JP2004331630A - Polyethylene glycol conjugated peptide - Google Patents

Polyethylene glycol conjugated peptide Download PDF

Info

Publication number
JP2004331630A
JP2004331630A JP2003133641A JP2003133641A JP2004331630A JP 2004331630 A JP2004331630 A JP 2004331630A JP 2003133641 A JP2003133641 A JP 2003133641A JP 2003133641 A JP2003133641 A JP 2003133641A JP 2004331630 A JP2004331630 A JP 2004331630A
Authority
JP
Japan
Prior art keywords
liposome
peg
peptide
compound
adriamycin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003133641A
Other languages
Japanese (ja)
Inventor
Noriyuki Maeda
典之 前田
Naoto Oku
直人 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Fine Chemical Co Ltd
Original Assignee
Nippon Fine Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Fine Chemical Co Ltd filed Critical Nippon Fine Chemical Co Ltd
Priority to JP2003133641A priority Critical patent/JP2004331630A/en
Publication of JP2004331630A publication Critical patent/JP2004331630A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new compound that is prepared by allowing a neovascular-specific peptide to conjugate to a PEG-phospholipd and provide a liposome including the new compound. <P>SOLUTION: The new compound is represented by general formula (1) A-CO-O-(CH<SB>2</SB>CH<SB>2</SB>O)-CO-CH<SB>2</SB>CH<SB>2</SB>-CO-B (wherein A is the residual group of a diacylphosphatidylethanolamine; n is an integer of 10-250; B is an N-terminated polypeptide residue bearing a specific amino acid sequence as a partial sequence) and the liposome includes the new compound. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、新規なPEG結合ペプチドおよびそれを含有するリポソームに関する。
【0002】
【従来の技術】癌治療の分野においては、リポソーム内に薬物を封入したドラッグデリバリーシステム(DDS)製剤が利用されている。リポソームは天然の細胞膜によく似た二重層の脂質分子から構成される小胞であり、その構成膜は生体適合性に優れたものである。脂溶性の薬物は膜の脂質相に、水溶性薬物は膜内の水相に化学結合でなく高濃度に封入することが可能であり、薬物の送達手段として非常に優れた特徴をもっている。小胞はエンドサイトーシスにより細胞に取り込まれると考えられており、そこで薬物が放出される。しかしながらリポソームといえども非自己粒子であり、目的の患部までに到達せずに肝臓、膵臓などに取り込まれてしまうことも多い。これを防止する目的で小胞をポリエチレングリコール(PEG)で修飾することも行われている。また、選択的に薬物を送達するために癌細胞や新生血管などの癌組織に選択的に結合しやすいリガンドをリポソームに修飾することも試みられており、このようなリガンドとしてWO00/23476には新生血管特異的ペプチドが開示されているが、このペプチドにリン脂質−PEGが結合したものは示されていない。
【0003】
この出願の発明に関する先行技術文献としては次のものがある。
【特許文献1】WO00/23476
【特許文献2】特表2002−541089
【特許文献3】特表2002−518313
【発明が解決しようとする課題】本発明は、新生血管特異的ペプチドにリン脂質−PEGを結合した新規の化合物及びそれを含有するリポソームを提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は一般式(1)
A−CO−O−(CH2CH2O)n−CO−CH2CH2−CO−B(1)
〔式中、Aはジアシルホスファチジルエタノールアミン残基を示し、nは10〜250の整数を示し、Bはアミノ酸配列番号1又は2のアミノ酸配列を部分配列としてもつN末端ペプチド残基を示す。〕で表される化合物およびそれを含有するリポソーム
【発明の実施の形態】
【0005】
一般式(1)の化合物において、Aはジアシルホスファチジルエタノールアミン残基である。1位、2位のアシル基はそれぞれ独立してC12−C22の炭素数の脂肪酸残基を示し、このようなものとしてラウリル、ミリスチル、パルミチル、ステアリル、オレイル、エライジル、リノレイルなどを例示できる。このうちパルミチル、ステアリル、オレイルが好ましい。最も好ましいのはジステアリル、ジオレイルである。
【0006】
一般式(1)中、nは10〜250の整数である。このうち10〜100が好ましく、そしてより好ましくは20〜50である。
【0007】
一般式(1)のBはアミノ酸配列番号1又は2のアミノ酸配列を部分配列としてもつN末端ペプチド残基を示す。ペプチドの鎖長としては3から10のアミノ酸からなるものが好ましく、五アミノ酸のものが最も好ましい。このようなものとしてはアミノ酸配列番号3〜5のペプチドを例示でき、このうち特に配列番号5のペプチドは好ましい。ペプチドはN末端にてコハク酸とアミド結合をしてPEGと連結している。
【0008】
本発明の化合物は一般的な有機合成の方法により製造することができる。
【0009】
【化1】

Figure 2004331630
【0010】
例えば、ジアシルホスファチジルエタノールアミン(スキム1の化合物1)にカルボニルジイミダゾール、トリエチルアミンを有機溶媒に懸濁させ、そこへ脱水したPEG(化合物2)を加えて反応することにより、ジアシルホスファチジルエタノールアミン−PEG結合物(化合物3)が得られる。化合物3はシリカゲルクロマトグラフィーなどにより精製後、無水コハク酸と反応させ、化合物3のハーフエステルを得る(化合物4)。
ここで、原料のジアシルホスファチジルエタノールアミンは大豆レシチン、水添大豆レシチンから抽出して得ることもできるし、ジアシルホスファチジルコリンとエタノールアミンの塩基交換反応などの有機合成反応により得ることもでき、市販のものを使用してもよい。PEGも市販品を用いることができる。
本発明の原料ペプチドはDCC法などにより逐次アミノ酸を連結することにより得ることができる。ペプチドのN末端アミノ基以外の官能基をBoc、ベンジル基、NO2などで保護したものと化合物4とでアミド化を行いPEGとペプチドを連結させる。ついで保護基を接触還元法などにより脱離させて本発明の化合物5を得る。本化合物はイオン交換樹脂、クロマトグラフィーなどにより精製することができる。
【0011】
本発明のリポソームは本発明の化合物を固形分中に1〜90重量%含有させることが好ましく、より好ましくは5〜30重量%である。
【0012】
本発明のリポソームにはステロール類、例えばコレステロール、シトステロールなど、リン脂質類、例えばジパルミチルホスファチジルコリン、ジステアリルホスファチジルコリン、卵黄レシチン、水素添加大豆レシチン、ジオレイルホスファチジルコリン、ジアシルホスファチジルグリセロール、ジアシルホスファチジルエタノールアミン、ジアシルホスファチジルセリンなど、糖類、例えばトレハロース、グリセリン、マルトースなどを含有させることができる。
【0013】
本発明のリポソームには薬剤として例えばアドリアマイシン、シスプラチン、ダウノマイシンなどの制ガン剤を含有させ、ガン治療の用途に利用できる。
【0014】
本発明のリポソームは公知の方法によって製造できる。以下にその一例を挙げる。
【0015】
まず本発明の化合物、必要に応じてリン脂質類、ステロール類などを適当な溶剤に溶解する。次いで得られた溶液を、例えばロータリーエバポレーターに入れて溶媒を留去し、エバポレータの内壁面に脂質のフィルムを形成する。この中に薬物水溶液や緩衝液などの水溶液を加え、激しく振とうすることにより、本発明のリポソームを得ることができる。振とう後に必要に応じて凍結融解、超音波処理を行ってもよい。また、エクストルーダーなどを用いてリポソーム粒径のサイシングを行ってもよい。
【0016】
溶媒としては使用する脂質を溶解するものが何れも使用でき、例えば、クロロホルム、メチルクロロホルム、塩化メチレン等のハロゲン化炭化水素類、ヘキサン、ヘプタン等の炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジエチルエーテル、ジシソプロピルエーテル、テトラヒドロフラン等のエーテル類等を挙げることができる。溶媒を留去し脂質のフィルムを形成させる際の温度条件は特に制限されず、0〜100℃程度の広い範囲から適宜選択できるが、脂質の酸化を防ぐことを考慮すると25〜65℃程度が好ましい。またリポソーム調製時のPH、塩濃度は、脂質、リポソームの変性が起こらない範囲であれば特に制限されないが、通常PH7程度、オスモラリティ0.3程度とすればよい。
【0017】
得られたリポソーム分散液を、ゲル濾過、遠心分離等の公知の方法に準じて精製することにより、リポソームとリポソームに内封されなかった薬剤等を分離することができる。
【0018】
本発明のリポソームの粒径は特に制限されないが、通常0.03〜0.8nm程度、好ましくは0.05〜0.5nm程度、より好ましくは0.1〜0.3nm程度とするのがよい。
【0019】
本発明の制ガン剤を内封させたリポソームは注射により生体に投与する。投与法としては、腫瘍の存在部位により静脈内注射、筋肉内注射、皮下注射などをいずれも用いることができるが、好ましくは静脈内注射がよい。
【0020】
【実施例】
以下、本発明を実施例を用いてさらに詳しく説明するが、本発明はこれらによって何ら制限されるものではない。
【0021】
実施例1:DSPE−PEG−APRPGの合成
(1)ジステアロイルホスファチジルエタノールアミン−ポリエチレングリコール(DSPE−PEG)の合成
ジステアロイルホスファチジルエタノールアミン(DSPE)15.0g(20mmol)、カルボニルジイミダゾール3.91g(24mmol)、トリエチルアミン2.03g(20mmol)をトルエン69mlに懸濁させた液を30分還流反応させた後、トルエンにより共沸脱水したポリエチレングリコール(PEG;平均分子量2000)をトルエン35mlに溶解した溶液を滴下した。12時間後ロータリーエバポレーターにて溶媒を留去し、アセトン506mlに対する不溶物をメンブランフィルターによりろ別した。溶媒留去後、蒸留水400mlに溶解し、燐酸二水素ナトリウム2.67gとAmberlite XAD−2 30.0gを加え、室温で2時間撹拌し、ナトリウム塩化した。Amberliteをろ過後、トルエン2493gとイソプロパノール1150gで共沸脱水し、乾燥後、ジエチルエーテル300mlで洗浄した。乾燥後、シリカゲルカラムクロマトグラフィーを行い、単一のTLCスポットを示し(クロロホルム/メタノール=4/1)、1HNMRにより {δ1.25(s,70H,アシルH)、2.35(m,5H,グリセロールH)、3.64(brs,280H,PEG H)}同定された。
【0022】
(2)ジステアロイルホスファチジルエタノールアミン−ポリエチレングリコール−コハク酸(DSPE−PEG−SA)の合成
無水状態のDSPE−PEG 11.0g(4.0mmol)をトルエン55mlに溶解後、無水コハク酸1.98g(20mmol)とピリジン1.6mlを加え、内温70〜80℃で3時間反応した。冷却後、ロータリーエバポレーターで溶媒を留去しクロロホルム120mlに溶解後、1%食塩水で有機層を2度洗浄した。有機層を硫酸ナトリウムで乾燥後、溶媒留去した。ジエチルエーテル100mlで粉末化した後、メンブランフィルターによりろ過して粉末を得た。デシケーターで乾燥し得られた生成物は単一のTLCスポットを示し(クロロホルム/メタノール=4/1)、90MHz H NMRにより{δ1.26(s,70H,アシルH)、2.32(s,5H,グリセロールH)、2.64(s,4H,コハク酸−CH2CH2−)3.64(brs,280H,PEGH)}同定された。
【0023】
(3)H−Ala−Pro−Arg(NO)−Pro−Gly−OBz・HCl(H−APR(NO)PG−OBz)の合成
Boc−Ala−OHとPro−OCH・HClをジシクロヘキシルカルボジイミド(DCC)、1−ヒドロキシベンゾトリアゾール(HOBt)によりジメチルホルムアミド(DMF)中で縮合した後、水酸化ナトリウムでエステルを加水分解してBoc−Ala−Pro−OHとした。また、Boc−Arg(NO)−OHとPro−OCH・HClをDCC、HOBtによりDMF中、縮合した後、水酸化ナトリウムでエステルを加水分解してBoc−Arg(NO)−Pro−OHとした。さらに、得られたBoc−Arg(NO)−Pro−OHとGly−OBz・HClをDCC、HOBtによりDMF中で縮合した後、HCl/ジオキサンによりBoc保護の脱保護を行い、H−Arg(NO)−Pro−Gly−OBz・HClとした。
次に、Boc−Ala−Pro−OHとH− Arg(NO)−Pro−Gly−OBz・HClをDCC、HOBtによりDMF中で縮合した後、HCl/ジオキサンによりBoc保護の脱保護を行い、Boc−Ala−Pro−Arg(NO)−Pro−Gly−OBzとした。さらに得られた生成物をHCl/ジオキサンでBoc保護の脱保護を行い、H−APR(NO)PG−OBzとし、FAB−MSm/z: 632[M+H]の生成物を得た。
【0024】
(4)ジステアロイルホスファチジルエタノールアミン−ポリエチレングリコール−コハク酸−Ala−Pro−Arg−Pro−Gly(DSPE−PEG−APRPG)の合成
上記液相法で合成したH−Ala−Pro−Arg(NO)−Pro−Gly−OBz・HCl 1.80g(2.7mmol)、クロロホルム130ml、トリエチルアミン0.45g(4.5mmol)、1−ヒドロキシベンゾトリアゾール0.37g(2.7mmol)、DSPE−PEG−SA 7.0g(2.5mmol)の混合液を4℃に冷却し、ジシクロヘキシルカルボジイミド0.59g(2.7mmol)をクロロホルム10mlに溶解した溶液を滴下し、4℃以下1時間反応した。1時間後に室温まで戻し、トリエチルアミン1.04gを追加後、室温で7.5時間反応した。不溶物を加圧ろ過後、5%硫酸水素ナトリウム水溶液で洗浄を行った。有機層を硫酸ナトリウムで乾燥後、ロータリーエバポレーターにより溶媒を留去した。シリカゲルカラムクロマトグラフィーにより分取後、酸性イオン交換樹脂により高極性物質を除いた。精製された生成物はヨウ素発色法、リンモリブデン酸発色法で単一のTLCスポットを示し(クロロホルム/メタノール=4/1)、ニンヒドリン試薬、坂口試薬に対しては陰性であったが、UV発色法には陽性であった。
上記で得られた生成物4.9gをメタノール100mlに溶解し10% パラジウム−炭素0.49gを加え常圧水添反応を行った。5.5時間後触媒をろ過し、溶媒を留去した。得られた粗生成物をカラムクロマトグラフィーにより精製し得られた生成物はヨウ素発色法、リンモリブデン酸発色法で単一のTLCスポットを示し(クロロホルム/メタノール/水=60/30/5)、ニンヒドリン試薬、UV発色法に対しては陰性であったが、坂口試薬には陽性であったことからグリシンのC末端のベンジル保護基、アルギニンのNO保護基が脱保護されたと同定した。
【0025】
実施例2 アドリアマイシン(ADR)封入リポソームの調製
DSPC(ジステアロイルホスファチジルコリン:日本精化株式会社製)、コレステロール(シグマ社製)および実施例1のDSPE−PEG−APRPGを、モル比が10:5:1となる割合で含むクロロホルム溶液を調製した。即ち、90μlの100mM DSPC、45μlの100mMコレステロールおよび45μlの20mM本発明ペプチドを加えて、モル比が10:5:1となる割合で含むクロロホルム溶液を調製した。次いで前記調製液をナス型フラスコに入れ、ロータリーエバポレーターで減圧条件下にクロロホルムを除去して脂質薄膜を調製した。さらに減圧下にクロロホルムを完全に除去して乾燥させた。60分間真空乾燥した後、1.5mlの0.3Mクエン酸溶液(pH4.0)で水和した(DSPC濃度;6mM)。
上記調製液について、凍結と60℃加温による融解を3回繰り返した後、調製液を温浴型の超音波処理装置(商品名:ULTRASONIK250:ラボスコ株式会社製)にて10分間超音波処理して攪拌を行った。次いでエクストルーダー(ライペックス社製)にて、100nmの孔径を持つポリカーボネート膜(ヌクレオポアポリカーボネート:コースター社製)を3回通過させ、リポソーム分散液を得た。
【0026】
このリポソーム分散液に0.5M炭酸ナトリウム溶液を加え、リポソーム外水相のpHを7.5に調整した。次いで20mM HEPES緩衝液で希釈し、全量3.0mlとした。さらに、1.5mg/mlアドリアマイシン(シグマ社製)溶液を0.75ml加え、60℃で30分間インキュベーションし、リポソーム内水層にアドリアマイシンを封入した。
上記調製液を15分間遠心(日立工機社製、CS120EX;100,000g)してリポソームを沈殿させ、封入されなかったアドリアマイシンを含む上清を除去した。沈殿を1.5mlの0.3Mグルコース溶液で再分散し、以下に記述した定量法によりアドリアマイシン内封量を算出した。次いで、アドリアマイシンが0.5mg/ml(5mg/kg)となるように希釈し、アドリアマイシンを封入した本発明のリポソーム分散液を得た。かくして、DSPC、コレステロールおよび本発明DSPE−PEG−APRPGを1.5ml中に6μM、3μMおよび0.6μMとなるようにそれぞれ有するリポソーム(分散液)を得た(DSPC濃度;6mM)。
【0027】
比較例1:DSPE−PEG−APRPGを用いない以外は実施例2と同様にしてアドリアマイシン封入リポソームを得た。
【0028】
比較例2:実施例2のDSPE−PEG−APRPGに代えて実施例1の(1)で得られた中間原料DSPE−PEGを用いた以外は実施例2と同様にしてアドリアマイシン封入リポソームを得た。
【0029】
評価方法
(1)リポソーム内水層のアドリアマイシンの定量
10μlのリポソーム分散液、100μlの10%還元トライトンX−100および890μlの0.3Mグルコース溶液を混合後、60℃にて加温し、484nmにおける吸光度を測定した。
かくして求めた測定値および検量線よりアドリアマイシンのリポソーム内水層への封入率を算出したところ、90%以上の内封率であった。
(2) 腫瘍効果の測定
Colon26 NL17細胞(1×10細胞/マウス)を5週齢雄性BALB/cマウス(チャールスリバー社製)の左腹側部に皮下投与して固形癌担癌マウスを作成した。移植した日をDay0とし、10、13および16日目に各群に対してアドリアマイシンが5mg/Kg(マウス)になるように下記のものを尾静脈に投与した。
(a)群 0.3Mグルコース溶液
(b)群 アドリアマイシン +0.3Mグルコース溶液
(c)群 比較例1のアドリアマイシン封入リポソーム
(d)群 比較例2のアドリアマイシン封入リポソーム
(e)群 実施例2のアドリアマイシン封入リポソーム
試験に供した担癌マウスは各群6匹とした。投与した各薬物の抗腫瘍効果は、腫瘍移植9日後から腫瘍増殖、副作用の一指標として体重変化を調べると共に、腫瘍の短径および長径を測定し、以下に示す式に従って腫瘍体積を算出した。該計算式により算出される腫瘍容積は、腫瘍を摘出して量った腫瘍重量ときわめて高い相関性を示す(r=0.980)。
腫瘍体積=0.4×a×b(a:長径 b:短径)
【0030】
その結果を表1、2に示す。
表中、表1の縦軸は腫瘍体積(cc)を、横軸は腫瘍移植後の日数を示す。
表2の縦軸は体重変化(g)を、横軸は腫瘍移植後の日数を示す
【0031】
【表1】
Figure 2004331630
【0032】
【表2】
Figure 2004331630
【0033】
表1、表2から分かるように、PEGで修飾されたリポソームを投与した(d)群は通常のリポソーム(c)群より効果がすぐれているが、本発明の(e)群はそれらよりさらにガン抑制の効果が優れていることがわかる。(表中、*は(e)が(b)(c)(d)それぞれに対して有意(p<0.05)、**は(e)が(a)に対して有意(p<0.001)であることを示す)
この結果より、本発明の新生血管特異的ペプチドを有効成分として含むPEG−PRP修飾リポソームに抗癌剤を封入したリポソーム製剤では、封入された抗癌剤の副作用が軽減され且つ腫瘍増殖抑制効果が著しく増強されることが確認された。
【0034】
【発明の効果】
本発明の新生血管特異的ペプチドにリン脂質−PEGを結合した新規の化合物はリポソーム剤として利用することができる。そしてこのリポソームは血中滞留性を向上させ、また、癌組織の新生血管内皮細胞のリガンドとしての分子医薬として、標的組織に選択的に薬物送達を可能とするDDS製剤への応用が可能となる。
【0035】
【配列表】
Figure 2004331630
Figure 2004331630
Figure 2004331630
[0001]
[0001] The present invention relates to a novel PEG-binding peptide and a liposome containing the same.
[0002]
2. Description of the Related Art In the field of cancer treatment, drug delivery system (DDS) preparations in which a drug is encapsulated in liposomes are used. Liposomes are vesicles composed of bilayer lipid molecules much like natural cell membranes, and their constituent membranes are excellent in biocompatibility. Lipid-soluble drugs can be encapsulated in the lipid phase of the membrane and water-soluble drugs can be encapsulated in the aqueous phase in the membrane without chemical bonding at a high concentration, and have very excellent characteristics as a drug delivery means. Vesicles are thought to be taken up by endocytosis into cells, where the drug is released. However, even liposomes are non-self particles and are often taken up by the liver, pancreas and the like without reaching the target diseased part. To prevent this, vesicles are also modified with polyethylene glycol (PEG). In addition, in order to selectively deliver a drug, it has been attempted to modify a liposome with a ligand which is liable to selectively bind to a cancer tissue such as a cancer cell or a new blood vessel. WO00 / 23476 includes such a ligand. A new blood vessel specific peptide is disclosed, but no phospholipid-PEG attached to this peptide is shown.
[0003]
Prior art documents relating to the invention of this application include the following.
[Patent Document 1] WO 00/23476
[Patent Document 2] JP-T-2002-541089
[Patent Document 3] JP-T-2002-518313
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel compound in which a phospholipid-PEG is bound to a new blood vessel specific peptide and a liposome containing the same.
[0004]
[Means for Solving the Problems]
The present invention relates to general formula (1)
A-CO-O- (CH2CH2O) n-CO-CH2CH2-CO-B (1)
[Wherein A represents a diacylphosphatidylethanolamine residue, n represents an integer of 10 to 250, and B represents an N-terminal peptide residue having the amino acid sequence of amino acid sequence No. 1 or 2 as a partial sequence. And a liposome containing the compound [Embodiment of the invention]
[0005]
In the compound of the general formula (1), A is a diacylphosphatidylethanolamine residue. The 1- and 2-position acyl groups each independently represent a fatty acid residue having a carbon number of C12-C22, and examples thereof include lauryl, myristyl, palmityl, stearyl, oleyl, elaidyl, linoleyl, and the like. Of these, palmityl, stearyl and oleyl are preferred. Most preferred are distearyl, dioleyl.
[0006]
In the general formula (1), n is an integer of 10 to 250. Of these, 10 to 100 is preferable, and 20 to 50 is more preferable.
[0007]
B in the general formula (1) represents an N-terminal peptide residue having the amino acid sequence of amino acid sequence number 1 or 2 as a partial sequence. The peptide preferably has a chain length of 3 to 10 amino acids, and most preferably 5 amino acids. Examples of such a peptide include the peptides of amino acid sequence Nos. 3 to 5, and among them, the peptide of sequence No. 5 is particularly preferable. The peptide has an amide bond with succinic acid at the N-terminus and is linked to PEG.
[0008]
The compound of the present invention can be produced by a general organic synthesis method.
[0009]
Embedded image
Figure 2004331630
[0010]
For example, carbonyldiimidazole and triethylamine are suspended in an organic solvent in diacylphosphatidylethanolamine (compound 1 of skim 1), and dehydrated PEG (compound 2) is added thereto and reacted to obtain diacylphosphatidylethanolamine-PEG. A conjugate (compound 3) is obtained. Compound 3 is purified by silica gel chromatography or the like, and then reacted with succinic anhydride to obtain a half ester of compound 3 (compound 4).
