JP2004332562A - Stationary blade cascade of axial compressor - Google Patents

Stationary blade cascade of axial compressor Download PDF

Info

Publication number
JP2004332562A
JP2004332562A JP2003125790A JP2003125790A JP2004332562A JP 2004332562 A JP2004332562 A JP 2004332562A JP 2003125790 A JP2003125790 A JP 2003125790A JP 2003125790 A JP2003125790 A JP 2003125790A JP 2004332562 A JP2004332562 A JP 2004332562A
Authority
JP
Japan
Prior art keywords
stator
pitch
blade
stationary blade
stationary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003125790A
Other languages
Japanese (ja)
Inventor
Masaru Kato
大 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2003125790A priority Critical patent/JP2004332562A/en
Publication of JP2004332562A publication Critical patent/JP2004332562A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • F04D29/544Blade shapes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/666Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes

Abstract

<P>PROBLEM TO BE SOLVED: To considerably reduce a vibrational stress due to resonance in all vibration mode in an operation region of an axial compressor, and prevent performance reduction of an entire stationary blade cascade. <P>SOLUTION: In the stationary blade cascade of this axial compressor in which a plurality of stationary blades 2 are arranged over an entire periphery in a peripheral direction, each pitch between the stationary blades constituting the stationary blade cascade periodically varies in the peripheral direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、軸流圧縮機の静翼列に係わり、更に詳しくは静翼の周方向配置に関する。
【0002】
【従来の技術】
航空エンジンや産業用ガスタービン等を構成する軸流圧縮機では、動翼の上流側に位置する静翼列により周期的励振力が動翼列に作用する。そのため、静翼の励振周波数と動翼の固有振動数は、図6に示すような関係となり、その両者が交差する共振点では動翼がその固有振動モードで共振し、甚だしい場合には動翼の損傷にいたる場合もある。
【0003】
上述した動翼共振を抑制する耐振設計手段として、共振点における振幅低減と共振点の回避とが知られている。このうち、共振点における振幅を低減する手段には、例えば、翼厚を増すなどの動翼形状の設計変更があるが、これは空力性能の犠牲を伴い、例えば段効率が大きく低下する問題点がある。
【0004】
一方、共振点の回避の一手段として、特許文献1が提案されている。
【0005】
【特許文献1】
特開平11−200808号公報
【0006】
特許文献1の「圧縮機静翼」は、図7に示すように、静翼の円周方向の配置を、空気流路の上半部と下半部とで異なるピッチ角θ、θにするものであり、これにより、不均一の流れ場を通過する動翼が、一定周波数の励振力を受けないようにするものである。
【0007】
【発明が解決しようとする課題】
近年の翼形状は非常に複雑なため、通常1〜4次程度の振動モードが存在し、そのすべての振動モードにおいて共振点を軸流圧縮機の運転範囲から外すことは非常に困難である。
【0008】
例えば、上述した特許文献1の装置では、40枚の静翼列の半分を疎な配列、半分を密な配列に区切ることで、動翼に働く励振力に含まれる40(1周の静翼枚数)×N(動翼回転数)の周期成分を無くして共振を回避している。しかし、この場合、元の共振点周波数(40×N)の前後に新たに2つの共振点が発生してしまい、その振幅レベルも大きい問題点がある。また翼間が疎な配列が半周に渡って並ぶため、半周に渡って空力性能が低下し、結果として静翼列全体の性能低下を回避できない問題点がある。
【0009】
本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、軸流圧縮機の運転範囲において、すべての振動モードにおける共振による振動応力を大幅に低減でき、かつ静翼列全体の性能低下を回避できる軸流圧縮機の静翼列を提供することにある。
【0010】
【課題を解決するための手段】
本発明によれば、周方向に全周にわたって複数の静翼を配列した軸流圧縮機の静翼列において、該静翼列を構成する静翼間のピッチが周方向に周期的に変化する、ことを特徴とする軸流圧縮機の静翼列が提供される。
【0011】
上記本発明の構成によれば、静翼列を構成する静翼間のピッチが周方向に周期的に変化するので、同一ピッチの静翼列はほとんど連続しない。そのため、静翼後流による励振力に含まれる(静翼枚数)×(動翼回転数)の周波数成分を効果的に低減することができ、この周波数成分との共振で発生する動翼の振動応力を大幅に下げることができる。また、同一ピッチの静翼列はほとんど連続せず、周方向に周期的に変化するだけのため失速性能が損なわれず、静翼列全体の性能低下を回避できる。
なお、これらの効果は、静翼列後流の周方向波形をFFT解析して周波数成分の増減を調べ、非定常段CFD(数値流体力学)により動翼に働く空気力を算出し、構造応答計算を行うことにより、解析的に確認された。
【0012】
本発明の好ましい実施形態によれば、前記静翼列は、周方向に分割された複数の分割セクターからなり、各分割セクターはピッチが周方向に徐々に変化する複数の静翼からなる。
【0013】
この構成により、各動翼に作用する静翼後流の速度分布を、ピッチが等間隔である従来例と同程度に維持したまま徐々に変化させることができ、速度の急変による静翼列全体の性能低下を回避できる。
【0014】
また、前記分割セクターの翼間ピッチは、等間隔時のピッチに対して中央部又は端部が広く、逆に端部又は中央部が狭く、分割セクター全体で同一である、ことが好ましい。
【0015】
この構成により、同一の分割セクターを複数製作し、これを周方向に組み合わせるだけで、静翼列を構成する静翼間のピッチを周方向に周期的に変化させることができ、生産性を高め、コストダウンが可能となる。
【0016】
【発明の実施の形態】
以下本発明の好ましい実施形態について、図面を参照して説明する。なお、各図において、共通する部分には同一の符号を付し、重複した説明を省略する。
【0017】
図1は、本発明の静翼列を示す翼配列図であり、(A)は従来例、(B)は本発明を示している。またこの図において、2は静翼、4は動翼、6は翼間に発生するエントロピーの等分布線である。
【0018】
本発明の静翼列は、周方向に全周にわたって複数の静翼2を配列した軸流圧縮機の静翼列である。また、図1(B)に示すように、本発明では、静翼列を構成する静翼2の間のピッチPは、周方向に周期的に変化するように構成されている。この周期的変化は、図の例では、8枚の静翼のピッチPが従来例に比較して、−10%,−5%,+5%,+10%,+10%,+5%,−5%,−10%の順に配置されている。
【0019】
すなわち、本発明の静翼列は、周方向に分割された複数(例えは4つ)の分割セクター8からなり、各分割セクター8は、ピッチPが周方向に徐々に変化する複数(この例では8枚)の静翼2からなる。
【0020】
また、この例において、分割セクター8の翼間ピッチPは、等間隔時(A)のピッチに対して中央部が10%広く、逆に端部が10%狭く、その間が徐々に変化し、分割セクター全体では同一に構成されている。
【0021】
図1(A)(B)のエントロピーの等分布線6は、数値流体力学に基づく数値解析により求めたものである。この比較から、従来例と本発明により、エントロピーの等分布線6は、ほとんど相違しないことがわかる。
【0022】
このことは、段効率を数値解析で求めた結果からも確認された。すなわち、従来例と本発明では約0.1%未満しか段効率は差がなく、実質的に同一の段効率が維持できることがわかった。
【0023】
図2は、静翼における振動モードを示す図である。この図において、(A)は3次のストライプモード(1−3Sモード)であり、(B)は4次のストライプモード(1−4Sモード)を示している。ストライプモードとは、翼コードに垂直方向の振動モードを意味する。
【0024】
図3は、本発明による振動応力低減効果を示す図である。この図において、横軸は図2に示した2つのストライプモード、縦軸は等間隔での振動応力に対する本発明の振動応力の比率を示している。
【0025】
この図から、1−3Sモードでは約30%、1−4Sモードでは約27%の振動応力が低減されることがわかった。また、本発明により不等間隔に並べた静翼群の後流の周方向波形をFFT解析して周波数成分の増減を調べ、非定常段CFD(数値流体力学)により動翼に働く空気力を算出し、構造応答計算を行うことにより、上述した以外のすべての振動モードにおいても、振動応力が約30%低減できることが確認された。
【0026】
図4は、静翼によるディストーションの説明図であり、一周を180degで区切って不等間隔にした場合を示している。
一般的に、静翼の翼間隔が10%ピッチ広がったところでは、その翼間出口にて約1deg流れが曲がらなくなり(典型的な圧縮機後段静翼の場合)、その分、静圧が数%低下する。これは減速による圧力回復がなされないためである。
【0027】
また、静翼の翼間隔が10%ピッチ狭まったところでは、ソリディティ(翼コード/ピッチ比)が増し、エネルギ損失が増大することが知られている。上述した本発明の構成においても、CFD結果では、損失係数が約5〜10%増加する。
従って、静翼の翼間隔に異なる領域がある場合、静翼出口で周方向位置により、静圧が低下する領域と、エネルギ損失の増加する領域が生じる。そのような不均一領域を下流の動翼に対するディストーションと呼ぶ。
【0028】
図5は、ディストーションによるサージ発生時の出口圧力の低下を示す図である。この図において、ディストーション領域が占める割合は合計90degで共通であり、それが、4分割、2分割、分割なしの場合と、出口圧力との関係を示している。
周方向に合計90degのディストーション領域がある場合でも、1つの領域が狭く(例えば22.5deg)、複数(例えば4個)に分散されている方が、サージ発生時の圧力比の低下が小さいことがこの図からわかる。
言い換えれば、特許文献1のように周方向の半分180degに渡って翼間隔を変える手段では、圧縮機のサージマージン低下を招くディストーションが発生する。これに対して、8ピッチ程度で間隔を増減する本発明では、例えば1周40枚ならは、8/40×360deg/2=36deg程度のディストーションに抑えられ、サージマージンへの影響は小さくなる。
【0029】
上述したように本発明の構成によれば、静翼列を構成する静翼間のピッチが周方向に周期的に変化するので、同一ピッチの静翼列はほとんど連続しない。そのため、静翼後流による励振力に含まれる(静翼枚数)×(動翼回転数)の周波数成分を効果的に低減することができ、この周波数成分との共振で発生する動翼の振動応力を大幅に下げることができる。また、同一ピッチの静翼列はほとんど連続せず、周方向に周期的に変化するだけのため失速性能が損なわれず、静翼列全体の性能低下を回避できることが、解析的に確認された。
【0030】
なお、本発明は上述した実施形態及び実施例に限定されず、本発明の要旨を逸脱しない範囲で種々に変更できることは勿論である。
【0031】
【発明の効果】
上述したように、本発明によれば、静翼後流による励振力に含まれる(静翼枚数)×(動翼回転数)の周波数成分が減少し、共振時の動翼振動レベルが低減される。また、長い区間に渡って、静翼が疎な配列となることもないため、空力性能への影響も最小限に抑えられる。また、本発明の実施例では、静翼の8翼間を一区切りとして、中央の2翼間を10%ピッチ広げ、両端を10%ピッチ狭め、残りの翼間は滑らかに幅が推移するように設定することにより、下流動翼の高次パネルモードでの共振点での振動レベルは約30%低減することが予測できた。
【0032】
従って、本発明の軸流圧縮機の静翼列は、軸流圧縮機の運転範囲において、すべての振動モードにおける共振による振動応力を大幅に低減でき、かつ静翼列全体の性能低下を回避できる、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の静翼列を示す翼配列図である。
【図2】静翼における振動モードを示す図である。
【図3】本発明による振動応力低減効果を示す図である。
【図4】静翼によるディストーションの説明図である。
【図5】ディストーションによるサージ発生時の出口圧力の低下を示す図である。
【図6】静翼の励振周波数と動翼の固有振動数の関係図である。
【図7】従来の静翼列の翼配列図である。
【符号の説明】
2 静翼、4 動翼、6 エントロピーの等分布線、
8 分割セクター
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a stator blade row of an axial compressor, and more particularly, to a circumferential arrangement of stator blades.
[0002]
[Prior art]
In an axial flow compressor that constitutes an aero engine, an industrial gas turbine, or the like, a periodic excitation force acts on the moving blade row by a stationary blade row located upstream of the moving blade. Therefore, the excitation frequency of the stationary blade and the natural frequency of the moving blade have a relationship as shown in FIG. 6, and at a resonance point where the two intersect, the moving blade resonates in its natural vibration mode. In some cases, this can lead to damage.
[0003]
As an anti-vibration design means for suppressing the above-mentioned rotor blade resonance, reduction of the amplitude at the resonance point and avoidance of the resonance point are known. Among these, as means for reducing the amplitude at the resonance point, for example, there is a design change of the rotor blade shape such as increasing the blade thickness, but this involves a sacrifice in aerodynamic performance, for example, a problem that the stage efficiency is greatly reduced. There is.
[0004]
On the other hand, Patent Document 1 has been proposed as a means for avoiding the resonance point.
[0005]
[Patent Document 1]
JP-A-11-200808
As shown in FIG. 7, the "compressor stator vane" of Patent Document 1 is arranged such that the circumferential arrangement of the stator vanes is different in pitch angles θ 1 , θ 2 between the upper half and the lower half of the air flow path. This prevents the blades passing through the non-uniform flow field from receiving the excitation force of a constant frequency.
[0007]
[Problems to be solved by the invention]
Since the blade shape in recent years is very complicated, vibration modes of the first to fourth order generally exist, and it is very difficult to remove the resonance point from the operating range of the axial flow compressor in all the vibration modes.
[0008]
