JP2004332573A - Intake port structure - Google Patents

Intake port structure Download PDF

Info

Publication number
JP2004332573A
JP2004332573A JP2003126339A JP2003126339A JP2004332573A JP 2004332573 A JP2004332573 A JP 2004332573A JP 2003126339 A JP2003126339 A JP 2003126339A JP 2003126339 A JP2003126339 A JP 2003126339A JP 2004332573 A JP2004332573 A JP 2004332573A
Authority
JP
Japan
Prior art keywords
intake port
intake
fuel
wall surface
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003126339A
Other languages
Japanese (ja)
Inventor
Akira Inoue
晶 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003126339A priority Critical patent/JP2004332573A/en
Publication of JP2004332573A publication Critical patent/JP2004332573A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the discharge amount of an uncombusted fuel by promoting vaporization of the fuel adhered to an inside wall face of an intake port to be used for combustion. <P>SOLUTION: The structure of the intake port 5 of an engine 1 is provided with a fuel injection valve 4. A plurality of recessed parts 7 which become gradually smaller toward the downstream side of the intake air flow is provided on the inner wall face of the intake port 5 between a mounting position of the fuel injection valve 4 and an inlet of a combustion chamber 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の吸気ポート内壁面の形状を改良した吸気ポート構造に関する。
【0002】
【従来の技術】
内燃機関の排気規制強化に対応するために、未燃燃料の排出量を低減することも重要な要素である。未燃燃料の生成メカニズムについては、全てが把握されているわけではないが、以下のように、吸気ポート内や燃焼室壁面への燃料付着量が影響すると考えられている。
【0003】
燃料噴射弁を吸気ポートに備えるエンジンの場合、一般的に燃料は吸気弁傘部めがけて噴射されるが、吸気ポート形状等の要因により、燃料噴霧の一部は吸気ポート壁面に衝突してしまう。従来の吸気ポート壁面の表面形状は滑らかに加工されているので、壁面に衝突した燃料噴霧は液化して分散し難くなり、壁流となって燃焼室内へ流れ込むことになる。このように吸気と十分に混合されない壁流の状態で燃焼室に供給されるために燃焼しにくく、未燃のまま排気行程において大気中に排出されてしまう。
【0004】
そこで、吸気管の内壁面(吸気ポートを含む)に多数の略半球形状の凹部を密に形成することによって吸気管内壁面での境界層の発達を抑制し、内壁面近傍での吸気の流速を高めて吸気と燃料の混合を促進し、壁流を抑制するようにした技術が特許文献1に記載されている。
【0005】
【特許文献1】
特開平09−105360号公報
【0006】
【本発明が解決しようとする課題】
しかしながら、特許文献1に記載の技術では、境界層の発達を抑制する為の凹部は同じ大きさで、かつ互いに密に並べられているので、この凹部に付着した燃料同士が繋がり易く、また、繋がることにより分散し難くなり、壁流の状態になり易く、このため燃焼成分を必ずしも大幅に低減することはできない、といった問題がある。
【0007】
そこで、本発明では、吸気ポート内壁面に付着した燃料の気化を促進させて燃焼室に流入する壁流を大幅に低減させることを目的とする。
【0008】
【課題を解決するための手段】
本発明の吸気ポートの内壁面形状は、吸気通路内に燃料噴射弁を設けたエンジンの吸気ポートにおいて、前記燃料噴射弁取り付け位置から燃焼室入口の間の内壁面に、吸気流れの下流に行くほど徐々に小さくなる複数の凹部を設ける。
【0009】
【作用・効果】
本発明によれば、吸気ポートの内壁面に上流から下流に向けて徐々に小さくなる多数の凹部を設けたことにより、上流の内壁面付近では吸気流れの剥離が抑制されて吸気流速が上昇し、かつ上流の大きな凹部から流れ出た燃料は下流側の小さな凹部に溜まった燃料を押し出し易いため、内壁面に付着している燃料が上流から下流に向けて流れやすくなり、また、吸気バルブ付近では前記凹部が小さいために吸気流れが剥離して乱流が発生し、これにより液化した燃料の気化が促進されるので、吸気ポート内壁面に付着した燃料を効率よく気化させることが可能となり、未燃燃料の排出量を低減することが可能となる。
