JP2004328871A - High-efficiency rotating machine - Google Patents

High-efficiency rotating machine Download PDF

Info

Publication number
JP2004328871A
JP2004328871A JP2003118870A JP2003118870A JP2004328871A JP 2004328871 A JP2004328871 A JP 2004328871A JP 2003118870 A JP2003118870 A JP 2003118870A JP 2003118870 A JP2003118870 A JP 2003118870A JP 2004328871 A JP2004328871 A JP 2004328871A
Authority
JP
Japan
Prior art keywords
rotating machine
steel sheet
core
magnetic flux
stator core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003118870A
Other languages
Japanese (ja)
Other versions
JP4123040B2 (en
Inventor
Toshiro Tomita
俊郎 富田
Naoyuki Sano
直幸 佐野
Shigeharu Hinotani
重晴 日野谷
Shigeo Kaminotani
繁雄 上野谷
Norisada Nishiyama
典禎 西山
Yasufumi Ichiumi
康文 一海
Hidetoshi Kodera
秀俊 小寺
Koji Fujiwara
耕ニ 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Panasonic Holdings Corp
Original Assignee
Sumitomo Metal Industries Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Matsushita Electric Industrial Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003118870A priority Critical patent/JP4123040B2/en
Publication of JP2004328871A publication Critical patent/JP2004328871A/en
Application granted granted Critical
Publication of JP4123040B2 publication Critical patent/JP4123040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To offer a high-efficiency rotating machine where a bidirectional eletromagnetic steel plate is applied. <P>SOLUTION: A steel plate, where an average crystal grain diameter is not more than four times and not less than one-tenth the thickness of a board and the area ratio of crystal grains oriented in a cubic azimuth is 75% or over and which contains Si 1% or over and 6.5% or under, is used for a split stator. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、発電機、モータ等の回転機、特に二方向性電磁鋼板を用いた高効率回転機に関する。
【0002】
【従来の技術】
回転機には、発電機、モータ、リニアモータなどがある。その中でも、例えばモータでは、誘導型、永久磁石を用いた同期型、リラクタンストルク型など多種多様な型のものがある。
【0003】
これらの回転機は、全発電電力の50%以上を消費するほど現代社会の中で広く使用されており、省エネという観点からもそのエネルギ効率の向上が望まれている。例えば、発電機の効率は、発電そのもののエネルギ効率に大きく影響する。
【0004】
ところで、そのような発電機、産業用電動回転機、さらには家庭用電気機器等内の回転機の鉄心材料として最も多く用いられているのは珪素を数%までの範囲で含有した珪素鋼板 (電磁鋼板) である。この珪素鋼板に要求されている磁性は、交流磁界中で磁気的なエネルギ損失が少ないこと、実用的な磁界中での磁束密度が高いことの二つである。これらを実現するには、電気抵抗を高め、かつ磁化容易方向であるbcc 格子の<100> 軸を使用磁界の方向に集積させることが有効とされている。特に、磁気特性を飛躍的に向上させるには磁化容易方向である<100> 軸を使用磁界の方向に集積させることが最も有効な方法である。
【0005】
ここで、回転機における固定子鉄心 (以下、単に「鉄心」ともいう) について説明すると、図1a および図1b は、ヨーク部10および歯部12を備えた固定鉄心14の平面形状を、ただし、図1b は、分割型の固定子鉄心16であり、その分割型固定子鉄心を構成する分割鉄心18を同時に示す。図1cは、分割鉄心の構成部材20を鋼板22から打抜くときの打抜き方向を示すとともに、それらを組み合わせて積層して構成した鉄心24を併せて示す。
【0006】
無方向性電磁鋼板と呼ばれるものは殆ど集合組織を持たない電磁鋼板であり、回転機の鉄心材料として好んで用いられている。例えば回転機の固定子鉄心の場合、図1a のような形に打抜きし、積層して用いられることが多い。
【0007】
回転機の鉄心内での磁束の向きは主に鉄心の周方向と半径方向に向いているが、無方向性珪素鋼板では磁化特性の板面内の方向による依存性があまりないため、このように円周方向に一体となったものを打抜き積層して鉄心として使用できる。しかし、容易磁化方向である<100> 軸が鉄心内の磁束の向きに配向しておらず、良好な鉄心磁化特性は期待できない。
【0008】
一方、大型の発電機等では一方向性珪素鋼板と呼ばれる電磁鋼板が用いられることがある。圧延方向に<100> 軸が配向しており、これを磁束の方向に向けるため、図1b のような鉄心を周方向に分割した形で打抜き、図1c のように積層して用いられる。このとき、容易磁化方向である圧延方向が鉄心の周方向もしくは半径方向に向くよう打抜く。このような鉄心を分割型鉄心と呼ぶ。鉄心内部の磁束は、鉄心のヨーク部では主に周方向に、歯部では主に半径方向に流れるので、設計によっては無方向性電磁鋼板を使用するのに比較して特性の良い鉄心が得られる。しかし、例えば、ヨーク部における磁束の向きに圧延方向を向けて鋼板を打抜くと、歯部の部分では磁化困難な幅方向が磁束の向きに一致するため、理想的とは言えない。歯部での磁化特性を向上させるために、圧延方向を鉄心の半径方向にそろえて打抜く場合もあるが、この場合はヨーク部の磁気特性が逆に劣化する。したがって、さほどの高特性を得ることはできない。
【0009】
他方、{100 }面が板面に平行となる集合組織を有する鋼板は圧延面内に最も多く<100> 軸を含んでおり、回転機の鉄心として理想的であることが知られている。例えば後述する図2b に示すように、板面内の直交する二方向に<100> 軸が集積した立方体集合組織を持つ鋼板は二方向性珪素鋼板と呼ばれる。これを図1c のように鉄心を周方向に分割し容易磁化方向を周方向と半径方向にそろえて打抜き積層して使用することで最も優れた特性の鉄心となることが期待される。
【0010】
ここに、図2には電磁鋼板における集合組織を示すが、図2a は一方向性珪素鋼板と呼ばれる集合組織を示すもので、図2b は、板面内の圧延方向と幅方向の直交する二方向に<100> 軸が集積した立方体集合組織を示すもので、これは二方向性珪素鋼板と呼ばれる。図2c は、同じく二方向性珪素鋼板の別の例の集合組織を示す。板面内の圧延方向と幅方向の直交軸に対し結晶粒がある角度をもって二方向に配向している。
【0011】
【発明が解決しようとする課題】
しかし、二方向性珪素鋼板を分割型鉄心として使用することで回転機の高特性化が期待されるものの、実際に二方向性珪素鋼板を鉄心として用いた回転機の研究は殆ど行われていない。二方向性珪素鋼板を鉄心として用い、回転機の高特性化を報告した例は皆無である。本発明者等の調査では、従来から行われている回転機の設計方法を用いると、二方向性珪素鋼板を分割型鉄心に用いても回転機は高効率化されないどころか、むしろ効率が低下するという問題すらある。したがって、単純化された概念上の考えとは異なり、実際に磁束の分布が複雑に変化する回転機の鉄心に二方向性珪素鋼板を用いても、回転機の高効率化は事実上殆ど計れないと思われていたのである。
【0012】
【課題を解決するための手段】
従来の回転機の設計は、固定子鉄心のヨーク部の最も幅の狭い部分 (以下、「ヨーク部最小断面積部分」ともいう) における磁束密度の断面平均値のピーク値 (最大出力時に生じる) を飽和磁束密度 (約2から 2.1Tの約80%(1.6〜1.7T) 以下、歯部の中央部における磁束密度の断面平均値のピーク値を飽和磁束密度 (約2から2.1T) の約90%(1.8〜1.9T) 以下にするよう行われている。これは、鉄損、銅損、機械損からなる回転機のエネルギー損失の鉄損部分が過大にならないようにするためである。鉄損は一般に高磁束密度になると急激に増大する。また回転機を高出力で動作させると、鉄損が全損失に占める割合は非常に大きくなるため、このような設計が行われてきている。
【0013】
本発明者等は、二方向性珪素鋼板を分割型鉄心に用いた回転機の高効率化の問題を検討し、微細な結晶粒からなる二方向性珪素鋼板を分割型鉄心の素材として用い、さらに、従来行わなかった高磁束密度下で回転機を動作させることで高効率化が達成できることを知見し、本発明を完成させた。
【0014】
微細な結晶粒からなる二方向性珪素鋼板でなければいけない理由は、結晶粒が大きいと高速回転時に渦電流損失が増大して鉄損が大きくなること、さらに、鋼板から鉄心の構成部材を打抜く際に割れの問題が生じるためである。
【0015】
高磁束密度で鉄心を設計しなければならない理由の第一は、二方向性珪素鋼板を鉄心に組んだときの鉄損は、従来からの予測とは異なり、比較的低い磁束密度のときは無方向性珪素鋼板などに比較して鉄損が低下しないか、逆に増加するからである。これは、回転機の鉄心内には組み込み (締め付け) による応力が存在することや、鉄心内部で磁界が複雑に回転するために生じると考えられる。さらには、高磁束密度で使用すると、実用の回転機内の条件下では鉄損が逆に低下するからである。
【0016】
第二の理由は、高磁束密度設計が行えれば、同じ体格の回転機であれば電機子部分を大きくできるためである。これにより、銅線径を大きくして、電気抵抗を低下させて、銅損を低減することができる。
【0017】
鉄心の体積 (断面積) を低下できるということは、高効率だけでなく、小型化も可能となることを意味している。
【0018】
【発明の実施の形態】
鉄心の内部の磁束密度、回転機の形式
図3は、回転機における固定子鉄心30および回転子32の一つの配置例を示し模式的説明図であるが、図3aおよび図3bは、分割鉄心34の形状の大小によって相違するだけで他は実質上同一である。両図において、符号36で示すのが固定子鉄心のヨーク部最小断面積部分および分割面であり、符号36で示すのが歯部中央断面である。本発明にかかる回転機においては、この固定子鉄心のヨーク部最小断面積部分における最大磁束密度が1.75T 以上であれば、いずれの形態であっても特に制限されない。なお、図示例の回転機は永久磁石型であり、回転子32には永久磁石40が埋め込まれている。
【0019】
ヨーク部の磁束密度:
鉄心の鉄損を低減させるため、さらに鉄心体積を減少させるために、固定子鉄心のヨーク部の最小断面積部分における磁束密度の断面平均の時間最大値が1.75T以上、好ましくは1.85T以上、より好ましくは1.9 T以上とする。
【0020】
上記の時間最大値は、一般に電機子に最大電流を流した場合に生じる。図3の永久磁石型の場合には、具体的には、例えば固定子鉄心のヨーク部および/または歯部を従来のものよりもより小形化することで実現できる。その他の型式の回転機でも同様である。永久磁石型の場合は永久磁石の磁束密度を増加させてもよい。
【0021】
歯部の磁束密度:
鉄心の鉄損を低減させるため、さらに鉄心体積を減少させるために、固定子鉄心の歯部の半径方向中央 (以下、「歯部中央断面部分」ともいう) における磁束密度の断面平均の時間最大値は、好ましくは1.9 T以上、より好ましくは1.93T以上である。
【0022】
上記の時間最大値は、一般に電機子に最大電流を流した場合に生じる。
回転機の形式:
回転機の形式は、誘導型、永久磁石型、リラクタンストルク型、リニア型、発電機など如何なる型のもので良い。高効率モータとしては、好ましくは、永久磁石を回転子に配したブラシレスの同期型とすることが好ましい。エネルギー損失に占める鉄損の割合の大きいリラクタンストルク型も好適な形式の一つである。
【0023】
鉄心鋼板
高磁束密度設計を可能とし、高効率の回転機を得るため、少なくとも固定子の鉄心部に以下の二方向性珪素鋼板を用いる。回転子鉄心の材料は従来から用いられている、無方向性珪素鋼板や一方向性珪素鋼板など如何なる磁性材料を用いてもかまわない。勿諭、二方向性珪素鋼板を用いることもできる。
【0024】
本発明において用いる鉄心は分割型であって、固定子鉄心の構成部材として打抜いた状態で、固定子鉄心を構成したときの周方向の中心部において固定子鉄心を構成したときの半径方向および周方向から15°以内に立方体方位の、<100> 軸が配向する結晶粒の面積率が75%以上である。好ましくは85%以上、さらに好ましくは90%以上である。
【0025】
[集合組織]
板面内の直行する二方向で高磁束密度と低鉄損特性を持たせるために、立方体集合組織の発達した鋼板とする。板面内の直行する二方向 (<100> 軸方向) が板の圧延方向と幅方向となっていることが鋼板の打抜き効率の観点から好ましい。しかし、これらが圧延方向と幅方向から傾いたものでも良い。要するに、鉄心となったときに、それらの高特性の二方向が鉄心の周方向と半径方向に向くよう打抜けばよい。
【0026】
したがって、鋼板の集合組織としては、立方体方位から15°以内に配向した結晶粒の体積率が75%以上、好ましくは85%以上、より好ましくは90%以上である。
【0027】
ここに、「立方体方位」に配向するとは鋼板面内の互いに直交する2方向に<100> 軸が配向することである。
[結晶粒径]
渦電流損失を低減し、低鉄損を得るため、鉄心打抜き時の割れを防止するために、平均結晶粒径が板厚の4倍以下、ヒステリシス損失を低減し低鉄損を得るため、0.1 倍以上とする。好ましくは、平均結晶粒径は板厚の3倍以下、0.3 倍以上である。より好ましくは、2倍以下、0.5 倍以上である。
【0028】
[成分組成]
本発明の場合、電磁鋼板であればその組成は特に制限されず、したがって、本発明においてもSi:1〜6.5 %と限定するだけでよいが、好ましくは次の組成を有する。なお、本明細書において鋼組成を示す「%」は質量%である。
【0029】
Si:
Siは電気抵抗を高め渦電流損失を低減するために1%以上含有させる。多量に含有すると飽和磁化を減少させ、かつ材料を脆くし、加工性を劣化させるため 6.5%を限度とする。磁気特性と加工性の観点から好ましくは2%以上4%以下とする。
【0030】
Mn:
Mnは電気抵抗を高め渦電流損失を低減させるために含有させてもよい。多量に含有させると飽和磁化を減少させるため3%を限度とする。
【0031】
C:
Cは、磁気時効を生じさせないために30ppm 以下とすることが好ましい。
Al:
Alは、電気抵抗を高めるため、例えば0.1 %以上含有させても良い。多量に含有させると磁歪が増加するため3%を上限として添加する。
【0032】
Cr:
Crは、電気抵抗を高めるため含有させても良い。多量に含有させると磁束密度が低下するため2%を上限とすることが好ましい。
その他不純物もー般的な電磁鋼板に許される範囲とする。
【0033】
[板厚]
渦電流損失を低下させ、鉄損を低減するためには、0.4mm 以下の厚さが好ましい。一方、板厚の下限は特に限定されず、冷間圧延で製造可能な厚さであれば良いが、鉄心積層の手間を低減するためには0.1mm 以上が好ましい。
【0034】
[コーティング]
鉄心内の巨視的な渦電流の発生を防止するために、絶縁のためのコーティングを施すことが好ましい。有機物、無機物、それらの混合物など、従来から知られる絶縁皮膜を塗布できる。
【0035】
この二方向性珪素鋼板に関して、本発明者等はその製造方法を研究し、0.5mm 程度の微細な結晶粒からなる高特性の二方向性珪素鋼板の製造方法を見出している。特開平9−20966 号・WO98/20179公報参照。
【0036】
【実施例】
表1の組成の二方向性珪素鋼板を用意した。板厚は0.36mm、Electron Back Scattering Pattern(EBSP)法で板の表面から観察したときの平均結晶粒径は0.58mm、また98%の結晶粒が{100 }<001> 方位から15°以内の方位を持っていた。圧延方向と板幅方向の800A/mにおける磁束密度は約1.85Tであった。この鋼板から、図3a に示す分割鉄心の構成部材を打抜いた。このとき、前記構成部材の固定子鉄心の周方向中心部における前記周方向が圧延方向となるように打抜いた。打抜き後歪取り焼鈍を施し、さらに絶縁皮膜を塗布した。打抜きによる鋼板の割れなどの問題は発生しなかった。
【0037】
この構成部材を積層して分割型鉄心を構成し電機子コイルを巻いた後、組上げて同期型回転機を作製した。固定子鉄心の外形と内径は各々200mm と128mm 、積み厚は約50mmである。
【0038】
回転子鉄心には高級無方向性珪素鋼板を用いた。回転子の構造は希土類磁石を図3a に示すように埋め込んだ、磁石埋め込み型のものである (8極の磁石埋め込み同期型回転機) 。電機子コイルは集中巻きである。固定子を組上げた後、ケースに焼きばめした。ヨーク部最小断面積部の断面平均磁束密度のピーク値は1.95T、歯部中央断面部分における断面平均磁束密度のピーク値は1.93Tである。
【0039】
比較回転機 (比較例1) として、0.35mm厚の市販高級無方向性珪素鋼板(35A300)を固定子鉄心としたものも作製した。このときの固定子の構造は図3b に示すように、前述のものに比較してヨーク部と歯部の幅が各々約20%と5%大きな設計となっている。固定子鉄心の外径と内径は前述のものと同じである。
【0040】
したがって、電機子コイルを巻く窓部が狭くなっている。その分、電機子コイルの銅線を約20%細くした。鋼板を打抜き後、歪取り焼鈍を施した。絶縁コーティングは元々施されている。その他の電機子、回転子の条件は前述のものと同一である。ヨーク部最小断面積部の断面平均磁束密度のピーク値は1.55T、歯部中央断面部分における断面平均磁束密度のピーク値は1.85Tである。
【0041】
もう一つ比較回転機 (比較例2) を作製した。この回転機の構造は上述の比較回転機1の構造と同一とし、固定子鉄心の材料だけを前記の二方向性珪素鋼板に変更した。打抜き後歪取り焼鈍を施し、さらに絶縁皮膜を塗布した後、積層して、前述と同様に回転機を組上げた。ヨーク部最小断面積部の断面平均磁束密度のピーク値は1.55T、歯部中央断面部分における断面平均磁束密度のピーク値は1.85Tである。
【0042】
これら回転機の効率特性を表2から表4と図4a 〜4c に示す。
