)式の係数μと係数νは、cosτを補助係数とし、該補助係数cosτの値からヘルツの誘導によってそれぞれ予め与えられている係数である。補助係数cosτは、(4)式に従って求められる。
【0046】
cosτ=(ρx1−ρx2+ρy1−ρy2)/ Σρ ・・・(4)
【0047】
即ち、(4)式に従って、補助係数cosτの値が求められると、ヘルツによって誘導された換算表に基づいて係数μと係数νが求められる。
【0048】
(1)、(2)式より、接触面積Fは(5)式のようになる。
【0049】
【数2】
Figure 2004332846
【0050】
押付け力がQの場合、平均接触面圧Pは、Q/F、最大ヘルツ接触面圧Pmaxは、1.5Q/Fとなる。
【0051】
以上の理論を本実施形態に具体的に適用するべく、今、図5(A)、(B)に示すように、外歯歯車105a、105bの第2の摺動面S2の接触部付近の入力軸101の軸O1を含む面における曲率半径をrg1、これと直角の面における摺動部付近の曲率半径をrg2、転動体104a、104bの第1(第3)摺動面S1(S3)の接触部付近の入力軸101の軸心O1を含む面における曲率半径をrc1、これと直角の面における摺動部付近の曲率半径をrc2、偏心体103a、103bの第4の摺動面S4の接触部付近の入力軸101の軸心O1を含む面における曲率半径をre1、これと直角の面における摺動部付近の曲率半径をre2とし、該曲率半径rg1、rg2、rcl、rc2、re1、re2のそれぞれの曲率をρg1、ρg2、ρc1、ρc2、ρe1、ρe2と定義する。
【0052】
すると、外歯歯車105a、105bと転動体104a、104bとの間の接触については、
Σρ1=ρg1+ρc1+(−ρg2)+ρc2 ・・・・・・・・(6)
cosτ1=(ρg1−(−ρg2)+ρc1−ρc2 ・・・・・(7)
となり、F1は(8)式のようになる
【0053】
【数3】
Figure 2004332846
【0054】
接触面積F1が求まると、最大接触面積P1は(9)式のように求められる。
【0055】
P1=1.5・Q/F1 ・・・・・・・・・・・・・・・・・・・(9)
【0056】
一方、偏心体103a、103bと転動体104a、104bとの間の接触についても、同様に、
Σρ2=ρc1+(−ρe1)+ρc2+ρe2 ・・・・・・・・・(10)
cosτ2={ρc1−ρc2+(−ρe1)−ρe2}/Σρ2 ・(11)
となり、F2は(12)式のようになる
【0057】
【数4】
Figure 2004332846
【0058】
接触面積F2が求まると、最大接触面圧P2は(13)式のように求められる。
【0059】
P2=1.5・Q/F2 ・・・・・・・・・・・・・・・・・・・(13)
【0060】
本実施形態では、P2がP1とほぼ同等かやや大きくなる程度、即ち、0.8倍〜1.6倍程度の範囲に収まるように、各曲率半径rg1、rg2、rc1、rc2、re1、re2を決定する。
【0061】
次に、この減速機の作用を説明する。
【0062】
所定の減速比を得るための減速機自体の基本的な動力伝達機能は、特に従来と異なることはない。
【0063】
しかしながら、上記実施形態においては、外歯歯車105a、105bの第2の摺動面S2を入力軸101の軸心O3を含む面内において直線又は凸状に形成することにより、偏心体103a、103bの組立を容易化でき、製造コストを低減できる。また、組み立てが容易にできるため、ラジアル隙間をより小さく設定することができ、その分転動体104a、104bを数多く組み込むことができる。したがって減速機全体の性能、耐久性をより改善できる。
【0064】
即ち、外歯歯車105a、105bと転動体104a、104bとの摺動は、入力軸101の軸心O3と直角の面内においては、凹と凸との摺動となっているため、該軸心O3を含む面内において外歯歯車105a、105bの第2の摺動面S2を直線あるいは凸状に設定したとしても、強度的になお余裕がある。そのため、この実施形態では、偏心体103a、103bと転動体104a、104bとの間の最大接触面圧P2が外歯歯車105a、105bと転動体104a、104bとの間の最大接触面圧P1とほぼ同等かやや大きくなる程度、即ち、0.8倍〜1.6倍程度の範囲に収まるように、各曲率半径rg1、rg2、rc1、rc2、re1、re2を決定するようにしている。換言するならば、外歯歯車105a、105bと転動体104a、104bとの間の耐久性が、偏心体103a、103bと転動体104a、104bとの間の耐久性に対して、相対的に過剰品質となるのを抑制し、この過剰品質分を組付けの容易性の向上の方に振り向けるようにしている。
【0065】
そのため、結果として耐久性をむしろ向上させることができる上に、組付けコストを低減できる。
【0066】
更に、本実施形態に係る減速機Gにおいては、偏心体103a、103bの第4の摺動面S4を凹面で形成し、かつ転動体104a、104bの第3の摺動面S3をこの第4の摺動面S4の凹面の曲率半径re1よりも僅かに小さな曲率半径rc1となるように設定している。これにより、偏心体103a、103bと転動体104a、104bとの摺動を、入力軸101の軸心O3を含む面内において凹と凹の摺動とすることができ、両者の接触面圧低減することができる上に、製造誤差や弾性変形によるミスアライメントを吸収して片当りによる局所的な方面初が発生するの防止することができる。この結果、偏心体103a、103b及び転動体104a、104bの摺動をより円滑化でき、両者の耐久性を一層向上させることができる。
【0067】
なお、上記実施形態において、転動体として、樽形・ころ形状の転動体104a、104b(第1の摺動面S1=第3の摺動面S3、rc1≠rc2の転動体)が採用されていたが、本発明における転動体は、ころ形状の転動体に限定されるものではなく、例えば、球(ボール)形状の転動体、即ち、第1の摺動面S1=第3の摺動面S3、rc1=rc2の転動体でも同様の作用効果が得られる。
【0068】