【0010】
【発明の実施の形態】
以下本発明の実施形態を図面に基づいて説明する。
【0011】
図1は本実施形態を適用したエンジンの吸気ポート付近の概略図である。
【0012】
1はエンジンの主としてシリンダヘッドの部分を示し、2は吸気マニホールド、5は吸気マニホールド2に接続する吸気ポート、6は燃焼室である。吸気マニホールド2の上面には燃料噴射弁4が吸気ポート5内に向け、主として吸気バルブ3の傘部裏に向けて燃料を噴射するよう配置される。
【0013】
吸気ポート5の燃焼室6への開口部には、吸気バルブ3が開閉可能に配置され、その近傍には燃焼室6内の混合気に点火するための点火プラグ8が配置される。点火プラグ8に対して吸気ポート5と対向する位置に排気ポート11が開口し、開口部には排気バルブ10が開閉可能に配置される。
【0014】
上記の構成において、ピストン9が吸気上死点付近にあるときに排気バルブ10は閉、吸気バルブ3が開となり、吸気ポート5から空気と燃料とからなる混合気を導入し、下死点付近で吸気バルブ3が閉じる(吸気行程)。その後、吸気バルブ3、排気バルブ10はともに閉じたままピストン9が上昇して筒内の混合気を圧縮し(圧縮行程)、ピストン9が圧縮上死点付近に到達したときに点火プラグ8によって火花点火を行い、混合気を爆発的に燃焼させ、その爆発力によってピストン9を下降させる(爆発行程)。そしてピストン9が下死点付近に到達したときに排気バルブ10を開き、下死点通過後再び上昇するピストン9によって爆発後の排気を排気ポート11へと押し出す(排気行程)。エンジン1は運転中、上記4行程を繰り返す。
【0015】
ここで、吸気ポート5の構造について図2、図3を参照して説明する。
【0016】
図2(a)〜(c)は図1の吸気ポート5のX−X断面、Y−Y断面、Z−Z断面を示している。吸気マニホールド2に近い上流側のポートX−X断面は図2(a)に示すように略楕円形であり、中流側のポートY−Y断面で図2(b)のように2つの通路に分岐して、吸気バルブ3に近い下流側のポートZ−Z断面では、分岐した各通路は図2(c)に示すような略円形となっている。なお、吸気ポート5が2つに分岐したのは気筒あたりの吸気バルブ3を2つ設けたからであり、吸気バルブ3が1つの場合は吸気ポート5は分岐せず1本であり、また、吸気バルブ3が3つの場合は3つに分岐することになる。
【0017】
また、燃料噴射弁4取り付け位置より下流側の吸気ポート5内壁面には多数の略半球形状の凹部7が設けられており、その凹部7の大きさは、上流側から下流側に向けて徐々に小さくなっている。
【0018】
図3(a)に吸気ポート5の内壁面の一部を示す。図中左側がポート上流側、右側が下流側である。図3(b)は図3(a)の断面図である。
【0019】
凹部7の直径をd、深さをhとし、吸気ポート5の周方向に並ぶ凹部7の列を、吸気マニホールド2に近い方から順に7−1、7−2、7−3・・・とする。各列において隣り合う凹部7との間隔をD1(中心間距離はD+d)、隣り合う列の間隔をD2とする。隣り合う列は、例えば7−1列と7−2列との間では、7−1列の凹部7の中心間距離D+dの中点から列間隔D2だけ吸気バルブ3側に7−2列の凹部7の中心を設ける。7−3列以降についても同様に配列して、図3(a)のように凹部7が互い違いに配列されるようにする。
【0020】
図4は凹部7の直径d、深さh、間隔D1、列の間隔D2の大きさについて示したものである。吸気マニホールド2に近い最上流部分では、直径dは吸気ポート5の直径の約8〜10%程度、深さhは吸気ポート5の直径の約2.5〜3%程度、隣り合う凹部7の間隔D1および隣り合う列の間隔D2は共に吸気ポート5の直径の約8〜10%程度とし、吸気バルブ3付近の最下流では、直径dは約0.8〜1.0mm程度、深さhは約0.25〜0.3mm程度、隣り合う凹部7の間隔D1および隣り合う列の間隔D2は約0.8〜1.0mm程度として、中間部分は上流側から下流側に向けて凹部7が徐々に小さくなるように滑らかに変化させる。
【0021】
ここで、前記吸気ポート5の成型方法について図8(a)(b)を用いて説明する。
【0022】
吸気ポート5は、シリンダヘッド1を鋳造成型する際に、図8(a)に示すような、凹部7と同形状の外周形状を有する凸部を表面に設けた中子30を用いて成型する。中子30は、図8(b)のように中子30の外周を略四等分したポート曲面用中子30a〜30dと、前記ポート曲面用中子30a〜30dを支持するための支持中子31、32とで構成されており、これら中子は鋳造時には図8(a)の30のように一体化されており、鋳込み終了後に分割して抜き取られる。
【0023】
上記のように吸気ポート5の内壁面に多数の凹部7を設けることで、吸気ポート5壁面近傍での吸気流れの剥離が抑制されるので、吸気流速が上昇する。
【0024】
吸気バルブ3の傘部裏に向けて燃料噴射弁4から噴射される燃料の一部は吸気ポート5の内壁面に付着して液化し、多数の凹部7にて燃料溜まりを形成する。
【0025】
この燃料溜まりは吸気流れによって押し出されて順次下流側の小さな凹部7に流れ込む。このとき上流側の凹部7は下流側の凹部7に比べて大きいので、下流側の凹部7に溜まっていた燃料溜まりは吸気流れ及び上流側の凹部7から流れ込んだ燃料によって押し出されて、更に下流の凹部7へと流れ込む。この動きは最も下流まで同様に繰り返される。
【0026】
また、吸気ポート5の吸気バルブ3付近の下流側では凹部7は小さくなっているため、吸気ポート5壁面近傍では境界層が発達し、吸気の乱れが激しくなっている。これにより燃料と吸気との撹拌が促進され、吸気バルブ3付近の凹部7から押し出された燃料の気化も促進される。
【0027】
本実施形態では吸気ポート5の内壁面に上流側から下流側に向けて徐々に小さくなるように凹部7を設けたので、液化して上流側の大きい凹部7に溜まっていた燃料が下流側の小さい凹部7に流れ込むと下流側の凹部7に溜まっていた燃料は押し出されて、さらに下流側の凹部7へと流れ込むという過程を繰り返すことになり、吸気ポート5の内壁面に付着した燃料が燃焼室に向かって流れ易くなる。さらに、凹部7を設けたことによって吸気ポート5の内壁面近傍の境界層の発達が抑制されて吸気流れが高速化するので、凹部7に溜まった燃料は高速化した吸気流れによって押し出され易くなっている。
【0028】
また、吸気バルブ3付近は凹部7が小さいので境界層が発達して吸気乱れが発生し易い。この吸気乱れにより、上流側から流れてきた燃料の気化が促進されるので、吸気ポート5内壁面に付着した燃料の壁流成分が大幅に減り、未燃燃料の排出成分の低減を図れる。
【0029】
なお、吸気ポート5が吸気バルブ3付近で2つの通路に分岐するのではなく、吸気マニホールド25との接合面から吸気バルブ3まで完全に独立した通路となっている、いわゆる独立ポートである場合にも、各ポートに凹部7を設けることにより、同様の効果を得ることができる。
【0030】
また、燃料噴射弁4の取り付けは、図2に示したようにシリンダヘッド1に直接取り付ける他にも、吸気マニホールド25のいずれかの位置に取り付けてもよい。
【0031】
第2実施形態について図5、図6を用いて説明する。
【0032】
本実施形態は、エンジン1の構成は基本的に第1実施形態と同様であるが、吸気ポート5の内壁面の形状のみが異なる。
【0033】
図5(a)〜(c)は本実施形態の吸気ポート5の図2(a)〜(c)に相当する部分の断面図である。
【0034】
本実施形態では、ポート内壁面に形成される第1実施形態の略半球状の凹部7に替えて四角錐形状の凹部20を設ける。凹部20では四角錐の頂点が上流側を向くように配置され、また、凹部20を設ける範囲は、第1実施形態が凹部7を吸気ポート5内壁面全周に渡って設けていたのに対して、本実施形態では下側半周だけに設ける。
【0035】
凹部20の大きさは、第1実施形態と同様に、吸気ポート5の上流側から下流側に向けて徐々に小さくなっていき、その変化は滑らかになるようにする。
【0036】
図6(a)(b)は図3(a)(b)に相当する吸気ポート5内壁面の一部を表す図である。凹部20の吸気ポート5の周方向の対角線(短辺)の長さをL1、吸気流れ方向の対角線(長辺)の長さをL2、深さをhとし、周方向に並ぶ凹部20の列をそれぞれ20−1、20−2、20−3・・・とし、それぞれの列において隣り合う凹部20の間隔をD1、隣り合う列との間隔をD2とする。
【0037】
図7は凹部20の対角線長さL1、L2、深さh、間隔D1、列の間隔D2の大きさについて示したものである。吸気マニホールド2に近い部分では、長辺の長さL1、短辺の長さL2は吸気ポート5の直径の約8〜10%程度(ただし、L1:L2が略3:4となるように設定)、深さhは吸気ポート5の直径の約2.5〜3%程度、隣り合う凹部20の間隔D1は吸気ポート5の直径の約8〜10%程度とし、吸気バルブ3付近では、対角線長さL1、L2は約0.8〜1.0mm程度、深さhは約0.25〜0.3mm程度、隣り合う凹部20の間隔D1は約0.8〜1.0mm程度、隣り合う列の間隔D2は隣り合う凹部20との間隔D1の略3/4倍、つまりD1:D2=4:3となるように設定して、中間部分は上流側から下流側に向けて凹部20が徐々に小さくなるように滑らかに変化させる。
【0038】
上記のように略半球形状の凹部7の替わりに四角推形状の凹部20を設けた場合にも、第1実施形態と同様に、上流側の吸気ポート5内壁面では境界層の発達が抑制されて吸気流れの流速が高まり、また、壁面に付着して液化した燃料は上流側から下流側に向けて凹部20の燃料溜まりを押し出しながら移動し、凹部20が小さい吸気バルブ3付近で発達した乱流によって、気化された状態で燃焼室6に供給されて燃焼する。
【0039】
なお、凹部20を吸気ポート5内壁面の上側半周には設けていないが、燃料噴射弁4が吸気ポート5の上部から下部に向けて燃料を噴射するよう配置されているため、ほとんどの場合、燃料噴霧が衝突するのは吸気ポート5内壁面の下側ということになるので、下側半周のみであってもほぼ同様の効果が得られる。
【0040】
以上により、本実施形態では、四角推形状の凹部20を吸気ポート5内壁面の下側半周に設けることにより、第1実施形態と同様に、吸気ポート5内壁面に付着して液化した燃料を効率よく気化させて燃焼に使用することが可能となるので、未燃燃料の排出量を低減することが可能となる。
【0041】
なお、本発明は上記の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。
【図面の簡単な説明】
【図1】本発明の第1実施形態のエンジンの概略図である。
【図2】(a)〜(c)はそれぞれ図1の吸気ポートのX−X断面、Y−Y断面、Z−Z断面図である。
【図3】(a)(b)は第1実施形態の吸気ポート内壁面に設けた凹部を表す図である。
【図4】第1実施形態の凹部の寸法を示す表図である。
【図5】(a)〜(c)は、第2実施形態の吸気ポートの、図1のX−X断面、Y−Y断面、Z−Z断面に相当する部分の断面図である。
【図6】(a)(b)は第2実施形態の吸気ポート内壁面に設けた凹部を表す図である。
【図7】第2実施形態の凹部の寸法を示す表図である。
【図8】(a)(b)は凹部成型に用いる中子を表す図である。
【符号の説明】
1 エンジン(シリンダヘッド)
2 吸気マニホールド
3 吸気バルブ
4 燃料噴射弁
5 吸気ポート
6 燃焼室
7 凹部
8 点火プラグ
9 ピストン
10 排気バルブ
11 排気ポート
20 凹部
30 中子
30a〜d ポート曲面用中子