For example, in the apparatus disclosed in Patent Document 1 described above, half of a row of 40 stationary blades is divided into a sparse array, and half of the row is divided into a dense array. Resonance is avoided by eliminating a periodic component of (number of sheets) × N (rotor blade rotation speed). However, in this case, two new resonance points are generated before and after the original resonance point frequency (40 × N), and the amplitude level is large. In addition, since the arrangement in which the blades are sparsely arranged is arranged over half the circumference, aerodynamic performance is reduced over half the circumference, and as a result, there is a problem that the performance of the entire stationary blade row cannot be reduced.
[0009]
The present invention has been made to solve such a problem. That is, an object of the present invention is to provide a vane of an axial compressor in which the vibration stress due to resonance in all vibration modes can be significantly reduced in the operating range of the axial compressor and the performance of the entire vane row can be prevented from deteriorating. Is to provide columns.
[0010]
[Means for Solving the Problems]
According to the present invention, in the stator blade row of the axial flow compressor in which a plurality of stator blades are arranged in the circumferential direction over the entire circumference, the pitch between the stator blades constituting the stator blade row changes periodically in the circumferential direction. A stationary blade row of an axial compressor is provided.
[0011]
According to the configuration of the present invention, since the pitch between the stationary blades constituting the stationary blade row changes periodically in the circumferential direction, the stationary blade rows having the same pitch are hardly continuous. Therefore, the frequency component (number of stator blades) × (rotor blade rotation speed) included in the excitation force generated by the wake of the stator blade can be effectively reduced, and the vibration of the rotor blade generated by resonance with the frequency component Stress can be greatly reduced. Further, since the stationary blade rows of the same pitch are hardly continuous and only change periodically in the circumferential direction, the stall performance is not impaired, and the performance deterioration of the entire stationary blade row can be avoided.
These effects were obtained by performing an FFT analysis on the circumferential waveform of the wake of the stationary blade row, examining the increase and decrease of the frequency component, calculating the aerodynamic force acting on the moving blade by an unsteady stage CFD (computational fluid dynamics), and calculating the structural response. It was confirmed analytically by performing calculations.
[0012]
According to a preferred embodiment of the present invention, the stationary blade row includes a plurality of divided sectors divided in a circumferential direction, and each divided sector includes a plurality of stationary blades whose pitch gradually changes in a circumferential direction.
[0013]
With this configuration, it is possible to gradually change the velocity distribution of the stator blade wake acting on each rotor blade while maintaining the same pitch as in the conventional example in which the pitch is equally spaced, and the entire stator blade row due to a sudden change in the velocity can be changed. Performance can be avoided.
[0014]
It is preferable that the pitch between the blades of the divided sector is wider at the center or at the end than at the pitch at the equal interval, and conversely at the end or at the center, it is narrower and the same in the entire divided sector.
[0015]
With this configuration, it is possible to periodically change the pitch between the stator blades constituting the stator blade row in the circumferential direction by simply manufacturing a plurality of the same divided sectors and combining them in the circumferential direction, thereby improving productivity. Thus, cost can be reduced.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each of the drawings, common portions are denoted by the same reference numerals, and redundant description is omitted.
[0017]
1A and 1B are blade arrangement diagrams showing a stationary blade row of the present invention, wherein FIG. 1A shows a conventional example and FIG. 1B shows the present invention. In this figure, reference numeral 2 denotes a stationary blade, 4 denotes a moving blade, and 6 denotes a distribution line of entropy generated between the blades.
[0018]
The stationary blade row of the present invention is a stationary blade row of an axial flow compressor in which a plurality of stationary blades 2 are arranged along the entire circumference in the circumferential direction. Further, as shown in FIG. 1B, in the present invention, the pitch P between the stationary blades 2 constituting the stationary blade row is configured to periodically change in the circumferential direction. In the example of the figure, the pitch P of the eight stator blades is −10%, −5%, + 5%, + 10%, + 10%, + 5%, −5% in the example of FIG. , -10%.
[0019]
That is, the stator blade row of the present invention is composed of a plurality of (for example, four) divided sectors 8 divided in the circumferential direction, and each of the divided sectors 8 has a pitch P gradually changing in the circumferential direction (this example). In this case, eight vanes 2 are provided.
[0020]
In this example, the pitch P between the wings of the divided sector 8 is 10% wider at the center and 10% narrower at the end with respect to the pitch at the equal interval (A). The entire divided sector has the same configuration.
[0021]
1A and 1B are obtained by numerical analysis based on computational fluid dynamics. From this comparison, it can be seen that the equal distribution line 6 of the entropy is hardly different between the conventional example and the present invention.
[0022]
This was also confirmed from the results of numerical analysis of the stage efficiency. That is, it was found that there was only a difference of less than about 0.1% in the step efficiency between the conventional example and the present invention, and substantially the same step efficiency could be maintained.
[0023]
FIG. 2 is a diagram illustrating a vibration mode in the stationary blade. In this figure, (A) shows a third-order stripe mode (1-3S mode), and (B) shows a fourth-order stripe mode (1-4S mode). The stripe mode means a vibration mode perpendicular to the wing cord.
[0024]
FIG. 3 is a diagram showing a vibration stress reducing effect according to the present invention. In this figure, the horizontal axis indicates the two stripe modes shown in FIG. 2, and the vertical axis indicates the ratio of the vibration stress of the present invention to the vibration stress at equal intervals.
[0025]
From this figure, it was found that the vibration stress was reduced by about 30% in the 1-3S mode and about 27% in the 1-4S mode. In addition, the circumferential waveform of the wake of the stationary blade group arranged at unequal intervals according to the present invention is subjected to FFT analysis to check the increase and decrease of the frequency component, and the aerodynamic force acting on the rotor blade by the unsteady stage CFD (computational fluid dynamics) is determined. By performing the calculation and the structural response calculation, it was confirmed that the vibration stress can be reduced by about 30% in all the vibration modes other than those described above.
[0026]
FIG. 4 is an explanatory diagram of the distortion caused by the stationary blades, and shows a case in which one circumference is divided at 180 deg and the intervals are irregular.
In general, when the blade interval of the vanes spreads by 10% pitch, the flow of about 1 deg does not bend at the outlet between the vanes (in the case of a typical compressor rear stage vane), and the static pressure is reduced by several minutes. %descend. This is because pressure recovery by deceleration is not performed.
[0027]
Further, it is known that when the blade interval of the stationary blades is reduced by 10% pitch, the solidity (blade cord / pitch ratio) increases and energy loss increases. Also in the above-described configuration of the present invention, the loss factor increases by about 5 to 10% in the CFD result.
Therefore, when there are regions where the blade spacing of the vanes differs, there are regions where the static pressure decreases and regions where the energy loss increases due to the circumferential position at the vane outlet. Such non-uniform regions are referred to as distortion to the downstream blade.
[0028]
FIG. 5 is a diagram showing a decrease in outlet pressure when a surge occurs due to distortion. In this figure, the ratio occupied by the distortion region is 90 deg in total, and shows the relationship between the case of four divisions, two divisions, no division, and the outlet pressure.
Even if there is a total 90 deg distortion region in the circumferential direction, one region is narrow (for example, 22.5 deg) and dispersed in a plurality of (for example, four) regions, the reduction in pressure ratio when a surge occurs is smaller. Can be seen from this figure.
In other words, in the means for changing the blade interval over a half of 180 deg in the circumferential direction as in Patent Document 1, distortion that causes a decrease in the surge margin of the compressor occurs. On the other hand, in the present invention in which the interval is increased or decreased by about 8 pitches, for example, in the case of 40 sheets per round, the distortion is suppressed to about 8/40 × 360 deg / 2 = 36 deg, and the influence on the surge margin is reduced.
[0029]
As described above, according to the configuration of the present invention, since the pitch between the stationary blades constituting the stationary blade row changes periodically in the circumferential direction, the stationary blade rows having the same pitch are hardly continuous. Therefore, the frequency component of (number of stationary blades) × (rotating blade rotation speed) included in the excitation force caused by the wake of the stationary blade can be effectively reduced, and the vibration of the rotating blade generated by resonance with the frequency component can be effectively reduced. Stress can be greatly reduced. In addition, it was analytically confirmed that the stationary blade rows of the same pitch were hardly continuous and only changed periodically in the circumferential direction, so that the stall performance was not impaired and that the performance degradation of the entire stationary blade row could be avoided.
[0030]
Note that the present invention is not limited to the above-described embodiments and examples, and it is needless to say that various changes can be made without departing from the gist of the present invention.
[0031]
【The invention's effect】
As described above, according to the present invention, the frequency component of (number of stationary blades) × (rotor blade rotation speed) included in the excitation force generated by the wake of the stationary blade is reduced, and the blade vibration level at the time of resonance is reduced. You. Further, since the stationary blades are not sparsely arranged over a long section, the influence on the aerodynamic performance can be minimized. Further, in the embodiment of the present invention, the interval between the two vanes in the center is widened by 10%, the pitches at both ends are narrowed by 10%, and the width between the remaining vanes changes smoothly, with eight vanes of the stationary vane as one section. By setting, the vibration level at the resonance point of the lower flow blade in the higher-order panel mode can be predicted to be reduced by about 30%.
[0032]
Therefore, the stator blade row of the axial flow compressor of the present invention can significantly reduce the vibration stress due to resonance in all vibration modes in the operation range of the axial flow compressor, and can avoid the performance deterioration of the entire stator row. , Etc. have excellent effects.
[Brief description of the drawings]
FIG. 1 is a blade arrangement diagram showing a stationary blade row of the present invention.
FIG. 2 is a diagram showing a vibration mode in a stationary blade.
FIG. 3 is a diagram showing a vibration stress reducing effect according to the present invention.
FIG. 4 is an explanatory diagram of distortion by a stationary blade.
FIG. 5 is a diagram showing a decrease in outlet pressure when a surge occurs due to distortion.
FIG. 6 is a diagram illustrating a relationship between an excitation frequency of a stationary blade and a natural frequency of a moving blade.
FIG. 7 is a blade arrangement diagram of a conventional stationary blade row.
[Explanation of symbols]
2 stationary blades, 4 blades, 6 distribution lines of entropy,
8 divided sectors

Claims (3)

周方向に全周にわたって複数の静翼を配列した軸流圧縮機の静翼列において、該静翼列を構成する静翼間のピッチが周方向に周期的に変化する、ことを特徴とする軸流圧縮機の静翼列。In a stator blade row of an axial flow compressor in which a plurality of stator blades are arranged along the entire circumference in a circumferential direction, a pitch between the stator blades constituting the stator blade row changes periodically in a circumferential direction. Stator row of axial compressor. 前記静翼列は、周方向に分割された複数の分割セクターからなり、各分割セクターはピッチが周方向に徐々に変化する複数の静翼からなる、ことを特徴とする請求項1に記載の軸流圧縮機の静翼列。The said stationary blade row is comprised from the several divided sector divided | segmented in the circumferential direction, and each divided sector is comprised from the several stator blade whose pitch changes gradually in a circumferential direction. Stator row of axial compressor. 前記分割セクターの翼間ピッチは、等間隔時のピッチに対して中央部又は端部が広く、逆に端部又は中央部が狭く、分割セクター全体で同一である、ことを特徴とする請求項2に記載の軸流圧縮機の静翼列。The pitch between the blades of the divided sector is wider at a central portion or an end portion than at a pitch at an equal interval, and conversely narrow at an end portion or a central portion, and is the same in the entire divided sector. 3. A stator blade row of the axial compressor according to 2.
JP2003125790A 2003-04-30 2003-04-30 Stationary blade cascade of axial compressor Pending JP2004332562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003125790A JP2004332562A (en) 2003-04-30 2003-04-30 Stationary blade cascade of axial compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125790A JP2004332562A (en) 2003-04-30 2003-04-30 Stationary blade cascade of axial compressor

Publications (1)

Publication Number Publication Date
JP2004332562A true JP2004332562A (en) 2004-11-25

Family

ID=33502954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125790A Pending JP2004332562A (en) 2003-04-30 2003-04-30 Stationary blade cascade of axial compressor

Country Status (1)

Country Link
JP (1) JP2004332562A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063768A1 (en) * 2005-11-29 2007-06-07 Ishikawajima-Harima Heavy Industries Co., Ltd. Cascade of stator vane of turbo fluid machine
CN112943699A (en) * 2021-02-08 2021-06-11 中国科学院工程热物理研究所 Compressor stator blade vibration reduction optimization design method based on corner design
CN113883098A (en) * 2021-09-10 2022-01-04 中国民航大学 Stator blade distortion-resistant axial flow compressor and stator blade distortion-resistant method of axial flow compressor
CN114893442A (en) * 2022-05-09 2022-08-12 北京航空航天大学 Pneumatic layout design method for guide vane, air compressor and air compressor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063768A1 (en) * 2005-11-29 2007-06-07 Ishikawajima-Harima Heavy Industries Co., Ltd. Cascade of stator vane of turbo fluid machine
JPWO2007063768A1 (en) * 2005-11-29 2009-05-07 株式会社Ihi Stator blade row of turbo fluid machine
US7891943B2 (en) 2005-11-29 2011-02-22 Ishikawajima-Harima Heavy Industries, Co. Ltd. Stator cascade of turbo type fluid machine
JP4678406B2 (en) * 2005-11-29 2011-04-27 株式会社Ihi Stator blade row of turbo fluid machine
CN112943699A (en) * 2021-02-08 2021-06-11 中国科学院工程热物理研究所 Compressor stator blade vibration reduction optimization design method based on corner design
CN112943699B (en) * 2021-02-08 2022-06-28 中国科学院工程热物理研究所 Compressor stator blade vibration reduction optimization design method based on corner design
CN113883098A (en) * 2021-09-10 2022-01-04 中国民航大学 Stator blade distortion-resistant axial flow compressor and stator blade distortion-resistant method of axial flow compressor
CN114893442A (en) * 2022-05-09 2022-08-12 北京航空航天大学 Pneumatic layout design method for guide vane, air compressor and air compressor

Similar Documents

Publication Publication Date Title
KR101922769B1 (en) Axial flow compressor, gas turbine including the same, and stator blade of axial flow compressor
CN107191231B (en) Non-uniform blade spacing for gas turbine engine stationary blades and method of designing same
JP5575741B2 (en) Casing for moving bladed wheel of turbomachine
US7118331B2 (en) Stator vane assembly for a turbomachine
US20120201692A1 (en) Rotor of a turbomachine compressor, with an optimised inner end wall
US20040175260A1 (en) Structure comprising a rotor and fixed perturbation sources and method for reducing vibrations in said structure
JP6499636B2 (en) Vane arrangement with alternating vanes with different trailing edge profiles
KR20170026493A (en) Diffuser for a radial compressor
US10584591B2 (en) Rotor with subset of blades having a cutout leading edge
US20130149135A1 (en) Stator vane array
US20130209224A1 (en) Turbomachine
JP2008151022A (en) Cascade of axial flow compressor
JP2005054784A (en) Inter blade platform of side deflection type for supporting blade of turbo jet engine
JP2011074837A (en) Turbo machine
US9951648B2 (en) Guide blade ring for an axial turbomachine and method for designing the guide blade ring
JP2001234893A (en) Axial blower
JP2004332562A (en) Stationary blade cascade of axial compressor
WO2018155458A1 (en) Centrifugal rotary machine
EP2685050B1 (en) Stationary vane assembly for an axial flow turbine
JP6514455B2 (en) Turbomachinery airfoil positioning
US9605540B2 (en) Alternating nozzles for radial inflow turbine
JP6151901B2 (en) Noise reduction in turbomachines and related methods
US8118555B2 (en) Fluid-flow machine and rotor blade thereof
JP2013177816A (en) Axial-flow turbomachine
JP5705608B2 (en) Rotating machine blade design method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060426

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090715

A521 Written amendment

Effective date: 20090828

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20091203

Free format text: JAPANESE INTERMEDIATE CODE: A02