又、上記実施形態では、入力軸の外周に偏心体(偏心カム)が配置され、その外周に転動体及び外歯歯車が組み込まれる構造の内接噛合遊星歯車構造が示されていたが、本発明は、例えば、入力軸から歯車を介して複数の偏心体軸に動力を振り分け、該偏心体軸にそれぞれ装着された同位相の複数の偏心体を介して外歯歯車を複数箇所において同時に偏心駆動するような振分けタイプの内接噛合遊星歯車構造であっても適用可能であり、同様の効果が得られる。
【0069】
又、外歯歯車105a、105bの第2の摺動面S2、偏心体(偏心カム)103a、103bの第4の摺動面S4を、それぞれ外歯歯車105a、105b、偏心体103a、103bに直接形成するようにしていたが、別体の部材を介在させ、該別体の部材に第2の摺動面S2、あるいは第4の摺動面S4を形成するようにしてもよい。
【0070】
【発明の効果】
本発明によれば、偏心体、或いは外歯歯車の組付けを容易化し、結果として偏心カム〜外歯歯車の動力伝達の負荷能力を向上させ、ひいては、この種の歯車構造を有する減速機の性能及び耐久性の向上を図ることができるという優れた効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施形態が適用された減速機の転動体付近の要部拡大断面図
【図2】上記実施形態における偏心体(偏心カム)と転動体との摺動付近を拡大して示す断面図
【図3】本発明の他の実施形態を示す図1相当の要部拡大断面図
【図4】ヘルツの接触理論のモデルを示す斜視図
【図5】図1に示した実施形態に対してヘルツの接触理論を適用する際の各要素の曲率半径を示す(A)概略正断面図、及び(B)概略側断面図
【図6】内接噛合遊星歯車構造が適用された従来の減速機の一例を示す画面図
【図7】図6の矢視VII−VII線に沿う端面図
【符号の説明】
101…入力軸
103a、103b…偏心体(偏心カム)
104a、104b…転動体
105a、105b…外歯歯車
120…内歯歯車
S1〜S4…第1〜第4の摺動面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an internally meshing planetary gear structure.
[0002]
[Prior art]
Conventionally, an input shaft, an eccentric cam, and an external gear and an internal gear having a small difference in the number of teeth are provided, and the external gear rotates eccentrically with respect to the axis of the input shaft via the eccentric cam. Meanwhile, an internally meshing planetary gear structure having an eccentric cam configured to internally mesh with the internal gear is widely known (for example, see Patent Document 1).
[0003]
6 and 7 show examples in which this structure is applied to a speed reducer.
[0004]
Eccentric bodies (eccentric cams) 3a and 3b are fitted to the input shaft 1 with a predetermined phase difference (180 ° in this example). The eccentric bodies 3a and 3b are respectively eccentric with respect to the input shaft 1 (axial center O1) by an eccentric amount e (center O2). Two external gears 5a, 5b are attached to each eccentric body 3a, 3b in a double row via roller-shaped rolling elements 4a, 4b. The external gears 5a and 5b are provided with a plurality of inner roller holes 6a and 6b, and the inner pin 7 and the inner roller 8 are fitted therein.
[0005]
The reason why the number of external gears is two (double row) is mainly to increase transmission capacity, maintain strength, and maintain rotational balance. On the outer periphery of the external gears 5a and 5b, external teeth 9 such as a trochoid tooth shape and an arc tooth shape are provided. The external teeth 9 are internally meshed with an internal gear 10 fixed to a casing 12. Specifically, the internal teeth of the internal gear 10 have a structure in which the outer pin 11 is loosely fitted into the outer pin hole 13 and held so as to be easily rotated. The inner pin 7 penetrating the external gears 5a, 5b is fixed or fitted to the output shaft 2.
[0006]
When the input shaft 1 makes one rotation, the eccentric bodies 3a and 3b make one rotation. One rotation of the eccentric bodies 3a and 3b causes the external gears 5a and 5b to oscillate around the input shaft 1. However, since the rotation of the external gears 5a and 5b is restricted by the internal gear 10, the external gear 5a 5b perform almost only swing while inscribed in the internal gear 10.
[0007]
Now, for example, when the number of teeth of the external gears 5a and 5b is N and the gear of the internal gear 10 is N + 1, the difference in the number of teeth is 1. Therefore, the external gears 5a and 5b are shifted (rotated) by one tooth with respect to the internal gear 10 fixed to the casing 12 for each rotation of the input shaft 1. This means that one rotation of the input shaft 1 has been reduced to -1 / N rotation of the external gears 5a and 5b. A minus sign indicates that the rotation of the external gears 5a and 5b is opposite to the rotation of the input shaft 1.
[0008]
The rotation of the external gears 5a and 5b is absorbed by the gap between the inner roller holes 6a and 6b and the inner pin 7 (the inner roller 8), and only the rotation component is transmitted to the output shaft 2 via the inner pin 7. Is communicated. As a result, a speed reduction of -1 / N is achieved.
[0009]
The above-mentioned internal meshing planetary gear structure is currently applied to various reduction gears or speed-up gears. For example, it is possible to constitute a speed reducer by fixing the output shaft 2 and using the internal gear 10 as an output shaft instead, with exactly the same structure. Further, by reversing the input / output shaft, a “speed increasing device” can be configured.
[0010]
Furthermore, in addition to the above-described inscribed mesh planetary gear structure, for example, power is distributed to a plurality of eccentric shafts from an input shaft via gears, and a plurality of eccentric bodies of the same phase mounted on the eccentric shafts, respectively. There is also known a distributing type internally meshing planetary gear structure in which external gears are simultaneously driven eccentrically at a plurality of locations.
[0011]
By the way, when the input shaft 1 is rotated, the eccentric bodies 3a and 3b rotate, and the rotation of the eccentric bodies 3a and 3b causes the two external gears 5a and 5b to oscillate through the rolling elements 4a and 4b. At this time, a torque transmission load (load) is generated between the external gears 5a, 5b and the rolling elements 4a, 4b and between the rolling elements 4a, 4b and the eccentric bodies 3a, 3b.
[0012]
Since the rolling elements 4a and 4b are assembled to the eccentric bodies 3a and 3b fitted to the input shaft 1, when a load is generated on the rolling elements 4a and 4b, the rolling elements 4a and 4b are applied to the input shaft 1 via the eccentric bodies 3a and 3b. A moment is generated, and the input shaft 1 tilts (misalignment). When the input shaft 1 is inclined, the entire eccentric bodies 3a and 3b fitted thereto are inclined, and as a result, the eccentric bodies 3a and 3b, the rolling elements 4a and 4b, and the external gears 5a and 5b apply a load to each other in an inclined state. The rotation will be transmitted while exerting influence. If this state continues, one-sided contact occurs, so that the life of the rolling elements 4a and 4b is shortened, and it becomes impossible to cope with a high load.
[0013]
Conventionally, in order to shorten the service life due to this one-sided contact, crowning or special heat treatment is performed on the outer peripheral end surfaces of the rolling elements 4a and 4b to avoid the occurrence. However, the misalignment can be absorbed by the crowning. The amount was naturally limited, and it was not possible to cope with further higher load capacity.
[0014]
To cope with such a problem, in Patent Document 1, the rolling element interposed between the eccentric body and the external gear has a single radius of curvature, and the outer circumference of the eccentric body and the internal circumference of the external gear have the rolling element. There is disclosed an example configured with a shape that follows the curvature.
[0015]
[Patent Document 1]
JP 2000-249200 A
[Problems to be solved by the invention]
However, in this method, since it was necessary to install the rolling element in the space sandwiched between the concave surfaces, there was a problem that it was difficult to assemble each member, and the assembling cost was increased. . Also, because of the difficulty in assembling, it is necessary to increase the radial clearance of the rolling elements, which limits the number of rolling elements that can be incorporated, resulting in a small number of rolling elements having a load. However, there is a problem that the performance and the life cannot be sufficiently improved.
[0017]
In addition, since the sliding portions of the rolling elements are formed of surfaces having the same curvature, one-side contact does not occur in the design, but it is actually manufactured at the end of the rolling elements. There is also a concern that a one-sided contact occurs due to the error, which causes an edge stress.
[0018]
SUMMARY OF THE INVENTION The present invention has been made in order to solve such a conventional problem, and it is easy to assemble the respective members and has a high power transmission load capability. It is an object of the present invention to obtain an internally meshing planetary gear structure capable of improving the performance and durability of a machine or the like.
[0019]
[Means for Solving the Problems]
The present invention includes an input shaft, an eccentric cam, an internal gear, and an external gear having a slight difference in the number of teeth from the internal gear, wherein the external gear has an axis of the input shaft via the eccentric cam. In an internally meshing planetary gear structure having an eccentric cam configured to mesh internally with the internal gear while eccentrically swinging, a rolling element is provided between the eccentric cam and the external gear. A first sliding surface on the external gear side of the rolling element, which is formed in a convex shape in a plane including the axis of the input shaft, and wherein the external gear slides on the first sliding surface; The second sliding surface on the side is formed as either a straight line parallel to the axis or a convex shape in the plane including the axis of the input shaft, and the third sliding surface on the eccentric cam side of the rolling element. A moving surface is formed in a convex shape in a plane including the axis of the input shaft, and the eccentric cam side sliding on the third sliding surface. 4 the sliding surface of, by forming a concave in a plane containing the axis of the input shaft is obtained by solving the above problems.
[0020]
The sliding surface between the rolling element and the external gear has a convex and concave contact mode in consideration of a contact in a plane perpendicular to the input shaft. For this reason, the sliding load in this portion is not originally so high, and is originally advantageous in terms of the contact surface pressure. On the other hand, the sliding surface between the rolling element and the eccentric cam has a convex and convex sliding mode in a plane perpendicular to the input shaft, and is in a more severe condition in terms of durability.
[0021]
In consideration of such a situation, the present invention makes it possible to rationalize the advantage of the sliding condition of the sliding surface of the rolling element on the side of the external gear (without maintaining excessive quality) while ensuring the durability. It can be said that it was aimed at the ease of assembly in a targeted and aggressive manner.
[0022]
That is, according to the present invention, the first sliding surface of the rolling element and the second sliding surface on the side of the external gear have a linear or convex contact form in a plane including the axis of the input shaft. And a convex contact mode. With this configuration, it is extremely easy to assemble the rolling elements. This has been confirmed by actual assembly tests. In addition, since the assembling is facilitated, it is not necessary to increase the radial gap between the rolling elements, the number of rolling elements that can be incorporated can be increased, and the rotation performance and durability can be improved.
[0023]
On the other hand, the sliding surface on the side of the rolling element and the eccentric cam, which is in a severe situation in terms of durability, maintains the concave and convex contact mode in the plane including the axis of the input shaft, and the occurrence of one side contact As a result, the generation of edge stress is reliably prevented, and smooth rotation can be ensured and durability can be improved.
[0024]
The second sliding surface may be formed on the external gear itself, or may be formed by another member.
[0025]
When the radius of curvature of the fourth sliding surface is smaller than the radius of curvature of the third sliding surface, there is no one-sided contact caused by a manufacturing error or the like. Misalignment due to elastic deformation during transmission can also be absorbed. Therefore, it is possible to more reliably prevent locally high edge stress from being generated due to the occurrence of the one-sided contact, and it is possible to further ensure smooth rotation and improve durability.
[0026]
Note that the contact surface pressure between the third sliding surface and the fourth sliding surface is 0.8 to 1.... Of the contact surface pressure between the first sliding surface and the second sliding surface. It is preferable to set the radius of curvature of each sliding surface so as to fall within the range of 6 times (described later).
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0028]
FIG. 1 is an enlarged view of a main part of a speed reducer to which an embodiment of the present invention is applied. The reduction gear G includes an input shaft 101, eccentric bodies (eccentric cams) 103a and 103b, an internal gear (not shown), and external gears 105a and 105b having a slight difference in the number of teeth from the internal gear. An eccentric body 103a, wherein the external gears 105a and 105b are configured to mesh with the internal gear while eccentrically swinging with respect to the axis O3 of the input shaft 101 via the eccentric bodies 103a and 103b; An internally meshing planetary gear structure having 103b is provided.
[0029]
Note that the configuration other than the sliding configuration between the eccentric bodies 103a, 103b and the external gears 105a, 105b is basically not particularly different from the configuration of the conventional speed reducer described above, and therefore, redundant description is omitted. .
[0030]
A plurality of rolling elements 104a, 104b are interposed between the eccentric bodies 103a, 103b and the external gears 105a, 105b. Each of the rolling elements 104a and 104b has a barrel-shaped roller shape, has a first sliding surface S1 on the external gears 105a and 105b side, and has a third sliding surface on the eccentric bodies 103a and 103b side. S3.
[0031]
However, since the rolling elements 104a and 104b in this embodiment rotate between the eccentric bodies 103a and 103b and the external gears 105a and 105b, the first and third sliding surfaces S1 and S3 are Actually, they are the same (single) sliding surface (S1 = S3), and both are formed in a convex shape in a plane including the axis O3 of the input shaft 101.
[0032]
The axis of each of the rolling elements 104a and 104b is parallel to the axis O3 of the input shaft 101.
[0033]
The second sliding surfaces S2 of the external gears 105a and 105b sliding on the first sliding surfaces S1 of the rolling elements 104a and 104b are formed in a convex shape in a plane including the axis O3 of the input shaft 101. ing.