31、32 支持用中子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an intake port structure in which the shape of an intake port inner wall surface of an internal combustion engine is improved.
[0002]
[Prior art]
It is also an important factor to reduce the amount of unburned fuel emission in order to respond to the tightening of exhaust gas regulations on internal combustion engines. Although not all of the unburned fuel generation mechanisms are known, it is considered that the amount of fuel adhering to the inside of the intake port and the wall surface of the combustion chamber influences as described below.
[0003]
In the case of an engine having a fuel injection valve in the intake port, fuel is generally injected toward the intake valve head portion, but a part of the fuel spray collides with the intake port wall surface due to factors such as the shape of the intake port. . Since the surface shape of the conventional intake port wall surface is processed smoothly, the fuel spray colliding with the wall surface liquefies and becomes difficult to disperse, and flows into the combustion chamber as a wall flow. In this way, the fuel is supplied to the combustion chamber in a wall flow state that is not sufficiently mixed with the intake air, so that it is difficult to burn, and is discharged into the atmosphere in the exhaust stroke without being burned.
[0004]
Therefore, the development of the boundary layer on the inner wall surface of the intake pipe is suppressed by densely forming a large number of substantially hemispherical concave parts on the inner wall surface (including the intake port) of the intake pipe, and the flow rate of intake air near the inner wall surface is reduced. Patent Literature 1 discloses a technique in which mixing of fuel and intake air is enhanced to suppress wall flow.
[0005]
[Patent Document 1]
JP 09-105360 A
[Problems to be solved by the present invention]
However, according to the technology described in Patent Document 1, the concave portions for suppressing the development of the boundary layer are the same size and are densely arranged, so that the fuel attached to the concave portions is easily connected to each other. When connected, it becomes difficult to disperse, and it tends to be in a state of wall flow. Therefore, there is a problem that the combustion component cannot always be significantly reduced.
[0007]
Therefore, an object of the present invention is to promote the vaporization of the fuel attached to the inner wall surface of the intake port to greatly reduce the wall flow flowing into the combustion chamber.
[0008]
[Means for Solving the Problems]
The shape of the inner wall surface of the intake port according to the present invention is such that, at the intake port of the engine having the fuel injection valve provided in the intake passage, the intake wall goes from the fuel injection valve mounting position to the inner wall surface between the combustion chamber inlets and downstream of the intake flow. A plurality of concave portions that gradually become smaller are provided.
[0009]
[Action / Effect]
According to the present invention, by providing a large number of recesses gradually decreasing from the upstream to the downstream on the inner wall surface of the intake port, separation of the intake flow is suppressed near the upstream inner wall surface, and the intake flow velocity increases. And, since the fuel that has flowed out from the upstream large recess is likely to push out the fuel accumulated in the downstream small recess, the fuel adhering to the inner wall surface tends to flow from upstream to downstream, and in the vicinity of the intake valve, Due to the small size of the recess, the intake air flow separates and turbulence is generated, and the vaporization of the liquefied fuel is promoted.Therefore, it is possible to efficiently vaporize the fuel attached to the inner wall surface of the intake port. It is possible to reduce the amount of fuel emission.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0011]
FIG. 1 is a schematic diagram of the vicinity of an intake port of an engine to which the present embodiment is applied.
[0012]
Reference numeral 1 denotes a cylinder head portion of the engine, 2 denotes an intake manifold, 5 denotes an intake port connected to the intake manifold 2, and 6 denotes a combustion chamber. A fuel injection valve 4 is arranged on the upper surface of the intake manifold 2 so as to inject fuel toward the inside of the intake port 5 and mainly toward the back of the head of the intake valve 3.
[0013]
An intake valve 3 is disposed at an opening of the intake port 5 to the combustion chamber 6 so as to be openable and closable, and a spark plug 8 for igniting an air-fuel mixture in the combustion chamber 6 is disposed near the intake valve 3. An exhaust port 11 is opened at a position facing the intake port 5 with respect to the ignition plug 8, and an exhaust valve 10 is disposed at the opening so as to be openable and closable.
[0014]
In the above configuration, when the piston 9 is near the intake top dead center, the exhaust valve 10 is closed, the intake valve 3 is opened, and a mixture of air and fuel is introduced from the intake port 5, and the bottom dead center is neared. To close the intake valve 3 (intake stroke). Thereafter, with the intake valve 3 and the exhaust valve 10 both closed, the piston 9 rises to compress the air-fuel mixture in the cylinder (compression stroke), and when the piston 9 reaches near the compression top dead center, the ignition plug 8 Spark ignition is performed to explode the air-fuel mixture, and the piston 9 is lowered by the explosive force (explosion stroke). Then, when the piston 9 reaches the vicinity of the bottom dead center, the exhaust valve 10 is opened, and the exhaust gas after the explosion is pushed out to the exhaust port 11 by the piston 9 rising again after passing the bottom dead center (exhaust stroke). The engine 1 repeats the above four strokes during operation.
[0015]
Here, the structure of the intake port 5 will be described with reference to FIGS.
[0016]
2A to 2C show an XX section, a YY section, and a ZZ section of the intake port 5 of FIG. The cross section of the port XX on the upstream side near the intake manifold 2 is substantially elliptical as shown in FIG. 2A, and the cross section of the port YY on the middle flow side has two passages as shown in FIG. 2B. In the section of the port ZZ on the downstream side near the intake valve 3 after being branched, each branched path has a substantially circular shape as shown in FIG. The reason why the intake port 5 is branched into two is that two intake valves 3 per cylinder are provided. In the case of one intake valve 3, the intake port 5 does not branch and is one. When there are three valves 3, it branches into three.
[0017]
A large number of substantially hemispherical recesses 7 are provided on the inner wall surface of the intake port 5 downstream of the fuel injection valve 4 mounting position, and the size of the recesses 7 gradually increases from the upstream side to the downstream side. Has become smaller.
[0018]
FIG. 3A shows a part of the inner wall surface of the intake port 5. In the figure, the left side is the port upstream side, and the right side is the downstream side. FIG. 3B is a cross-sectional view of FIG.
[0019]
The diameter of the recess 7 is d, the depth is h, and rows of the recesses 7 arranged in the circumferential direction of the intake port 5 are arranged in the order of 7-1, 7-2, 7-3,. I do. In each row, the interval between adjacent recesses 7 is D1 (center-to-center distance is D + d), and the interval between adjacent rows is D2. The adjacent rows are, for example, between the 7-1 row and the 7-2 row, 7-2 rows from the midpoint of the center distance D + d of the recesses 7 in the 7-1 row by the row interval D2 toward the intake valve 3 side. The center of the recess 7 is provided. The third and subsequent rows are similarly arranged so that the recesses 7 are alternately arranged as shown in FIG.
[0020]
FIG. 4 shows the size of the diameter d, the depth h, the interval D1, and the interval D2 of the rows of the concave portions 7. In the most upstream part near the intake manifold 2, the diameter d is about 8 to 10% of the diameter of the intake port 5, the depth h is about 2.5 to 3% of the diameter of the intake port 5, The interval D1 and the interval D2 between adjacent rows are both about 8 to 10% of the diameter of the intake port 5, and at the most downstream in the vicinity of the intake valve 3, the diameter d is about 0.8 to 1.0 mm and the depth h Is about 0.25 to 0.3 mm, the interval D1 between the adjacent recesses 7 and the interval D2 between the adjacent rows are about 0.8 to 1.0 mm, and the middle portion is recessed from the upstream side to the downstream side. Is smoothly changed so as to gradually decrease.
[0021]
Here, a method of molding the intake port 5 will be described with reference to FIGS.
[0022]
When the cylinder head 1 is cast-molded, the intake port 5 is molded using a core 30 having a convex portion having the same outer peripheral shape as the concave portion 7 provided on the surface as shown in FIG. . As shown in FIG. 8 (b), the core 30 is a port-curved core 30a to 30d obtained by dividing the outer periphery of the core 30 into approximately four parts, and a supporting member for supporting the port-curved core 30a to 30d. At the time of casting, these cores are integrated as shown at 30 in FIG. 8 (a), and are separated and taken out after completion of casting.
[0023]
By providing a large number of recesses 7 on the inner wall surface of the intake port 5 as described above, the separation of the intake flow near the wall surface of the intake port 5 is suppressed, and the intake flow velocity increases.
[0024]
Part of the fuel injected from the fuel injection valve 4 toward the back of the umbrella of the intake valve 3 adheres to the inner wall surface of the intake port 5 and liquefies, and forms a fuel pool in a large number of recesses 7.
[0025]
This fuel pool is pushed out by the intake air flow and flows into the small concave portion 7 on the downstream side sequentially. At this time, the recess 7 on the upstream side is larger than the recess 7 on the downstream side, so that the fuel pool accumulated in the recess 7 on the downstream side is pushed out by the intake air flow and the fuel flowing from the recess 7 on the upstream side, and further downstream. Flows into the concave portion 7. This movement is repeated similarly to the most downstream.
[0026]
Further, since the recess 7 is small on the downstream side of the intake port 5 near the intake valve 3, a boundary layer develops near the wall surface of the intake port 5 and the disturbance of intake is increased. This promotes the agitation between the fuel and the intake air, and also promotes the vaporization of the fuel pushed out from the recess 7 near the intake valve 3.
[0027]
In the present embodiment, since the concave portion 7 is provided on the inner wall surface of the intake port 5 so as to gradually decrease from the upstream side to the downstream side, the fuel that has liquefied and accumulated in the large concave portion 7 on the upstream side is provided on the downstream side. When the fuel flows into the small recess 7, the fuel accumulated in the downstream recess 7 is pushed out, and the process of flowing into the downstream recess 7 is repeated, and the fuel attached to the inner wall surface of the intake port 5 is burned. It becomes easier to flow toward the room. Further, the provision of the concave portion 7 suppresses the development of the boundary layer near the inner wall surface of the intake port 5 and increases the speed of the intake air flow, so that the fuel accumulated in the concave portion 7 is easily pushed out by the accelerated intake air flow. ing.
[0028]
In addition, since the recess 7 is small near the intake valve 3, a boundary layer develops and intake turbulence easily occurs. Since the intake turbulence promotes the vaporization of the fuel flowing from the upstream side, the wall flow component of the fuel adhering to the inner wall surface of the intake port 5 is significantly reduced, and the emission component of the unburned fuel can be reduced.
[0029]
Note that the intake port 5 does not branch into two passages near the intake valve 3, but a completely independent passage from the joint surface with the intake manifold 25 to the intake valve 3. The same effect can be obtained by providing the recess 7 in each port.
[0030]
Further, the fuel injection valve 4 may be mounted directly on the cylinder head 1 as shown in FIG.
[0031]
A second embodiment will be described with reference to FIGS.
[0032]
In the present embodiment, the configuration of the engine 1 is basically the same as that of the first embodiment, but only the shape of the inner wall surface of the intake port 5 is different.
[0033]
FIGS. 5A to 5C are cross-sectional views of a portion corresponding to FIGS. 2A to 2C of the intake port 5 of the present embodiment.
[0034]
In the present embodiment, a quadrangular pyramid-shaped recess 20 is provided instead of the substantially hemispherical recess 7 of the first embodiment formed on the inner wall surface of the port. In the recess 20, the apex of the quadrangular pyramid is arranged so as to face the upstream side, and the range in which the recess 20 is provided is that the recess 7 is provided over the entire inner wall surface of the intake port 5 in the first embodiment. Thus, in this embodiment, it is provided only on the lower half circumference.
[0035]
As in the first embodiment, the size of the concave portion 20 gradually decreases from the upstream side to the downstream side of the intake port 5 so that the change becomes smooth.
[0036]
FIGS. 6A and 6B are views showing a part of the inner wall surface of the intake port 5 corresponding to FIGS. 3A and 3B. A row of the recesses 20 arranged in the circumferential direction, where L1 is the length of the diagonal line (short side) in the circumferential direction of the intake port 5 of the recess 20, L2 is the length of the diagonal line (long side) in the intake flow direction, and h is the depth Are respectively 20-1, 20-2, 20-3,..., D1 is the distance between adjacent recesses 20 in each row, and D2 is the distance between adjacent rows.
[0037]
FIG. 7 shows the diagonal lengths L1 and L2 of the concave portion 20, the depth h, the interval D1, and the size of the column interval D2. In the portion near the intake manifold 2, the length L1 of the long side and the length L2 of the short side are about 8 to 10% of the diameter of the intake port 5 (however, L1: L2 is set to be about 3: 4). ), The depth h is about 2.5 to 3% of the diameter of the intake port 5, the interval D1 between adjacent recesses 20 is about 8 to 10% of the diameter of the intake port 5, and the diagonal line near the intake valve 3 The lengths L1 and L2 are about 0.8 to 1.0 mm, the depth h is about 0.25 to 0.3 mm, and the interval D1 between the adjacent recesses 20 is about 0.8 to 1.0 mm, which is adjacent The interval D2 between the rows is set to be approximately 3/4 times the interval D1 between the adjacent concave portions 20, that is, D1: D2 = 4: 3, and the concave portion 20 is formed in the middle portion from the upstream side to the downstream side. Change smoothly so that it gradually decreases.
[0038]
As described above, even in the case where the rectangular recess 20 is provided instead of the substantially hemispherical recess 7 as described above, the development of the boundary layer is suppressed on the inner wall surface of the intake port 5 on the upstream side, as in the first embodiment. As a result, the liquefied fuel adhering to the wall surface moves from the upstream side to the downstream side while pushing out the fuel pool in the recess 20, and the turbulence developed near the intake valve 3 where the recess 20 is small. By the flow, it is supplied to the combustion chamber 6 in a vaporized state and burns.
[0039]
Although the recess 20 is not provided on the upper half of the inner wall surface of the intake port 5, the fuel injection valve 4 is arranged so as to inject fuel from the upper part to the lower part of the intake port 5. Since the fuel spray collides with the lower side of the inner wall surface of the intake port 5, substantially the same effect can be obtained even if only the lower half circumference.
[0040]
As described above, in the present embodiment, the quadrangular concave portion 20 is provided on the lower half of the inner wall surface of the intake port 5, so that the fuel adhered to the inner wall surface of the intake port 5 and liquefied is provided, as in the first embodiment. Since the fuel can be efficiently vaporized and used for combustion, the amount of unburned fuel discharged can be reduced.
[0041]
It is needless to say that the present invention is not limited to the above embodiment, and various changes can be made within the scope of the technical idea described in the claims.
[Brief description of the drawings]
FIG. 1 is a schematic view of an engine according to a first embodiment of the present invention.
2 (a) to 2 (c) are XX section, YY section, and ZZ sectional view of the intake port of FIG. 1, respectively.
FIGS. 3A and 3B are views showing a concave portion provided on the inner wall surface of the intake port according to the first embodiment.
FIG. 4 is a table showing dimensions of a concave portion according to the first embodiment.
FIGS. 5A to 5C are cross-sectional views of a portion corresponding to an XX section, a YY section, and a ZZ section of FIG. 1 of the intake port of the second embodiment.
FIGS. 6A and 6B are views showing a concave portion provided on the inner wall surface of the intake port according to the second embodiment.
FIG. 7 is a table showing dimensions of a concave portion according to the second embodiment.
FIGS. 8A and 8B are views showing a core used for forming a concave portion.
[Explanation of symbols]
1 engine (cylinder head)
2 Intake Manifold 3 Intake Valve 4 Fuel Injection Valve 5 Intake Port 6 Combustion Chamber 7 Recess 8 Spark Plug 9 Piston 10 Exhaust Valve 11 Exhaust Port 20 Recess 30 Cores 30 a-d Cores for Port Curved Surfaces 31, 32 Supporting Cores

Claims (5)

吸気ポートに燃料噴射弁を設けたエンジンの吸気ポート構造において、
前記燃料噴射弁取り付け位置から燃焼室入口の間の吸気ポート内壁面に、吸気流れの下流に行くほど徐々に小さくなる多数の凹部を設けたことを特徴とする吸気ポートの内壁面形状。
In an intake port structure of an engine in which a fuel injection valve is provided in an intake port,
A shape of an inner wall surface of the intake port, wherein a number of recesses gradually decreasing toward the downstream of the intake air flow are provided on the inner surface of the intake port between the fuel injection valve mounting position and the combustion chamber inlet.
前記凹部は略半球形状である請求項1に記載の吸気ポートの壁面形状。The wall surface shape of the intake port according to claim 1, wherein the concave portion has a substantially hemispherical shape. 前記凹部は略四角推形状である請求項1に記載の吸気ポートの壁面形状。The wall shape of the intake port according to claim 1, wherein the recess has a substantially square shape. 前記凹部を前記吸気ポートの内壁面全周に渡って設ける請求項2又は3に記載の吸気ポートの壁面形状。4. The wall shape of the intake port according to claim 2, wherein the recess is provided over the entire inner wall surface of the intake port. 5. 前記凹部を前記吸気ポートの内壁面の下側略半周に渡って設ける請求項2又は3に記載の吸気ポートの壁面形状。4. The wall shape of the intake port according to claim 2, wherein the concave portion is provided over substantially a lower half of the inner wall surface of the intake port. 5.
JP2003126339A 2003-05-01 2003-05-01 Intake port structure Pending JP2004332573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003126339A JP2004332573A (en) 2003-05-01 2003-05-01 Intake port structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003126339A JP2004332573A (en) 2003-05-01 2003-05-01 Intake port structure

Publications (1)

Publication Number Publication Date
JP2004332573A true JP2004332573A (en) 2004-11-25

Family

ID=33503307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003126339A Pending JP2004332573A (en) 2003-05-01 2003-05-01 Intake port structure

Country Status (1)

Country Link
JP (1) JP2004332573A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307962A (en) * 2004-04-23 2005-11-04 Hyundai Motor Co Ltd Structure of intake/exhaust port molding core
JP2008082209A (en) * 2006-09-26 2008-04-10 Honda Motor Co Ltd Internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307962A (en) * 2004-04-23 2005-11-04 Hyundai Motor Co Ltd Structure of intake/exhaust port molding core
JP4530216B2 (en) * 2004-04-23 2010-08-25 現代自動車株式会社 Structure of core for molding intake port or exhaust port
JP2008082209A (en) * 2006-09-26 2008-04-10 Honda Motor Co Ltd Internal combustion engine
JP4698544B2 (en) * 2006-09-26 2011-06-08 本田技研工業株式会社 Internal combustion engine

Similar Documents

Publication Publication Date Title
JP2002276373A (en) Direct injection type internal combustion engine
JP2003534485A (en) Fuel injection system
JP6508240B2 (en) Spark-ignition type internal combustion engine
JP6508238B2 (en) Spark-ignition type internal combustion engine
JP6515941B2 (en) Spark-ignition type internal combustion engine
JP2004332573A (en) Intake port structure
JP6515942B2 (en) Spark-ignition type internal combustion engine
JP6508239B2 (en) Spark-ignition type internal combustion engine
JP6519603B2 (en) Spark-ignition type internal combustion engine
JPH11182249A (en) Direct injection spark-ignition type internal combustion engine
JPH1082323A (en) Combustion chamber of diesel engine
JP6443479B2 (en) Spark ignition internal combustion engine
JP6515943B2 (en) Spark-ignition type internal combustion engine
JP2927521B2 (en) Fuel injection two-stroke engine
JPS61106914A (en) Combustion chamber in internal combustion engine
JPS5924818Y2 (en) Combustion device for split combustion internal combustion engine
JP2542738Y2 (en) Combustion chamber of subchamber internal combustion engine
JP2019143518A (en) Intake structure
JPH06173828A (en) Intake air device for fuel injection type engine
JPS54109507A (en) Fuel injection type internal combustion engine
JPH03156111A (en) Inlet system for multiple-valve engine
JPH07279751A (en) Intake device for internal combustion engine
JPH07189699A (en) Direct injection type combustion chamber device for diesel engine
JPH1136870A (en) Direct cylinder injection type spark ignition engine
KR960018203A (en) Intake Structure of Internal Combustion Engine