Here, the raw material diacylphosphatidylethanolamine can be obtained by extracting from soybean lecithin and hydrogenated soybean lecithin, or can be obtained by an organic synthesis reaction such as a base exchange reaction between diacylphosphatidylcholine and ethanolamine, and is commercially available. May be used. PEG can also use a commercial item.
The starting peptide of the present invention can be obtained by sequentially linking amino acids by the DCC method or the like. Amidation is performed with compound 4 in which a functional group other than the N-terminal amino group of the peptide is protected with Boc, benzyl group, NO2, etc., and PEG is linked to the peptide. Then, the protecting group is eliminated by a catalytic reduction method or the like to obtain the compound 5 of the present invention. The present compound can be purified by ion exchange resin, chromatography and the like.
[0011]
The liposome of the present invention preferably contains the compound of the present invention in a solid content of 1 to 90% by weight, more preferably 5 to 30% by weight.
[0012]
Liposomes of the present invention include sterols such as cholesterol and sitosterol, and phospholipids such as dipalmitylphosphatidylcholine, distearylphosphatidylcholine, egg yolk lecithin, hydrogenated soybean lecithin, dioleylphosphatidylcholine, diacylphosphatidylglycerol, diacylphosphatidylethanolamine, Sugars such as diacylphosphatidylserine, for example, trehalose, glycerin, maltose and the like can be contained.
[0013]
The liposome of the present invention contains a drug such as adriamycin, cisplatin or daunomycin as a drug, and can be used for cancer treatment.
[0014]
The liposome of the present invention can be produced by a known method. An example is given below.
[0015]
First, the compound of the present invention, and if necessary, phospholipids, sterols, and the like are dissolved in a suitable solvent. Next, the obtained solution is put into, for example, a rotary evaporator to distill off the solvent, and a lipid film is formed on the inner wall surface of the evaporator. A liposome of the present invention can be obtained by adding an aqueous solution such as a drug aqueous solution or a buffer solution thereto and shaking vigorously. After shaking, freeze-thawing or sonication may be performed as necessary. Alternatively, sizing of the liposome particle size may be performed using an extruder or the like.
[0016]
As the solvent, any solvent that dissolves the lipid used can be used, for example, halogenated hydrocarbons such as chloroform, methylchloroform, and methylene chloride; hydrocarbons such as hexane and heptane; and aromatics such as benzene, toluene, and xylene. Group hydrocarbons, ethers such as diethyl ether, diisopropyl ether and tetrahydrofuran. The temperature conditions when the solvent is distilled off to form a lipid film are not particularly limited, and can be appropriately selected from a wide range of about 0 to 100 ° C. However, in consideration of preventing lipid oxidation, about 25 to 65 ° C is preferable. preferable. The pH and salt concentration at the time of preparing the liposome are not particularly limited as long as the lipid and the liposome are not denatured. However, the pH and the osmolarity may be generally about 7 and about 0.3, respectively.
[0017]
By purifying the obtained liposome dispersion according to a known method such as gel filtration or centrifugation, it is possible to separate the liposome from the drug not encapsulated in the liposome.
[0018]
The particle size of the liposome of the present invention is not particularly limited, but is usually about 0.03 to 0.8 nm, preferably about 0.05 to 0.5 nm, and more preferably about 0.1 to 0.3 nm. .
[0019]
The liposome enclosing the anticancer agent of the present invention is administered to a living body by injection. As an administration method, any of intravenous injection, intramuscular injection, subcutaneous injection and the like can be used depending on the site of the tumor, but intravenous injection is preferable.
[0020]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
[0021]
Example 1: Synthesis of DSPE-PEG-APRPG (1) Synthesis of distearoylphosphatidylethanolamine-polyethylene glycol (DSPE-PEG) 15.0 g (20 mmol) of distearoylphosphatidylethanolamine (DSPE), 3.91 g of carbonyldiimidazole (24 mmol), a solution of 2.03 g (20 mmol) of triethylamine suspended in 69 ml of toluene was refluxed for 30 minutes, and then polyethylene glycol (PEG; average molecular weight 2000) azeotropically dehydrated with toluene was dissolved in 35 ml of toluene. The solution was added dropwise. After 12 hours, the solvent was distilled off using a rotary evaporator, and the insolubles in 506 ml of acetone were filtered off with a membrane filter. After evaporating the solvent, the residue was dissolved in 400 ml of distilled water, 2.67 g of sodium dihydrogen phosphate and 30.0 g of Amberlite XAD-2 were added, and the mixture was stirred at room temperature for 2 hours and sodium chloride was added. After filtering Amberlite, it was azeotropically dehydrated with 2493 g of toluene and 1150 g of isopropanol, dried, and washed with 300 ml of diethyl ether. After drying, silica gel column chromatography was performed to show a single TLC spot (chloroform / methanol = 4/1), and Hδ1.25 (s, 70H, acylH), 2.35 (m, 5H, Glycerol H), 3.64 (brs, 280H, PEG H)} identified.
[0022]
(2) Synthesis of distearoyl phosphatidylethanolamine-polyethylene glycol-succinic acid (DSPE-PEG-SA) 11.0 g (4.0 mmol) of anhydrous DSPE-PEG was dissolved in 55 ml of toluene and then 1.98 g of succinic anhydride. (20 mmol) and 1.6 ml of pyridine were added and reacted at an internal temperature of 70 to 80 ° C. for 3 hours. After cooling, the solvent was distilled off using a rotary evaporator and dissolved in 120 ml of chloroform, and then the organic layer was washed twice with 1% saline. After the organic layer was dried over sodium sulfate, the solvent was distilled off. After powdering with 100 ml of diethyl ether, the mixture was filtered through a membrane filter to obtain a powder. The product obtained by drying in a desiccator showed a single TLC spot (chloroform / methanol = 4/1), and 90δ 1.26 (s, 70H, acyl H), 2.32 (s) by 90 MHz 1 H NMR. , 5H, glycerol H), 2.64 (s, 4H, succinic acid-CH2CH2-) 3.64 (brs, 280H, PEGH)} identified.
[0023]
(3) Synthesis of H-Ala-Pro-Arg (NO 2 ) -Pro-Gly-OBz.HCl (H-APR (NO 2 ) PG-OBz) Boc-Ala-OH and Pro-OCH 3 .HCl were converted to dicyclohexyl. After condensation in dimethylformamide (DMF) with carbodiimide (DCC) and 1-hydroxybenzotriazole (HOBt), the ester was hydrolyzed with sodium hydroxide to Boc-Ala-Pro-OH. Further, after condensing Boc-Arg (NO 2 ) -OH and Pro-OCH 3 .HCl in DMF with DCC and HOBt, the ester is hydrolyzed with sodium hydroxide to obtain Boc-Arg (NO 2 ) -Pro-. OH. Furthermore, after condensing the obtained Boc-Arg (NO 2 ) -Pro-OH and Gly-OBz.HCl in DMF with DCC and HOBt, deprotection of Boc protection was performed with HCl / dioxane, and H-Arg ( NO 2 ) -Pro-Gly-OBz.HCl.
Next, after condensing Boc-Ala-Pro-OH and H-Arg (NO 2 ) -Pro-Gly-OBz.HCl in DMF with DCC and HOBt, deprotection of Boc protection was performed with HCl / dioxane. It was Boc-Ala-Pro-Arg ( NO 2) -Pro-Gly-OBz. Further, the obtained product was subjected to deprotection of Boc protection with HCl / dioxane to obtain H-APR (NO 2 ) PG-OBz, whereby a product of FAB-MSm / z: 632 [M + H] + was obtained.
[0024]
(4) Synthesis of distearoyl phosphatidylethanolamine-polyethylene glycol-succinic acid-Ala-Pro-Arg-Pro-Gly (DSPE-PEG-APRPG) H-Ala-Pro-Arg (NO 2 ) synthesized by the above liquid phase method 1.)-Pro-Gly-OBz.HCl 1.80 g (2.7 mmol), chloroform 130 ml, triethylamine 0.45 g (4.5 mmol), 1-hydroxybenzotriazole 0.37 g (2.7 mmol), DSPE-PEG-SA A mixed solution of 7.0 g (2.5 mmol) was cooled to 4 ° C., a solution of 0.59 g (2.7 mmol) of dicyclohexylcarbodiimide dissolved in 10 ml of chloroform was added dropwise, and the mixture was reacted at 4 ° C. or lower for 1 hour. One hour later, the temperature was returned to room temperature, and 1.04 g of triethylamine was added, followed by a reaction at room temperature for 7.5 hours. After filtration of the insolubles under pressure, washing was performed with a 5% aqueous solution of sodium hydrogen sulfate. After the organic layer was dried over sodium sulfate, the solvent was distilled off using a rotary evaporator. After fractionation by silica gel column chromatography, highly polar substances were removed with an acidic ion exchange resin. The purified product showed a single TLC spot by the iodine color development method and the phosphomolybdic acid color development method (chloroform / methanol = 4/1), and was negative for the ninhydrin reagent and Sakaguchi reagent, but was UV colored. The method was positive.
4.9 g of the product obtained above was dissolved in 100 ml of methanol, and 0.49 g of 10% palladium-carbon was added, followed by hydrogenation under normal pressure. After 5.5 hours, the catalyst was filtered and the solvent was distilled off. The obtained crude product was purified by column chromatography, and the obtained product showed a single TLC spot by iodine coloring method and phosphomolybdic acid coloring method (chloroform / methanol / water = 60/30/5), It was negative for the ninhydrin reagent and the UV colorimetric method, but positive for the Sakaguchi reagent. Therefore, it was identified that the benzyl protecting group at the C-terminal of glycine and the NO 2 protecting group of arginine were deprotected.
[0025]
Example 2 Preparation of Adriamycin (ADR) -Encapsulated Liposomes DSPC (Distearoylphosphatidylcholine: manufactured by Nippon Seika Co., Ltd.), cholesterol (manufactured by Sigma) and DSPE-PEG-APRPG of Example 1 were mixed at a molar ratio of 10: 5: A chloroform solution containing a ratio of 1 was prepared. That is, 90 μl of 100 mM DSPC, 45 μl of 100 mM cholesterol and 45 μl of 20 mM peptide of the present invention were added to prepare a chloroform solution containing a molar ratio of 10: 5: 1. Next, the prepared solution was placed in an eggplant-shaped flask, and chloroform was removed under reduced pressure using a rotary evaporator to prepare a lipid thin film. Further, chloroform was completely removed under reduced pressure and dried. After vacuum drying for 60 minutes, it was hydrated with 1.5 ml of 0.3 M citric acid solution (pH 4.0) (DSPC concentration; 6 mM).
After the above-mentioned preparation liquid was repeatedly frozen and thawed by heating at 60 ° C. three times, the preparation liquid was subjected to ultrasonic treatment for 10 minutes using a warm bath type ultrasonic treatment apparatus (trade name: ULTRASONIK250: manufactured by Labosco Corporation). Stirring was performed. Then, the mixture was passed through a polycarbonate membrane (Nucleopore Polycarbonate: Coaster) having a pore size of 100 nm three times with an extruder (manufactured by Leipex) to obtain a liposome dispersion.
[0026]
A 0.5 M sodium carbonate solution was added to the liposome dispersion to adjust the pH of the aqueous phase outside the liposome to 7.5. Then, it was diluted with 20 mM HEPES buffer to a total volume of 3.0 ml. Further, 0.75 ml of a 1.5 mg / ml adriamycin (Sigma) solution was added, and the mixture was incubated at 60 ° C. for 30 minutes to encapsulate the adriamycin in the liposome inner aqueous layer.
The prepared solution was centrifuged for 15 minutes (manufactured by Hitachi Koki Co., Ltd., CS120EX; 100,000 g) to precipitate liposomes, and the supernatant containing unencapsulated adriamycin was removed. The precipitate was redispersed in 1.5 ml of a 0.3 M glucose solution, and the amount of adriamycin encapsulated was calculated by the quantitative method described below. Subsequently, adriamycin was diluted to 0.5 mg / ml (5 mg / kg) to obtain a liposome dispersion of the present invention in which adriamycin was encapsulated. Thus, liposomes (dispersions) having DSPC, cholesterol, and DSPE-PEG-APRPG of the present invention in 1.5 ml at 6 μM, 3 μM, and 0.6 μM, respectively, were obtained (DSPC concentration; 6 mM).
[0027]
Comparative Example 1: Adriamycin-encapsulated liposomes were obtained in the same manner as in Example 2, except that DSPE-PEG-APRPG was not used.
[0028]
Comparative Example 2: Adriamycin-encapsulated liposomes were obtained in the same manner as in Example 2 except that the DSPE-PEG-APRPG of Example 2 was replaced with the DSPE-PEG intermediate material obtained in (1) of Example 1. .
[0029]
Evaluation Method (1) Determination of Adriamycin in the Aqueous Layer of Liposomes After mixing 10 μl of the liposome dispersion, 100 μl of 10% reduced Triton X-100 and 890 μl of a 0.3 M glucose solution, the mixture was heated at 60 ° C. and heated at 484 nm. The absorbance was measured.
The entrapment rate of adriamycin in the aqueous layer of the liposome was calculated from the measured values thus obtained and the calibration curve, and the encapsulation rate was 90% or more.
(2) Measurement of Tumor Effect Colon 26 NL17 cells (1 × 10 6 cells / mouse) were subcutaneously administered to the left flank of 5-week-old male BALB / c mice (manufactured by Charles River) to obtain solid tumor-bearing mice. Created. The day of transplantation was designated as Day 0, and on days 10, 13, and 16, the following was administered to the tail vein of each group so that adriamycin was 5 mg / Kg (mouse).
(A) group 0.3M glucose solution (b) group Adriamycin + 0.3M glucose solution (c) group Adriamycin-encapsulated liposome of Comparative Example 1 (d) group Adriamycin-encapsulated liposome of Comparative Example 2 (e) group Adriamycin of Example 2 The number of tumor-bearing mice subjected to the encapsulated liposome test was 6 per group. The antitumor effect of each administered drug was determined 9 days after tumor implantation, by examining the change in body weight as an indicator of tumor growth and side effects, measuring the minor axis and major axis of the tumor, and calculating the tumor volume according to the following formula. The tumor volume calculated by the above formula has a very high correlation with the tumor weight obtained by removing the tumor (r 2 = 0.980).
Tumor volume = 0.4 × a × b 2 (a: long diameter b: short diameter)
[0030]
The results are shown in Tables 1 and 2.
In the table, the ordinate of Table 1 indicates the tumor volume (cc), and the abscissa indicates the number of days after tumor implantation.
In Table 2, the vertical axis represents weight change (g), and the horizontal axis represents days after tumor implantation.
[Table 1]
Figure 2004331630
[0032]
[Table 2]
Figure 2004331630
[0033]
As can be seen from Tables 1 and 2, the group (d) to which the liposome modified with PEG was administered was more effective than the normal liposome (c) group, but the group (e) of the present invention was more effective than them. It turns out that the effect of cancer suppression is excellent. (In the table, * indicates that (e) is significant (p <0.05) for each of (b), (c) and (d), and ** indicates that (e) is significant for (a) (p <0). .001))
From these results, in the liposome preparation in which the anticancer agent is encapsulated in the PEG-PRP-modified liposome containing the neovascular-specific peptide of the present invention as an active ingredient, the side effect of the encapsulated anticancer agent is reduced and the tumor growth inhibitory effect is significantly enhanced. It was confirmed that.
[0034]
【The invention's effect】
The novel compound of the present invention in which phospholipid-PEG is bound to a neovascular-specific peptide can be used as a liposome agent. These liposomes improve the retention in blood and can be applied to DDS preparations that can selectively deliver drugs to target tissues as molecular drugs as ligands for neovascular endothelial cells in cancer tissues. .
[0035]
[Sequence list]
Figure 2004331630
Figure 2004331630
Figure 2004331630

Claims (4)

一般式(1)
A−CO−O−(CH2CH2O)n−CO−CH2CH2−CO−B (1)
〔式中、Aはジアシルホスファチジルエタノールアミン残基を示し、nは10〜250の整数を示し、Bはアミノ酸配列番号1又は2のアミノ酸配列を部分配列としてもつN末端ペプチド残基を示す。〕で表される化合物。
General formula (1)
A-CO-O- (CH2CH2O) n-CO-CH2CH2-CO-B (1)
[In the formula, A represents a diacylphosphatidylethanolamine residue, n represents an integer of 10 to 250, and B represents an N-terminal peptide residue having the amino acid sequence of amino acid sequence number 1 or 2 as a partial sequence. ] The compound represented by these.
一般式(1)におけるAがジステアリルホスファチジルエタノールアミン残基である請求項1記載の化合物。The compound according to claim 1, wherein A in the general formula (1) is a distearylphosphatidylethanolamine residue. 一般式(1)におけるBがアミノ酸配列番号3〜5のいずれかのペプチド残基である請求項1又は2に記載の化合物。The compound according to claim 1, wherein B in the general formula (1) is any one of the peptide residues of amino acid sequence numbers 3 to 5. 請求項1〜3のいづれかに記載の化合物を少なくとも1種以上を含有するリポソーム。A liposome containing at least one compound according to any one of claims 1 to 3.
JP2003133641A 2003-05-12 2003-05-12 Polyethylene glycol conjugated peptide Pending JP2004331630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003133641A JP2004331630A (en) 2003-05-12 2003-05-12 Polyethylene glycol conjugated peptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003133641A JP2004331630A (en) 2003-05-12 2003-05-12 Polyethylene glycol conjugated peptide

Publications (1)

Publication Number Publication Date
JP2004331630A true JP2004331630A (en) 2004-11-25

Family

ID=33508114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003133641A Pending JP2004331630A (en) 2003-05-12 2003-05-12 Polyethylene glycol conjugated peptide

Country Status (1)

Country Link
JP (1) JP2004331630A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088952A1 (en) * 2006-01-31 2007-08-09 Taiho Pharmaceutical Co., Ltd. Liposome preparation comprising substance having anti-tumor activity
EP1935433A1 (en) * 2006-12-13 2008-06-25 Institute of Nuclear Energy Research, Atomic Energy Council A method for preparing covalent lipid-spacer-peptide conjugates
WO2009125858A1 (en) * 2008-04-07 2009-10-15 大鵬薬品工業株式会社 Lipid dispersion preparation comprising 2-indolinone derivative
US7632919B2 (en) 2005-12-15 2009-12-15 E.I. Du Pont De Nemours And Company Polystyrene binding peptides and methods of use
US7700716B2 (en) 2005-12-15 2010-04-20 E. I. Du Pont De Nemours And Company Polytetrafluoroethylene binding peptides and methods of use
US7709601B2 (en) 2005-12-15 2010-05-04 E. I. Du Pont De Nemours And Company Nylon binding peptides and methods of use
US7858581B2 (en) 2005-12-15 2010-12-28 E. I. Du Pont De Nemours And Company PMMA binding peptides and methods of use
US7906617B2 (en) 2005-12-15 2011-03-15 E. I. Du Pont De Nemours And Company Polyethylene binding peptides and methods of use
US7928076B2 (en) 2005-12-15 2011-04-19 E. I. Du Pont De Nemours And Company Polypropylene binding peptides and methods of use
JP2015007021A (en) * 2013-06-26 2015-01-15 富士フイルム株式会社 Lipid particles, nucleic acid delivery carrier, composition for producing nucleic acid delivery carrier, method for producing lipid particles, and gene-introducing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7632919B2 (en) 2005-12-15 2009-12-15 E.I. Du Pont De Nemours And Company Polystyrene binding peptides and methods of use
US7700716B2 (en) 2005-12-15 2010-04-20 E. I. Du Pont De Nemours And Company Polytetrafluoroethylene binding peptides and methods of use
US7709601B2 (en) 2005-12-15 2010-05-04 E. I. Du Pont De Nemours And Company Nylon binding peptides and methods of use
US7858581B2 (en) 2005-12-15 2010-12-28 E. I. Du Pont De Nemours And Company PMMA binding peptides and methods of use
US7906617B2 (en) 2005-12-15 2011-03-15 E. I. Du Pont De Nemours And Company Polyethylene binding peptides and methods of use
US7928076B2 (en) 2005-12-15 2011-04-19 E. I. Du Pont De Nemours And Company Polypropylene binding peptides and methods of use
WO2007088952A1 (en) * 2006-01-31 2007-08-09 Taiho Pharmaceutical Co., Ltd. Liposome preparation comprising substance having anti-tumor activity
JP4881327B2 (en) * 2006-01-31 2012-02-22 大鵬薬品工業株式会社 Liposome preparation of antitumor active substance
EP1935433A1 (en) * 2006-12-13 2008-06-25 Institute of Nuclear Energy Research, Atomic Energy Council A method for preparing covalent lipid-spacer-peptide conjugates
WO2009125858A1 (en) * 2008-04-07 2009-10-15 大鵬薬品工業株式会社 Lipid dispersion preparation comprising 2-indolinone derivative
JPWO2009125858A1 (en) * 2008-04-07 2011-08-04 静岡県公立大学法人 2-Lipid dispersion preparation containing indolinone derivative
JP2015007021A (en) * 2013-06-26 2015-01-15 富士フイルム株式会社 Lipid particles, nucleic acid delivery carrier, composition for producing nucleic acid delivery carrier, method for producing lipid particles, and gene-introducing method

Similar Documents

Publication Publication Date Title
KR100387191B1 (en) Camptothecin derivatives
ES2297861T3 (en) COMPOUNDS AND METHODS TO MODULATE CELL ADHESION.
JPH08508256A (en) Enhanced circulation effector compositions and methods
ES2232941T3 (en) COMPOUNDS AND METHODS TO INHIBIT THE INTERACTION BETWEEN ALFA-CATENINA AND BETA-CATENINA.
US9415114B2 (en) Conformations of divergent peptides with mineral binding affinity
WO2017063542A1 (en) Stabilized a7r polypeptides, and use thereof in constructing tumor targeted therapeutic drug delivery system
CN101670112A (en) Stable albumins lipid medicine carrying system and preparation method thereof
JP2004331630A (en) Polyethylene glycol conjugated peptide
CN104306332A (en) Camptothecin phospholipid compound, and medicinal composition and application thereof
US7153490B2 (en) Liposomes encapsulating anticancer drugs and use thereof in the treatment of malignant tumors
ES2337321T3 (en) SPECIFIC NEOVASCULAR PEPTIDES.
US10611796B2 (en) Method for regressing pancreatic tumor by a liposomal formulation along with DNA vaccines
US7666986B2 (en) Biologically active peptide comprising tyrosyl-seryl-valine (YSV)
WO2011083845A1 (en) Targeting agent for tumor site
JP5142313B2 (en) Polysarcosine derivative and drug carrier comprising the same as a membrane constituent
WO2001081371A1 (en) Gd3-mimetic peptides
WO2003020753A1 (en) Peptidic compounds selectively binding to p-selectin
ES2365084T3 (en) DERIVATIVES OF THE BIOLOGICALLY ACTIVE VAPEEHPTLLTEAPLNPK PEPTIDE.
US20060167229A1 (en) Biologically active peptide conjugates
WO2011074578A1 (en) Peptides imparting cell permeability to lipid membrane structure and/or enhancing cell permeability of lipid membrane structure, and lipid membrane structure comprising lipid bound to such peptide as constituent lipid and having cell permeability or showing enhanced cell permeability
US20080146510A1 (en) Biologically active peptide vapeehptllteaplnpk derivatives
JPH0390037A (en) Liposome pharmaceutical
JPH08225457A (en) Composition for inhibiting cancer metastasis
JPH0418029A (en) Liposome capable of killing hiv-infected cell
AU2002324363A1 (en) Peptidic compounds selectively binding to p-selectin

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060425

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20090113

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519