[0034]
On the other hand, the fourth sliding surface S4 of the eccentric bodies 103a, 103b sliding on the third sliding surface S3 of the rolling elements 104a, 104b is formed in a concave shape in a plane including the axis O3 of the input shaft 101. 2, and the radius of curvature (rc1) of the third sliding surface S3 is slightly smaller than the radius of curvature (-re1) of the fourth sliding surface S4. Is set to a value.
[0035]
The definition or significance of the radii of curvature rc1 and -re1 will be described later in detail.
[0036]
The shape of the second sliding surface S2 may be formed as a straight line in a plane including the axis O3 of the input shaft 101, as shown in FIG. That is, in this example, the second sliding surfaces S20 of the external gears 205a and 205b are formed as straight lines (cylindrical surfaces).
[0037]
The radius of curvature of each member, including the problem of whether the second sliding surface S2 (S20) is formed by a cylindrical surface, a convex surface, or a radius of curvature when formed by a convex surface. Is based on the Hertzian contact theory described below, "The contact surface pressure between the rolling elements 104a, 104b and the eccentric bodies 103a, 103b is equal to the contact surface pressure between the rolling elements 104a, 104b and the external gears 105a, 105b. It is set to be substantially equal or slightly larger (about 0.8 to 1.6 times). "
[0038]
That is, the contact surface pressure between the rolling elements 104a, 104b and the eccentric bodies 103a, 103b and the contact surface pressure between the rolling elements 104a, 104b and the external gears 105a, 105b are based on the Hertzian point contact theory as follows. You can ask.
[0039]
According to Hertz's point contact theory, as shown in FIG. 4, when two spheroids X and Y are pressed against each other by a pressing force Q, it is assumed that the contact surface becomes an ellipse having a major axis 2a and a minor axis 2b. The relationship between each element is modeled.
[0040]
The spheroids X and Y have two main curvature surfaces P1 and P2 orthogonal to each other, and the spheroid X has a minimum radius of curvature rx1 and a maximum radius of curvature rx2 in the main curvature planes P1 and P2 near the contact portion. Have. On the other hand, the spheroid Y has a minimum radius of curvature ry1 and a maximum radius of curvature ry2 in the same main curvature planes P1 and P2 near the contact portion. If the center of the radius of curvature is inside the object (in the case of a convex surface), the sign of + is added, and if the center of the radius of curvature is outside the object (in the case of a concave surface), the sign of-is specified.
[0041]
When the contact surface is an ellipse, its area (contact area) F is πab. Regarding a and b, Hertz states that Young's modulus E of two spheroids X and Y is equal to Poisson's ratio 1 / m. Expressions (1) and (2) are given under the condition
[0042]
(Equation 1)
Figure 2004332846
[0043]
In the expressions (1) and (2), Σρ is the curvature sum given by the expression (3).
[0044]
Σρ = ρx1 + ρx2 + ρy1 + ρy2 (3)
Here, ρx1, ρx2, ρy1, ρy2 are the curvatures (reciprocals of rx1, rx2, ry1, ry2) corresponding to the radii of curvature rx1, rx2, ry1, ry2.
[0045]
The coefficients μ and ν in the equations (1) and (2) are coefficients which are given in advance by the induction of Hertz from the value of the auxiliary coefficient cosτ with cosτ as the auxiliary coefficient. The auxiliary coefficient cosτ is obtained according to the equation (4).
[0046]
cosτ = (ρx1−ρx2 + ρy1−ρy2) // ρ (4)
[0047]
That is, when the value of the auxiliary coefficient cosτ is obtained according to the equation (4), the coefficient μ and the coefficient ν are obtained based on a conversion table derived by Hertz.
[0048]
From the expressions (1) and (2), the contact area F is as shown in the expression (5).
[0049]
(Equation 2)
Figure 2004332846
[0050]
When the pressing force is Q, the average contact surface pressure P is Q / F, and the maximum Hertz contact surface pressure Pmax is 1.5 Q / F.
[0051]
In order to specifically apply the above theory to the present embodiment, as shown in FIGS. 5A and 5B, the vicinity of the contact portion of the second sliding surface S2 of the external gears 105a and 105b is now described. The radius of curvature of the surface including the axis O1 of the input shaft 101 is rg1, the radius of curvature near the sliding portion in a plane perpendicular to this is rg2, and the first (third) sliding surface S1 (S3) of the rolling elements 104a and 104b. The radius of curvature of the surface including the axis O1 of the input shaft 101 near the contact portion is rc1, the radius of curvature near the sliding portion on the surface perpendicular to this is rc2, the fourth sliding surface S4 of the eccentric bodies 103a and 103b. The radius of curvature on the surface including the axis O1 of the input shaft 101 near the contact portion is re1, and the radius of curvature near the sliding portion on the surface perpendicular to this is re2, and the curvature radii rg1, rg2, rcl, rc2, re1 , Re2 each curvature g1, ρg2, ρc1, ρc2, ρe1, is defined as ρe2.