本発明の回転機は、無方向性珪素鋼板を用いた従来設計のもの (比較回転機1) よりも全回転数域でより高い効率を示す。また、二方向性珪素鋼板を用い、従来の設計を行った回転機 (比較回転機2) の効率は、無方向性珪素鋼板を用いた比較回転機2とほぼ同じか、わずかに低下していることもわかる。
【0043】
このように、本発明の回転機は優れた特性を示す。
【0044】
【表1】

Figure 2004328871
【0045】
【表2】
Figure 2004328871
【0046】
【表3】
Figure 2004328871
【0047】
【表4】
Figure 2004328871
【0048】
【発明の効果】
以上説明してきたように、本発明にかかる回転機によれば、高い効率での運転が可能となり省エネルギに大きく寄与することができ、その実用上の価値は大きい。また、二方向性珪素鋼板の回転機への用途を拡大したことから、斯界に寄与すること大である。
【図面の簡単な説明】
【図1】図1a および図1b は、固定子鉄心の平面形状を、図1cは、分割鉄心の構成部材を鋼板から打抜くときの打抜き方向を示すとともに、それらを組み合わせて積層して構成した鉄心を示す略式説明図である。
【図2】図2a は、一方向性珪素鋼板の集合組織を、図2b は、二方向性珪素鋼板の集合組織を、そして図2c は、同じく二方向性珪素鋼板の別の例の集合組織をそれぞれ示す模式的説明図である。
【図3】図3a および図3b は、実施例における固定子鉄心の配置例を示す模式的説明図である。
【図4】図4a は本発明にかかる回転機の、図4b および図4c は、比較例の回転機の結果を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rotating machine such as a generator and a motor, and more particularly to a high-efficiency rotating machine using a bidirectional magnetic steel sheet.
[0002]
[Prior art]
The rotating machine includes a generator, a motor, a linear motor, and the like. Among them, for example, there are various types of motors such as an induction type, a synchronous type using a permanent magnet, and a reluctance torque type.
[0003]
These rotating machines are widely used in modern society so as to consume 50% or more of the total generated power, and it is desired to improve the energy efficiency from the viewpoint of energy saving. For example, the efficiency of a generator greatly affects the energy efficiency of power generation itself.
[0004]
By the way, the most widely used iron core material for such generators, industrial electric rotating machines, and rotating machines in household electric appliances, etc. is a silicon steel sheet containing up to several% of silicon ( Electrical steel sheet). There are two magnetisms required for the silicon steel sheet: low magnetic energy loss in an AC magnetic field and high magnetic flux density in a practical magnetic field. To realize these, it is effective to increase the electric resistance and integrate the <100> axis of the bcc lattice, which is the direction of easy magnetization, in the direction of the magnetic field to be used. In particular, the most effective method for dramatically improving the magnetic characteristics is to integrate the <100> axis, which is the direction of easy magnetization, in the direction of the magnetic field used.
[0005]
Here, a description will be given of a stator core (hereinafter, also simply referred to as an “iron core”) in a rotating machine. FIGS. 1A and 1B show a planar shape of a fixed iron core 14 having a yoke portion 10 and a tooth portion 12. FIG. 1b shows a split stator core 16 and also shows a split core 18 constituting the split stator core. FIG. 1c shows a punching direction when the component member 20 of the split core is punched from the steel plate 22, and also shows an iron core 24 formed by combining and stacking them.
[0006]
What is called a non-oriented electrical steel sheet is an electrical steel sheet having almost no texture, and is preferably used as a core material of a rotating machine. For example, in the case of a stator core of a rotating machine, it is often used by being punched into a shape as shown in FIG.
[0007]
The direction of the magnetic flux in the core of the rotating machine is mainly directed to the circumferential direction and the radial direction of the iron core. Can be punched and laminated in the circumferential direction and used as an iron core. However, the <100> axis, which is the easy magnetization direction, is not oriented in the direction of the magnetic flux in the iron core, and good core magnetization characteristics cannot be expected.
[0008]
On the other hand, a large-sized generator or the like sometimes uses an electromagnetic steel sheet called a unidirectional silicon steel sheet. The <100> axis is oriented in the rolling direction, and in order to orient it in the direction of the magnetic flux, the iron core as shown in FIG. 1b is punched in a circumferentially divided form, and is laminated and used as shown in FIG. 1c. At this time, punching is performed so that the rolling direction, which is the easy magnetization direction, is oriented in the circumferential direction or the radial direction of the iron core. Such an iron core is called a split iron core. The magnetic flux inside the iron core flows mainly in the circumferential direction at the yoke part of the iron core and mainly in the radial direction at the tooth part.Therefore, depending on the design, a core with better characteristics can be obtained compared to using non-oriented electrical steel sheets. Can be However, for example, if a steel sheet is punched with the rolling direction oriented in the direction of the magnetic flux in the yoke, the width direction where magnetization is difficult in the tooth portion coincides with the direction of the magnetic flux, and this is not ideal. In some cases, the rolling direction is aligned with the radial direction of the iron core in order to improve the magnetization characteristics at the teeth, and punching is performed. In this case, however, the magnetic characteristics of the yoke deteriorate. Therefore, such high characteristics cannot be obtained.
[0009]
On the other hand, a steel sheet having a texture in which the {100} plane is parallel to the sheet surface has the largest number of <100> axes in the rolling plane, and is known to be ideal as an iron core of a rotating machine. For example, as shown in FIG. 2b to be described later, a steel sheet having a cubic texture in which <100> axes are accumulated in two directions perpendicular to each other in the plane of the sheet is called a bidirectional silicon steel sheet. As shown in FIG. 1c, it is expected that an iron core having the most excellent characteristics will be obtained by dividing the iron core in the circumferential direction, aligning the easy magnetization direction in the circumferential direction and the radial direction and punching and laminating.
[0010]
Here, FIG. 2 shows the texture of the magnetic steel sheet, FIG. 2A shows a texture called a unidirectional silicon steel sheet, and FIG. 2B shows two textures perpendicular to the rolling direction and the width direction in the sheet surface. It shows a cubic texture in which <100> axes are accumulated in the direction, and this is called a bidirectional silicon steel sheet. FIG. 2c shows the texture of another example of a bidirectional silicon steel sheet. The crystal grains are oriented in two directions at an angle with respect to the axis perpendicular to the rolling direction and the width direction in the plane of the sheet.
[0011]
[Problems to be solved by the invention]
However, although the use of a bidirectional silicon steel sheet as a split core is expected to improve the characteristics of a rotating machine, practically no research has been conducted on a rotating machine using a bidirectional silicon steel sheet as an iron core. . There has been no report of improving the characteristics of a rotating machine using a bidirectional silicon steel sheet as an iron core. Investigations of the present inventors show that when a conventional method of designing a rotating machine is used, even if a bidirectional silicon steel sheet is used for a split-type core, the rotating machine is not improved in efficiency but rather reduced in efficiency. There is even a problem. Therefore, unlike the simplified conceptual idea, even if a bidirectional silicon steel sheet is used for the core of a rotating machine in which the distribution of magnetic flux changes in a complicated manner, the efficiency of the rotating machine can hardly be improved. It was thought that there was no.
[0012]
[Means for Solving the Problems]
In the conventional rotating machine design, the peak value of the cross-sectional average value of the magnetic flux density at the narrowest part of the yoke part of the stator core (hereinafter also referred to as the "yoke part minimum cross-sectional area") (occurs at the maximum output) The peak value of the cross-sectional average value of the magnetic flux density at the central portion of the tooth portion is defined as the saturation magnetic flux density (about 2 to 2 T). .1T) of about 90% (1.8 to 1.9T) or less, because the iron loss portion of the energy loss of the rotating machine consisting of iron loss, copper loss and mechanical loss is excessively large. In general, iron loss increases sharply with high magnetic flux density, and when a rotating machine is operated at high output, the ratio of iron loss to total loss becomes very large. Design has been made.
[0013]
The present inventors have studied the problem of increasing the efficiency of a rotating machine using a bidirectional silicon steel sheet as a split core, and using a bidirectional silicon steel sheet made of fine crystal grains as a material for the split core. Further, they have found that high efficiency can be achieved by operating a rotating machine under a high magnetic flux density, which has not been conventionally performed, and completed the present invention.
[0014]
The reason why the grain must be a bidirectional silicon steel sheet composed of fine crystal grains is that if the crystal grains are large, eddy current loss increases at high speed rotation and iron loss increases. This is because a problem of cracking occurs when it is pulled out.
[0015]
The first reason that the core must be designed with a high magnetic flux density is that the iron loss when a bidirectional silicon steel sheet is assembled into the iron core is different from the conventional prediction, and is negligible when the magnetic flux density is relatively low. This is because iron loss does not decrease or increases in comparison with a grain-oriented silicon steel sheet or the like. This is thought to be caused by the presence of stress due to assembly (tightening) in the core of the rotating machine and the complicated rotation of the magnetic field inside the core. Further, when used at a high magnetic flux density, the iron loss is reduced under the conditions in a practical rotating machine.
[0016]
The second reason is that if a high magnetic flux density design can be performed, the armature portion can be enlarged if the rotating machine has the same size. Thereby, the copper wire diameter can be increased, the electrical resistance can be reduced, and the copper loss can be reduced.
[0017]
The ability to reduce the core volume (cross-sectional area) means not only high efficiency but also downsizing.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
< Magnetic flux density inside iron core, type of rotating machine >
FIG. 3 is a schematic explanatory view showing one arrangement example of the stator core 30 and the rotor 32 in the rotating machine. FIGS. 3A and 3B are different from each other only in the size of the shape of the split core 34. Are substantially the same. In both figures, reference numeral 36 denotes a yoke minimum cross-sectional area portion and a divided surface of the stator core, and reference numeral 36 denotes a tooth portion central cross section. In the rotating machine according to the present invention, any form is not particularly limited as long as the maximum magnetic flux density at the minimum cross-sectional area of the yoke portion of the stator core is 1.75 T or more. The rotating machine in the illustrated example is of a permanent magnet type, and a permanent magnet 40 is embedded in the rotor 32.
[0019]
Yoke magnetic flux density:
In order to reduce iron loss of the iron core and further reduce the core volume, the time maximum value of the cross-sectional average of the magnetic flux density at the minimum cross-sectional area of the yoke portion of the stator core is 1.75 T or more, preferably 1.85 T. Above, more preferably 1.9 T or more.
[0020]
The above time maximum generally occurs when the maximum current is passed through the armature. In the case of the permanent magnet type shown in FIG. 3, specifically, for example, it can be realized by making the yoke portion and / or the tooth portion of the stator core smaller than the conventional one. The same applies to other types of rotating machines. In the case of the permanent magnet type, the magnetic flux density of the permanent magnet may be increased.
[0021]
Tooth magnetic flux density:
In order to reduce iron loss of the iron core and further reduce the core volume, the maximum time of the cross-sectional average of the magnetic flux density at the radial center of the teeth of the stator core (hereinafter also referred to as the "tooth central cross-section") The value is preferably 1.9 T or more, more preferably 1.93 T or more.
[0022]
The above time maximum generally occurs when the maximum current is passed through the armature.
Rotating machine type:
The type of the rotating machine may be any type such as an induction type, a permanent magnet type, a reluctance torque type, a linear type, and a generator. The high-efficiency motor is preferably a brushless synchronous type in which a permanent magnet is arranged on a rotor. A reluctance torque type in which the ratio of iron loss to energy loss is large is also one of the preferred types.
[0023]
< Iron core steel plate >
In order to enable a high magnetic flux density design and obtain a high-efficiency rotating machine, the following bidirectional silicon steel sheet is used at least for the core of the stator. As the material of the rotor core, any magnetic material such as a non-oriented silicon steel sheet or a unidirectional silicon steel sheet may be used. Of course, a bidirectional silicon steel sheet can also be used.
[0024]
The core used in the present invention is a split type, in a punched state as a constituent member of the stator core, a radial direction when the stator core is formed at a circumferential center portion when the stator core is formed, and The area ratio of crystal grains in which the <100> axis of the cubic orientation is oriented within 15 ° from the circumferential direction is 75% or more. It is preferably at least 85%, more preferably at least 90%.
[0025]
[Aggregate organization]
In order to have high magnetic flux density and low iron loss characteristics in two directions perpendicular to the plate surface, the steel plate is developed with a cubic texture. It is preferable from the viewpoint of the punching efficiency of the steel sheet that two directions (<100> axial directions) perpendicular to the sheet surface are the rolling direction and the width direction of the sheet. However, these may be inclined from the rolling direction and the width direction. In short, when the core is formed, it is only necessary to punch through such two directions having high characteristics in the circumferential direction and the radial direction of the core.
[0026]
Therefore, as the texture of the steel sheet, the volume ratio of crystal grains oriented within 15 ° from the cubic orientation is 75% or more, preferably 85% or more, and more preferably 90% or more.
[0027]
Here, “orienting in the“ cubic orientation ”” means that the <100> axis is oriented in two directions orthogonal to each other in the plane of the steel sheet.
[Grain size]
In order to reduce eddy current loss and obtain a low iron loss, to prevent cracking at the time of punching an iron core, the average crystal grain size is four times or less of the plate thickness, and to reduce hysteresis loss and obtain a low iron loss, .1 times or more. Preferably, the average crystal grain size is 3 times or less and 0.3 times or more of the plate thickness. More preferably, it is 2 times or less and 0.5 times or more.
[0028]
[Component composition]
In the case of the present invention, the composition is not particularly limited as long as it is an electromagnetic steel sheet. Therefore, in the present invention, it is only necessary to limit the content of Si to 1 to 6.5%. In this specification, "%" indicating the steel composition is% by mass.
[0029]
Si:
Si is contained in an amount of 1% or more to increase electric resistance and reduce eddy current loss. If it is contained in a large amount, the saturation magnetization is reduced, the material becomes brittle, and the workability is deteriorated. From the viewpoint of magnetic properties and workability, the content is preferably 2% or more and 4% or less.
[0030]
Mn:
Mn may be contained in order to increase electric resistance and reduce eddy current loss. If it is contained in a large amount, the saturation magnetization is reduced.
[0031]
C:
C is preferably at most 30 ppm in order not to cause magnetic aging.
Al:
Al may be contained, for example, in an amount of 0.1% or more to increase electric resistance. If it is contained in a large amount, the magnetostriction increases, so 3% is added as an upper limit.
[0032]
Cr:
Cr may be contained to increase electric resistance. When contained in a large amount, the magnetic flux density decreases, so that the upper limit is preferably 2%.
Other impurities are also in the range allowed for general electromagnetic steel sheets.
[0033]
[Thickness]
In order to reduce eddy current loss and iron loss, a thickness of 0.4 mm or less is preferable. On the other hand, the lower limit of the sheet thickness is not particularly limited as long as it can be manufactured by cold rolling, but is preferably 0.1 mm or more in order to reduce the labor for iron core lamination.
[0034]
[coating]
In order to prevent the generation of macroscopic eddy currents in the iron core, it is preferable to apply a coating for insulation. A conventionally known insulating film such as an organic substance, an inorganic substance, and a mixture thereof can be applied.
[0035]
The present inventors have studied the manufacturing method of the bidirectional silicon steel sheet and found a method of manufacturing a high-performance bidirectional silicon steel sheet composed of fine crystal grains of about 0.5 mm. See JP-A-9-20966 and WO98 / 20179.
[0036]
【Example】
A bidirectional silicon steel sheet having the composition shown in Table 1 was prepared. The plate thickness is 0.36 mm, the average crystal grain size when observed from the surface of the plate by Electron Back Scattering Pattern (EBSP) method is 0.58 mm, and 98% of the crystal grains are 15 ° from the {100} <001> orientation. Had a heading within. The magnetic flux density at 800 A / m in the rolling direction and the sheet width direction was about 1.85 T. From this steel plate, the components of the split core shown in FIG. 3a were stamped. At this time, punching was performed so that the circumferential direction at the circumferential center of the stator core of the component member was the rolling direction. After the punching, strain relief annealing was performed, and an insulating film was further applied. No problems such as cracking of the steel plate due to punching occurred.
[0037]
The constituent members were laminated to form a split iron core, wound with an armature coil, and assembled to produce a synchronous rotating machine. The outer shape and inner diameter of the stator core are 200 mm and 128 mm, respectively, and the stack thickness is about 50 mm.
[0038]
A high-grade non-oriented silicon steel sheet was used for the rotor core. The structure of the rotor is of a magnet embedded type in which a rare earth magnet is embedded as shown in FIG. 3A (8-pole magnet embedded synchronous rotating machine). The armature coils are concentrated winding. After assembling the stator, it was shrink-fitted in a case. The peak value of the cross-sectional average magnetic flux density at the yoke minimum cross-sectional area is 1.95 T, and the peak value of the cross-sectional average magnetic flux density at the central portion of the tooth portion is 1.93 T.
[0039]
As a comparative rotating machine (Comparative Example 1), a rotor made of a commercially available high-grade non-oriented silicon steel sheet (35A300) having a thickness of 0.35 mm was also manufactured. As shown in FIG. 3B, the structure of the stator at this time is designed so that the widths of the yoke portion and the tooth portion are larger by about 20% and 5%, respectively, than those described above. The outer diameter and inner diameter of the stator core are the same as those described above.
[0040]
Therefore, the window around which the armature coil is wound is narrowed. The copper wire of the armature coil was reduced by about 20%. After punching out the steel sheet, it was subjected to strain relief annealing. The insulating coating is originally applied. Other conditions of the armature and the rotor are the same as those described above. The peak value of the cross-sectional average magnetic flux density at the yoke minimum cross-sectional area is 1.55T, and the peak value of the cross-sectional average magnetic flux density at the central section of the tooth portion is 1.85T.
[0041]
Another comparative rotating machine (Comparative Example 2) was produced. The structure of this rotating machine was the same as the structure of the comparative rotating machine 1 described above, and only the material of the stator core was changed to the aforementioned bidirectional silicon steel sheet. After the punching, a strain relief annealing was performed, an insulating film was further applied, the layers were laminated, and a rotating machine was assembled in the same manner as described above. The peak value of the cross-sectional average magnetic flux density at the yoke minimum cross-sectional area is 1.55T, and the peak value of the cross-sectional average magnetic flux density at the central section of the tooth portion is 1.85T.
[0042]
The efficiency characteristics of these rotating machines are shown in Tables 2 to 4 and FIGS.
The rotating machine of the present invention exhibits higher efficiency in the entire rotation speed range than the conventional design using a non-oriented silicon steel sheet (Comparative rotating machine 1). In addition, the efficiency of a rotating machine (comparative rotating machine 2) using a bidirectional silicon steel sheet and having a conventional design is almost the same as or slightly lower than that of the comparative rotating machine 2 using a non-oriented silicon steel sheet. You can see that there is.
[0043]
Thus, the rotating machine of the present invention exhibits excellent characteristics.
[0044]
[Table 1]
Figure 2004328871
[0045]
[Table 2]
Figure 2004328871
[0046]
[Table 3]
Figure 2004328871
[0047]
[Table 4]
Figure 2004328871
[0048]
【The invention's effect】
As described above, according to the rotating machine of the present invention, high-efficiency operation is possible, which can greatly contribute to energy saving, and its practical value is great. Further, since the use of the bidirectional silicon steel sheet for a rotating machine has been expanded, it will greatly contribute to the art.
[Brief description of the drawings]
FIGS. 1a and 1b show a plan shape of a stator core, and FIG. 1c shows a punching direction when punching out constituent members of a split core from a steel plate, and they are combined and laminated. It is a schematic explanatory drawing which shows an iron core.
2a shows the texture of a grain-oriented silicon steel sheet, FIG. 2b shows the texture of a grain-oriented silicon steel sheet, and FIG. 2c shows the texture of another example of a grain-oriented silicon steel sheet. FIG.
FIGS. 3A and 3B are schematic explanatory views showing an example of arrangement of a stator core in the embodiment.
FIG. 4a is a graph showing the result of the rotating machine according to the present invention, and FIGS. 4b and 4c are graphs showing the result of the rotating machine of the comparative example.

Claims (5)

固定子鉄心が分割型である回転機であって、前記固定子鉄心のヨーク部最小断面積部分における最大磁束密度が1.75T以上であり、前記固定子鉄心を構成する分割鉄心が、質量%で1%以上、6.5 %以下のSiを含有し、板厚の0.1 倍以上4倍以下の平均結晶粒径を有し、かつ一の立方体方位から15°以内に配向する結晶粒の面積率が75%以上有する鋼板を素材とするものであり、さらに、前記分割鉄心の固定子鉄心を構成したときの周方向の中心部における前記立方体方位の<100> 軸が固定子鉄心を構成したときの半径方向および周方向に配向していることを特徴とする回転機。A stator in which a stator core is of a split type, wherein a maximum magnetic flux density in a minimum cross-sectional area of a yoke portion of the stator core is 1.75 T or more, and a split core constituting the stator core has a mass% of Containing 1% or more and 6.5% or less of Si, having an average grain size of 0.1 to 4 times the plate thickness, and being oriented within 15 ° from one cubic orientation A steel sheet having an area ratio of not less than 75%, and a <100> axis of the cubic orientation at the center in the circumferential direction when the stator core of the split iron core is formed. A rotating machine characterized by being oriented in a radial direction and a circumferential direction when configured. 前記鋼板は、{100 }<001> 方位に配向した結晶粒の面積率が85%以上であることを特徴とする請求項1記載の回転機。The rotating machine according to claim 1, wherein the steel sheet has an area ratio of crystal grains oriented in a {100} <001> direction of 85% or more. 前記鋼板は、質量%で、2%以上4%以下のSiを含有し、板厚が0.1mm 以上0.4mm 以下であることを特徴とする請求項1または2記載の回転機。3. The rotating machine according to claim 1, wherein the steel sheet contains 2% or more and 4% or less of Si in mass%, and has a thickness of 0.1 mm or more and 0.4 mm or less. 4. 前記固定子鉄心のヨーク部最小断面積部分における最大磁束密度が1.85T以上であり、かつ前記固定子鉄心の歯部の中央断面部分における最大磁束密度が 1.9T以上であることを特徴とする請求項1から3のいずれかに記載の回転機。The stator core has a maximum magnetic flux density of 1.85 T or more in a yoke portion minimum cross-sectional area portion, and a maximum magnetic flux density of 1.9 T or more in a central cross-sectional portion of a tooth portion of the stator core. The rotating machine according to any one of claims 1 to 3. 永久磁石を回転子に配した同期型とすることを特徴とする請求項1から4のいずれかに記載の回転機。The rotating machine according to any one of claims 1 to 4, wherein the rotating machine is of a synchronous type in which a permanent magnet is arranged on a rotor.
JP2003118870A 2003-04-23 2003-04-23 High efficiency rotating machine Expired - Fee Related JP4123040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003118870A JP4123040B2 (en) 2003-04-23 2003-04-23 High efficiency rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003118870A JP4123040B2 (en) 2003-04-23 2003-04-23 High efficiency rotating machine

Publications (2)

Publication Number Publication Date
JP2004328871A true JP2004328871A (en) 2004-11-18
JP4123040B2 JP4123040B2 (en) 2008-07-23

Family

ID=33498288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003118870A Expired - Fee Related JP4123040B2 (en) 2003-04-23 2003-04-23 High efficiency rotating machine

Country Status (1)

Country Link
JP (1) JP4123040B2 (en)

Also Published As

Publication number Publication date
JP4123040B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
AU2004247246B2 (en) Radial airgap, transverse flux motor
US7596856B2 (en) Method for manufacturing a soft magnetic metal electromagnetic component
US20040251761A1 (en) Radial airgap, transverse flux motor
US20080246362A1 (en) Radial airgap, transverse flux machine
US20040245879A1 (en) Efficient high-speed electric device using low-loss materials
AU2004320272B2 (en) Efficient axial airgap electric machine having a frontiron
US20150171676A1 (en) Rotor and permanent magnet rotating machine
JP5181827B2 (en) Axial gap motor and fan device using the same
US8222787B2 (en) Electric machine
JPH08223831A (en) Core and rotor core for rotating machine
WO2007141489A2 (en) Magnetic core of an electric machine having anisotropic material embedded in isotropic material
JP2003284274A (en) Rotor for permanent magnet synchronous motor
JP2005261188A (en) Core for rotating machine and rotating machine
JP2012029458A (en) Motor
CN107046352B (en) Internal permanent magnet motor
JP4123040B2 (en) High efficiency rotating machine
US8893375B1 (en) Methods of manufacturing a stator core
JPH08223830A (en) Core for rotating machine and salient-pole type rotor core
Kim et al. Design, analysis, and prototyping of axial flux-switching permanent magnet machine
JP2017108514A (en) Device
JP2004166354A (en) Motor
JP2007288838A (en) Embedded magnet type motor
JP2003264942A (en) Stator iron core of motor
JP2017093277A (en) Device
JP2004104893A (en) Stator core for motor excellent in noise property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees