JP2004330097A - Method for freezing and removing polluted soil and underground frozen body - Google Patents

Method for freezing and removing polluted soil and underground frozen body Download PDF

Info

Publication number
JP2004330097A
JP2004330097A JP2003130146A JP2003130146A JP2004330097A JP 2004330097 A JP2004330097 A JP 2004330097A JP 2003130146 A JP2003130146 A JP 2003130146A JP 2003130146 A JP2003130146 A JP 2003130146A JP 2004330097 A JP2004330097 A JP 2004330097A
Authority
JP
Japan
Prior art keywords
soil
frozen
frozen soil
cooling
discontinuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003130146A
Other languages
Japanese (ja)
Other versions
JP4098664B2 (en
Inventor
Yuzuru Ito
譲 伊藤
Masafumi Kamon
雅史 嘉門
Kazuaki Hioki
和昭 日置
Tadaaki Nomura
忠明 野村
Hisao Izuta
久雄 伊豆田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinjo Rubber Co Ltd
Seiken Co Ltd
Fudo Tetra Corp
Original Assignee
Kinjo Rubber Co Ltd
Seiken Co Ltd
Fudo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinjo Rubber Co Ltd, Seiken Co Ltd, Fudo Construction Co Ltd filed Critical Kinjo Rubber Co Ltd
Priority to JP2003130146A priority Critical patent/JP4098664B2/en
Publication of JP2004330097A publication Critical patent/JP2004330097A/en
Application granted granted Critical
Publication of JP4098664B2 publication Critical patent/JP4098664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for freezing and removing polluted soil, for making block-shaped frozen soil by utilizing a freezing technique and sealing the volatilization of a harmful substance or the malodor of waste with ice to more reduce an environmental risk than before while enhancing the removal/feed-out efficiency of polluted soil. <P>SOLUTION: This method for freezing and removing polluted soil has a cooling pipe arranging process for arranging cooling pipes in polluted soil, in which a pollutant is present, so as to make the distances between the center parts of the cooling pipes equal, a cooling process for supplying a freezing medium to the cooling pipes to form discontinuous frozen soil comprising the surface part of non-frozen soil and the remainder of frozen soil around the cooling pipes, and a frozen soil removing process for taking out the frozen part of discontinuous frozen soil to the surface of the ground. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、臭気等を放つ廃棄物や揮発性の有害物質を含有する汚染土壌を円柱状のブロック凍土として得、該凍土を地表に引き上げ除去することで掘削時や運搬時における環境リスクを低減する方法に関するものである。
【0002】
【従来の技術】
水銀化合物、ダイオキシン、ベンゼン等の有害物質で汚染された土壌を掘削し加熱処理する場合、あるいは、悪臭を放つ廃棄物や汚泥ヘドロなどを撤去する場合、掘削時や運搬時における有害物質の大気への揮散や廃棄物の悪臭などが問題となる。従来、これを解決するものとして、例えば掘削時には汚染サイトの周辺にテント等を張り、その内部で作業を行い、有害物質が周辺地域へ揮散することや廃棄物の悪臭が漂うことを防止している。また、運搬時には汚染土壌をドラム缶などで密封し、搬出しているのが現状である。このような掘削時あるいはドラム缶封入時においては、作業者は有毒ガスマスク等を着用する等の対策をとっている。
【0003】
一方、地盤中に多数の冷却管を配設して地盤を凍結させる工法が知られている。また、特許文献1の特開平11−169837号公報には、汚染地盤領域を凍結する工程に続き、その後該地盤から土壌内ガスを吸引し汚染蒸気を抽出する汚染地盤の浄化方法が開示されている。特開平11−169837号公報記載の方法によれば、凍結により土壌微粒子間に微小な撹乱を生じさせ、その後不飽和地盤中に存在するガス状汚染物質を吸引するため吸引効果が高まり、ガス状汚染物質が効率的に除去されると共に土壌が浄化される。
【0004】
【特許文献1】
特開平11−169837号公報(請求項1、段落番号0010)
【0005】
【発明が解決しようとする課題】
しかしながら、従来の汚染サイトの周辺にテント等を張る方法や汚染土壌をドラム缶などに密封して除去する方法では、掘削時や運搬時における有害物質の揮散防止や廃棄物の悪臭対策が十分とは言えない。特に、有害物質が水銀化合物やダイオキシンの場合には、十分な対策を施しているとは言えず、作業者や周辺住民に対する安全面に問題が残っている。また、特開平11−169837号公報記載の汚染地盤の浄化方法は、汚染地盤の修復に係る浄化方法であり、汚染地盤の除去に係る方法ではない。特に水銀化合物やダイオキシンは土壌より完全に除去する必要があるため、これを含んだ土壌を掘削し、加熱等の別途の処理を行う必要がある。また、従来の地盤凍結工法は、地盤を凍結により硬化させて地盤の安定化を図るものであり、汚染土壌を凍結させ、これを凍結させたまま地中に取り出すものではない。
【0006】
従って、本発明の目的は、凍結技術を利用してブロック状の凍土をつくり、有害物質の揮散や廃棄物の臭気を氷で封じ込めて、環境リスクを従来にも増して低減し、汚染土壌の除去搬出効率を高める汚染土壌の凍結除去方法を提供することにある。
【0007】
【課題を解決するための手段】
すなわち、本発明は上記課題を解決するものであって、本発明(1)は、汚染物質が存在する汚染土壌に冷却管を中心部間が等距離になるように配設する冷却管配設工程と、該冷却管に冷媒を供給して未凍土の表皮部と残部の凍土とからなる不連続凍土を冷却管周りに形成する冷却工程と、該不連続凍土の凍土部分を地表に引き出す凍土除去工程を有する汚染土壌の凍結除去方法を提供するものである。本発明によれば、凍結技術を利用し且つ凍結条件を制御して汚染土壌をブロック状の凍土が多数配列された集合体とすることができるため、このブロック状の凍土を1個毎、例えばウインチなどの牽引機械により引き出し、そのままダンプに積載して搬出できるから、搬出効率が極めて優れると共に、有害物質の揮散や廃棄物の臭気を抑制できる。
【0008】
また、本発明(2)は、前記冷却工程と凍土除去工程の間に、冷媒の供給を停止して所定時間放置する温度平準化工程を行なうか、又は隣接する不連続凍土の境界部分に加熱管を設置して、当該境界部分を加熱する加熱工程を行なう前記汚染土壌の凍結除去方法を提供するものである。本発明によれば、前記発明と同様の効果を奏する他、冷却工程において、互いに隣接する冷却管の中間点(境界面)の土壌温度が概ね目標温度、例えば0〜5℃に到達した時点で、冷媒の供給を停止し、次いで放置して該中間点の温度が+0℃の温度となるように温度平準化を行なうため、未凍土の表皮部の領域を最小限にできると共に、大部分の凍土を大きな円柱状のブロック体として容易に搬出することができる。また、温度平準化工程に代えて、隣接する不連続凍土の境界部分を強制加熱する加熱工程を行なえば、境界部分の温度を短時間で目標温度にすることができ工期の短縮が図れる。
【0009】
本発明(3)は、前記冷却工程が、深度方向の途中に部分断熱部又は部分加熱部を少なくとも1つ備える冷却管に冷媒を供給して、深度方向において少なくとも2つのブロック状に分断された未凍土の表皮部と残部の凍土とからなる不連続凍土を冷却管周りに形成する工程である前記汚染土壌の凍結除去方法を提供するものである。本発明によれば、前記発明と同様の効果を奏する他、汚染土壌が深く深度が1回の掘削を越える場合には必要となるものであり、従来の冷却管では深度方向に長いブロック状の不連続凍土とせざるを得ない場合であっても、上記の改良された冷却管を用いるため、搬出に好適な寸法に分断できる。
【0010】
また、本発明(4)は、未凍土の表皮部と残部の凍土部とからなる円柱状の不連続凍土が多数配列した凍結体であって、平面視で互いに隣接する該不連続凍土の中心部間が等距離になるように配設されたものである地中凍結体を提供するものである。本発明の地中凍結体によれば、設計領域全体に占める不連続凍土の面積割合(平面視)が90%を超え、且つ設計領域全体に占める凍土の面積割合(平面視)が80%を超える。また、未凍土の表皮部は強度が弱いため、ブロック状の凍土の地表への引き上げを支障なく行うことができる。また、有害物質が封じ込まれたブロック状の凍土は、ダンプ等にそのまま乗せて搬出できる。また、不連続凍土の境界面に楔などを打ち込めば、隣接するブロック状の凍土を確実に区画でき、地表への引き上げがより容易となる。
【0011】
また、本発明(5)は、前記不連続凍土が、深度方向において少なくとも2つのブロック状に分断されたものである前記地中凍結体を提供するものである。本発明によれば、前記発明と同様の効果を奏する他、深度方向に深い汚染土壌であっても、搬出に好適な寸法に上下分断されており、この分断されたブロック状の凍土を容易に引き上げることができる。
【0012】
【発明の実施の形態】
本発明の汚染土壌の凍結除去方法は、汚染物質が存在する汚染土壌に冷却管を中心部間が等距離になるように配設する冷却管配設工程と、該冷却管に冷媒を供給して未凍土の表皮部と残部の凍土とからなる不連続凍土を冷却管周りに形成する冷却工程と、該不連続凍土の凍土部分を地表に引き出す凍土除去工程を有する。以下、図1及び図2を参照して工程毎に説明する。図1は冷却工程後の平面視の概略図であり、図2は冷却工程後における地中凍結体の模式的な断面図である。
【0013】
(冷却管配設工程)
本発明において、汚染土壌としては、地表面下、土壌中に汚染物質が存在するものであれば、特に制限されず、その地盤としては砂質、粘土層、互層等の自然地盤、廃棄物処理場の地盤、汚泥処理場の地盤及び埋め立てられた人工地盤などが挙げられる。このうち、地表面近傍又は地表面から10m程度の深さまでに汚染物質が存在する地盤が、特に凍結除去し易いという点で有利である。また、汚染物質としては、特に制限されず、例えば水銀化合物、ダイオキシン、ベンゼン、トリクロロエチレン、テトラクロロエチレン等が挙げられる。これらの他、悪臭を放つ汚染物質も含まれる。
【0014】
次に、これらの汚染土壌に互いに隣接する3つ、例えば図1中の6a、6b、6cが正三角形の頂点にくるように冷却管を配設する。冷却管の配設距離間隔(図1中の6a−6b間、6b−6c間、6a−6c間)としては、特に制限されないが、例えば1.5〜3.0m、好ましくは1.7〜2.5mである。正三角形配列にすることで、全対象領域に占める部分凍土の面積率を大きく採れ、凍結させるために必要な日数を少なくすることが出来る。また、冷却管の配設距離間隔が1.5m未満では、配設本数が多くなり不経済である。一方、3.0mを超えると、凍結させるために必要な日数を多く採る必要があり、エネルギーの損失が大きくなる。従来の地盤凍結工法は、地盤を凍結により硬化させて地盤の安定化を図るものであり、汚染土壌を多数の円柱状のブロックに凍結させ、このブロック状の凍土を1個毎、地表に取り出すという発想のものではない。
【0015】
冷却管は、冷却管周りに円柱状のブロックの凍土を形成させるものであり、汚染土壌の設計領域に前述の距離間隔で多数配設される。冷却管は公知の地中凍結工法で用いるものと同様のものを用いることができる。公知の地中凍結工法としては、ブラインと呼ばれる冷媒を冷凍機を使って−20℃〜−30℃に冷却し、これを地盤中に埋設した冷却管に循環ポンプで送り込んで地盤を冷却する凍結工法が挙げられる。冷却管の地中深さは、汚染土壌の深さ及び凍土温度等により適宜決定される。なお、凍土除去工程において凍土を地表に引き出す際、その周りの地盤が崩壊することを防止するため、該凍土周りには連続状で且つ温度が均質な凍結土留め壁を造成しておくことが好ましい。
【0016】
(冷却工程)
