JP2004330059A - Method for producing metal fine particle-carrying composite material and metal fine particle-carrying composite material obtained by the method - Google Patents

Method for producing metal fine particle-carrying composite material and metal fine particle-carrying composite material obtained by the method Download PDF

Info

Publication number
JP2004330059A
JP2004330059A JP2003128635A JP2003128635A JP2004330059A JP 2004330059 A JP2004330059 A JP 2004330059A JP 2003128635 A JP2003128635 A JP 2003128635A JP 2003128635 A JP2003128635 A JP 2003128635A JP 2004330059 A JP2004330059 A JP 2004330059A
Authority
JP
Japan
Prior art keywords
metal fine
metal
fine particles
support
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003128635A
Other languages
Japanese (ja)
Other versions
JP4322044B2 (en
Inventor
Akihiro Kobayashi
章洋 小林
Kensuke Naka
建介 中
Yoshiki Nakajo
善樹 中條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP2003128635A priority Critical patent/JP4322044B2/en
Publication of JP2004330059A publication Critical patent/JP2004330059A/en
Application granted granted Critical
Publication of JP4322044B2 publication Critical patent/JP4322044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a metal fine particle-carrying composite material useful for a catalyst, for example, made by carrying metal nanoparticles on a carrier effectively with excellent reproducibility. <P>SOLUTION: When the metal fine particle-carrying composite material is produced by carrying the metal fine particles on the carrier, the metal fine particles are deposited on the carrier in the presence of an interaction agent consisting of a compound having an atom and/or a functional group interacting with the metal of the metal fine particles. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、金属微粒子担持複合材料の製造方法およびその方法で得られた金属微粒子担持複合材料に関する。さらに詳しくは、本発明は、ナノメートルサイズ(以下「ナノサイズ」または単に「ナノ」と略記することがある。)の金属微粒子が担持体に担持されてなる、例えば触媒などとして有用な金属微粒子担持複合材料を、再現性よく効果的に製造する方法、およびその方法で得られた金属微粒子担持複合材料に関するものである。
【0002】
【従来の技術】
近年、ナノテクノロジーは、新しい技術分野として積極的に研究が行われている。例えば、カーボンナノチューブやフラーレンを始め、電極材料などとして有用なカーボンナノホーン、二酸化珪素と有機化合物からなる高絶縁性のナノチューブ、エレクトロニクス材料や耐熱材料などとして有用な窒化ホウ素(BN)ナノチューブ、吸水性や悪臭吸着性に優れるナノサイズの極細繊維などの各種材料について、新しい機能材料としての開発研究がなされている。また、応用分野では、例えばナノ細線、ナノ粒子、超薄膜などの素材を用いて量子効果を引き出す研究、高周波プラズマによりガラスや金属酸化物のナノ微粒子を形成し、金属基材にコーティングする技術の研究、近接場光を利用した高密度光ディスクの浮上型ヘッドの開発研究、プラスチックマトリックス中にナノサイズのフィラーを均質に分散させて、プラスチック製品の物性向上を図る研究、担体表面にナノサイズの活性金属種を担持させた高活性触媒の研究など、様々な研究が行われている。
【0003】
ところで、ナノメートルサイズの金属微粒子(以下、金属ナノ微粒子と称すことがある。)は、バルク金属とは異なる触媒特性、クーロン・ブロッケイド効果による単電子的電気伝導現象、表面プラズモンモードと振動電場との相互作用による非線形光学特性などを有することが知られており、さらに、その超高速の応答速度が見出されたことから、近年にわかに注目を浴びている。
金属ナノ粒子の製造方法としては、化学合成法と物理合成法とに大別することができる。これらの方法の中で、化学合成法に属する化学還元法は、生産性がよく、製造工程が単純でコストが低いことから、多用されている。
【0004】
前記化学還元法によって金属ナノ粒子を製造する場合には、一般的に無機金属塩などの金属化合物を、高分子化合物溶液または界面活性剤溶液に溶解させ、これに還元剤、例えばヒドラジド、NaBH、水素などを添加して前記金属化合物を還元することにより、金属ナノ粒子を形成する方法がとられている。
しかしながら、このように溶液中で還元剤を用いて金属イオンの還元を行うことにより、還元されて析出した金属微粒子は、一般に不可逆的に凝集する。したがって、この凝集を抑えて安定した金属ナノ粒子を得るために、該金属微粒子の金属元素と相互作用する化合物を安定化剤として用いることが検討されてきた。
【0005】
一方、金属微粒子を担持体表面に固定化する方法としては、例えば(1)電気泳動法(例えば、非特許文献1参照)、(2)溶媒蒸発法(例えば、非特許文献2参照)、(3)垂直析出法(例えば、特許文献1参照)、(4)スピンコーティング法(例えば、非特許文献3参照)、(5)重合固定化法(例えば、特許文献2参照)などが知られている。しかしながら、これらの方法では、いずれも担持体に金属微粒子が担持されてなる複合材料を作製するのに長時間を要するという問題がある。
さらに、活性炭、シリカゲル、活性アルミナ、ケイソウ土、シリコンカーバイトおよびジルコニウムシリケートなどの担持体に、目的とする金属の塩の溶液を含浸または吸着させたのち、適当な還元剤、酸化剤、硫化剤、水酸化剤などで処理することにより、金属や金属化合物微粒子を該担持体上に析出させる方法が知られている。
【0006】
しかしながら、この方法においては、担持体と金属塩との間の複雑な相互作用、並びに金属や金属化合物微粒子の生成過程における複雑な相互作用の制御が困難であるため、担持した金属や金属化合物微粒子の担持体における担持状態や粒径の大きさおよび粒径分布などの再現性が乏しい。また、得られた金属の金属化合物微粒子担持物を、例えば触媒として用いた場合には、触媒活性が劣るなどの欠点があった。
【0007】
【非特許文献1】
「Langmuir」、第15巻、第4701〜4704頁(1999年)
【非特許文献2】
「Langmuir」、第13巻、第7121〜7124頁(1997年)
【非特許文献3】
「Journal of Vacuum Science and Technology (A)」、第13巻、第1553〜1558頁(1995年)
【特許文献1】
特開平8−234007号公報
【特許文献2】
米国特許第4451412号明細書
【0008】
【発明が解決しようとする課題】
本発明は、このような事情のもとで、金属ナノ粒子が担持体に担持されてなる、例えば触媒などとして有用な金属微粒子担持複合材料を、再現性よく効果的に製造する方法、およびその方法で得られた金属微粒子担持複合材料を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、担持体に対する相互作用をもつ原子や官能基と、金属元素に対する相互作用をもつ原子や官能基とを有する化合物からなる両相互作用化剤の存在下に、金属微粒子を担持体に担持させることにより、その目的を達成し得ることを見出し、この知見に基づいて本発明を完成するに至った。
【0010】
すなわち、本発明は、
(1)担持体に金属微粒子を担持させて、金属微粒子担持複合材料を製造するに際し、前記担持体に対する相互作用をもつ原子および/または官能基と、前記金属微粒子の金属元素に対する相互作用をもつ原子および/または官能基とを有する化合物からなる両相互作用化剤の存在下に、金属微粒子を担持体に担持させることを特徴とする金属微粒子担持複合材料の製造方法、
(2)両相互作用化剤を含む担持体の分散液中において、金属イオンの還元により金属微粒子を形成させ、前記担持体に担持させる上記(1)項に記載の方法、
(3)両相互作用化剤を含む溶液中において、担持体と金属微粒子を形成させ、前記担持体に金属微粒子を担持させる上記(1)項に記載の方法、
(4)両相互作用化剤が、金属微粒子の金属元素に対する相互作用をもつ原子および/または官能基として、ホスホン酸基、ホスフィン酸基、スルホン酸基、スルフィン酸基、チオール基および硫黄原子の中から選ばれる少なくとも1種を有する上記(1)、(2)または(3)項に記載の方法、
(5)担持体が炭酸カルシウムであり、かつ両相互作用化剤が、前記担持体に対する相互作用をもつ原子および/または官能基として、カルボン酸基および/またはアミド基を有する上記(1)ないし(4)項のいずれか1項に記載の方法、
(6)担持体が、両相互作用化剤5〜95質量%含む上記(2)、(4)または(5)項に記載の方法、
(7)金属微粒子の量が、両相互作用化剤における金属元素に対する相互作用をもつ原子および/または官能基に対して、0.01〜0.50倍当量である上記(1)ないし(6)項のいずれか1項に記載の方法、
(8)担持体100質量部に対し、金属微粒子0.05〜30質量部を担持させる上記(1)ないし(7)項のいずれか1項に記載の方法、および
(9)上記(1)ないし(8)項のいずれか1項に記載の方法で得られたことを特徴とする金属微粒子担持複合材料、
を提供するものである。
【0011】
【発明の実施の形態】
本発明の金属微粒子担持複合材料の製造方法は、金属微粒子を担持体に担持させて、金属微粒子担持複合材料を再現性よく製造する方法である。
本発明の方法が適用される金属ナノ粒子については特に制限はないが、周期表(長周期型)第8〜11族に属する元素のうちの貴金属元素、具体的にはパラジウム、ロジウム、ルテニウム、白金、イリジウム、オスミウムの白金属元素、および銀、金などを好ましく挙げることができる。これらの金属ナノ粒子は1種を単独で担持させてもよく、2種以上を組み合わせて担持させてもよい。また、金属微粒子の平均粒径は、好ましくは1〜50nm、より好ましくは1〜30nm、さらに好ましくは1〜15nmである。
【0012】
一方、担持体としては特に制限はなく、例えば炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、シリカ、活性炭、各種ポリマー粒子などを挙げることができる。これらの担持体は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよいが、前記担持体の中で、本発明の方法が好適に適用できる点から、炭酸カルシウムが好ましい。
本発明の方法においては、前記担持体に対する相互作用をもつ原子および/または官能基と、前記金属微粒子の金属元素に対する相互作用をもつ原子および/または官能基とを有する化合物からなる両相互作用化剤の存在下に、金属微粒子を担持体に担持させる。
【0013】
前記両相互作用化剤において、金属微粒子の金属元素に対する相互作用をもつ原子および/または官能基としては、例えばスルホン酸基、ホスフィン酸基、スルホン酸基、スルフィン酸基、チオール基、硫黄原子などが挙げられる。これらの原子や官能基は1種導入されていてもよく、2種以上が導入されていてもよい。このような原子や官能基を有する両相互作用化剤は、金属ナノ粒子の安定化剤として作用し、金属ナノ粒子の凝集を防止する作用も有している。
一方、担持体に対する相互作用をもつ原子および/または官能基としては、担持体の種類に応じて様々なものがあるが、例えば担持体が炭酸カルシウムの場合には、カルボン酸基やアミド基などの官能基を挙げることができる。これらは1種導入されていてもよく、2種以上導入されていてもよい。
【0014】
このように、金属微粒子の金属元素に対する相互作用をもつ原子および/または官能基と、担持体に対する相互作用をもつ原子および/または官能基とを有する両相互作用化剤としては、例えば、担持体が炭酸カルシウムの場合には、チオジグリコール酸やチオサリチル酸などを好適に用いることができる。
本発明においては、金属ナノ粒子を担持体に担持させる方法として、以下に示す3つの態様、すなわち(1)前記の両相互作用化剤を含む担持体の分散液中において、金属イオンの還元により金属ナノ粒子を形成させ、上記担持体に担持させる方法、(2)前記の両相互作用化剤を含む溶液中において、担持体と金属ナノ粒子を形成させ、上記担持体に金属ナノ粒子を担持させる方法、および(3)前記の両相互作用化剤を含む溶液中において、金属イオンの還元により、該両相互作用化剤を含む金属ナノ粒子を形成させ、その存在下に担持体を形成させることにより、該担持体の内部に金属ナノ粒子を担持させる方法、を挙げることができる。
【0015】
前記(1)の方法においては、まず、所定の両相互作用化剤を含む担持体の分散液を調製する。この分散液は、例えば所定の両相互作用化剤と担持体前駆化合物を溶解してなる水、メタノールまたは水/メタノールなどの溶液に、担持体形成用沈殿剤を添加して、固体状の担持体を形成させ、次いで固液分離し、洗浄後、得られた固体を水、メタノールまたは水/メタノールなどに分散させることにより調製することができる。このようにして得られた分散液における担持体には、当該両相互作用化剤が5〜95質量%の割合で含まれるように制御することが好ましい。当該両相互作用化剤の含有量が5質量%未満では両相互作用化剤の量が少なすぎて、金属ナノ粒子の安定化剤としての機能が十分に発揮されず、本発明の目的が達成されない場合がある。一方、当該両相互作用化剤の含有量が95質量%を超えるものは作製することが困難である。
担持体が炭酸カルシウムである場合、前記の担持体前駆化合物および担持体形成用沈殿剤として、例えばそれぞれ塩化カルシウムおよび炭酸アンモニウムを用いることができ、また前記両相互作用化剤として、例えばチオジグリコール酸やチオサリチル酸を用いることができる。
【0016】
次に、このようにして得られた当該両相互作用化剤を含む担持体の分散液に、目的の金属を含む無機塩などの化合物を加えて溶解させたのち、還元剤を添加して金属イオンを還元し、金属ナノ粒子を形成させる。この金属ナノ粒子は、前記担持体に含まれる両相互作用化剤により、安定化されると共に、該担持体表面に担持される。この際、還元剤としては、例えば水素化ホウ素ナトリウム、ヒドラジド、水素などを用いることができる。また、形成させる金属ナノ粒子の量は、担持体中の両相互作用化剤における金属元素に対する相互作用をもつ原子および/または官能基に対して、好ましくは0.01〜0.50倍当量、より好ましくは0.01〜0.20倍当量の範囲である。還元剤の量は、還元剤として水素化ホウ素化合物を用いる場合、金属イオンに対し、好ましくは1〜20倍当量、より好ましくは5〜10倍当量の範囲である。
【0017】
このようにして、金属ナノ粒子が担持された担持体は固液分離し、洗浄後乾燥処理することにより、目的の金属ナノ粒子担持複合材料が得られる。
前記(2)の方法においては、例えば、まず所定の両相互作用化剤と担持体前駆化合物を溶解してなる水、メタノールまたは水/メタノールなどの溶液に、担持体形成用沈殿剤を添加して、固体状の担持体を形成させる。次いで固液分離することなく、目的の金属を含む無機塩などの化合物を加えて溶解させたのち、還元剤を添加して金属イオンを還元し、金属ナノ粒子を形成させ、前記担持体に担持させる。次に、このようにして、金属ナノ粒子が担持された担持体は固液分離し、洗浄後乾燥処理することにより、目的の金属ナノ粒子担持複合材料が得られる。
【0018】
この方法における担持体前駆化合物、担持体形成用沈殿剤、還元剤および両相互作用化剤については、前述の(1)で説明したとおりである。また、担持体形成用沈殿剤を添加して形成された担持体中には、前述の(1)と同様に、当該相互作用化剤が5〜95質量%の割合で含まれるように制御することが好ましい。さらに、形成させる金属ナノ粒子の量および還元剤の量については、前述の(1)で説明したとおりである。
【0019】
一方、前記(3)の方法においては、例えば、まず所定の両相互作用化剤と目的の金属を含む無機塩などの化合物を溶解してなる水、メタノールまたは水/メタノールなどの溶液に還元剤を添加して金属イオンを還元し、当該両相互作用化剤を含む金属ナノ粒子を形成させる。次いで、これに担持体前駆化合物を加えて溶解させたのち、担持体形成用沈殿剤を添加して固体状の担持体を形成させることにより、該担持体の内部に金属ナノ粒子を担持させる。次に、このようにして、内部に金属ナノ粒子が担持された担持体は、固液分離し、洗浄後乾燥処理することにより、目的の金属ナノ粒子担持複合材料が得られる。
【0020】
この方法における両相互作用化剤、還元剤、担持体前駆化合物、担持体形成用沈殿剤については、前述の(1)で説明したとおりであり、また両相互作用化剤と担持体との割合、形成させる金属ナノ粒子の量および還元剤の量についても、前述の(1)で説明したとおりである。
このようにして、金属ナノ粒子が担持体に担持してなる金属ナノ粒子担持複合材料が再現性よく得られる。前記(1)〜(3)の方法の中では、担持体表面への金属ナノ粒子の二次元的担持、再現性(担持状態、担持金属の粒径の大きさや粒径分布など)、触媒活性などの点から、(1)および(2)の方法が好ましく、特に(1)の方法が好適である。
【0021】
担持体と担持される金属ナノ粒子の量比については特に制限はないが、担持体100質量部に対し、金属ナノ粒子の担持量は、通常0.05〜30質量部、好ましくは0.1〜10質量部の範囲で選定される。
本発明はまた、前述の本発明の方法で得られた金属ナノ粒子担持複合材料をも提供する。該複合材料は、例えば高活性の触媒、磁性材料、電気材料、抗菌材料などとして有用である。
【0022】
【実施例】
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、各特性は下記の方法に従って測定した。
(1)担持された金属微粒子の平均粒径
電界放射型走査型電子顕微鏡(FE−SEM)(JEOL社製「JSM6700F NT」)により、金属微粒子担持複合材料を観察し、担持された金属微粒子の平均粒径を測定した。
(2)金属微粒子の担持状態の確認
透過型電子顕微鏡(TEM)による観察、色の変化、および熱重量分析装置(TGA)による900℃加熱後の重量変化によって行った。
(3)担持体に含まれる両相互作用化剤の定量
TGAにより、600℃における重量減少の割合から見積もった。
(4)炭酸カルシウム担持体の結晶形態
FT−IR(フーリエ変換赤外吸収分光計)(Perkin Elmer社製「system2000」)により、炭酸カルシウム担持体の結晶形態を確認した。
アルゴナイト型球状結晶は856、713、701cm−1に、カルサイト型立方体結晶は874、712cm−1にその特異的な吸収を示すことから、結晶形態の決定を行った。
実施例1
25℃恒温槽中、チオジグリコール酸0.1g(0.67mmol)、塩化カルシウム0.3g(2.65mmol)を水20mlに溶かした後、炭酸アンモニウム0.5g(5.20mmol)水溶液をゆっくりと滴下した。25℃にて一晩反応させた後、得られた白色沈殿をろ過により分取し、水洗いした後真空ポンプにて乾燥させた。得られた沈殿物は白色であり、TGA測定において8質量%のチオジグリコール酸を含むことを確認した。得られた白色固体の物性を表1に示す。続いて、白色固体100mg(チオジグリコール酸を8質量%、5.32×10−2mmolを含む)を水100mlに超音波洗浄器を用いて分散させた後、塩化金酸2.13mg(5.00×10−3mmol、チオジグリコール酸中の金の配位性原子である硫黄原子に対して10mol%、すなわち0.1倍当量)を加え、25℃にて攪拌しながら水素化ホウ素ナトリウム1.89mg(5.00×10−2mmol)水溶液をゆっくりと滴下した。沈殿物をろ過により分取し、水洗いした後真空ポンプにて乾燥させ、金ナノ粒子担持複合材料を得た。
得られた複合材料は紫色であり、TGA測定において900℃における残さが担持体のみに比べて増加した。また、金ナノ粒子担持複合材料の濃度が、1×10−4g/Lの水溶液を用意し、紫外可視分光光度計(UV−VIS)において吸光度を測定したところ、金ナノ粒子に特有のプラズモン吸収が526nmに確認された。
実施例2
塩化金酸0.22mg(5.00×10−4mmol、チオジグリコール酸に対して0.01倍当量)、水素化ホウ素ナトリウム0.19mg(5.00×10−3mmol)に変えた以外は実施例1と同様に実施した。分析結果を表1に示す。
実施例3
塩化金酸6.58mg(1.60×10−2mmol、チオジグリコール酸に対して0.3倍当量)、水素化ホウ素ナトリウム6.05mg(0.16mmol)に変えた以外は実施例1と同様に実施した。分析結果を表1に示す。
実施例4
金属ナノ粒子の担持体となる白色固体の合成を90℃恒温槽中で行い、塩化金酸2.67mg(6.49×10−3mmol、チオジグリコール酸に対して0.1倍当量)、水素化ホウ素ナトリウム2.46mg(6.49×10−2mmol)に変えた以外は実施例1と同様に実施した。分析結果を表1に示す。
実施例5
得られた白色固体100mgをメタノール100mlに超音波洗浄器を用いて分散させた後、塩化金酸2.13mg(5.00×10−3mmol、チオジグリコール酸に対して0.1倍当量)を加え、還流下48時間攪拌した以外は実施例1と同様に実施した。分析結果を表1に示す。
実施例6
チオジグリコール酸をチオサリチル酸0.5g(3.24mmol)、塩化金酸12.1mg(2.95×10−2mmol、チオサリチル酸に対して0.1倍当量)、水素化ホウ素ナトリウム11.2mg(0.30mmol)に変えた以外は実施例1と同様に実施した。分析結果を表1に示す。
実施例7
塩化金酸を硝酸銀0.85mg(5.00×10−3mmol、チオジグリコール酸に対して0.1倍当量)に変えた以外は実施例1と同様に実施した。分析結果を表1に示す。
実施例8
塩化金酸を塩化パラジウム0.90mg(5.00×10−3mmol、チオジグリコール酸に対して0.1倍当量)に変えた以外は実施例1と同様に実施した。分析結果を表1に示す。
比較例1
チオジグリコール酸をシュウ酸0.60mg(0.67mmol)、塩化金酸12.1mg(2.95×10−2mmol)、水素化ホウ素ナトリウム11.2mg(0.30mmol)に変えた以外は実施例1と同様に実施した。分析結果を表1に示す。
比較例2
水素化ホウ素ナトリウムを加えなかったこと以外は実施例1と同様に実施した。分析結果を表1に示す。
【0023】
【表1】

Figure 2004330059
【0024】
実施例9
25℃恒温槽中、チオジグリコール酸0.1g(0.67mmol)、塩化カルシウム0.3g(2.65mmol)を水20mlに溶かした後、炭酸アンモニウム0.5g(5.20mmol)水溶液をゆっくりと滴下した。25℃にて一晩反応させた後、塩化金酸2.13mg(5.00×10−3mmol、チオジグリコール酸(8質量%で計算)に対して0.1倍当量)を加え、25℃にて攪拌しながら水素化ホウ素ナトリウム1.89mg(5.00×10−2mmol)水溶液をゆっくりと滴下した。沈殿物をろ過により分取し、水洗いした後真空ポンプにて乾燥させた。
その結果、炭酸カルシウム担体に金ナノ粒子が担持された複合材料が得られた。この複合材料の色は紫色であった。
【0025】
【発明の効果】
本発明の方法によれば、金属ナノ粒子が担持体に担持されてなる、例えば触媒などとして有用な金属微粒子担持複合材料を、再現性よく効果的に製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a composite material supporting metal fine particles and a composite material supporting metal fine particles obtained by the method. More specifically, the present invention provides a method in which metal fine particles of nanometer size (hereinafter sometimes abbreviated as “nano size” or simply “nano”) are supported on a carrier, for example, metal fine particles useful as a catalyst or the like. The present invention relates to a method for effectively producing a supported composite material with good reproducibility, and a metal particulate-supported composite material obtained by the method.
[0002]
[Prior art]
In recent years, nanotechnology has been actively researched as a new technical field. For example, carbon nanotubes and fullerenes, carbon nanohorns useful as electrode materials, highly insulating nanotubes made of silicon dioxide and organic compounds, boron nitride (BN) nanotubes useful as electronic materials and heat-resistant materials, Various materials such as nano-sized ultrafine fibers with excellent odor adsorbing properties have been studied for development as new functional materials. In the field of application, for example, research to extract quantum effects using materials such as nanowires, nanoparticles, and ultra-thin films, and technology to form glass and metal oxide nanoparticles using high-frequency plasma and coat them on metal substrates Research, Development of floating head for high-density optical disk using near-field light, Research to improve the physical properties of plastic products by uniformly dispersing nano-sized filler in plastic matrix, Nano-sized activity on carrier surface Various researches have been conducted, such as research on highly active catalysts supporting metal species.
[0003]
By the way, nanometer-sized metal fine particles (hereinafter sometimes referred to as metal nanoparticle) have different catalytic properties from bulk metal, single-electron electric conduction phenomenon due to Coulomb blockade effect, surface plasmon mode and oscillating electric field. It is known that it has nonlinear optical characteristics and the like due to the interaction of the above, and furthermore, its ultra-high-speed response speed has been found, so that it has recently been noticed.
Methods for producing metal nanoparticles can be broadly classified into chemical synthesis methods and physical synthesis methods. Among these methods, the chemical reduction method belonging to the chemical synthesis method is frequently used because of its good productivity, simple manufacturing process and low cost.
[0004]
When producing metal nanoparticles by the chemical reduction method, generally, a metal compound such as an inorganic metal salt is dissolved in a polymer compound solution or a surfactant solution, and a reducing agent such as hydrazide or NaBH 4 is added thereto. A method of forming metal nanoparticles by reducing the metal compound by adding hydrogen or the like is used.
However, by performing metal ion reduction using a reducing agent in a solution as described above, the reduced and precipitated metal fine particles generally aggregate irreversibly. Therefore, in order to suppress the aggregation and obtain stable metal nanoparticles, it has been studied to use a compound that interacts with the metal element of the metal fine particles as a stabilizer.
[0005]
On the other hand, methods for immobilizing metal fine particles on the surface of a carrier include, for example, (1) electrophoresis (for example, see Non-Patent Document 1), (2) solvent evaporation method (for example, see Non-Patent Document 2), ( 3) A vertical deposition method (for example, see Patent Document 1), (4) a spin coating method (for example, see Non-Patent Document 3), and (5) a polymerization fixing method (for example, see Patent Document 2) are known. I have. However, all of these methods have a problem that it takes a long time to produce a composite material in which metal fine particles are supported on a support.
Further, a carrier such as activated carbon, silica gel, activated alumina, diatomaceous earth, silicon carbide and zirconium silicate is impregnated or adsorbed with a solution of the target metal salt, and then a suitable reducing agent, oxidizing agent, sulfide agent A method is known in which metal or metal compound fine particles are precipitated on the carrier by treating with a hydroxide or the like.
[0006]
However, in this method, it is difficult to control the complicated interaction between the support and the metal salt, and the complicated interaction in the process of producing the metal or metal compound fine particles, so that the supported metal or metal compound fine particles are difficult to control. The reproducibility of the supported state, particle size, particle size distribution, etc. of the carrier is poor. In addition, when the obtained metal compound fine particle-carrying material is used, for example, as a catalyst, there is a drawback such as poor catalytic activity.
[0007]
[Non-patent document 1]
"Langmuir", Volume 15, 4701-4704 (1999)
[Non-patent document 2]
"Langmuir", Volume 13, 7121-7124 (1997)
[Non-Patent Document 3]
"Journal of Vacuum Science and Technology (A)", Vol. 13, pp. 1553-1558 (1995)
[Patent Document 1]
JP-A-8-234007 [Patent Document 2]
US Patent No. 4,451,412 [0008]
[Problems to be solved by the invention]
Under such circumstances, the present invention provides a method for effectively producing a metal fine particle-supported composite material in which metal nanoparticles are supported on a carrier, for example, useful as a catalyst, etc., with good reproducibility, and It is an object of the present invention to provide a composite material carrying metal fine particles obtained by the method.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to achieve the above object, and as a result, the present invention comprises a compound having an atom or a functional group having an interaction with a carrier and an atom or a functional group having an interaction with a metal element. It has been found that the object can be achieved by supporting metal fine particles on a support in the presence of both interacting agents, and the present invention has been completed based on this finding.
[0010]
That is, the present invention
(1) When a metal fine particle is supported on a carrier to produce a metal fine particle-supporting composite material, an atom and / or a functional group having an interaction with the carrier has an interaction with a metal element of the metal fine particle. A method for producing a metal fine particle-supporting composite material, wherein metal fine particles are supported on a support in the presence of a bi-interacting agent comprising a compound having an atom and / or a functional group;
(2) The method according to the above (1), wherein metal fine particles are formed by reduction of metal ions in a dispersion of the carrier containing both interacting agents, and the metal particles are supported on the carrier.
(3) The method according to the above (1), wherein the carrier and the metal fine particles are formed in a solution containing both interacting agents, and the metal fine particles are supported on the carrier.
(4) Both interacting agents have a phosphonic acid group, a phosphinic acid group, a sulfonic acid group, a sulfinic acid group, a thiol group and a sulfur atom as atoms and / or functional groups having an interaction with the metal element of the metal fine particles. The method according to the above (1), (2) or (3), having at least one member selected from the group consisting of:
(5) The above-mentioned (1) to (1) to (5), wherein the support is calcium carbonate, and both of the interacting agents have a carboxylic acid group and / or an amide group as an atom and / or a functional group interacting with the support. (4) The method according to any one of the above items,
(6) The method according to the above (2), (4) or (5), wherein the carrier contains 5 to 95% by mass of both interacting agents,
(7) The above-mentioned (1) to (6), wherein the amount of the metal fine particles is 0.01 to 0.50 times equivalent to the atoms and / or functional groups having an interaction with the metal element in both the interacting agents. The method according to any one of the preceding clauses,
(8) The method according to any one of the above (1) to (7), wherein 0.05 to 30 parts by mass of metal fine particles are supported per 100 parts by mass of the support, and (9) the above (1). Or a composite material carrying metal fine particles obtained by the method according to any one of (8) to (8).
Is provided.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for producing a composite material carrying metal fine particles of the present invention is a method for producing a composite material carrying metal fine particles with good reproducibility by supporting metal fine particles on a carrier.
The metal nanoparticles to which the method of the present invention is applied are not particularly limited, but noble metal elements among elements belonging to Groups 8 to 11 of the periodic table (long period type), specifically, palladium, rhodium, ruthenium, Platinum, iridium, osmium and other white metal elements, and silver, gold and the like can be preferably mentioned. One type of these metal nanoparticles may be supported alone, or two or more types may be supported in combination. The average particle size of the metal fine particles is preferably 1 to 50 nm, more preferably 1 to 30 nm, and further preferably 1 to 15 nm.
[0012]
On the other hand, the support is not particularly limited, and examples thereof include calcium carbonate, magnesium carbonate, barium carbonate, silica, activated carbon, and various polymer particles. One of these supports may be used alone, or two or more of them may be used in combination. Among the above-mentioned supports, calcium carbonate is preferred because the method of the present invention can be suitably applied. .
In the method of the present invention, the two-way interaction comprising a compound having an atom and / or a functional group having an interaction with the carrier and an atom and / or a functional group having an interaction with a metal element of the metal fine particles. In the presence of the agent, the metal fine particles are supported on the support.
[0013]
In the above two interacting agents, the atom and / or functional group having an interaction with the metal element of the metal fine particles include, for example, sulfonic acid group, phosphinic acid group, sulfonic acid group, sulfinic acid group, thiol group, sulfur atom and the like. Is mentioned. One of these atoms and functional groups may be introduced, or two or more thereof may be introduced. Both interacting agents having such atoms and functional groups act as stabilizers for the metal nanoparticles, and also have the effect of preventing aggregation of the metal nanoparticles.
On the other hand, there are various atoms and / or functional groups that interact with the support depending on the type of the support. For example, when the support is calcium carbonate, a carboxylic acid group, an amide group, or the like is used. Can be mentioned. One of these may be introduced, or two or more thereof may be introduced.
[0014]
As described above, examples of both interacting agents having an atom and / or a functional group having an interaction with a metal element of a metal fine particle and an atom and / or a functional group having an interaction with a carrier include a carrier Is calcium carbonate, thiodiglycolic acid, thiosalicylic acid and the like can be suitably used.
In the present invention, as a method of supporting metal nanoparticles on a support, the following three aspects are used: (1) reduction of metal ions in a dispersion of the support containing both of the above-mentioned interacting agents. A method of forming metal nanoparticles and supporting them on the support, (2) forming the support and the metal nanoparticles in a solution containing the two interacting agents, and supporting the metal nanoparticles on the support. And (3) forming metal nanoparticles containing both interacting agents by reducing metal ions in a solution containing both interacting agents, and forming a carrier in the presence of the nanoparticles. Accordingly, a method of supporting metal nanoparticles inside the support can be exemplified.
[0015]
In the method (1), first, a dispersion of a carrier containing both of the predetermined interacting agents is prepared. This dispersion is prepared, for example, by adding a precipitant for forming a carrier to a solution such as water, methanol or water / methanol prepared by dissolving a predetermined both interacting agent and a carrier precursor compound, and forming a solid carrier. It can be prepared by forming a body, then performing solid-liquid separation, washing, and then dispersing the obtained solid in water, methanol or water / methanol. It is preferable to control the support in the dispersion liquid obtained in this manner so that the both interacting agents are contained at a ratio of 5 to 95% by mass. If the content of the two interacting agents is less than 5% by mass, the amount of the two interacting agents is too small, and the function of the metal nanoparticles as a stabilizer is not sufficiently exhibited, thereby achieving the object of the present invention. May not be. On the other hand, those having a content of both interacting agents exceeding 95% by mass are difficult to produce.
When the support is calcium carbonate, for example, calcium chloride and ammonium carbonate can be used as the support precursor compound and the precipitant for forming the support, respectively. Acids and thiosalicylic acid can be used.
[0016]
Next, a compound such as an inorganic salt containing the target metal is added to and dissolved in the thus obtained dispersion of the carrier containing both interacting agents, and then the reducing agent is added to the metal. The ions are reduced to form metal nanoparticles. The metal nanoparticles are stabilized by the two interacting agents contained in the carrier and are supported on the surface of the carrier. At this time, as the reducing agent, for example, sodium borohydride, hydrazide, hydrogen and the like can be used. Further, the amount of the metal nanoparticles to be formed is preferably 0.01 to 0.50 times equivalent to an atom and / or a functional group having an interaction with a metal element in both interaction agents in the support, It is more preferably in the range of 0.01 to 0.20 equivalent. When a borohydride compound is used as the reducing agent, the amount of the reducing agent is preferably in the range of 1 to 20 equivalents, more preferably 5 to 10 equivalents to the metal ion.
[0017]
In this way, the support on which the metal nanoparticles are supported is subjected to solid-liquid separation, washed, and dried to obtain the target metal nanoparticle-supported composite material.
In the method (2), for example, first, a precipitant for forming a carrier is added to a solution such as water, methanol or water / methanol obtained by dissolving a predetermined both interacting agent and a carrier precursor compound. Thus, a solid carrier is formed. Then, without solid-liquid separation, a compound such as an inorganic salt containing the target metal is added and dissolved, and then a reducing agent is added to reduce metal ions, form metal nanoparticles, and support the carrier. Let it. Next, in this way, the support on which the metal nanoparticles are supported is subjected to solid-liquid separation, washed, and dried to obtain a target metal nanoparticle-supported composite material.
[0018]
The support precursor compound, the support-forming precipitant, the reducing agent, and both interacting agents in this method are as described in the above (1). Further, in the support formed by adding the precipitant for forming a support, the interaction agent is controlled so as to be contained at a ratio of 5 to 95% by mass, similarly to the above (1). Is preferred. Further, the amount of the metal nanoparticles and the amount of the reducing agent to be formed are as described in the above (1).
[0019]
On the other hand, in the method (3), for example, first, a reducing agent is added to a solution such as water, methanol or water / methanol obtained by dissolving a compound such as an inorganic salt containing both the predetermined interacting agent and the target metal. Is added to reduce metal ions to form metal nanoparticles containing the two interacting agents. Next, after adding and dissolving the support precursor compound, a precipitant for forming a support is added to form a solid support, whereby the metal nanoparticles are supported inside the support. Next, the support body in which the metal nanoparticles are supported as described above is subjected to solid-liquid separation, washed, and dried to obtain a target metal nanoparticle-supported composite material.
[0020]
The both interacting agent, the reducing agent, the carrier precursor compound, and the precipitant for forming the carrier in this method are as described in the above (1), and the ratio between the both interacting agent and the carrier is described. The amount of the metal nanoparticles to be formed and the amount of the reducing agent are also as described in the above (1).
In this way, a metal nanoparticle-supported composite material in which metal nanoparticles are supported on a carrier can be obtained with good reproducibility. Among the methods (1) to (3), two-dimensional support of metal nanoparticles on the support surface, reproducibility (support state, size and size distribution of supported metal particles, etc.), catalytic activity In view of the above, the methods (1) and (2) are preferable, and the method (1) is particularly preferable.
[0021]
There is no particular limitation on the amount ratio of the support and the supported metal nanoparticles, but the support amount of the metal nanoparticles is usually 0.05 to 30 parts by mass, preferably 0.1 to 100 parts by mass. It is selected in the range of 10 to 10 parts by mass.
The present invention also provides a metal nanoparticle-supported composite obtained by the above-described method of the present invention. The composite material is useful, for example, as a highly active catalyst, magnetic material, electric material, antibacterial material, and the like.
[0022]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In addition, each characteristic was measured according to the following method.
(1) Average particle diameter of supported metal fine particles The metal fine particle supporting composite material was observed by a field emission scanning electron microscope (FE-SEM) (“JSM6700F NT” manufactured by JEOL), and The average particle size was measured.
(2) Confirmation of Carried State of Metal Fine Particles The observation was carried out by observation with a transmission electron microscope (TEM), change in color, and change in weight after heating at 900 ° C. by a thermogravimetric analyzer (TGA).
(3) Quantitative determination of both interacting agents contained in the support Estimated from the rate of weight loss at 600 ° C. by TGA.
(4) Crystal form of calcium carbonate support The crystal form of the calcium carbonate support was confirmed by FT-IR (Fourier transform infrared absorption spectrometer) (“system2000” manufactured by Perkin Elmer).
The morphology of the argonite-type spherical crystals was determined at 856, 713, and 701 cm -1 and that of the calcite-type cubic crystal at 874 and 712 cm -1 .
Example 1
In a 25 ° C constant temperature bath, 0.1 g (0.67 mmol) of thiodiglycolic acid and 0.3 g (2.65 mmol) of calcium chloride are dissolved in 20 ml of water, and then an aqueous solution of 0.5 g (5.20 mmol) of ammonium carbonate is slowly added. Was dropped. After reacting at 25 ° C. overnight, the obtained white precipitate was separated by filtration, washed with water and dried with a vacuum pump. The obtained precipitate was white, and it was confirmed by TGA measurement that the precipitate contained 8% by mass of thiodiglycolic acid. Table 1 shows the physical properties of the obtained white solid. Subsequently, 100 mg of white solid (containing 8% by mass of thiodiglycolic acid, 5.32 × 10 −2 mmol) was dispersed in 100 ml of water using an ultrasonic cleaner, and then 2.13 mg of chloroauric acid ( 5.00 × 10 −3 mmol, 10 mol% relative to the sulfur atom which is a coordinating atom of gold in thiodiglycolic acid, that is, 0.1 equivalent) and hydrogenation with stirring at 25 ° C. An aqueous solution of 1.89 mg (5.00 × 10 −2 mmol) of sodium borohydride was slowly added dropwise. The precipitate was separated by filtration, washed with water, and dried with a vacuum pump to obtain a gold nanoparticle-supported composite material.
The obtained composite material was purple, and the residue at 900 ° C. in TGA measurement was increased as compared with that of the support alone. Further, an aqueous solution having a concentration of 1 × 10 −4 g / L of the gold nanoparticle-supporting composite material was prepared, and the absorbance was measured with an ultraviolet-visible spectrophotometer (UV-VIS). Absorption was confirmed at 526 nm.
Example 2
0.22 mg of chloroauric acid (5.00 × 10 −4 mmol, 0.01 equivalent to thiodiglycolic acid) and 0.19 mg of sodium borohydride (5.00 × 10 −3 mmol) were used. Except for this, the procedure was the same as in Example 1. Table 1 shows the analysis results.
Example 3
Example 1 except that 6.58 mg (1.60 × 10 −2 mmol, 0.3 equivalents to thiodiglycolic acid) of chloroauric acid and 6.05 mg (0.16 mmol) of sodium borohydride were used. Was carried out in the same manner as described above. Table 1 shows the analysis results.
Example 4
Synthesis of a white solid as a support for metal nanoparticles was performed in a thermostat at 90 ° C., and 2.67 mg of chloroauric acid (6.49 × 10 −3 mmol, 0.1 equivalent to thiodiglycolic acid) was synthesized. , And the same procedure as in Example 1 except that the amount was changed to 2.46 mg (6.49 × 10 −2 mmol) of sodium borohydride. Table 1 shows the analysis results.
Example 5
After 100 mg of the obtained white solid was dispersed in 100 ml of methanol using an ultrasonic cleaner, 2.13 mg of chloroauric acid (5.00 × 10 −3 mmol, 0.1 equivalent to thiodiglycolic acid) was used. ) And stirred under reflux for 48 hours in the same manner as in Example 1. Table 1 shows the analysis results.
Example 6
0.5 g (3.24 mmol) of thiosalicylic acid, 12.1 mg (2.95 × 10 −2 mmol of chloroauric acid, 0.1 equivalent to thiosalicylic acid) of thiosalicylic acid, and sodium borohydride 11. It carried out similarly to Example 1 except having changed into 2 mg (0.30 mmol). Table 1 shows the analysis results.
Example 7
The procedure was performed in the same manner as in Example 1 except that chloroauric acid was changed to 0.85 mg of silver nitrate (5.00 × 10 −3 mmol, 0.1 equivalent to thiodiglycolic acid). Table 1 shows the analysis results.
Example 8
The procedure was performed in the same manner as in Example 1, except that chloroauric acid was changed to 0.90 mg (5.00 × 10 −3 mmol, 0.1 equivalent to thiodiglycolic acid) of palladium chloride. Table 1 shows the analysis results.
Comparative Example 1
Except that thiodiglycolic acid was changed to oxalic acid 0.60 mg (0.67 mmol), chloroauric acid 12.1 mg (2.95 × 10 −2 mmol), and sodium borohydride 11.2 mg (0.30 mmol). It carried out similarly to Example 1. Table 1 shows the analysis results.
Comparative Example 2
The operation was performed in the same manner as in Example 1 except that sodium borohydride was not added. Table 1 shows the analysis results.
[0023]
[Table 1]
Figure 2004330059
[0024]
Example 9
In a 25 ° C constant temperature bath, 0.1 g (0.67 mmol) of thiodiglycolic acid and 0.3 g (2.65 mmol) of calcium chloride are dissolved in 20 ml of water, and then an aqueous solution of 0.5 g (5.20 mmol) of ammonium carbonate is slowly added. Was dropped. After reaction at 25 ° C. overnight, 2.13 mg of chloroauric acid (5.00 × 10 −3 mmol, 0.1 equivalent to thiodiglycolic acid (calculated at 8% by mass)) was added, and While stirring at 25 ° C., an aqueous solution of 1.89 mg (5.00 × 10 −2 mmol) of sodium borohydride was slowly added dropwise. The precipitate was separated by filtration, washed with water, and dried with a vacuum pump.
As a result, a composite material in which gold nanoparticles were supported on a calcium carbonate carrier was obtained. The color of the composite was purple.
[0025]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the method of this invention, the metal nanoparticle supported by the support body, for example, a metal-particle-supported composite material useful as a catalyst or the like can be effectively produced with good reproducibility.

Claims (9)

担持体に金属微粒子を担持させて、金属微粒子担持複合材料を製造するに際し、前記担持体に対する相互作用をもつ原子および/または官能基と、前記金属微粒子の金属元素に対する相互作用をもつ原子および/または官能基とを有する化合物からなる両相互作用化剤の存在下に、金属微粒子を担持体に担持させることを特徴とする金属微粒子担持複合材料の製造方法。When a metal fine particle is supported on a support to produce a metal fine particle supporting composite material, an atom and / or a functional group having an interaction with the support and an atom and / or a functional group having an interaction with the metal element of the metal fine particle are provided. Alternatively, a method for producing a metal fine particle-supporting composite material, wherein metal fine particles are supported on a support in the presence of both interacting agents comprising a compound having a functional group. 両相互作用化剤を含む担持体の分散液中において、金属イオンの還元により金属微粒子を形成させ、前記担持体に担持させる請求項1に記載の方法。2. The method according to claim 1, wherein metal fine particles are formed by reducing metal ions in a dispersion of the carrier containing both interacting agents, and the metal particles are supported on the carrier. 両相互作用化剤を含む溶液中において、担持体と金属微粒子を形成させ、前記担持体に金属微粒子を担持させる請求項1に記載の方法。The method according to claim 1, wherein the metal fine particles are formed on the support in a solution containing both interacting agents, and the metal fine particles are supported on the support. 両相互作用化剤が、金属微粒子の金属元素に対する相互作用をもつ原子および/または官能基として、ホスホン酸基、ホスフィン酸基、スルホン酸基、スルフィン酸基、チオール基および硫黄原子の中から選ばれる少なくとも1種を有する請求項1、2または3に記載の方法。Both interacting agents are selected from phosphonic acid groups, phosphinic acid groups, sulfonic acid groups, sulfinic acid groups, thiol groups and sulfur atoms as atoms and / or functional groups having an interaction with the metal element of the metal fine particles. 4. A method according to claim 1, 2 or 3 having at least one of the following. 担持体が炭酸カルシウムであり、かつ両相互作用化剤が、前記担持体に対する相互作用をもつ原子および/または官能基として、カルボン酸基および/またはアミド基を有する請求項1ないし4のいずれか1項に記載の方法。The carrier according to any one of claims 1 to 4, wherein the carrier is calcium carbonate, and both interacting agents have a carboxylic acid group and / or an amide group as an atom and / or a functional group interacting with the carrier. Item 2. The method according to item 1. 担持体が、両相互作用化剤5〜95質量%含む請求項2、4または5に記載の方法。The method according to claim 2, 4 or 5, wherein the support comprises 5-95% by weight of both interacting agents. 金属微粒子の量が、両相互作用化剤における金属元素に対する相互作用をもつ原子および/または官能基に対して、0.01〜0.50倍当量である請求項1ないし6のいずれか1項に記載の方法。The amount of the metal fine particles is 0.01 to 0.50 times equivalent to an atom and / or a functional group having an interaction with a metal element in both the interacting agents. The method described in. 担持体100質量部に対し、金属微粒子0.05〜30質量部を担持させる請求項1ないし7のいずれか1項に記載の方法。The method according to any one of claims 1 to 7, wherein 0.05 to 30 parts by mass of metal fine particles are supported on 100 parts by mass of the support. 請求項1ないし8のいずれか1項に記載の方法で得られたことを特徴とする金属微粒子担持複合材料。A composite material carrying metal fine particles, obtained by the method according to any one of claims 1 to 8.
JP2003128635A 2003-05-07 2003-05-07 Method for producing metal fine particle supported composite material and metal fine particle supported composite material obtained by the method Expired - Fee Related JP4322044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003128635A JP4322044B2 (en) 2003-05-07 2003-05-07 Method for producing metal fine particle supported composite material and metal fine particle supported composite material obtained by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003128635A JP4322044B2 (en) 2003-05-07 2003-05-07 Method for producing metal fine particle supported composite material and metal fine particle supported composite material obtained by the method

Publications (2)

Publication Number Publication Date
JP2004330059A true JP2004330059A (en) 2004-11-25
JP4322044B2 JP4322044B2 (en) 2009-08-26

Family

ID=33504694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003128635A Expired - Fee Related JP4322044B2 (en) 2003-05-07 2003-05-07 Method for producing metal fine particle supported composite material and metal fine particle supported composite material obtained by the method

Country Status (1)

Country Link
JP (1) JP4322044B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026609A1 (en) * 2005-08-29 2007-03-08 The University Of Tokyo Polymer-supported palladium catalyst and method for production thereof
JP2009535326A (en) * 2006-04-24 2009-10-01 エヌエム・テク・リミテッド・ナノマテリアルズ・アンド・マイクロディバイシイズ・テクノロジー Functional nanomaterials with antibacterial and antiviral activities
CN112938936A (en) * 2021-03-17 2021-06-11 西安交通大学 Metal atom loaded nano composite material and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026609A1 (en) * 2005-08-29 2007-03-08 The University Of Tokyo Polymer-supported palladium catalyst and method for production thereof
JP2007061669A (en) * 2005-08-29 2007-03-15 Univ Of Tokyo Polymer fixed palladium catalyst and its production method
JP2009535326A (en) * 2006-04-24 2009-10-01 エヌエム・テク・リミテッド・ナノマテリアルズ・アンド・マイクロディバイシイズ・テクノロジー Functional nanomaterials with antibacterial and antiviral activities
CN112938936A (en) * 2021-03-17 2021-06-11 西安交通大学 Metal atom loaded nano composite material and preparation method thereof
CN112938936B (en) * 2021-03-17 2023-08-15 西安交通大学 Metal atom loaded nanocomposite and preparation method thereof

Also Published As

Publication number Publication date
JP4322044B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
Richter et al. Nanoscale palladium metallization of DNA
Zanella et al. Deposition of gold nanoparticles onto thiol-functionalized multiwalled carbon nanotubes
Yamamoto et al. Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine
Paredes et al. Impact of covalent functionalization on the aqueous processability, catalytic activity, and biocompatibility of chemically exfoliated MoS2 nanosheets
Welch et al. The use of nanoparticles in electroanalysis: a review
Ray et al. A gold nanoparticle-intercalated mesoporous silica-based nanozyme for the selective colorimetric detection of dopamine
Li et al. Preparation of monodispersed Fe− Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes
US7666915B2 (en) Highly dispersible carbon nanospheres in a polar solvent and methods for making same
Choma et al. Preparation and properties of silica–gold core–shell particles
Zou et al. Synthesis and deposition of ultrafine noble metallic nanoparticles on amino-functionalized halloysite nanotubes and their catalytic application
US20060258875A1 (en) Methods for manufacturing supported nanocatalysts and methods for using supported nanocatalysts
Tan et al. Fabrication of gold nanoparticles using a trithiol (thiocyanuric acid) as the capping agent
JP2002503204A (en) Functionalized nanotubes
AlMashrea et al. Polyaniline coated gold-aryl nanoparticles: Electrochemical synthesis and efficiency in methylene blue dye removal
CN108031840B (en) Self-supporting metal heterogeneous nano superstructure and preparation method and application thereof
JP5290599B2 (en) Method for dispersing and immobilizing gold fine particles on a carrier
JP5114008B2 (en) Polymer material having gold fine particles attached to its surface and method for producing the same
Hao et al. Controllable fabrication and characterization of biocompatible core-shell particles and hollow capsules as drug carrier
Li et al. Synthesis and structural control of gold nanoparticles-coated polystyrene composite particles based on colloid thermodynamics
JP2023078128A (en) Fibrous carbon nanostructure, evaluation method of fibrous carbon nanostructure and production method of surface-modified fibrous carbon nanostructure
Chen et al. Conversion of the surface property of oleic acid stabilized silver nanoparticles from hydrophobic to hydrophilic based on host− guest binding interaction
Behrens et al. Tubulin assemblies as biomolecular templates for nanostructure synthesis: from nanoparticle arrays to nanowires
Wang et al. Surface thiolation of Al microspheres to deposite thin and compact Ag shells for high conductivity
JP4322044B2 (en) Method for producing metal fine particle supported composite material and metal fine particle supported composite material obtained by the method
Wang et al. Silica− Metal Core− Shells and Metal Shells Synthesized by Porphyrin-Assisted Photocatalysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060329

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Effective date: 20090428

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090602

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120612

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120612

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees