JP2004330501A - Foamed core material, frp molded product using it, method for manufacturing the foamed core material and method for manufacturing the frp molded product - Google Patents

Foamed core material, frp molded product using it, method for manufacturing the foamed core material and method for manufacturing the frp molded product Download PDF

Info

Publication number
JP2004330501A
JP2004330501A JP2003126824A JP2003126824A JP2004330501A JP 2004330501 A JP2004330501 A JP 2004330501A JP 2003126824 A JP2003126824 A JP 2003126824A JP 2003126824 A JP2003126824 A JP 2003126824A JP 2004330501 A JP2004330501 A JP 2004330501A
Authority
JP
Japan
Prior art keywords
core material
molded product
frp molded
reinforcing member
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003126824A
Other languages
Japanese (ja)
Inventor
文子 ▲高▼野
Fumiko Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003126824A priority Critical patent/JP2004330501A/en
Publication of JP2004330501A publication Critical patent/JP2004330501A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foamed core material excellent in strength as a three-dimensional foamed core material used as the core material of an FRP molded product. <P>SOLUTION: The foamed core material 2 is used in the FRP molded product obtained by coating the periphery of the three-dimensional foamed core material comprising a foamble resin with a fiber reinforced resin layer using a thermosetting resin as a matrix resin. Pillar-like members 4 comprising a non-foamable thermosetting resin are arranged so as to pierce a core material body 3 and almost lattice-like reinforcing members 5 comprising the same non-foamable thermosetting resin are arranged on the surface of the core material body 3 to reinforce the core material body 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、発泡コア材とそれを用いたFRP(繊維強化プラスチックス)成形品ならびにそれらの製造方法に関し、特にFRP成形品の芯材として用いるにあたって十分な強度を有する発泡コア材とそのコア材を芯材として用いたFRP成形品のほか、それらの発泡コア材およびFRP成形品の製造方法に関するものである。
【0002】
【従来の技術】
中空状で三次元形状をなすFRP成形品を製造する場合、芯材としていわゆる風船状の中空バッグを使用して一体成形を行う工法のほか、いわゆる最中構造として半割り状のプリフォームを成形した上でそのプリフォーム同士を接着接合する工法が多く採用されている。
【0003】
しかしながら、前者の工法では、構造体としての剛性や強度を高めるために内部に隔壁状のリブを設定したい場合にリブの位置決めや形状保持が困難であること、また後者の工法では、接着工程が増えることにより製作に要する時間が長くなるばかりでなく、プリフォーム同士の位置合わせ精度の確保等のために生産性が大きく低下する、等の理由から、第3の方法として、中空部を密度の小さい発泡体としてその周りを繊維強化樹脂で覆う方法が例えば特許文献1,2として試みられている。
【0004】
この方法によれば、発泡体を芯材(コア材)とすることにより、例えばリブに相当する部分でその芯材を分割し、分割した芯材同士の間に強化繊維を挟み込むことにより精度の良好なリブを一体に成形することが可能となり、しかもこの中間成形体を成形型内に入れて成形することで外表面の良好な製品を得ることが可能となる。
【0005】
【特許文献1】
特開平11−254566号公報 (図2)
【0006】
【特許文献2】
特開2000−233464号公報 (第3頁および図4)
【0007】
【発明が解決しようとする課題】
しかしながら、発泡体はその特殊性として全体にわたり気泡が存在しているため、外部からの荷重を受けると表面が容易に窪んだり陥没しやすく、特により軽量な製品を成形するべく発泡体の密度を小さいものにするほど上記の傾向が顕著となる。
【0008】
そのため、発泡体を強化繊維で覆う際もしくは強化繊維で覆った発泡体を成形型内にセットする際に、その発泡体が窪んだり陥没してしまうと、含浸する樹脂の量が多くなって製品板厚が局部的に厚くなったり強度の低下を招くほか、強化繊維が余り気味となることによって製品表面にしわが発生する等の不具合が発生する。
【0009】
また、外部荷重に対して硬く且つ表面に窪みや陥没が発生しにくい発泡体の使用も可能ではあるが、そのタイプの発泡体は非常に高価であり、特に安価で且つ軽量な製品を製作したい場合には採用することができない。
【0010】
本発明はこのような課題に着目してなされたものであり、FRP成形品の芯材として用いられる発泡コア材であることを前提として、強度的に優れるとともに安価で成形時にしわ等の発生の少ない構造を提供し、併せてその発泡コア材を用いたFRP成形品ならびびそれらの製造方法を提供しようとするものである。
【0011】
【課題を解決するための手段】
請求項1に記載の発明は、FRP成形品の芯材として用いられる三次元形状の発泡コア材であって、非発泡性の熱硬化性樹脂からなる柱状部材がコア材本体を貫通するように配置されているとともに、コア材本体の表面が同じく非発泡性の熱硬化性樹脂からなる補強部材にて略格子状に補強されていることを特徴とし、望ましくは請求項2に記載のように、上記柱状部材と補強部材とが互いに接続されていてコア材本体とともに一体成形されているものとする。
【0012】
また、請求項3に記載の発明は、請求項1に記載の発泡コア材を製造する方法として、予備成形したコア材本体に柱状部材に相当する貫通孔と補強部材に相当する凹部とを加工する工程と、コア材本体を成形型内に入れて非発泡性の熱硬化性樹脂材料を充填することにより、コア材本体と一体に柱状部材および補強部材を成形する工程とを含むことを特徴とする。
【0013】
この場合、請求項4に記載のように、予備成形したコア材本体に柱状部材に相当する貫通孔と補強部材に相当する凹部とを加工する工程に代えて、成形型内に発泡性樹脂材料を充填することにより、柱状部材に相当する貫通孔と補強部材に相当する凹部とを備えたコア材本体を成形する工程を含んだ製造方法としてもよい。
【0014】
請求項5に記載の発明は、請求項1に記載の発泡コア材を、熱硬化性樹脂をマトリックス樹脂とする繊維強化樹脂層で被覆したFRP成形品であることを特徴とする。
【0015】
さらに、請求項6に記載の発明は、請求項5に記載のFRP成形品を製造する方法として、予備成形したコア材本体に柱状部材に相当する貫通孔と補強部材に相当する凹部とを加工する工程と、コア材本体を成形型内に入れて非発泡性の熱硬化性樹脂材料を充填することにより、コア材本体と一体に柱状部材および補強部材を成形する工程と、柱状部材および補強部材が成形されたコア材本体を、熱硬化性樹脂をマトリックス樹脂とする繊維強化樹脂層で被覆する工程とを含むことを特徴とする。
【0016】
この場合、請求項7に記載のように、予備成形したコア材本体に柱状部材に相当する貫通孔と補強部材に相当する凹部とを加工する工程に代えて、成形型内に発泡性樹脂材料を充填することにより、柱状部材に相当する貫通孔と補強部材に相当する凹部とを備えたコア材本体を成形する工程を含んでいる製造方法としてもよい。
【0017】
したがって、請求項1,3に記載の発明では、FRP成形品の芯材となるべき発泡コア材そのものが熱硬化性樹脂の柱状部材や表面の補強部材で補強されているので、FRP成形品の成形時にその発泡コア材に圧力が加わっても発泡コア材が変形しにくいものとなり、その結果としてしわの発生や繊維強化樹脂層の板厚変動を少ないものとなる。
【0018】
また、請求項5,6に記載の発明では、簡便な方法により軟質な発泡コア材と一体に熱硬化性樹脂からなる柱状部材や補強部材が成形されるので、上記のようにFRP成形品の成形時にその発泡コア材に圧力が加わっても発泡コア材が変形しにくいものとなり、その結果としてしわの発生や繊維強化樹脂層の板厚変動を少ないものとすることができる。
【0019】
【発明の効果】
請求項1,3および請求項5,6に記載の発明によれば、発泡コア材そのものが熱硬化性樹脂からなる柱状部材や表面の補強部材で補強されているので、FRP成形品の成形の際に外力を受けても発泡コア材が変形しにくく、繊維強化樹脂層の厚み精度が向上するとともに、強化繊維のしわの発生も防止でき、FRP成形品の表面品質も併せて向上する。また、上記のような品質向上によって安価で且つ軽量な発泡コア材の使用で足りることから、コストアップの少ない軽量なFRP成形品を成形できる効果がある。
【0020】
【発明の実施の形態】
図1〜4は本発明の好ましい第1の実施の形態を示しており、特に図2は先に述べたように軽量化を主眼としつつ中空状のFRP成形品に代えて用いられる閉断面構造(中実構造)のFRP成形品1の一例を、図1はそのFRP成形品1の芯材として用いられる発泡コア材2をそれぞれ示している。
【0021】
図2に例示したFRP成形品1は立方体もしくは直方体形状のものであって、図1の(C)に示したほぼ相似形の発泡コア材2を芯材として、その周囲の六面全面が熱硬化性樹脂をマトリックス樹脂とする繊維強化樹脂層1aで被覆されているものである。
【0022】
上記の発泡コア材2は、図1の(C)に示すように発泡性樹脂からなるコア材本体3を母体として、その内部を後述する柱状部材4をもって、表層部を略格子状の補強部材5をもってそれぞれ補強したものであり、発泡コア材2全体として外部圧力に対する強度が従来のものより飛躍的に高められている点に特徴がある。より詳しくは、図1の(A)に示すように所定の発泡性樹脂材料をもって立方体もしくは直方体形状のコア材本体3を予備成形し、そのコア材本体3の六面全面に個々に貫通しつつ相互に交差するようにして複数の貫通孔6を加工する。さらに、コア材本体3の六面全面の外周面には格子状の補強部材5を配置したい部位に同図(B)および図3に示すように凹部7を溝加工する。こうして、貫通孔6や凹部7の二次加工が施されたコア材本体3を所定の成形型に入れた上で、上記の貫通孔6や凹部7に相当する位置に非発泡性の熱硬化性樹脂材料を充填して、柱状部材4や補強部材5を一体に成形する。これにより、柱状部材4はコア材本体3の中心部の交差部で互いに接続されるとともに、補強部材5,5同士もまた互いに接続されながら柱状部材4とも接続されるかたちとなってそれぞれがコア材本体3と面一状態となり、これら柱状部材4や補強部材5にて補強された図1の(C)に示す発泡コア材2が成形される。
【0023】
図4は、上記の貫通孔6や凹部7等の二次加工が施されたコア材本体3を用いた発泡コア材2のより具体的な成形方法を示す。
【0024】
同図(A)に示すように、下型8と上型9とからなる成形型10のうちその下型8の製品形状部空間11内に先に加工したコア材本体2を挿入し、上記の貫通孔6や凹部7に十分に充満するように非発泡性の熱硬化性樹脂材料を充填する。そして、上型9を閉じ上でその熱硬化性樹脂材料を硬化させる。所定時間経過後に金開きして脱型すれば、図1の(C)に示したように柱状部材4や格子状の補強部材5で補強された発泡コア材2が成形される。
【0025】
こうして発泡コア材2が成形されたならば、その周囲を例えばシート状等の強化繊維で被覆する。発泡コア材2を強化繊維で被覆したとしても、発泡コア材2自体は予め熱硬化性樹脂からなる柱状部材6や補強部材7にて補強されているので、軽量でありながらも十分な耐圧強度を有しており、従来のように変形によって窪んだり陥没したりすることがない。
【0026】
次いで、強化繊維で被覆した発泡コア材2を図示しない成形型に入れた上で密閉し、マトリックス樹脂である熱硬化性樹脂材料を型内に注入,充填して、その樹脂材料を強化繊維に含浸させながら硬化させる。そして、所定時間経過後に脱型すれば、上記の発泡コア材2を芯材としてその表面が熱硬化性樹脂をマトリックス樹脂とする繊維強化樹脂層1aで被覆された図2に示したようなFRP成形品1が得られることになる。
【0027】
この場合、強化繊維で被覆された発泡コア材2を成形型内にセットした際に、その強化繊維間に隙間があって例えば部分的に疎密状態が発生していたとしても、発泡コア材2自体は先に述べたように柱状部材6や補強部材7で十分に補強されているので、上記のような強化繊維の疎密の影響で窪んだり陥没したりすることがなく、逆に強化繊維を積極的に押し伸ばすようにして成形型の型面に押し付ける役目をする。これにより、繊維強化樹脂層1aの厚みのばらつきが少なく且つ表面精度の良好なFRP成形品1が成形されることになる。
【0028】
ここで、発泡コア材2を強化繊維で被覆したものを成形型内にセットするのに代えて、型内に予め強化繊維をセットしておき、その後から発泡コア材2を単独で型内にセットするようにしてもよい。
【0029】
図5,6は本発明の第2の実施の形態を示し、発泡コア材2の成形手順の別の例を示している。
【0030】
すなわち、先の第1の実施の形態では、予備成形したコア材本体3に対し柱状部材4や補強部材5となるべき位置に貫通孔6や凹部7の二次加工を施すことでコア材本体3としているのに対して、この第2の実施の形態では図6に示すようにコア材本体23そのものの成形をもって先の貫通孔6や凹部7と同等の貫通孔16および凹部17までも一気に成形するものである。
【0031】
図5に示すように、コア材本体23を成形するための成形型12として下型13と上型14とからなるものを用い、下型13にはシリンダ15駆動にて進退移動可能な角柱状の複数のコアピン18,19を製品形状部空間20に臨むように設けてある。これらのコアピン18,19は、直方体もしくは立方体形状のコア材本体23を発泡性樹脂材料で成形する際に、先に述べたように柱状部4となるべき貫通孔6を成形するためのものであり、中心となる一つのコアピン18をその製品形状部空間20を貫通するように配置したならば、それ以外のコアピン19,19を中心となるコアピン18に対して突き当てて互いに交差するように設定してある。なお、コアピン18,19同士が直接当接部分には適宜緩衝材を設けて、コアピン18,19同士の直接干渉を抑制することが望ましい。
【0032】
また、成形型12のうち製品形状部空間20となるべき上下型13,14の内面には図1の(B)および図3と同様に補強部材5となるべき凹部7,7を形成するべくその凹部形状を反転した形状の凸部21を形成してある。
【0033】
したがって、図5の(C)に示すような型締め状態で且つ各コアピン18,19を突出させた状態で製品形状部空間20に発泡性樹脂材料を充填し、コア材本体23を成形する。その際に、成形されるコア材本体23内に複数のコアピン18,19が配置されていることにより図1の(A)と同様の形態で角孔状の貫通孔16が成形され、同時に予め上下型13,14に形成された凸部21が転写されることでコア材本体23の表面には図1の(B)および図3と同様に補強部材5となるべき凹部17が成形される。なお、貫通孔16は必ずしも角状なくてもよい。そして、図5の(A)に示すように型開きしたならば各コアピン18,19を後退移動させた上で脱型することで図6に示すようなコア材本体23を得ることができる。
【0034】
この後、上記コア材本体23を図4と同様の成形型10内に挿入するとともに、非発泡性の熱硬化性樹脂材料を用いて柱状部材4および補強部材5をそれぞれ一体成形することにより、図1の(C)と同様の発泡コア材2を得ることができる。
【0035】
この実施の形態によれば、コア材本体23の成形と同時に貫通孔16や凹部17までもが同時に成形されるため、図1のようにコア材本体3を成形した後に貫通孔6や凹部7を二次加工する必要がなく、加工工数の削減を図ることが可能となる。
【図面の簡単な説明】
【図1】本発明の好ましい第1の実施の形態を示す図で、(A)は発泡コア材となるべきコア材本体の概略説明図、(B)は同図(A)のc方向矢視図、(C)は同図(A),(B)のコア材本体をもって形成された発泡コア材の概略説明図。
【図2】(A)は図1に示した発泡コア材を芯材とするFRP成形品の一例を示す概略説明図、(B)は同図(A)のa−a線に沿う断面図。
【図3】図1の(B)のb−b線に沿う拡大断面図。
【図4】(A)は図1の(C)に示す発泡コア材を成形するための成形型の構成説明図、(B)は同図(A)の下型の平面説明図。
【図5】本発明の第2の実施の形態を示す図で、コア材本体を成形するための成形型の片開き状態での構成説明図、(B)は同図(A)の下型の平面説明図、(C)は同図(A)の型締め状態での構成説明図。
【図6】図5の成形型を用いて成形されたコア材本体の構成説明図。
【符号の説明】
1…FRP成形品
1a…繊維強化樹脂層
2…発泡コア材
3…コア材本体
4…柱状部
5…補強部材
6…貫通孔
7…凹部
10…成形型
12…成形型
16…貫通孔
17…凹部
23…コア材本体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a foamed core material, an FRP (Fiber Reinforced Plastics) molded product using the same, and a method for producing the same, and in particular, a foamed core material having sufficient strength when used as a core material of an FRP molded product, and a core material thereof The present invention relates to an FRP molded product using the same as a core material, a foamed core material thereof and a method for producing the FRP molded product.
[0002]
[Prior art]
When manufacturing a hollow three-dimensional FRP molded product, in addition to the construction method using a so-called balloon-shaped hollow bag as a core material, a half-split preform is molded as a so-called middle structure After that, a method of adhesively bonding the preforms to each other is often used.
[0003]
However, in the former method, it is difficult to position and maintain the shape of ribs when it is desired to set partition ribs inside to increase the rigidity and strength of the structure.In the latter method, the bonding process is difficult. The third method is to increase the density of the hollow part by increasing the time required for the production, as well as greatly reducing the productivity for securing the alignment accuracy between the preforms. As a small foam, a method of covering the periphery with a fiber reinforced resin has been attempted, for example, in Patent Documents 1 and 2.
[0004]
According to this method, by using the foam as the core material (core material), for example, the core material is divided at a portion corresponding to the rib, and the reinforcing fiber is sandwiched between the divided core materials, thereby improving the accuracy. A good rib can be integrally formed, and a product having a good outer surface can be obtained by putting the intermediate molded body into a molding die and molding.
[0005]
[Patent Document 1]
JP-A-11-254566 (FIG. 2)
[0006]
[Patent Document 2]
JP-A-2000-233364 (page 3 and FIG. 4)
[0007]
[Problems to be solved by the invention]
However, foams have bubbles as a whole because of their specialty, so when subjected to an external load, the surface is easily dented or depressed.In particular, the density of the foam is reduced to form a lighter product. The smaller the size is, the more remarkable the above tendency becomes.
[0008]
Therefore, when the foam is covered with the reinforcing fiber or when the foam covered with the reinforcing fiber is set in the mold, if the foam is depressed or depressed, the amount of the resin to be impregnated increases and the product is impregnated. In addition to locally increasing the thickness of the sheet or lowering the strength, the reinforcing fiber becomes too soft to cause wrinkles on the surface of the product.
[0009]
It is also possible to use a foam that is hard against external loads and does not easily cause depressions or depressions on the surface, but that type of foam is very expensive, and it is particularly desirable to manufacture a cheap and lightweight product. Cannot be adopted in the case.
[0010]
The present invention has been made in view of such a problem, and is premised on a foam core material used as a core material of an FRP molded product. An object of the present invention is to provide an FRP molded article using the foamed core material and a method for producing the same, in addition to providing a small structure.
[0011]
[Means for Solving the Problems]
The invention according to claim 1 is a three-dimensional foam core material used as a core material of an FRP molded product, wherein a columnar member made of a non-foamable thermosetting resin penetrates the core material body. And a reinforcing member made of a non-foaming thermosetting resin, and the surface of the core material body is reinforced in a substantially lattice-like manner, and desirably, as described in claim 2. It is assumed that the columnar member and the reinforcing member are connected to each other and are integrally formed with the core material main body.
[0012]
According to a third aspect of the present invention, as a method of manufacturing the foamed core material according to the first aspect, a through-hole corresponding to a columnar member and a concave portion corresponding to a reinforcing member are formed in a preformed core material body. And a step of molding the columnar member and the reinforcing member integrally with the core material body by placing the core material body in a mold and filling with a non-foamable thermosetting resin material. And
[0013]
In this case, instead of forming the through-hole corresponding to the columnar member and the concave portion corresponding to the reinforcing member in the preformed core material main body, a foamable resin material is provided in the molding die. To form a core material main body having a through hole corresponding to a columnar member and a concave portion corresponding to a reinforcing member.
[0014]
According to a fifth aspect of the present invention, there is provided an FRP molded product in which the foamed core material according to the first aspect is covered with a fiber reinforced resin layer using a thermosetting resin as a matrix resin.
[0015]
Further, according to a sixth aspect of the present invention, as a method of manufacturing the FRP molded product according to the fifth aspect, a through hole corresponding to a columnar member and a concave portion corresponding to a reinforcing member are formed in a preformed core material main body. Forming a columnar member and a reinforcing member integrally with the core material body by placing the core material body in a molding die and filling a non-foaming thermosetting resin material; and Covering the core material main body on which the member is molded with a fiber-reinforced resin layer using a thermosetting resin as a matrix resin.
[0016]
In this case, instead of the step of processing the through-hole corresponding to the columnar member and the concave portion corresponding to the reinforcing member in the preformed core material main body, a foamable resin material is provided in the molding die. To form a core material main body having a through hole corresponding to a columnar member and a concave portion corresponding to a reinforcing member.
[0017]
Therefore, in the first and third aspects of the present invention, the foamed core material itself, which is to be the core of the FRP molded product, is reinforced by the columnar member or the surface reinforcing member of the thermosetting resin. Even when pressure is applied to the foamed core material during molding, the foamed core material is less likely to be deformed, and as a result, wrinkles and variations in the thickness of the fiber reinforced resin layer are reduced.
[0018]
According to the fifth and sixth aspects of the present invention, a columnar member or a reinforcing member made of a thermosetting resin is formed integrally with a soft foam core material by a simple method. Even when pressure is applied to the foamed core material during molding, the foamed core material is less likely to be deformed, and as a result, wrinkles and variations in the thickness of the fiber reinforced resin layer can be reduced.
[0019]
【The invention's effect】
According to the first, third and fifth and sixth aspects of the present invention, since the foamed core material itself is reinforced by the columnar member made of the thermosetting resin or the reinforcing member on the surface, it is possible to form the FRP molded product. In this case, even when an external force is applied, the foamed core material is not easily deformed, the thickness accuracy of the fiber reinforced resin layer is improved, wrinkles of the reinforcing fibers can be prevented, and the surface quality of the FRP molded article is also improved. In addition, the use of an inexpensive and lightweight foam core material suffices due to the above-described quality improvement, so that there is an effect that a lightweight FRP molded product with a small increase in cost can be formed.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 4 show a first preferred embodiment of the present invention. In particular, FIG. 2 shows a closed cross-sectional structure used as a substitute for a hollow FRP molded product while focusing on weight reduction as described above. FIG. 1 shows an example of a (solid structure) FRP molded product 1, and a foam core material 2 used as a core material of the FRP molded product 1.
[0021]
The FRP molded article 1 illustrated in FIG. 2 has a cubic or rectangular parallelepiped shape, and the substantially similar foamed core material 2 shown in FIG. It is covered with a fiber reinforced resin layer 1a using a curable resin as a matrix resin.
[0022]
As shown in FIG. 1 (C), the foamed core material 2 has a core material body 3 made of a foamable resin as a base, a columnar member 4 described below, and a surface layer portion having a substantially lattice-like reinforcing member. 5, and is characterized in that the strength of the foam core material 2 as a whole against external pressure is dramatically increased as compared with the conventional one. More specifically, as shown in FIG. 1A, a cubic or rectangular parallelepiped core material body 3 is preformed with a predetermined foamable resin material, and the core material body 3 is individually penetrated through the entire six surfaces of the core material body 3. The plurality of through holes 6 are processed so as to cross each other. Further, a recess 7 is formed on the entire outer peripheral surface of the six surfaces of the core material body 3 at a portion where the lattice-like reinforcing member 5 is to be disposed, as shown in FIGS. After the core material main body 3 on which the secondary processing of the through-holes 6 and the recesses 7 has been performed is put into a predetermined mold, the non-foaming thermosetting is placed at a position corresponding to the through-holes 6 and the recesses 7. The columnar member 4 and the reinforcing member 5 are integrally formed by filling a conductive resin material. As a result, the columnar members 4 are connected to each other at the intersection of the center of the core material main body 3, and the reinforcing members 5, 5 are also connected to the columnar members 4 while being connected to each other. The foamed core material 2 shown in FIG. 1C reinforced with the columnar members 4 and the reinforcing members 5 is formed flush with the material main body 3.
[0023]
FIG. 4 shows a more specific method of forming the foamed core material 2 using the core material main body 3 on which the secondary processing of the above-described through holes 6 and concave portions 7 and the like has been performed.
[0024]
As shown in FIG. 3A, the core material body 2 previously processed is inserted into the product shape space 11 of the lower die 8 of the molding die 10 composed of the lower die 8 and the upper die 9, and Is filled with a non-foamable thermosetting resin material so as to sufficiently fill the through holes 6 and the concave portions 7. Then, the upper mold 9 is closed and the thermosetting resin material is cured. If the mold is opened after a predetermined time has passed and the mold is released, the foamed core material 2 reinforced by the columnar members 4 and the lattice-like reinforcing members 5 is formed as shown in FIG.
[0025]
When the foam core material 2 is formed in this manner, the periphery thereof is covered with, for example, a sheet-like reinforcing fiber. Even if the foamed core material 2 is covered with the reinforcing fibers, the foamed core material 2 itself is reinforced in advance by the columnar members 6 and the reinforcing members 7 made of a thermosetting resin, so that it is lightweight but has sufficient pressure resistance. And does not dent or collapse due to deformation as in the prior art.
[0026]
Next, the foamed core material 2 covered with the reinforcing fibers is placed in a molding die (not shown) and sealed, and a thermosetting resin material as a matrix resin is injected and filled into the mold, and the resin material is converted into reinforcing fibers. Cure while impregnating. Then, if the mold is removed after a predetermined time has elapsed, the above-described FRP as shown in FIG. The molded article 1 is obtained.
[0027]
In this case, when the foamed core material 2 covered with the reinforcing fibers is set in a molding die, even if there is a gap between the reinforcing fibers and, for example, a partially sparse and dense state occurs, the foamed core material 2 Since itself is sufficiently reinforced by the columnar members 6 and the reinforcing members 7 as described above, the reinforcing fibers are not dented or depressed by the influence of the density of the reinforcing fibers as described above. It plays a role of pushing the mold surface of the mold in such a way that it is actively extended. As a result, the FRP molded product 1 having a small variation in the thickness of the fiber reinforced resin layer 1a and a good surface accuracy is molded.
[0028]
Here, instead of setting the foamed core material 2 covered with the reinforcing fiber in the mold, the reinforcing fiber is set in the mold in advance, and then the foamed core material 2 alone is placed in the mold. You may make it set.
[0029]
5 and 6 show a second embodiment of the present invention, and show another example of a molding procedure of the foamed core material 2.
[0030]
That is, in the first embodiment, the preformed core material main body 3 is subjected to the secondary processing of the through holes 6 and the concave portions 7 at positions where the columnar members 4 and the reinforcing members 5 are to be formed. On the other hand, in the second embodiment, as shown in FIG. 6, the core material body 23 itself is formed and the through holes 16 and the recesses 17 equivalent to the through holes 6 and the recesses 7 are formed at a stroke in the second embodiment. It is to be molded.
[0031]
As shown in FIG. 5, a molding die 12 for molding a core material main body 23 is composed of a lower die 13 and an upper die 14. The lower die 13 has a prismatic shape which can be moved forward and backward by driving a cylinder 15. The plurality of core pins 18, 19 are provided so as to face the product shape part space 20. These core pins 18 and 19 are for forming the through-hole 6 to be the columnar portion 4 as described above when the rectangular or cubic core material body 23 is formed from the foamable resin material. If one core pin 18 serving as the center is disposed so as to penetrate the product shape space 20, the other core pins 19, 19 abut against the center core pin 18 so as to intersect each other. It has been set. In addition, it is desirable that a buffer material is appropriately provided in a portion where the core pins 18 and 19 are in direct contact with each other to suppress direct interference between the core pins 18 and 19.
[0032]
Also, in the inner surfaces of the upper and lower dies 13 and 14 which are to be the product shape space 20 of the molding die 12, concave portions 7 and 7 which are to be the reinforcing members 5 are formed in the same manner as in FIGS. A convex portion 21 having a shape inverted from the concave shape is formed.
[0033]
Therefore, the foamed resin material is filled in the product shape space 20 in a mold-clamped state as shown in FIG. 5C and with the core pins 18 and 19 protruding, and the core material body 23 is formed. At this time, since a plurality of core pins 18 and 19 are arranged in the core material body 23 to be formed, the square through hole 16 is formed in the same form as that of FIG. By transferring the protrusions 21 formed on the upper and lower dies 13 and 14, the recesses 17 to be the reinforcing members 5 are formed on the surface of the core material main body 23 as in FIGS. 1B and 3. . Note that the through holes 16 do not necessarily have to be square. Then, when the mold is opened as shown in FIG. 5A, the core pins 18 and 19 are moved backward and then removed from the mold, whereby the core material body 23 as shown in FIG. 6 can be obtained.
[0034]
Thereafter, the core member main body 23 is inserted into the molding die 10 similar to that of FIG. 4, and the columnar member 4 and the reinforcing member 5 are integrally molded using a non-foaming thermosetting resin material, respectively. A foam core material 2 similar to that shown in FIG. 1C can be obtained.
[0035]
According to this embodiment, since the through hole 16 and the concave portion 17 are formed simultaneously with the molding of the core material body 23, the through hole 6 and the concave portion 7 are formed after the core material body 3 is formed as shown in FIG. Need not be subjected to secondary processing, and the number of processing steps can be reduced.
[Brief description of the drawings]
1A and 1B are diagrams showing a first preferred embodiment of the present invention, wherein FIG. 1A is a schematic explanatory view of a core material main body to be a foamed core material, and FIG. (C) is a schematic explanatory view of a foamed core material formed with the core material body of FIGS. (A) and (B).
2A is a schematic explanatory view showing an example of an FRP molded product using the foamed core material shown in FIG. 1 as a core material, and FIG. 2B is a cross-sectional view taken along the line aa in FIG. .
FIG. 3 is an enlarged sectional view taken along line bb of FIG. 1 (B).
4A is an explanatory view of a configuration of a molding die for molding the foamed core material shown in FIG. 1C, and FIG. 4B is an explanatory plan view of a lower mold of FIG. 1A.
FIG. 5 is a view showing a second embodiment of the present invention, and is a configuration explanatory view of a mold for molding a core material main body in a single-open state, and FIG. 5B is a lower mold of FIG. (C) is an explanatory view of the configuration in the mold-clamped state of FIG. (A).
FIG. 6 is a structural explanatory view of a core material main body formed by using the forming die of FIG. 5;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... FRP molded article 1a ... Fiber reinforced resin layer 2 ... Foam core material 3 ... Core material main body 4 ... Columnar part 5 ... Reinforcement member 6 ... Through hole 7 ... Depression 10 ... Mold 12 ... Mold 16 ... Through hole 17 ... Recess 23: Core material body

Claims (7)

FRP成形品の芯材として用いられる三次元形状の発泡コア材であって、
非発泡性の熱硬化性樹脂からなる柱状部材がコア材本体を貫通するように配置されているとともに、
コア材本体の表面が同じく非発泡性の熱硬化性樹脂からなる補強部材にて略格子状に補強されていることを特徴とする発泡コア材。
A three-dimensional foam core material used as a core material of an FRP molded product,
While the columnar member made of a non-foamable thermosetting resin is arranged to penetrate the core material main body,
A foamed core material, wherein a surface of the core material body is reinforced in a substantially lattice shape by a reinforcing member also made of a non-foamable thermosetting resin.
上記柱状部材と補強部材とが互いに接続されていてコア材本体とともに一体成形されていることを特徴とする請求項1に記載の発泡コア材。The foamed core material according to claim 1, wherein the columnar member and the reinforcing member are connected to each other and are integrally formed with the core material main body. 請求項1に記載の発泡コア材を製造する方法であって、
予備成形したコア材本体に柱状部材に相当する貫通孔と補強部材に相当する凹部とを加工する工程と、
コア材本体を成形型内に入れて非発泡性の熱硬化性樹脂材料を充填することにより、コア材本体と一体に柱状部材および補強部材を成形する工程と、
を含むことを特徴とする発泡コア材の製造方法。
A method for producing a foamed core material according to claim 1,
A step of processing a preformed core material body with a through hole corresponding to a columnar member and a concave portion corresponding to a reinforcing member,
A step of forming the columnar member and the reinforcing member integrally with the core material body by placing the core material body in a molding die and filling the foaming thermosetting resin material,
A method for producing a foamed core material, comprising:
予備成形したコア材本体に柱状部材に相当する貫通孔と補強部材に相当する凹部とを加工する工程に代えて、
成形型内に発泡性樹脂材料を充填することにより、柱状部材に相当する貫通孔と補強部材に相当する凹部とを備えたコア材本体を成形する工程を含んでいることを特徴とする請求項3に記載の発泡コア材の製造方法。
Instead of processing the through-hole corresponding to the columnar member and the concave portion corresponding to the reinforcing member in the preformed core material main body,
A step of forming a core material body having a through-hole corresponding to a columnar member and a concave portion corresponding to a reinforcing member by filling a foaming resin material in a molding die. 4. The method for producing a foamed core material according to item 3.
請求項1に記載の発泡コア材を、熱硬化性樹脂をマトリックス樹脂とする繊維強化樹脂層で被覆したことを特徴とするFRP成形品。An FRP molded product, wherein the foamed core material according to claim 1 is coated with a fiber-reinforced resin layer containing a thermosetting resin as a matrix resin. 請求項5に記載のFRP成形品を製造する方法であって、
予備成形したコア材本体に柱状部材に相当する貫通孔と補強部材に相当する凹部とを加工する工程と、
コア材本体を成形型内に入れて非発泡性の熱硬化性樹脂材料を充填することにより、コア材本体と一体に柱状部材および補強部材を成形する工程と、
柱状部材および補強部材が成形されたコア材本体を、熱硬化性樹脂をマトリックス樹脂とする繊維強化樹脂層で被覆する工程と、
を含むことを特徴とするFRP成形品の製造方法。
A method for producing an FRP molded article according to claim 5,
A step of processing a preformed core material body with a through hole corresponding to a columnar member and a concave portion corresponding to a reinforcing member,
A step of forming the columnar member and the reinforcing member integrally with the core material body by placing the core material body in a molding die and filling the foaming thermosetting resin material,
A step of coating the core material body formed with the columnar member and the reinforcing member with a fiber-reinforced resin layer using a thermosetting resin as a matrix resin,
A method for producing an FRP molded product, comprising:
予備成形したコア材本体に柱状部材に相当する貫通孔と補強部材に相当する凹部とを加工する工程に代えて、
成形型内に発泡性樹脂材料を充填することにより、柱状部材に相当する貫通孔と補強部材に相当する凹部とを備えたコア材本体を成形する工程を含んでいることを特徴とする請求項6に記載のFRP成形品の製造方法。
Instead of processing the through-hole corresponding to the columnar member and the concave portion corresponding to the reinforcing member in the preformed core material main body,
A step of forming a core material body having a through-hole corresponding to a columnar member and a concave portion corresponding to a reinforcing member by filling a foaming resin material in a molding die. 7. The method for producing an FRP molded product according to item 6.
JP2003126824A 2003-05-02 2003-05-02 Foamed core material, frp molded product using it, method for manufacturing the foamed core material and method for manufacturing the frp molded product Pending JP2004330501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003126824A JP2004330501A (en) 2003-05-02 2003-05-02 Foamed core material, frp molded product using it, method for manufacturing the foamed core material and method for manufacturing the frp molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003126824A JP2004330501A (en) 2003-05-02 2003-05-02 Foamed core material, frp molded product using it, method for manufacturing the foamed core material and method for manufacturing the frp molded product

Publications (1)

Publication Number Publication Date
JP2004330501A true JP2004330501A (en) 2004-11-25

Family

ID=33503592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003126824A Pending JP2004330501A (en) 2003-05-02 2003-05-02 Foamed core material, frp molded product using it, method for manufacturing the foamed core material and method for manufacturing the frp molded product

Country Status (1)

Country Link
JP (1) JP2004330501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018502769A (en) * 2015-01-06 2018-02-01 エスケー ケミカルズ カンパニー リミテッド Marine composite panel and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018502769A (en) * 2015-01-06 2018-02-01 エスケー ケミカルズ カンパニー リミテッド Marine composite panel and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US10399307B2 (en) Reinforced composite structure
EP2990186B1 (en) Method of fabricating a formed structure comprising an epoxy core with expandable microspheres
JP2013532596A (en) Molded plastic multilayer component with continuous reinforcing fiber layer and method of manufacturing the same
US20140315453A1 (en) Stand-Up Paddle Board and Method of Manufacture
JP2019030597A (en) Vehicle seat member
JP2004330501A (en) Foamed core material, frp molded product using it, method for manufacturing the foamed core material and method for manufacturing the frp molded product
JP2008238566A (en) Method of manufacturing fiber-reinforced resin structure and fiber-reinforced resin structure
KR100692387B1 (en) Manufacturing method for vacuum forming products
JP2557249B2 (en) Method for manufacturing different hardness cushion body
JP4527994B2 (en) Reinforced panel molding method, foam core molding method, and panel structure
JP2004306398A (en) Method for manufacturing frp structure
CN100450859C (en) Cushion case frame
KR102174300B1 (en) Method for manufacturing beam of sandwich-structred
JP2019077061A (en) Resin structure and method for producing the same
JP7252021B2 (en) Resin injection molded product and its manufacturing method
JP7212408B1 (en) Method of bonding foam and reinforcing core
KR102513838B1 (en) Interior parts applying lightweight composite material and manufacturing method
JP5607600B2 (en) Foamed resin molding structure
JP7140675B2 (en) Composite molded member and manufacturing method thereof
JPH11207843A (en) Manufacture of honeycomb composite body
JP5966375B2 (en) Foam molded member and method for manufacturing the same
JPH0612691Y2 (en) Cushion body
JP2003311755A (en) Hollow sandwich member and manufacturing method therefor
JP2001113621A (en) Composite molded article, steering wheel, and production method therefor
JP2000254992A (en) Foamed molding and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407