冷却工程は、図1に示すように、冷却管1に冷媒を供給して僅かの領域の未凍土の表皮部12と表皮部の内側であって大部分の残部の凍土11からなる不連続凍土2を冷却管1周りに形成する工程である。冷却工程において、冷却管1に供給する冷媒の温度としては、−15℃〜−30℃、好ましくは−20℃〜−30℃である。冷媒の温度が−5〜−10℃程度では、冷媒の供給期間が長くなりすぎて、エネルギー効率が悪い。冷媒の供給期間としては、特に制限されないが、地中の温度が通常約20℃であり、地中の大部分を凍結させることから、通常20〜120日である。
【0017】
冷却工程は、冷媒を冷却管1に前記日数の間連続供給して、不連続凍土2の境界部分9の温度が目標温度となるようにする。当該目標温度は、例えば0〜2℃である。目標温度が氷点以下であると、表皮部に未凍土部をつくるため逆に加熱が必要となり、エネルギーの無駄使いとなる。一方、2℃を超えるような温度では、冷却工程後の温度平準化期間が長くなるか、あるいは未凍土部分が厚くなりすぎて凍土部分の除去効率が悪くなる。冷却工程において、不連続凍土2の境界部分9の温度が0〜2℃の範囲であっても、冷却管1周りの凍土部11の温度は冷媒の温度の例えば−20〜−30℃である。冷却工程は冷却管1への冷媒の供給を停止することで終了する。
【0018】
(温度平準化工程)
温度平準化工程は、任意の工程であり、冷却管への冷媒の供給を停止した後、所定時間放置し、不連続凍土の温度の平準化を行なう工程である。冷却工程において冷媒の供給を停止した時点で、互いに隣接する冷却管1、1の中間点、すなわち境界部分9の土壌温度が目標温度の5℃に近いような場合、暫く放置して該境界部分9の温度が+0℃程度の温度、凍土部11の温度が−0〜−3℃程度の温度となるように温度の平準化を行なう。放置する所定時間としては、例えば5〜15日である。温度の平準化により、未凍土の表皮部12の領域を最小限にすると共に、大部分の残部の凍土11を大きなブロック状として容易に搬出することができる。また、未凍結と凍結を区分する計器を表皮部に設置することが、表皮部の凍結を確実に防止できる点で好ましい。このような計器としては、温度計及び電気抵抗器が挙げられる。温度計と電気抵抗器は併用して設置することが特に好ましい。
【0019】
(加熱工程)
加熱工程は、任意の工程であり、隣接する不連続凍土の境界部分に加熱管を設置して、当該境界部分を加熱する工程である。冷却工程で互いに隣接する冷却管1、1の中間点である境界部分9の土壌温度を冷却し過ぎた場合、あるいは温度平準化工程に代わる工程として行なうことができる。すなわち、この加熱工程は、隣接する不連続凍土の境界部分9を強制加熱するため、境界部分の温度を短時間で確実に氷点以上の温度にすることができ、かかる部分の地盤の強度を低下させ、工期の短縮を図ることができる。加熱管の設置は予め使用が予定されている場合、冷却管配設工程時に隣接する冷却管1、1の中間位置に配設してもよく、また加熱工程に入る前に配設してもよい。
【0020】
本発明において、冷却管1を汚染地盤4中から除去する時期としては、冷却工程後である。また、温度平準化工程又は加熱工程を行なう場合、冷却工程後であっても、あるいは温度平準化工程又は加熱工程後であってもよいが、この場合でも、冷却工程直後とすることが、既に用済み部材を放置しておく必要もなく、温度平準化工程や加熱工程後、直ちに凍らせた汚染土壌を搬出できる点で好ましい。冷却管1を凍土11から引き抜く方法としては、冷却管1に温水を数十分程度流すことで容易に行うことができる。なお、冷却管1をウィンチ等を取り付ける固定部として利用する場合には冷却管1を引抜かないこともある。
【0021】
冷却工程後、又は温度平準化工程や加熱工程を実施した場合にはそれらの工程後、地中に形成される地中凍結体としては、図2に示すように、僅かな領域の未凍土の表皮部12と大部分の領域を占める残部の凍土11とからなる円柱状の不連続凍土2が多数配列された集合体であって、平面視で互いに隣接する不連続凍土2の3つの中心部が等距離になるように配設されたものである。図2の地中凍結体10からは冷却管1が既に引抜かれた状態であり、冷却管1の跡は中空部13を形成している。1個の不連続凍土2の大きさとしては特に制限されないが、例えば直径2m、深さ2mである。また、凍土11の面積割合は、例えば不連続凍土の直径の80〜90%、好ましくは85〜90%である。
【0022】
(凍結除去工程)
凍結除去工程は、不連続凍土2の凍土11を地表に引き出す工程である。不連続凍土2は、表皮部12が未凍土であるため、凍土部分を1つのブロックとして地表に引き出すことができる。すなわち、凍土11の頭部に接続金具52を打ち込み、これにワイヤー54を通して、ウインチなどの牽引機械により引張れば、そのままダンプに積載して搬出できるから、搬出効率が極めて優れる。また、不連続凍土2の境界部分9に楔53などを打ち込めば、分割がより確実となり、地表への引き上げが更に容易となる(図5参照)。
【0023】
本発明の地中凍結体10によれば、設計領域全体に占める不連続凍土の面積割合(平面視)が90%を超え、且つ設計領域全体に占める凍土の面積割合(平面視)が80%を超える。また、未凍土の表皮部は強度が弱いため、ブロック状の凍土の地表への引き上げを支障なく行うことができる。また、有害物質が封じ込まれたブロック状の凍土は、ダンプ等にそのまま乗せて搬出できる。この際、有害物質は氷で封じ込まれているため、有害物質の揮散や廃棄物の臭気を抑制できる。
【0024】
また、本発明は、冷却管配設工程において、冷却管の配設と同時に、汚染土壌の各所に、温度測定用の測温器を配設しておくのがよい。これにより、効率よく且つ確実に不連続凍土を得ることができる。また、汚染土壌に冷却管を所定のピッチで配設した後、冷却工程に入る前段階で、地表面をシートで覆うことが、大気からの冷却地盤への熱の流入を防ぎ、また降雨時の水の流入を防止することができる点で好ましい。また、このシートは冷却工程後、あるいは温度平準化工程や加熱工程を行なう場合は、その後であって掘削工程前に除去する。
【0025】
また、本発明は、冷却工程において、改造された冷却管を用いることができる。図3は改造冷却管1の概略図である。改造冷却管は、従来の冷却管において、深度方向の途中に部分断熱部を設けたものである。すなわち、改造冷却管1aは、冷却管本体35の深さ方向の中間の外筒内周面に帯び状の断熱材34を付設してなるものであり、断熱材34の外筒面33から冷却ができず、それ以外の外筒面32から冷却するようになっている。また、帯び状の断熱材34に代えて、帯び状の加熱器を設置しても、同様の効果を奏する。なお、符号31は冷凍機であり、下向き矢印は冷媒の供給を示し、上向き矢印は冷媒の戻りを示している。
【0026】
このような冷却管1aを用いて、冷却工程を行なうと、図4に示すような、上下方向において2つのブロック状に分断された未凍土の表皮部12と残部の凍土11とからなる不連続凍土2a、2bを冷却管1周りに形成することができる。
なお、分断部分8の形態としては、上下2つのブロックが完全に分断された形態、及び冷却管1の周りに若干の凍土が形成され上下2つのブロックが連続した形態が挙げられる。若干の凍土で上下2つのブロックが連続していても、該連続部分は楔や牽引機械を作用させれば、折れるため地表への引き上げに支障をきたすことはない。なお、断熱材の配設個数としては、1個に限定されず、深度に合わせて、適宜のピッチで複数個を配設することができる。
【0027】
従来の冷却管1であれば、有害物質が深度方向に深く存在する場合、長いブロック状の不連続凍土を形成せざるを得ない。これでは1つの凍土を地表に引き出すのが困難であると共に、せっかく引き上げた凍土が大きすぎて、ダンプに乗らないことも起こり得る。しかし、図5に示すように、上下方向において2つのブロック状に分断された不連続凍土2a、2bが多数造成された地中凍結体10aとすれば、ブロック状の凍土を搬出に好適な寸法で引き上げることができるため、搬出効率が向上する。なお、図5中、符号51はクレーンを示す。
【0028】
【発明の効果】
本発明によれば、凍結技術を利用し且つ凍結条件を制御して汚染土壌をブロック状の凍土が多数配列された集合体とすることができるため、このブロック状の凍土を1個毎、例えばウインチなどの牽引機械により引き出し、そのままダンプに積載して搬出できるから、搬出効率が極めて優れると共に、有害物質の揮散や廃棄物の臭気を抑制できる。
また、本発明によれば、前記発明と同様の効果を奏する他、冷却工程において、互いに隣接する冷却管の中間点(境界面)の土壌温度が概ね目標温度、例えば0〜2℃に到達した時点で、冷媒の供給を停止し、次いで放置して該中間点の温度が+0℃の温度となるように温度平準化を行なうため、未凍土の表皮部の領域を最小限にできると共に、大部分の凍土を大きな円柱状のブロック体として容易に搬出することができる。また、温度平準化工程に代えて、隣接する不連続凍土の境界部分を強制加熱する加熱工程を行なえば、境界部分の温度を短時間で目標温度にすることができ工期の短縮が図れる。
また、本発明によれば、前記発明と同様の効果を奏する他、汚染土壌が深くまであり、従来の冷却管では深度方向に長いブロック状の不連続凍土とせざるを得ない場合であっても、上記の改良された冷却管を用いるため、搬出に好適な寸法に上下分断できる。
【0029】
また、本発明の地中凍結体によれば、設計領域全体に占める不連続凍土の面積割合(平面視)が90%を超え、且つ設計領域全体に占める凍土の面積割合(平面視)が80%を超える。また、未凍土の表皮部は強度が弱いため、ブロック状の凍土の地表への引き上げを支障なく行うことができる。また、有害物質が封じ込まれたブロック状の凍土は、ダンプ等にそのまま乗せて搬出できる。また、不連続凍土の境界面に楔などを打ち込めば、隣接するブロック状の凍土を確実に分断でき、地表への引き上げがより容易となる。
また、本発明によれば、前記発明と同様の効果を奏する他、搬出に好適な寸法に上下分断されたブロック状の凍土を容易に引き上げることができる。
【図面の簡単な説明】
【図1】冷却工程後の平面視の概略図である。
【図2】冷却管を除去した後の地中凍結体の模式的な断面図である。
【図3】改造冷却管の概略図である。
【図4】冷却管を除去した後の他の形態における地中凍結体の模式的な断面図である。
【図5】他の形態における地中凍結体の凍結除去工程を説明する図である。
【符号の説明】
1 冷却管
2、2a、2b 不連続凍土
3 表皮部以外の未凍結部
4 汚染地盤
6a、6b、6c 不連続凍土の中心部
8 分断部分
9 互いに隣接する冷却管の中間点(境界部分)
10、10a 地中凍結部
11 凍土
12 表皮部(未凍土)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention reduces environmental risks during excavation and transportation by obtaining contaminated soil containing odorous waste and volatile harmful substances as columnar block frozen soil, and lifting and removing the frozen soil to the surface. How to do it.
[0002]
[Prior art]
When excavating and heating soil contaminated with harmful substances such as mercury compounds, dioxins, and benzene, or when removing foul-smelling waste and sludge sludge, etc. There are problems such as volatilization of waste and bad smell of waste. Conventionally, as a solution to this, for example, a tent is installed around the contaminated site at the time of excavation and work is performed inside it to prevent harmful substances from volatilizing to the surrounding area and stink of waste. I have. At the time of transportation, contaminated soil is sealed with a drum or the like and is currently carried out. At the time of such excavation or at the time of enclosing the drum can, the operator takes measures such as wearing a toxic gas mask or the like.
[0003]
On the other hand, there is known a method of arranging a large number of cooling pipes in the ground to freeze the ground. Further, Japanese Patent Application Laid-Open No. 11-169837 of Patent Document 1 discloses a method of purifying a contaminated ground in which, following a step of freezing the contaminated ground area, gas in the soil is extracted from the ground to extract contaminated steam. I have. According to the method described in Japanese Patent Application Laid-Open No. 11-169837, a minute disturbance is caused between the soil fine particles by freezing, and thereafter, a gaseous pollutant existing in the unsaturated ground is suctioned. The pollutants are efficiently removed and the soil is purified.
[0004]
[Patent Document 1]
JP-A-11-169837 (Claim 1, paragraph number 0010)
[0005]
[Problems to be solved by the invention]
However, conventional methods of setting up tents around contaminated sites and removing contaminated soil by sealing them in drums, etc., do not provide sufficient measures to prevent harmful substances from evaporating during excavation and transportation and to prevent odors from waste. I can not say. In particular, when the harmful substance is a mercury compound or dioxin, it cannot be said that sufficient measures have been taken, and there remains a problem in terms of safety for workers and nearby residents. Further, the method for purifying contaminated ground described in Japanese Patent Application Laid-Open No. 11-169837 is a purification method for repairing contaminated ground, not a method for removing contaminated ground. In particular, since mercury compounds and dioxins need to be completely removed from the soil, it is necessary to excavate the soil containing the compounds and perform another treatment such as heating. Further, the conventional ground freezing method is intended to stabilize the ground by hardening the ground by freezing, and does not freeze the contaminated soil and take it out into the ground with the frozen soil.
[0006]
Therefore, an object of the present invention is to create a block-shaped frozen soil using freezing technology, to contain the odor of volatile substances and waste odors with ice, to reduce environmental risks more than before, and to reduce contaminated soil. It is an object of the present invention to provide a method for freezing and removing contaminated soil that enhances the removal and transport efficiency.
[0007]
[Means for Solving the Problems]
That is, the present invention is to solve the above-mentioned problem, and the present invention (1) provides a cooling pipe in a contaminated soil in which a contaminant is present such that the cooling pipes are arranged at equal distances between central portions. A cooling step of supplying a coolant to the cooling pipe to form a discontinuous frozen soil composed of a skin portion of the unfrozen soil and a remaining frozen soil around the cooling pipe; and a frozen soil for extracting the frozen soil portion of the discontinuous frozen soil to the surface of the ground. It is intended to provide a method for freezing contaminated soil having a removing step. According to the present invention, the contaminated soil can be formed into an aggregate in which a large number of block-shaped frozen soils are arranged by using a freezing technique and controlling the freezing condition. Since it can be pulled out by a towing machine such as a winch, loaded on a dump as it is, and carried out, the carrying-out efficiency is extremely excellent, and the volatilization of harmful substances and the odor of waste can be suppressed.
[0008]
In the present invention (2), a temperature leveling step in which the supply of the refrigerant is stopped and left for a predetermined time is performed between the cooling step and the frozen soil removing step, or the boundary between adjacent discontinuous frozen soils is heated. It is another object of the present invention to provide a method for freezing and removing the contaminated soil in which a pipe is installed and a heating step of heating the boundary portion is performed. According to the present invention, in addition to having the same effect as the above-described invention, in the cooling step, when the soil temperature at the intermediate point (boundary surface) of the cooling pipes adjacent to each other has substantially reached the target temperature, for example, 0 to 5 ° C. Then, the supply of the refrigerant is stopped, and then the temperature is leveled so that the temperature at the intermediate point becomes + 0 ° C., so that the area of the skin portion of the unfrozen soil can be minimized, and most of the The frozen soil can be easily carried out as a large cylindrical block. Further, if a heating step of forcibly heating the boundary portion between adjacent discontinuous frozen soils is performed instead of the temperature leveling step, the temperature of the boundary portion can be set to the target temperature in a short time, and the construction period can be shortened.
[0009]
In the present invention (3), in the cooling step, the coolant is supplied to a cooling pipe provided with at least one partial heat insulating part or at least one partial heating part in the middle in the depth direction, and divided into at least two blocks in the depth direction. It is an object of the present invention to provide a method for freezing and removing contaminated soil, which is a step of forming discontinuous frozen soil comprising a frozen skin portion and a remaining frozen soil around a cooling pipe. According to the present invention, in addition to having the same effects as the above-mentioned invention, it is necessary when the contaminated soil is deep and the depth exceeds one excavation. Even in the case where discontinuous frozen soil has to be used, the above-described improved cooling pipe can be used to divide it into a size suitable for unloading.
[0010]
Further, the present invention (4) is a frozen body in which a large number of columnar discontinuous frozen soils composed of a skin portion of unfrozen soil and a remaining frozen soil portion are arranged, and the centers of the discontinuous frozen soils adjacent to each other in a plan view. The present invention provides an underground frozen body that is arranged so that the distance between the clubs is equal. According to the underground frozen body of the present invention, the area ratio of discontinuous frozen soil in the entire design area (in plan view) exceeds 90%, and the area ratio of frozen ground in the entire design area (in plan view) exceeds 80%. Exceed. Further, since the skin portion of the unfrozen soil has low strength, the block-shaped frozen soil can be pulled up to the ground without any trouble. In addition, the block-shaped frozen soil in which harmful substances are sealed can be carried out as it is on a dump or the like. Also, if a wedge or the like is driven into the boundary surface of the discontinuous frozen soil, the adjacent block-shaped frozen soil can be surely sectioned, and the lifting to the surface of the ground becomes easier.
[0011]
The present invention (5) provides the underground frozen body in which the discontinuous frozen soil is divided into at least two blocks in the depth direction. According to the present invention, in addition to exhibiting the same effects as the above-described invention, even in the case of contaminated soil deep in the depth direction, it is vertically divided into dimensions suitable for carrying out, and the divided block-shaped frozen soil can be easily formed. Can be raised.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for freezing and removing contaminated soil according to the present invention includes a cooling pipe arranging step of arranging a cooling pipe on the contaminated soil in which a contaminant is present such that the distance between the centers is equal, and supplying a coolant to the cooling pipe. A cooling step of forming discontinuous frozen soil composed of a skin portion of unfrozen soil and a remaining frozen soil around the cooling pipe; and a frozen soil removing step of extracting a frozen soil portion of the discontinuous frozen soil to the surface of the ground. Hereinafter, each step will be described with reference to FIGS. FIG. 1 is a schematic plan view after the cooling step, and FIG. 2 is a schematic sectional view of the underground frozen body after the cooling step.
[0013]
(Cooling pipe installation process)
In the present invention, the contaminated soil is not particularly limited as long as a contaminant is present in the soil below the ground surface, and the ground may be a sandy soil, a clay layer, a natural ground such as an alternate layer, and a waste treatment. Ground, sludge treatment plant ground, and reclaimed artificial ground. Among them, the ground in which the contaminants exist near the ground surface or at a depth of about 10 m from the ground surface is particularly advantageous in that it is easily removed by freezing. The contaminants are not particularly limited, and include, for example, mercury compounds, dioxins, benzene, trichloroethylene, tetrachloroethylene, and the like. In addition to these, there are also pollutants that emit odors.
[0014]
Next, cooling pipes are arranged so that three contiguous soils, for example, 6a, 6b, and 6c in FIG. 1, come to the vertices of an equilateral triangle. The distance between the cooling pipes (between 6a and 6b, between 6b and 6c, and between 6a and 6c in FIG. 1) is not particularly limited, but is, for example, 1.5 to 3.0 m, and preferably 1.7 to 3.0 m. 2.5 m. By forming an equilateral triangle arrangement, the area ratio of the partially frozen soil in the entire target area can be increased, and the number of days required for freezing can be reduced. If the distance between the cooling pipes is less than 1.5 m, the number of cooling pipes increases, which is uneconomical. On the other hand, if it exceeds 3.0 m, it is necessary to take many days required for freezing, and the energy loss becomes large. In the conventional ground freezing method, the ground is hardened by freezing to stabilize the ground. The contaminated soil is frozen into a large number of cylindrical blocks, and the block-shaped frozen soil is taken out one by one to the surface of the ground. It is not an idea.
[0015]
The cooling pipes are for forming frozen soil of a columnar block around the cooling pipes, and are provided in large numbers in the design area of the contaminated soil at the above-mentioned distance intervals. The same cooling pipe as that used in the known underground freezing method can be used. As a known underground freezing method, a refrigerant called brine is cooled to −20 ° C. to −30 ° C. using a refrigerator, and is sent to a cooling pipe buried in the ground by a circulation pump to cool the ground. Construction method. The underground depth of the cooling pipe is appropriately determined depending on the depth of the contaminated soil, the frozen soil temperature, and the like. In order to prevent the surrounding ground from collapsing when the frozen soil is drawn to the ground surface in the frozen soil removing step, it is preferable that a frozen soil retaining wall having a continuous and uniform temperature is formed around the frozen soil. preferable.
[0016]
(Cooling process)
As shown in FIG. 1, the cooling process is performed by supplying a coolant to the cooling pipe 1 and forming a discontinuous frozen soil composed of a skin portion 12 of the unfrozen soil in a small area and a frozen soil 11 inside the skin portion and most of the remaining frozen soil 11. 2 is a step of forming around the cooling pipe 1. In the cooling step, the temperature of the refrigerant supplied to the cooling pipe 1 is -15C to -30C, preferably -20C to -30C. When the temperature of the refrigerant is about -5 to -10C, the supply period of the refrigerant becomes too long, and the energy efficiency is poor. Although the supply period of the refrigerant is not particularly limited, it is usually 20 to 120 days because the underground temperature is usually about 20 ° C. and most of the underground is frozen.
[0017]
In the cooling step, the coolant is continuously supplied to the cooling pipe 1 for the number of days described above so that the temperature of the boundary portion 9 of the discontinuous frozen soil 2 becomes the target temperature. The target temperature is, for example, 0 to 2 ° C. If the target temperature is below the freezing point, heating is necessary to create unfrozen soil in the skin, which is a waste of energy. On the other hand, if the temperature exceeds 2 ° C., the temperature leveling period after the cooling step becomes longer, or the unfrozen soil portion becomes too thick, and the efficiency of removing the frozen soil portion is deteriorated. In the cooling step, even if the temperature of the boundary portion 9 of the discontinuous frozen soil 2 is in the range of 0 to 2 ° C., the temperature of the frozen soil portion 11 around the cooling pipe 1 is, for example, −20 to −30 ° C. of the temperature of the refrigerant. . The cooling process ends when the supply of the refrigerant to the cooling pipe 1 is stopped.
[0018]
(Temperature leveling process)
The temperature leveling step is an optional step, in which the supply of the refrigerant to the cooling pipe is stopped and then left for a predetermined time to level the temperature of the discontinuous frozen soil. At the time when the supply of the refrigerant is stopped in the cooling process, if the soil temperature of the intermediate point between the cooling pipes 1 and 1 adjacent to each other, that is, the soil temperature of the boundary portion 9 is close to the target temperature of 5 ° C., the boundary portion is left for a while. The temperature leveling is performed so that the temperature of No. 9 is about + 0 ° C. and the temperature of the frozen soil part 11 is about −0 to −3 ° C. The predetermined time for leaving the work is, for example, 5 to 15 days. By leveling the temperature, it is possible to minimize the area of the skin portion 12 of the unfrozen soil, and to easily carry out the remaining frozen soil 11 in a large block shape. In addition, it is preferable to install an instrument for distinguishing between unfrozen and frozen on the skin, since freezing of the skin can be reliably prevented. Such instruments include thermometers and electrical resistors. It is particularly preferable to install the thermometer and the electric resistor in combination.
[0019]
(Heating process)
The heating step is an optional step, in which a heating pipe is provided at a boundary portion between adjacent discontinuous frozen soils to heat the boundary portion. This can be performed when the soil temperature at the boundary portion 9 which is an intermediate point between the cooling pipes 1 and 1 adjacent to each other in the cooling step is excessively cooled, or as an alternative to the temperature leveling step. That is, in this heating step, the boundary portion 9 of the adjacent discontinuous frozen soil is forcibly heated, so that the temperature of the boundary portion can be reliably raised to a temperature above the freezing point in a short time, and the strength of the ground in such a portion decreases. As a result, the construction period can be shortened. When the heating pipe is to be used in advance, the heating pipe may be provided at an intermediate position between the adjacent cooling pipes 1 and 1 during the cooling pipe providing step, or may be provided before the heating step is started. Good.
[0020]
In the present invention, the cooling pipe 1 is removed from the contaminated ground 4 after the cooling step. Also, when performing the temperature leveling step or the heating step, even after the cooling step, or may be after the temperature leveling step or the heating step, even in this case, immediately after the cooling step, already It is preferable that the contaminated soil that has been frozen can be carried out immediately after the temperature leveling step or the heating step without having to leave the used member. The cooling pipe 1 can be easily pulled out of the frozen soil 11 by flowing hot water through the cooling pipe 1 for several tens of minutes. When the cooling pipe 1 is used as a fixing part to which a winch or the like is attached, the cooling pipe 1 may not be pulled out.
[0021]
After the cooling process, or in the case where the temperature leveling process or the heating process is performed, the frozen ground formed in the ground after the process includes, as shown in FIG. An aggregate in which a large number of columnar discontinuous frozen soils 2 composed of a skin portion 12 and the remaining frozen soil 11 occupying most of the area are arranged, and three central portions of the discontinuous frozen soils 2 adjacent to each other in plan view. Are arranged at equal distances. The cooling pipe 1 has already been drawn from the underground frozen body 10 in FIG. 2, and the trace of the cooling pipe 1 forms a hollow portion 13. Although the size of one discontinuous frozen soil 2 is not particularly limited, it is, for example, 2 m in diameter and 2 m in depth. The area ratio of the frozen soil 11 is, for example, 80 to 90%, preferably 85 to 90% of the diameter of the discontinuous frozen soil.
[0022]
(Freeze removal process)
The freeze removal step is a step of drawing the frozen ground 11 of the discontinuous frozen ground 2 to the surface of the ground. In the discontinuous frozen soil 2, since the skin portion 12 is non-frozen soil, the frozen soil portion can be drawn out to the ground surface as one block. That is, if the connection fitting 52 is driven into the head of the frozen ground 11 and pulled through the wire 54 by a pulling machine such as a winch, the connection can be directly loaded on the dump and carried out, so that the carrying out efficiency is extremely excellent. Further, if the wedge 53 or the like is driven into the boundary portion 9 of the discontinuous frozen soil 2, the division becomes more reliable, and the lifting to the ground surface becomes easier (see FIG. 5).
[0023]
According to the underground frozen body 10 of the present invention, the area ratio of the discontinuous frozen soil in the entire design area (in plan view) exceeds 90%, and the area ratio of the frozen ground in the entire design area (in plan view) is 80%. Exceeds. Further, since the skin portion of the unfrozen soil has low strength, the block-shaped frozen soil can be pulled up to the ground without any trouble. In addition, the block-shaped frozen soil in which harmful substances are sealed can be carried out as it is on a dump or the like. At this time, the harmful substances are sealed with ice, so that the volatilization of the harmful substances and the odor of the waste can be suppressed.
[0024]
Further, in the present invention, in the cooling pipe arranging step, it is preferable that a thermometer for temperature measurement is arranged in each part of the contaminated soil simultaneously with the arrangement of the cooling pipe. Thereby, discontinuous frozen soil can be efficiently and reliably obtained. Also, after arranging cooling pipes on the contaminated soil at a predetermined pitch and before entering the cooling process, covering the ground surface with a sheet prevents heat from flowing into the cooling ground from the atmosphere and prevents rainfall. This is preferable in that the inflow of water can be prevented. Further, the sheet is removed after the cooling step, or when the temperature leveling step or the heating step is performed, thereafter and before the excavation step.
[0025]
In the present invention, a modified cooling pipe can be used in the cooling step. FIG. 3 is a schematic view of the modified cooling pipe 1. The modified cooling pipe is a conventional cooling pipe provided with a partial heat insulating portion in the middle in the depth direction. That is, the modified cooling pipe 1a has a belt-like heat insulating material 34 attached to the inner peripheral surface of the outer cylinder in the depth direction of the cooling pipe main body 35, and cools from the outer cylindrical surface 33 of the heat insulating material 34. And cooling from the other outer cylinder surface 32 is performed. The same effect can be obtained by installing a band-shaped heater instead of the band-shaped heat insulating material 34. Reference numeral 31 denotes a refrigerator, and a downward arrow indicates supply of the refrigerant, and an upward arrow indicates return of the refrigerant.
[0026]
When a cooling process is performed using such a cooling pipe 1a, as shown in FIG. 4, a discontinuity consisting of an unfrozen soil surface portion 12 divided into two blocks in the vertical direction and a remaining frozen soil 11 is formed. The frozen soil 2a, 2b can be formed around the cooling pipe 1.
The form of the divided portion 8 includes a form in which the upper and lower blocks are completely divided, and a form in which a small amount of frozen soil is formed around the cooling pipe 1 and the upper and lower blocks are continuous. Even if the upper and lower two blocks are continuous with a slight amount of frozen soil, the continuous portion is broken if a wedge or a traction machine is operated, so that there is no problem in raising the ground to the ground. Note that the number of heat insulating materials is not limited to one, and a plurality of heat insulating materials can be provided at an appropriate pitch according to the depth.
[0027]
In the case of the conventional cooling pipe 1, when a harmful substance exists deeply in the depth direction, a long block-shaped discontinuous frozen soil has to be formed. In this case, it is difficult to extract one frozen soil to the surface of the ground, and it is possible that the lifted frozen soil is too large to be used for dumping. However, as shown in FIG. 5, if the underground frozen body 10a is formed with a large number of discontinuous frozen soils 2a, 2b divided into two blocks in the vertical direction, a suitable size for carrying out the block-shaped frozen soil is provided. , So that the unloading efficiency is improved. In FIG. 5, reference numeral 51 denotes a crane.
[0028]
【The invention's effect】
According to the present invention, the contaminated soil can be formed into an aggregate in which a large number of block-shaped frozen soils are arranged by using a freezing technique and controlling the freezing condition. Since it can be pulled out by a towing machine such as a winch, loaded on a dump as it is, and carried out, the carrying-out efficiency is extremely excellent, and the volatilization of harmful substances and the odor of waste can be suppressed.
According to the present invention, in addition to having the same effects as the above invention, in the cooling step, the soil temperature at the midpoint (boundary surface) of the cooling pipes adjacent to each other has almost reached the target temperature, for example, 0 to 2 ° C. At this point, the supply of the refrigerant is stopped, and then the temperature is leveled so that the temperature at the intermediate point becomes a temperature of + 0 ° C., so that the area of the skin portion of the frozen ground can be minimized, and Part of the frozen soil can be easily carried out as a large columnar block. Further, if a heating step of forcibly heating the boundary portion between adjacent discontinuous frozen soils is performed instead of the temperature leveling step, the temperature of the boundary portion can be set to the target temperature in a short time, and the construction period can be shortened.
Further, according to the present invention, in addition to having the same effect as the above invention, even in the case where the contaminated soil is deep and the conventional cooling pipe is forced to be a block-shaped discontinuous frozen soil long in the depth direction. Since the above-described improved cooling pipe is used, the cooling pipe can be vertically divided into dimensions suitable for carrying out.
[0029]
Further, according to the underground frozen body of the present invention, the area ratio of the discontinuous frozen soil in the entire design area (in plan view) exceeds 90%, and the area ratio of the frozen ground in the entire design area (in plan view) is 80%. %. Further, since the skin portion of the unfrozen soil has low strength, the block-shaped frozen soil can be pulled up to the ground without any trouble. In addition, the block-shaped frozen soil in which harmful substances are sealed can be carried out as it is on a dump or the like. Also, if a wedge or the like is driven into the boundary surface of the discontinuous frozen soil, the adjacent block-shaped frozen soil can be reliably separated, and the lifting to the surface of the ground becomes easier.
Further, according to the present invention, in addition to the same effects as those of the above-described invention, it is possible to easily pull up the block-shaped frozen soil which is vertically divided into a size suitable for carrying out.
[Brief description of the drawings]
FIG. 1 is a schematic view in plan view after a cooling step.
FIG. 2 is a schematic sectional view of an underground frozen body after removing a cooling pipe.
FIG. 3 is a schematic view of a modified cooling pipe.
FIG. 4 is a schematic cross-sectional view of an underground frozen body in another embodiment after removing a cooling pipe.
FIG. 5 is a diagram illustrating a step of freezing an underground frozen object in another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cooling pipe 2, 2a, 2b Discontinuous frozen soil 3 Unfrozen part other than skin part 4 Contaminated ground 6a, 6b, 6c Central part of discontinuous frozen soil 8 Divided part 9 Intermediate point (boundary part) of adjacent cooling pipes
10, 10a Underground frozen part 11 Frozen soil 12 Skin part (unfrozen soil)

Claims (5)

汚染物質が存在する汚染土壌に冷却管を中心部間が等距離になるように配設する冷却管配設工程と、該冷却管に冷媒を供給して未凍土の表皮部と残部の凍土とからなる不連続凍土を冷却管周りに形成する冷却工程と、該不連続凍土の凍土部分を地表に引き出す凍土除去工程を有することを特徴とする汚染土壌の凍結除去方法。A cooling pipe arranging step of arranging a cooling pipe on the contaminated soil in which the contaminant is present so that the distance between the center portions is equal, and supplying a coolant to the cooling pipe to form a skin portion of the unfrozen soil and the remaining frozen soil. A method for freezing and removing contaminated soil, comprising: a cooling step of forming discontinuous frozen soil around a cooling pipe, and a frozen soil removing step of extracting a frozen soil portion of the discontinuous frozen soil to the surface of the ground. 前記冷却工程と凍土除去工程の間に、冷媒の供給を停止して所定時間放置する温度平準化工程を行なうか、又は隣接する不連続凍土の境界部分に加熱管を設置して、当該境界部分を加熱する加熱工程を行なうことを特徴とする請求項1記載の汚染土壌の凍結除去方法。Between the cooling step and the frozen soil removing step, a temperature leveling step in which the supply of the refrigerant is stopped and left for a predetermined time is performed, or a heating pipe is installed at a boundary part of the adjacent discontinuous frozen soil, and the boundary part is provided. The method for freezing and removing contaminated soil according to claim 1, wherein a heating step of heating the contaminated soil is performed. 前記冷却工程が、深度方向の途中に部分断熱部又は部分加熱部を少なくとも1つ備える冷却管に冷媒を供給して、深度方向において少なくとも2つのブロック状に分断された未凍土の表皮部と残部の凍土とからなる不連続凍土を冷却管周りに形成する工程であることを特徴とする請求項1又は2記載の汚染土壌の凍結除去方法。The cooling step supplies a refrigerant to a cooling pipe provided with at least one partial heat insulating portion or partial heating portion in the middle of the depth direction, and a skin portion and a remaining portion of the frozen ground divided into at least two blocks in the depth direction. 3. The method for freezing and removing contaminated soil according to claim 1 or 2, wherein a step of forming discontinuous frozen soil comprising the frozen soil around the cooling pipe is performed. 未凍土の表皮部と残部の凍土部とからなる円柱状の不連続凍土が多数配列した凍結体であって、平面視で互いに隣接する該不連続凍土の中心部間が等距離になるように配設されたものであることを特徴とする地中凍結体。It is a frozen body in which a large number of columnar discontinuous frozen soils composed of a skin portion of unfrozen soil and a remaining frozen soil portion are arranged, and the center portions of the discontinuous frozen soils adjacent to each other in plan view are equidistant. An underground frozen body that is provided. 前記不連続凍土が、深度方向において少なくとも2つのブロック状に分断されたものであることを特徴とする請求項4記載の地中凍結体。The underground frozen body according to claim 4, wherein the discontinuous frozen soil is divided into at least two blocks in the depth direction.
JP2003130146A 2003-05-08 2003-05-08 Freezing removal method of contaminated soil and underground frozen body Expired - Lifetime JP4098664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003130146A JP4098664B2 (en) 2003-05-08 2003-05-08 Freezing removal method of contaminated soil and underground frozen body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003130146A JP4098664B2 (en) 2003-05-08 2003-05-08 Freezing removal method of contaminated soil and underground frozen body

Publications (2)

Publication Number Publication Date
JP2004330097A true JP2004330097A (en) 2004-11-25
JP4098664B2 JP4098664B2 (en) 2008-06-11

Family

ID=33505757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003130146A Expired - Lifetime JP4098664B2 (en) 2003-05-08 2003-05-08 Freezing removal method of contaminated soil and underground frozen body

Country Status (1)

Country Link
JP (1) JP4098664B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019108766A (en) * 2017-12-20 2019-07-04 東京電力ホールディングス株式会社 Maintenance method of frozen soil and construction method of frozen soil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103132535B (en) * 2012-12-28 2015-07-01 神华集团有限责任公司 Frozen earth boundary control system and method for controlling frozen earth boundary

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120107U (en) * 1978-02-07 1979-08-22
JPS54120106U (en) * 1978-02-07 1979-08-22
JPH08243536A (en) * 1995-03-13 1996-09-24 Chiyoda Corp Method of concentrating contaminant in soil
JP2003245649A (en) * 2002-02-22 2003-09-02 Toda Constr Co Ltd Pollution purification method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120107U (en) * 1978-02-07 1979-08-22
JPS54120106U (en) * 1978-02-07 1979-08-22
JPH08243536A (en) * 1995-03-13 1996-09-24 Chiyoda Corp Method of concentrating contaminant in soil
JP2003245649A (en) * 2002-02-22 2003-09-02 Toda Constr Co Ltd Pollution purification method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AYORINDE O A ET.AL, PB REP, vol. PB-90-127200, JPN6007001455, 1989, GB, pages 487 - 498, ISSN: 0000983231 *
I.K. ISKANDAR, T.F. JENKINS: "Potential use of artficial ground freezing for contaminant immobilization", PB REP, vol. PB-86-183035, JPN6007001451, September 1985 (1985-09-01), US, pages 128 - 137, ISSN: 0000908795 *
SANNING D E ET.AL: "U.S. EPA Research on in-situ treatment technology", PROC 8TH NATL GROUND WATER QUAL SYMP, JPN6007001449, 1986, US, pages 75 - 98, ISSN: 0000983230 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019108766A (en) * 2017-12-20 2019-07-04 東京電力ホールディングス株式会社 Maintenance method of frozen soil and construction method of frozen soil
JP6997614B2 (en) 2017-12-20 2022-01-17 東京電力ホールディングス株式会社 How to maintain frozen soil and how to create frozen soil

Also Published As

Publication number Publication date
JP4098664B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JP4344795B2 (en) Separation of soil in a freezing barrier prior to conductive heat treatment of the soil
US5261765A (en) Method and apparatus for heating subsurface soil for decontamination
US5325795A (en) Mobile material decontamination apparatus
US5482402A (en) Method and apparatus for heating subsurface soil for decontamination
EP0362856B1 (en) Process and apparatus for purifiying polluted soils
US5387057A (en) Contaminated ground site remediation system
JP2006281006A (en) Method of treating incineration ash, method of sprinkling water to incineration ash layer, and sprinkler for incineration ash
JP2006263557A (en) Excavation method of unneeded buried items
CN109821874B (en) Water and steam stopping structure and method for repairing in-situ thermal desorption soil by using structure
JP2004330097A (en) Method for freezing and removing polluted soil and underground frozen body
JP5443200B2 (en) Construction method of shaft
JP4091472B2 (en) Excavation removal method of contaminated soil
JP5063115B2 (en) How to remove pollutants from contaminated soil
JP2003010832A (en) Polluted soil cleaning method
JPH10280379A (en) Foundation construction method of expansible ground
EP0597154A1 (en) Method and apparatus for heating subsurface soil for decontamination
JP2006320842A (en) Method and device for cleaning contaminated soil
JPH06315675A (en) Purifying method for polluted soil
JP2004298673A (en) Purification method for contaminated ground by freezing and suction and purification body
JPH08246485A (en) Management method for polluted water leaking through partition wall
JPH1018755A (en) Tunnel excavating work method
KR20210003611A (en) Management system and method for stabilizing livestock reclaimed land
JP3843238B2 (en) Pollution purification method
JP2001355251A (en) Manhole repairing device
JP3345000B1 (en) Melting range control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080313

R150 Certificate of patent or registration of utility model

Ref document number: 4098664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term