[0052]
Then, regarding the contact between the external gears 105a and 105b and the rolling elements 104a and 104b,
Σρ1 = ρg1 + ρc1 + (− ρg2) + ρc2 (6)
cosτ1 = (ρg1 − (− ρg2) + ρc1−ρc2 (7)
And F1 is as shown in equation (8).
[Equation 3]
Figure 2004332846
[0054]
When the contact area F1 is obtained, the maximum contact area P1 is obtained as in the equation (9).
[0055]
P1 = 1.5 · Q / F1 (9)
[0056]
On the other hand, also for the contact between the eccentric bodies 103a, 103b and the rolling elements 104a, 104b, similarly,
Σρ2 = ρc1 + (− ρe1) + ρc2 + ρe2 (10)
cosτ2 = {ρc1−ρc2 + (− ρe1) −ρe2} /} ρ2 (11)
, And F2 becomes as expressed by the equation (12).
(Equation 4)
Figure 2004332846
[0058]
When the contact area F2 is obtained, the maximum contact surface pressure P2 is obtained as shown in Expression (13).
[0059]
P2 = 1.5 · Q / F2 (13)
[0060]
In the present embodiment, each radius of curvature rg1, rg2, rc1, rc2, re1, re2 is set so that P2 is substantially equal to or slightly larger than P1, that is, within a range of about 0.8 to 1.6 times. To determine.
[0061]
Next, the operation of the speed reducer will be described.
[0062]
The basic power transmission function of the speed reducer itself for obtaining a predetermined reduction ratio is not particularly different from the conventional one.
[0063]
However, in the above embodiment, the eccentric bodies 103a, 103b are formed by forming the second sliding surfaces S2 of the external gears 105a, 105b linearly or convexly in a plane including the axis O3 of the input shaft 101. Can be easily assembled and the manufacturing cost can be reduced. Further, since the assembling can be easily performed, the radial gap can be set smaller, and the rolling elements 104a and 104b can be incorporated by a corresponding amount. Therefore, the performance and durability of the entire reduction gear can be further improved.
[0064]
That is, the sliding between the external gears 105a and 105b and the rolling elements 104a and 104b is a sliding between a concave and a convex in a plane perpendicular to the axis O3 of the input shaft 101. Even if the second sliding surfaces S2 of the external gears 105a and 105b are set to be linear or convex in the plane including the center O3, there is still room for strength. Therefore, in this embodiment, the maximum contact surface pressure P2 between the eccentric bodies 103a, 103b and the rolling elements 104a, 104b is equal to the maximum contact surface pressure P1 between the external gears 105a, 105b and the rolling elements 104a, 104b. The curvature radii rg1, rg2, rc1, rc2, re1, and re2 are determined so as to be substantially equal or slightly larger, that is, within a range of about 0.8 to 1.6 times. In other words, the durability between the external gears 105a, 105b and the rolling elements 104a, 104b is relatively excessive with respect to the durability between the eccentric bodies 103a, 103b and the rolling elements 104a, 104b. The quality is suppressed, and the excess quality is directed toward improving the ease of assembly.
[0065]
Therefore, as a result, the durability can be rather improved, and the assembly cost can be reduced.
[0066]
Further, in the speed reducer G according to the present embodiment, the fourth sliding surface S4 of the eccentric bodies 103a and 103b is formed as a concave surface, and the third sliding surface S3 of the rolling elements 104a and 104b is formed as the fourth sliding surface S3. The radius of curvature rc1 is set slightly smaller than the radius of curvature re1 of the concave surface of the sliding surface S4. Thereby, the sliding between the eccentric bodies 103a, 103b and the rolling elements 104a, 104b can be concave and concave in the plane including the axis O3 of the input shaft 101, and the contact surface pressure between them can be reduced. In addition to the above, it is possible to absorb a misalignment due to a manufacturing error or an elastic deformation and to prevent the first local area from occurring due to the one-side contact. As a result, the sliding of the eccentric bodies 103a and 103b and the rolling elements 104a and 104b can be made smoother, and the durability of both can be further improved.
[0067]
In the above embodiment, barrel-shaped / roller-shaped rolling elements 104a and 104b (first sliding surface S1 = third sliding surface S3, rolling elements of rc1 ≠ rc2) are employed as rolling elements. However, the rolling element in the present invention is not limited to a roller-shaped rolling element, and may be, for example, a spherical (ball) -shaped rolling element, that is, a first sliding surface S1 = third sliding surface. The same operation and effect can be obtained with a rolling element of S3, rc1 = rc2.
[0068]
Further, in the above embodiment, the eccentric body (eccentric cam) is arranged on the outer periphery of the input shaft, and the internal meshing planetary gear structure in which the rolling element and the external gear are incorporated on the outer periphery is shown. The present invention, for example, distributes power from an input shaft to a plurality of eccentric shafts via gears, and simultaneously eccentric external gears at a plurality of locations via a plurality of eccentric bodies of the same phase mounted on the eccentric shafts. The present invention can be applied to a split-type internally meshing planetary gear structure that can be driven, and the same effects can be obtained.
[0069]
Also, the second sliding surface S2 of the external gears 105a and 105b and the fourth sliding surface S4 of the eccentric bodies (eccentric cams) 103a and 103b are respectively connected to the external gears 105a and 105b and the eccentric bodies 103a and 103b. Although formed directly, a separate member may be interposed, and the second sliding surface S2 or the fourth sliding surface S4 may be formed on the separate member.
[0070]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, assembling of an eccentric body or an external gear is facilitated, and as a result, the load capacity of the power transmission of an eccentric cam-an external gear is improved, and, as a result, the reduction gear which has this kind of gear structure An excellent effect that performance and durability can be improved can be obtained.
[Brief description of the drawings]
FIG. 1 is an enlarged cross-sectional view of a main part in the vicinity of a rolling element of a speed reducer to which an embodiment of the present invention is applied. FIG. 2 is an enlarged view of the vicinity of sliding between an eccentric body (eccentric cam) and a rolling element in the above embodiment. FIG. 3 is an enlarged sectional view of an essential part corresponding to FIG. 1 showing another embodiment of the present invention. FIG. 4 is a perspective view showing a model of Hertzian contact theory. FIG. 5 is an embodiment shown in FIG. (A) Schematic front sectional view and (B) Schematic sectional side view showing the radius of curvature of each element when applying the Hertzian contact theory to the form. [FIG. 6] An internally meshing planetary gear structure is applied. FIG. 7 is a screen view showing an example of a conventional speed reducer. FIG. 7 is an end view taken along line VII-VII of FIG.
101: input shafts 103a, 103b: eccentric body (eccentric cam)
104a, 104b rolling elements 105a, 105b external gear 120 internal gears S1 to S4 first to fourth sliding surfaces

Claims (4)

入力軸、偏心カム、内歯歯車及び該内歯歯車と僅少の歯数差を有する外歯歯車を備え、前記外歯歯車が、前記偏心カムを介して前記入力軸の軸心に対して偏心揺動しながら前記内歯歯車に内接噛合する構成とされた偏心カムを有する内接噛合遊星歯車構造において、
前記偏心カムと前記外歯歯車との間に転動体を備え、
前記転動体の外歯歯車側の第1の摺動面を、前記入力軸の軸心を含む面内において凸状に形成すると共に、
該第1の摺動面と摺動する前記外歯歯車側の第2の摺動面を、前記入力軸の軸心を含む面内において軸に平行な直線又は凸状のいずれかで形成し、且つ、
前記転動体の偏心カム側の第3の摺動面を、前記入力軸の軸心を含む面内において凸状に形成すると共に、
該第3の摺動面と摺動する前記偏心カム側の第4の摺動面を、前記入力軸の軸心を含む面内において凹状に形成した
ことを特徴とする偏心カムを有する内接噛合遊星歯車構造。
An input shaft, an eccentric cam, an internal gear, and an external gear having a small difference in the number of teeth from the internal gear, wherein the external gear is eccentric to the axis of the input shaft via the eccentric cam. An internally meshing planetary gear structure having an eccentric cam configured to mesh internally with the internal gear while swinging,
A rolling element is provided between the eccentric cam and the external gear,
A first sliding surface on the external gear side of the rolling element is formed in a convex shape in a plane including the axis of the input shaft, and
A second sliding surface on the side of the external gear that slides with the first sliding surface is formed as a straight line or a convex shape parallel to an axis in a plane including the axis of the input shaft. ,and,
A third sliding surface on the eccentric cam side of the rolling element is formed in a convex shape in a plane including the axis of the input shaft, and
An inscribed cam having an eccentric cam, wherein a fourth sliding surface on the eccentric cam side that slides on the third sliding surface is formed in a concave shape in a plane including the axis of the input shaft. Meshing planetary gear structure.
入力軸、偏心カム、内歯歯車及び該内歯歯車と僅少の歯数差を有する外歯歯車を備え、前記外歯歯車が、前記偏心カムを介して前記入力軸の軸心に対して偏心揺動しながら前記内歯歯車に内接噛合する構成とされた偏心カムを有する内接噛合遊星歯車構造において、
前記偏心カムと前記外歯歯車との間に転動体を備え、
前記転動体の外歯歯車側の第1の摺動面を、前記入力軸の軸心を含む面内において凸状に形成すると共に、
該第1の摺動面と摺動する前記外歯歯車側の第2の摺動面を、前記入力軸の軸心を含む面内において軸に平行な直線又は凸状のいずれかで形成し、且つ
前記転動体の偏心カム側の摺動面を第3の摺動面、該第3の摺動面と摺動する前記偏心カム側の摺動面を第4の摺動面と定義したときに、
該第3の摺動面と第4の摺動面との間の接触面圧が、前記第1の摺動面及び第2の摺動面との間の接触面圧の0.8〜1.6倍の範囲に収まるように、前記各摺動面の曲率半径を設定した
ことを特徴とする偏心カムを有する内接噛合遊星歯車構造。
An input shaft, an eccentric cam, an internal gear, and an external gear having a small difference in the number of teeth from the internal gear, wherein the external gear is eccentric to the axis of the input shaft via the eccentric cam. An internally meshing planetary gear structure having an eccentric cam configured to mesh internally with the internal gear while swinging,
A rolling element is provided between the eccentric cam and the external gear,
A first sliding surface on the external gear side of the rolling element is formed in a convex shape in a plane including the axis of the input shaft, and
A second sliding surface on the side of the external gear that slides with the first sliding surface is formed as a straight line or a convex shape parallel to an axis in a plane including the axis of the input shaft. The sliding surface on the eccentric cam side of the rolling element is defined as a third sliding surface, and the sliding surface on the eccentric cam side sliding on the third sliding surface is defined as a fourth sliding surface. sometimes,
The contact surface pressure between the third sliding surface and the fourth sliding surface is 0.8 to 1 of the contact surface pressure between the first sliding surface and the second sliding surface. 6. An internally meshing planetary gear structure having an eccentric cam, wherein the radius of curvature of each sliding surface is set so as to fall within a range of 6 times.
請求項1又は2において、
前記第2の摺動面が、前記外歯歯車と別の部材で形成されている
ことを特徴とする偏心カムを有する内接噛合遊星歯車構造。
In claim 1 or 2,
An internally meshing planetary gear structure having an eccentric cam, wherein the second sliding surface is formed of a member different from the external gear.
請求項1〜3のいずれかにおいて、
前記第3の摺動面の曲率半径を、前記第4の摺動面の曲率半径より、小さい値とした
ことを特徴とする偏心カムを有する内接噛合遊星歯車構造。
In any one of claims 1 to 3,
An internally meshing planetary gear structure having an eccentric cam, wherein a radius of curvature of the third sliding surface is smaller than a radius of curvature of the fourth sliding surface.
JP2003130549A 2003-05-08 2003-05-08 Internally meshing planetary gear structure with eccentric cam Expired - Fee Related JP4163043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003130549A JP4163043B2 (en) 2003-05-08 2003-05-08 Internally meshing planetary gear structure with eccentric cam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003130549A JP4163043B2 (en) 2003-05-08 2003-05-08 Internally meshing planetary gear structure with eccentric cam

Publications (2)

Publication Number Publication Date
JP2004332846A true JP2004332846A (en) 2004-11-25
JP4163043B2 JP4163043B2 (en) 2008-10-08

Family

ID=33506038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003130549A Expired - Fee Related JP4163043B2 (en) 2003-05-08 2003-05-08 Internally meshing planetary gear structure with eccentric cam

Country Status (1)

Country Link
JP (1) JP4163043B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056873A1 (en) * 2014-10-10 2016-04-14 주성오토테크 주식회사 Reducer comprising multiple gear assemblies
JP2019056444A (en) * 2017-09-22 2019-04-11 日本電産株式会社 transmission

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056873A1 (en) * 2014-10-10 2016-04-14 주성오토테크 주식회사 Reducer comprising multiple gear assemblies
JP2019056444A (en) * 2017-09-22 2019-04-11 日本電産株式会社 transmission
JP7035406B2 (en) 2017-09-22 2022-03-15 日本電産株式会社 transmission

Also Published As

Publication number Publication date
JP4163043B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
JP4818787B2 (en) Swing intermeshing planetary gear unit
JP4746907B2 (en) Planetary gear reducer
JP5438297B2 (en) Eccentric oscillating gear unit
JP2005076716A (en) Inner gearing planetary gear mechanism
TWI404873B (en) Simple planetary gear reducer series
WO2010047189A1 (en) Gear transmitting device
JP2011158072A (en) Deflectively engaging type gear device
JP5817735B2 (en) Planetary gear reducer
JP2014009808A (en) Eccentric oscillation type gear device
JP7506967B2 (en) Gear Unit
JP7068102B2 (en) Hypocycloid reducer
TW201804098A (en) Harmonic wave generator and harmonic gear device characterized by reducing the hardnesses of the hollow rollers, the inner ring raceway surface, and the outer ring raceway surface
US20120208668A1 (en) Gearing with cylindrical tooth forms
JP2004332846A (en) Inscribed engagement planetary gear structure with eccentric cam
JP2014081017A (en) Gear device
JP4107895B2 (en) Inscribed mesh planetary gear mechanism
JP5791542B2 (en) Planetary reducer
JP2005121106A (en) Bevel gear
JP2000249200A (en) Internal engagement planetary gear device
JP6570837B2 (en) Decelerator
JPH04290643A (en) Trochoid type toothed internal type planetary gear structure
JPH03239842A (en) Internal mesh planet gear structure
JP2015121239A (en) Eccentric oscillation type reduction gear
JP2012007700A (en) Planetary gear mechanism
TWI799157B (en) Arc tooth type yaw reducer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4163043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees