JP2004328863A - Eddy current type reduction gear unit - Google Patents

Eddy current type reduction gear unit Download PDF

Info

Publication number
JP2004328863A
JP2004328863A JP2003118430A JP2003118430A JP2004328863A JP 2004328863 A JP2004328863 A JP 2004328863A JP 2003118430 A JP2003118430 A JP 2003118430A JP 2003118430 A JP2003118430 A JP 2003118430A JP 2004328863 A JP2004328863 A JP 2004328863A
Authority
JP
Japan
Prior art keywords
support ring
rotor
magnetic
magnet support
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003118430A
Other languages
Japanese (ja)
Inventor
Toru Kuwabara
徹 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2003118430A priority Critical patent/JP2004328863A/en
Publication of JP2004328863A publication Critical patent/JP2004328863A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an eddy current type reduction gear unit which improves a decelerating brake force by preventing permanent magnets from being magnetically short-circuited. <P>SOLUTION: The eddy current type reduction gear unit includes a rotor 2 mounted on a rotary shaft, a magnet supporting ring 6 made of a magnetic material disposed oppositely to the rotor 2, and a plurality of permanent magnets 10 provided at a predetermined interval in the circumferential direction in the magnet supporting ring 6. In the eddy current type decelerating apparatus, recesses 11 for cutting the line of magnetic force are formed at positions between the permanent magnets 10 on the surface of the magnet supporting ring 5 at the rotor 2 side of the magnet supporting ring 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、車両に減速制動を与える渦電流式減速装置に関する。
【0002】
【従来の技術】
本発明者は、先に図14、図15に示す渦電流式減速装置を開発した(特願2002−154349号の図14参照)。図示するように、この渦電流式減速装置は、車両の駆動軸等の動力伝達系に取り付けられたドラム状のロータaと、変速機等の固定系に取り付けられたステータ(磁力源)bとを有し、ステータbからロータaへ磁気を供給することでロータaに渦電流を生じさせて車両を減速制動し、磁気をステータb内に遮蔽することで減速制動を解除するものである。
【0003】
ステータbは、ロータaの内方に配置され固定系に支持された固定磁石支持環cと、固定磁石支持環cの内方に配置され所定角度範囲で回動可能に設けられた可動磁石支持環dとを有する。固定磁石支持環cは、磁性体からリング状に形成された本体eと、本体e内に周方向に所定間隔を隔てて設けられた複数の永久磁石fとからなる。各永久磁石fは、周方向の両端面に磁極を有し、周方向に向き合う磁極が同極に設定されている。他方、可動磁石支持環dは、磁性体からリング状に形成された本体gと、本体g内に周方向に所定間隔を隔てて設けられた複数の永久磁石hと、各永久磁石h同士の間に形成された空隙(ボイド)iとからなる。各永久磁石hは、径方向の外側端面と内側端面とに磁極を有し、周方向に隣接する磁石同士が逆極性に設定されている。
【0004】
車両を減速制動するときには、図14に示すように、可動磁石支持環dを回動させて固定磁石支持環cの永久磁石fの磁極と合わせる。すると、各磁石支持環c、dの永久磁石f、hとロータaとの間にN極とS極とを結ぶ磁気回路が構成され、ロータaに渦電流が発生し、車両が減速制動される。減速制動を解除するときには、図15に示すように、可動磁石支持環dを回動させて固定磁石支持環cの永久磁石fの磁極と異ならせる。すると、可動磁石支持環dの永久磁石hと固定磁石支持環cの永久磁石fとの間にN極とS極とを結ぶ磁気回路(ロータaに対する遮蔽回路)が構成され、車両の減速制動が解除される。
【0005】
この種の固定磁石支持環cと可動磁石支持環dとを備えた渦電流式減速装置として、特許文献1及び特許文献2に記載されたものが知られている。
【0006】
【特許文献1】
特公平6−101922号公報
【特許文献2】
特公平7−118902号公報
【0007】
【発明が解決しようとする課題】
ところで、上記渦電流式減速装置においては、図16に示すように、可動磁石支持環dの本体gの外周面には、永久磁石hと空隙iとを覆うように、周方向に連続的に電磁鋼板jが設けられている。この電磁鋼板jは、本体gの外周面に形成された永久磁石hを装着する穴および空隙iを形成する穴を連続的に覆い、これにより可動磁石支持環dの剛性を確保するために設けられる。
【0008】
このため、上記電磁鋼板jによって、図16に示すように、隣接する永久磁石h同士のN極とS極とを結ぶ磁気ショート回路Xが形成される。従って、その分、図14に示す減速制動時にロータaに向かう磁力線数が減少し、減速制動力(性能)が低下してしまう。
【0009】
以上の事情を考慮して創案された本発明の目的は、永久磁石同士の磁気的ショートを防止し、減速制動力の向上を図った渦電流式減速装置を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために本発明は、回転軸に取り付けられたロータと、該ロータに対向するように配置された磁性体からなる磁石支持環と、該磁石支持環の内部に周方向に所定間隔を隔てて設けられた複数の永久磁石とを備えた渦電流式減速装置であって、上記磁石支持環のロータ側の面に、各永久磁石の間に位置させて、磁力線を切断するための凹部を形成したものである。
【0011】
本発明によれば、上記凹部によって隣接する永久磁石同士の磁気ショート回路が切断されるため、磁気的ショートが発生するものと比べると永久磁石からロータに向かう磁力線数が増え、減速制動力(性能)が向上する。
【0012】
また、上記凹部に、非磁性体部材を嵌め込んでもよい。これにより、磁気的ショートの発生を確実に防止できる。
【0013】
【発明の実施の形態】
本発明の一実施形態を添付図面に基いて説明する。
【0014】
図1及び図2に示すように、この渦電流式減速装置1は、車両の駆動軸等の動力伝達系に取り付けられたドラム状のロータ2と、変速機等の固定系に取り付けられたステータ(磁力源)3とを有し、ステータ3からロータ2へ磁気を供給することでロータ2に渦電流を生じさせて車両を減速制動し、磁気をステータ3内に遮蔽することで減速制動を解除するものである。
【0015】
ロータ2は、例えば低炭素鋼等、磁性体かつ導体の材質からなる。ステータ3からの磁気(磁力線)、及びそれによって生じる渦電流を流すためである。ロータ2の外周面には、渦電流によって生じた熱を放熱するための放熱フィン4が設けられている。
【0016】
ステータ3は、ロータ2の内方に配置され固定系に支持された固定磁石支持環5と、固定磁石支持環5の内方に配置され所定角度範囲で回動可能に設けられた可動磁石支持環6とを有する。可動磁石支持環6と固定磁石支持環5との間には、可動磁石支持環6を固定磁石支持環5に対して回動させる図示しないアクチュエータ(エアシリンダ、ラック・ピニオン機構、ネジ送り機構等)が設けられている。
【0017】
固定磁石支持環5は、磁性体(低炭素鋼等)からリング状に形成された本体7と、本体7内に周方向に所定間隔を隔てて複数設けられた永久磁石8とからなる。本体7は、図面裏表方向に積層された電磁鋼板の積層体や鉄のブロック材等からなる。各永久磁石8は、周方向の両端面に磁極を有し、周方向に向き合う磁極が同極に設定されている。
【0018】
可動磁石支持環6は、磁性体(低炭素鋼等)からリング状に形成された本体9と、本体9内に周方向に所定間隔を隔てて複数設けられた永久磁石10とを備える。本体9は、図面裏表方向に積層された電磁鋼板の積層体や鉄のブロック材等からなる。各永久磁石10は、径方向の外側端面と内側端面とに磁極を有し、周方向に隣接する磁石同士が逆極性に設定されている。
【0019】
可動磁石支持環6の永久磁石10は、周方向に長く形成されており、その周方向の寸法は、固定磁石支持環5の永久磁石8、8同士の離間寸法に略合わせられている。他方、固定磁石支持環5の永久磁石8は、径方向に長く形成されており、その周方向の寸法は、可動磁石支持環6の永久磁石10、10同士の離間寸法に略合わせられている。
【0020】
可動磁石支持環6の本体9のロータ2側の面には、図3にも示すように、各永久磁石10同士の間に位置させて、永久磁石10同士の磁力線を切断するための凹部11が形成されている。凹部11は、本体9の周方向に所定間隔を隔てて、それぞれ軸方向に沿って形成される。凹部11の深さは、本体9の外周面から永久磁石10の径方向内側端面までの深さに略合わせられている。
【0021】
これにより、各永久磁石10は、その径方向外側面10aおよび周方向側面10bが、磁性体からなる断面略コ字状のカバ−12で覆われ、磁気的に遮蔽されることになる。カバー12は、磁石10の径方向外側面10aを覆う周方向カバー部12aと、磁石10の周方向側面10bを覆う径方向カバー部12bとからなる。径方向カバー部12bは、径方向に沿ってストレート状に形成されている。
【0022】
かかる可動磁石支持環6は、電磁鋼板を積層して製造される場合には、図3に示すように永久磁石10を装着する部分が穴状に打ち抜かれ、且つ凹部11の部分が打ち抜かれた形状の電磁鋼板を図面裏表方向に複数積層し、各穴に永久磁石10を装着して製造される。
【0023】
車両を減速制動するときには、図1に示すように、可動磁石支持環6を回動させ固定磁石支持環5の永久磁石8の磁極と合わせる。すると、各磁石支持環5、6の永久磁石8、10とロータ2との間にN極とS極とを結ぶ磁気回路が構成され、ロータ2に渦電流が発生し、車両が減速制動される。
【0024】
減速制動を解除するときには、図2に示すように、可動磁石支持環6を回動させ固定磁石支持環5の永久磁石8の磁極と異ならせる。すると、可動磁石支持環6の永久磁石10と固定磁石支持環5の永久磁石8との間にN極とS極とを結ぶ磁気回路(ロータ2に対する遮蔽回路)が構成され、車両の減速制動が解除される。
【0025】
以上の構成からなる本実施形態の作用を述べる。
【0026】
本実施形態では、図1及び図3に示すように、可動磁石支持環6のロータ2側の面に、各永久磁石10同士の間に位置させて凹部11を設けているので、かかる凹部11によって隣接する永久磁石10同士の磁気ショート回路(図16参照)Xが切断され、永久磁石10同士が磁気的にショートすることが回避される。
【0027】
このため、本実施形態では、図16のタイプのように磁気的ショートが発生するものと比べると、減速制動時に、可動磁石支持環6の永久磁石10からロータ2に向かう磁力線数が、磁気的ショートが生じない分だけ増え、減速制動力(性能)が向上する。
【0028】
すなわち、本実施形態では、上記凹部11を設けることによって、可動磁石支持環6の永久磁石10の磁力線(磁力)を各磁石10同士で磁気的にショートさせることなく有効にロータ2に作用させることができるので、図16のタイプよりも減速制動力(性能)が向上する。
【0029】
また、本実施形態では、カバ−12の径方向カバー部12bが、径方向に沿ってストレート状に形成されているので、永久磁石10の磁気漏れ(磁気的ショート)を可及的に小さくできる。
【0030】
変形例を図4に示す。
【0031】
図示するように、この変形例は、上記径方向カバー部12bを、径方向内側が厚く外側が薄くなるようにテーパ状(傾斜状)に形成した点のみが前実施形態と異なり、その他は同様の構成となっている。この変形例においては、前実施形態と同様の作用効果を奏することは勿論、径方向カバー部12bをテーパ状に形成することで肉厚となって強度が向上するため、可動磁石支持環6の全体的な剛性及び永久磁石10の支持剛性が向上する。
【0032】
図5に示す変形例は、上記径方向カバー部12bを、途中からテーパ状とすることで、補強したものである。図6に示す変形例は、上記径方向カバー部12bを、途中からアール状とすることで、補強したものである。これらの実施形態においても、図3の変形例と同様の作用効果を奏する。
【0033】
変形例を図7に示す。
【0034】
図示するように、この変形例は、図3に示す最初の実施形態の凹部11(径方向カバー部12bがストレート状のタイプ)に、非磁性体部材13を嵌め込むように設けた点のみが最初の実施形態と異なり、その他は同様の構成となっている。非磁性体部材13は、その材質にオーステナイト系ステンレスやアルミ等が用いられ、ボルトやネジ等14によって凹部11に固定される。このように、凹部11に非磁性体部材13を設けることで、各永久磁石10の磁気的ショートを防止できることは勿論、各永久磁石10が動かないように補強される。よって、可動磁石支持環6の全体的な剛性及び永久磁石10の支持剛性が向上する。また、本体9を構成すべく図面裏表方向に積層された複数の電磁鋼板の破損防止対策ともなる。
【0035】
図8に示す変形例は、図4に示すテーパ状の凹部11(径方向カバー部12bがテーパ状のタイプ)にテーパ状の非磁性体部材13を嵌め込むように設けたものである。この場合、ボルトやネジ等14を締め込んで各非磁性体部材13を夫々凹部11の奥に移動させると、テーパ状に形成された径方向カバー部12bがクサビ作用を発揮し、各永久磁石10がその両端の各非磁性体部材13によって挟まれて動かないように補強される。よって、可動磁石支持環6の全体的な剛性及び永久磁石10の支持剛性が更に向上する。図9に示す変形例は、図5に示す途中からテーパ状に形成された凹部(径方向カバー部12bが途中からテーパ状のタイプ)に非磁性体部材13を充填するように設けたものである。この場合も、図8に示す変形例と同様の作用効果を奏する。
【0036】
図10及び図11に示す変形例は、図3に示す最初の実施形態の凹部11に、非磁性体部材13をボルトやネジ等ではなく挟むようにして装着したものである。すなわち、非磁性体部材13は、図11に示すように、本体9を軸方向から挟むように断面略C字状に形成されており、電磁鋼板9aを積層してなる本体9には、非磁性体部材13の先端の爪部13xが係合する穴9xが形成されている。この変形例においても、図7〜図9のタイプと同様の作用効果を奏することは勿論、非磁性体部材13が本体9を構成する複数の電磁鋼板9aを束ねる作用も発揮する。
【0037】
変形例を図12及び図13に示す。
【0038】
図示するように、この渦電流式減速装置1aは、ロータ2をディスク状としたものである。すなわち、車両の駆動軸等の回転軸には、ディスク状のロータ2が取り付けられている。そして、ロータ2に対向させて、回転軸に対して同芯的に形成された固定磁石支持環5と可動磁石支持環6とが、軸方向に並べて配置されている。これら磁石支持環5、6はステータ3を構成する。
【0039】
固定磁石支持環5は、磁性体からリング状に形成された本体7と、本体7内に周方向に所定間隔を隔てて複数設けられた永久磁石8とからなる。各永久磁石8は、周方向の両端面に磁極を有し、周方向に向き合う磁極が同極に設定されている。
【0040】
可動磁石支持環6は、磁性体からリング状に形成された本体9と、本体9内に周方向に所定間隔を隔てて複数設けられた永久磁石10とを備える。各永久磁石10は、軸方向のロータ2側面と反ロータ2側面とに磁極を有し、周方向に隣接する磁石同士が逆極性に設定されている。
【0041】
車両を減速制動するときには、図12に示すように、可動磁石支持環6を回動させ固定磁石支持環5の永久磁石8の磁極と合わせる。すると、各磁石支持環5、6の永久磁石8、10とロータ2との間にN極とS極とを結ぶ磁気回路が構成され、ロータ2に渦電流が発生し、車両が減速制動される。
【0042】
減速制動を解除するときには、図13に示すように、可動磁石支持環6を回動させ固定磁石支持環5の永久磁石8の磁極と異ならせる。すると、可動磁石支持環6の永久磁石10と固定磁石支持環5の永久磁石8との間にN極とS極とを結ぶ磁気回路(ロータ2に対する遮蔽回路)が構成され、車両の減速制動が解除される。
【0043】
可動磁石支持環6の本体9のロータ2側の面には、各永久磁石10同士の間に位置させて、永久磁石10同士の磁力線を切断するための凹部11が形成されている。凹部11は、本体9の周方向に所定間隔を隔てて、それぞれ径方向に沿って略放射状に形成される。凹部11の深さは、本体9のロータ2側面から永久磁石10の反ロータ側面までの深さに略合わせられている。
【0044】
かかる凹部11によって、隣接する永久磁石10同士の磁気ショート回路が切断され、永久磁石10同士が磁気的にショートすることが回避される。このため、磁気的ショートが発生するものと比べると、減速制動時に、可動磁石支持環6の永久磁石10からロータ2に向かう磁力線数が、磁気的ショートが生じない分だけ増え、減速制動力(性能)が向上する。
【0045】
すなわち、本実施形態では、上記凹部11を設けることによって、可動磁石支持環6の永久磁石10の磁力線(磁力)を各磁石10同士で磁気的にショートさせることなく有効にロータ2に作用させることができるので、減速制動力(性能)が向上する。
【0046】
なお、図12及び図13に示す凹部11の形状を図4〜図6に示すようにテーパ状等に改良してもよく、凹部11内に図7〜図11に示すような非磁性体部材13を嵌め込んでもよい。
【0047】
【発明の効果】
以上説明したように本発明に係る渦電流式減速装置によれば、永久磁石同士の磁気的ショートを防止でき、減速制動力の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る渦電流式減速装置の減速制動時の断面図である。
【図2】上記渦電流式減速装置の通常時(減速制動解除時)の断面図である。
【図3】上記渦電流式減速装置の部分拡大図である。
【図4】変形例を示す断面図である。
【図5】変形例を示す断面図である。
【図6】変形例を示す断面図である。
【図7】変形例を示す断面図である。
【図8】変形例を示す断面図である。
【図9】変形例を示す断面図である。
【図10】変形例を示す断面図である。
【図11】図10のXI−XI断面図である。
【図12】変形例を示す渦電流式減速装置の減速制動時の断面図である。
【図13】上記渦電流式減速装置の通常時(減速制動解除時)の断面図である。
【図14】本発明者が先に開発した渦電流式減速装置の減速制動時の断面図である。
【図15】上記渦電流式減速装置の通常時(減速制動解除時)の断面図である。
【図16】上記渦電流式減速装置の部分拡大図である。
【符号の説明】
1 渦電流式減速装置
2 ロータ
6 磁石支持環(可動磁石支持環)
10 永久磁石
11 凹部
13 非磁性体部材
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an eddy current type reduction gear that applies deceleration braking to a vehicle.
[0002]
[Prior art]
The inventor has previously developed the eddy current type speed reducer shown in FIGS. 14 and 15 (see FIG. 14 of Japanese Patent Application No. 2002-154349). As shown in the figure, this eddy current type speed reducer includes a drum-shaped rotor a attached to a power transmission system such as a drive shaft of a vehicle, and a stator (magnetic force source) b attached to a fixed system such as a transmission. By supplying magnetism from the stator b to the rotor a, an eddy current is generated in the rotor a to decelerate and brake the vehicle, and shield the magnetism inside the stator b to release the deceleration braking.
[0003]
The stator b includes a fixed magnet support ring c disposed inside the rotor a and supported by a fixed system, and a movable magnet support disposed inside the fixed magnet support ring c and rotatably provided within a predetermined angle range. And a ring d. The fixed magnet support ring c includes a main body e formed in a ring shape from a magnetic material, and a plurality of permanent magnets f provided at predetermined intervals in the circumferential direction in the main body e. Each permanent magnet f has magnetic poles on both end surfaces in the circumferential direction, and the magnetic poles facing in the circumferential direction are set to be the same. On the other hand, the movable magnet support ring d includes a main body g formed in a ring shape from a magnetic material, a plurality of permanent magnets h provided at predetermined intervals in the circumferential direction in the main body g, and a plurality of permanent magnets h. And voids (voids) i formed therebetween. Each of the permanent magnets h has a magnetic pole on the outer end face and the inner end face in the radial direction, and magnets adjacent in the circumferential direction are set to have opposite polarities.
[0004]
When decelerating and braking the vehicle, as shown in FIG. 14, the movable magnet support ring d is rotated to match the magnetic pole of the permanent magnet f of the fixed magnet support ring c. Then, a magnetic circuit connecting the N pole and the S pole is formed between the permanent magnets f and h of the magnet support rings c and d and the rotor a, an eddy current is generated in the rotor a, and the vehicle is decelerated and braked. You. When releasing the deceleration braking, as shown in FIG. 15, the movable magnet support ring d is rotated to make it different from the magnetic pole of the permanent magnet f of the fixed magnet support ring c. Then, a magnetic circuit (shielding circuit for the rotor a) connecting the N pole and the S pole is formed between the permanent magnet h of the movable magnet support ring d and the permanent magnet f of the fixed magnet support ring c, and the vehicle is decelerated and braked. Is released.
[0005]
As such eddy current type reduction gears provided with a fixed magnet support ring c and a movable magnet support ring d, those described in Patent Documents 1 and 2 are known.
[0006]
[Patent Document 1]
Japanese Patent Publication No. 6-101922 [Patent Document 2]
Japanese Patent Publication No. Hei 7-118902
[Problems to be solved by the invention]
By the way, in the above-mentioned eddy current type reduction gear, as shown in FIG. 16, the outer peripheral surface of the main body g of the movable magnet support ring d is continuously formed in the circumferential direction so as to cover the permanent magnet h and the gap i. An electromagnetic steel sheet j is provided. The electromagnetic steel sheet j continuously covers a hole for mounting the permanent magnet h and a hole for forming the gap i formed on the outer peripheral surface of the main body g, thereby providing rigidity of the movable magnet support ring d. Can be
[0008]
Therefore, the magnetic steel sheet j forms a magnetic short circuit X connecting the N pole and the S pole of the adjacent permanent magnets h as shown in FIG. Accordingly, the number of lines of magnetic force directed to the rotor a during the deceleration braking shown in FIG. 14 decreases accordingly, and the deceleration braking force (performance) decreases.
[0009]
SUMMARY OF THE INVENTION An object of the present invention, which has been made in view of the above circumstances, is to provide an eddy current type speed reducer which prevents a magnetic short circuit between permanent magnets and improves a deceleration braking force.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a rotor attached to a rotating shaft, a magnet support ring made of a magnetic material arranged to face the rotor, and a predetermined circumferentially extending magnet inside the magnet support ring. An eddy current speed reducer comprising a plurality of permanent magnets provided at intervals, wherein the magnet support ring is positioned between the permanent magnets on a rotor-side surface of the magnet support ring to cut magnetic lines of force. Are formed.
[0011]
According to the present invention, since the magnetic short circuit between the adjacent permanent magnets is cut by the recess, the number of lines of magnetic force from the permanent magnets toward the rotor is increased as compared with a magnetic short circuit, and the deceleration braking force (performance ) Is improved.
[0012]
Further, a non-magnetic member may be fitted into the recess. As a result, the occurrence of a magnetic short can be reliably prevented.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the accompanying drawings.
[0014]
As shown in FIGS. 1 and 2, the eddy current type speed reducer 1 includes a drum-shaped rotor 2 attached to a power transmission system such as a drive shaft of a vehicle, and a stator attached to a fixed system such as a transmission. (Magnetic force source) 3 and supplies magnetism from the stator 3 to the rotor 2 to generate an eddy current in the rotor 2 to decelerate braking of the vehicle, and shield magnetism in the stator 3 to decelerate braking. It is to cancel.
[0015]
The rotor 2 is made of a magnetic material and a conductor material such as low carbon steel. This is for flowing magnetism (lines of magnetic force) from the stator 3 and eddy current generated thereby. Radiation fins 4 for radiating heat generated by the eddy current are provided on the outer peripheral surface of the rotor 2.
[0016]
The stator 3 includes a fixed magnet support ring 5 disposed inside the rotor 2 and supported by a fixed system, and a movable magnet support disposed inside the fixed magnet support ring 5 and rotatably provided within a predetermined angle range. And ring 6. Between the movable magnet support ring 6 and the fixed magnet support ring 5, an actuator (not shown) for rotating the movable magnet support ring 6 with respect to the fixed magnet support ring 5 (an air cylinder, a rack and pinion mechanism, a screw feed mechanism, etc.) ) Is provided.
[0017]
The fixed magnet support ring 5 includes a main body 7 formed in a ring shape from a magnetic material (such as low carbon steel), and a plurality of permanent magnets 8 provided in the main body 7 at predetermined intervals in a circumferential direction. The main body 7 is made of a laminated body of electromagnetic steel sheets laminated in the front and rear directions of the drawing, an iron block material, and the like. Each permanent magnet 8 has magnetic poles on both end surfaces in the circumferential direction, and the magnetic poles facing in the circumferential direction are set to be the same.
[0018]
The movable magnet support ring 6 includes a main body 9 formed in a ring shape from a magnetic material (such as low carbon steel), and a plurality of permanent magnets 10 provided in the main body 9 at predetermined intervals in a circumferential direction. The main body 9 is made of a laminated body of electromagnetic steel sheets laminated in the front and rear directions of the drawing, an iron block material, and the like. Each of the permanent magnets 10 has magnetic poles on the outer end face and the inner end face in the radial direction, and magnets adjacent in the circumferential direction are set to have opposite polarities.
[0019]
The permanent magnet 10 of the movable magnet support ring 6 is formed to be long in the circumferential direction, and the size in the circumferential direction is approximately equal to the distance between the permanent magnets 8 of the fixed magnet support ring 5. On the other hand, the permanent magnet 8 of the fixed magnet support ring 5 is formed to be long in the radial direction, and its circumferential dimension is substantially matched to the distance between the permanent magnets 10 and 10 of the movable magnet support ring 6. .
[0020]
As shown in FIG. 3, a concave portion 11 for cutting magnetic lines of force between the permanent magnets 10 is provided on the surface of the main body 9 of the movable magnet support ring 6 on the rotor 2 side, as shown in FIG. Is formed. The recesses 11 are respectively formed along the axial direction at predetermined intervals in the circumferential direction of the main body 9. The depth of the recess 11 is substantially matched with the depth from the outer peripheral surface of the main body 9 to the radially inner end surface of the permanent magnet 10.
[0021]
As a result, each of the permanent magnets 10 has its radially outer surface 10a and its circumferential side surface 10b covered with a cover 12 made of a magnetic material and having a substantially U-shaped cross section, and is magnetically shielded. The cover 12 includes a circumferential cover portion 12a that covers the radially outer surface 10a of the magnet 10, and a radial cover portion 12b that covers the circumferential side surface 10b of the magnet 10. The radial cover portion 12b is formed in a straight shape along the radial direction.
[0022]
When the movable magnet support ring 6 is manufactured by laminating electromagnetic steel plates, a portion where the permanent magnet 10 is mounted is punched in a hole shape and a portion of the concave portion 11 is punched as shown in FIG. It is manufactured by laminating a plurality of electromagnetic steel sheets having different shapes in the front and rear directions of the drawing and mounting the permanent magnet 10 in each hole.
[0023]
When decelerating and braking the vehicle, as shown in FIG. 1, the movable magnet support ring 6 is rotated to match the magnetic poles of the permanent magnets 8 of the fixed magnet support ring 5. Then, a magnetic circuit connecting the N pole and the S pole is formed between the permanent magnets 8 and 10 of the magnet support rings 5 and 6 and the rotor 2, an eddy current is generated in the rotor 2, and the vehicle is decelerated and braked. You.
[0024]
When releasing the deceleration braking, as shown in FIG. 2, the movable magnet support ring 6 is rotated so as to be different from the magnetic pole of the permanent magnet 8 of the fixed magnet support ring 5. Then, a magnetic circuit (shielding circuit for the rotor 2) connecting the N pole and the S pole is formed between the permanent magnet 10 of the movable magnet support ring 6 and the permanent magnet 8 of the fixed magnet support ring 5, and the vehicle is decelerated and braked. Is released.
[0025]
The operation of the present embodiment having the above configuration will be described.
[0026]
In the present embodiment, as shown in FIGS. 1 and 3, the concave portion 11 is provided on the surface of the movable magnet support ring 6 on the rotor 2 side between the permanent magnets 10. As a result, the magnetic short circuit X (see FIG. 16) between the adjacent permanent magnets 10 is disconnected, and the magnetic short circuit between the permanent magnets 10 is avoided.
[0027]
Therefore, in the present embodiment, the number of lines of magnetic force from the permanent magnet 10 of the movable magnet support ring 6 toward the rotor 2 during deceleration braking is smaller than that of the type in which a magnetic short circuit occurs as in the type of FIG. It increases by the amount that no short circuit occurs, and the deceleration braking force (performance) improves.
[0028]
That is, in the present embodiment, the provision of the concave portion 11 allows the lines of magnetic force (magnetic force) of the permanent magnets 10 of the movable magnet support ring 6 to effectively act on the rotor 2 without magnetically short-circuiting the magnets 10 to each other. Therefore, the deceleration braking force (performance) is improved as compared with the type shown in FIG.
[0029]
Further, in this embodiment, since the radial cover portion 12b of the cover 12 is formed straight in the radial direction, magnetic leakage (magnetic short-circuit) of the permanent magnet 10 can be reduced as much as possible. .
[0030]
FIG. 4 shows a modified example.
[0031]
As shown in the drawing, this modification differs from the previous embodiment only in that the radial cover portion 12b is formed in a tapered shape (inclined shape) such that the radially inner portion is thicker and the outer side is thinner. Configuration. In this modification, the radial cover portion 12b is formed to have a tapered shape to increase the thickness and the strength, so that the radial magnet cover portion 12b has the same function and effect as the previous embodiment. The overall rigidity and supporting rigidity of the permanent magnet 10 are improved.
[0032]
In the modification shown in FIG. 5, the radial cover portion 12b is reinforced by being tapered from the middle. In the modification shown in FIG. 6, the radial cover portion 12b is reinforced by forming it into a round shape from the middle. Also in these embodiments, the same operation and effect as the modification of FIG. 3 can be obtained.
[0033]
FIG. 7 shows a modified example.
[0034]
As shown in the figure, this modified example is different from the first embodiment shown in FIG. 3 only in that the nonmagnetic member 13 is provided so as to be fitted into the concave portion 11 (the radial cover portion 12b is a straight type). Unlike the first embodiment, the other components have the same configuration. The nonmagnetic member 13 is made of austenitic stainless steel, aluminum, or the like, and is fixed to the recess 11 with bolts, screws, or the like 14. By providing the non-magnetic member 13 in the concave portion 11 as described above, it is possible to prevent a magnetic short circuit of each of the permanent magnets 10 and, of course, to reinforce each of the permanent magnets 10 so as not to move. Therefore, the overall rigidity of the movable magnet support ring 6 and the rigidity of supporting the permanent magnet 10 are improved. Further, it also serves as a measure for preventing damage to a plurality of electromagnetic steel sheets stacked in the front and rear directions of the drawing to constitute the main body 9.
[0035]
The modification shown in FIG. 8 is provided so that a tapered non-magnetic member 13 is fitted into a tapered recess 11 (a type in which a radial cover portion 12b is tapered) shown in FIG. In this case, when each of the non-magnetic members 13 is moved to the back of the concave portion 11 by tightening the bolts and screws 14, the tapered radial cover portion 12 b exerts a wedge action, and each permanent magnet 10 is reinforced so as not to move between the non-magnetic members 13 at both ends thereof. Therefore, the overall rigidity of the movable magnet support ring 6 and the rigidity of supporting the permanent magnet 10 are further improved. The modification shown in FIG. 9 is provided so that the nonmagnetic member 13 is filled in a concave portion (a type in which the radial cover portion 12b is tapered from the middle) formed in the middle from FIG. is there. In this case, the same operation and effect as those of the modification shown in FIG. 8 can be obtained.
[0036]
In the modification shown in FIGS. 10 and 11, the non-magnetic member 13 is attached to the recess 11 of the first embodiment shown in FIG. That is, as shown in FIG. 11, the non-magnetic member 13 is formed in a substantially C-shaped cross section so as to sandwich the main body 9 from the axial direction. A hole 9x is formed in which the claw 13x at the tip of the magnetic member 13 engages. In this modification, not only the same effects as those of the type shown in FIGS. 7 to 9 are obtained, but also the function of the non-magnetic member 13 to bundle the plurality of electromagnetic steel plates 9a constituting the main body 9 is exhibited.
[0037]
Modifications are shown in FIGS.
[0038]
As shown in the figure, in the eddy current type speed reducer 1a, the rotor 2 has a disk shape. That is, the disk-shaped rotor 2 is attached to a rotating shaft such as a drive shaft of the vehicle. A fixed magnet support ring 5 and a movable magnet support ring 6 formed concentrically with respect to the rotation axis are arranged in the axial direction so as to face the rotor 2. These magnet support rings 5 and 6 constitute the stator 3.
[0039]
The fixed magnet support ring 5 includes a main body 7 formed in a ring shape from a magnetic material, and a plurality of permanent magnets 8 provided in the main body 7 at predetermined intervals in a circumferential direction. Each permanent magnet 8 has magnetic poles on both end surfaces in the circumferential direction, and the magnetic poles facing in the circumferential direction are set to be the same.
[0040]
The movable magnet support ring 6 includes a main body 9 formed in a ring shape from a magnetic material, and a plurality of permanent magnets 10 provided in the main body 9 at predetermined intervals in a circumferential direction. Each of the permanent magnets 10 has magnetic poles on the rotor 2 side surface and the anti-rotor 2 side surface in the axial direction, and magnets adjacent in the circumferential direction are set to have opposite polarities.
[0041]
When decelerating and braking the vehicle, as shown in FIG. 12, the movable magnet support ring 6 is rotated to match the magnetic pole of the permanent magnet 8 of the fixed magnet support ring 5. Then, a magnetic circuit connecting the N pole and the S pole is formed between the permanent magnets 8 and 10 of the magnet support rings 5 and 6 and the rotor 2, an eddy current is generated in the rotor 2, and the vehicle is decelerated and braked. You.
[0042]
When releasing the deceleration braking, as shown in FIG. 13, the movable magnet support ring 6 is rotated to be different from the magnetic pole of the permanent magnet 8 of the fixed magnet support ring 5. Then, a magnetic circuit (shielding circuit for the rotor 2) connecting the N pole and the S pole is formed between the permanent magnet 10 of the movable magnet support ring 6 and the permanent magnet 8 of the fixed magnet support ring 5, and the vehicle is decelerated and braked. Is released.
[0043]
On the surface of the main body 9 of the movable magnet support ring 6 on the rotor 2 side, a concave portion 11 for cutting magnetic lines of force between the permanent magnets 10 is formed between the permanent magnets 10. The concave portions 11 are formed in a radial direction substantially radially at predetermined intervals in a circumferential direction of the main body 9. The depth of the concave portion 11 is approximately equal to the depth from the rotor 2 side surface of the main body 9 to the anti-rotor side surface of the permanent magnet 10.
[0044]
The recess 11 cuts off the magnetic short circuit between the adjacent permanent magnets 10 and prevents the permanent magnets 10 from magnetically shorting. For this reason, the number of lines of magnetic force from the permanent magnet 10 of the movable magnet support ring 6 toward the rotor 2 during deceleration braking is increased by the amount that no magnetic short is generated, and the deceleration braking force ( Performance) is improved.
[0045]
That is, in the present embodiment, the provision of the concave portion 11 allows the lines of magnetic force (magnetic force) of the permanent magnets 10 of the movable magnet support ring 6 to effectively act on the rotor 2 without magnetically short-circuiting the magnets 10 to each other. Therefore, the deceleration braking force (performance) is improved.
[0046]
The shape of the recess 11 shown in FIGS. 12 and 13 may be improved to a tapered shape or the like as shown in FIGS. 4 to 6, and a non-magnetic member as shown in FIGS. 13 may be fitted.
[0047]
【The invention's effect】
As described above, according to the eddy current type speed reducer according to the present invention, a magnetic short circuit between the permanent magnets can be prevented, and the deceleration braking force can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an eddy current type reduction gear transmission according to an embodiment of the present invention during deceleration braking.
FIG. 2 is a cross-sectional view of the eddy current type speed reducer in a normal state (when deceleration braking is released).
FIG. 3 is a partially enlarged view of the eddy current type speed reducer.
FIG. 4 is a sectional view showing a modification.
FIG. 5 is a sectional view showing a modification.
FIG. 6 is a sectional view showing a modification.
FIG. 7 is a sectional view showing a modification.
FIG. 8 is a sectional view showing a modification.
FIG. 9 is a sectional view showing a modification.
FIG. 10 is a sectional view showing a modification.
11 is a sectional view taken along the line XI-XI in FIG.
FIG. 12 is a cross-sectional view of a modified example of an eddy current type reduction gear at the time of deceleration braking.
FIG. 13 is a cross-sectional view of the eddy current type speed reducer in a normal state (when deceleration braking is released).
FIG. 14 is a cross-sectional view of the eddy current speed reducer developed earlier by the inventor at the time of deceleration braking.
FIG. 15 is a cross-sectional view of the eddy current type speed reducer in a normal state (when deceleration braking is released).
FIG. 16 is a partially enlarged view of the eddy current type speed reducer.
[Explanation of symbols]
1 eddy current type reduction gear 2 rotor 6 magnet support ring (movable magnet support ring)
10 permanent magnet 11 recess 13 non-magnetic member

Claims (2)

回転軸に取り付けられたロータと、該ロータに対向するように配置された磁性体からなる磁石支持環と、該磁石支持環の内部に周方向に所定間隔を隔てて設けられた複数の永久磁石とを備えた渦電流式減速装置であって、上記磁石支持環のロータ側の面に、各永久磁石の間に位置させて、磁力線を切断するための凹部を形成したことを特徴とする渦電流式減速装置。A rotor attached to a rotating shaft, a magnet support ring made of a magnetic material arranged to face the rotor, and a plurality of permanent magnets provided at predetermined intervals in a circumferential direction inside the magnet support ring An eddy current type reduction gear comprising: a vortex, wherein a recess for cutting a line of magnetic force is formed on a surface of the magnet support ring on a rotor side between the permanent magnets. Current type reduction gear. 上記凹部に、非磁性体部材を嵌め込んだ請求項1記載の渦電流式減速装置。2. The eddy current type reduction gear according to claim 1, wherein a non-magnetic member is fitted into the recess.
JP2003118430A 2003-04-23 2003-04-23 Eddy current type reduction gear unit Pending JP2004328863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003118430A JP2004328863A (en) 2003-04-23 2003-04-23 Eddy current type reduction gear unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003118430A JP2004328863A (en) 2003-04-23 2003-04-23 Eddy current type reduction gear unit

Publications (1)

Publication Number Publication Date
JP2004328863A true JP2004328863A (en) 2004-11-18

Family

ID=33497973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003118430A Pending JP2004328863A (en) 2003-04-23 2003-04-23 Eddy current type reduction gear unit

Country Status (1)

Country Link
JP (1) JP2004328863A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007082333A (en) * 2005-09-14 2007-03-29 Isuzu Motors Ltd Eddy current decelerator
JP2007110804A (en) * 2005-10-12 2007-04-26 Isuzu Motors Ltd Eddy current decelerator
JP2014039361A (en) * 2012-08-13 2014-02-27 Nippon Steel & Sumitomo Metal Eddy current type reduction gear

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007082333A (en) * 2005-09-14 2007-03-29 Isuzu Motors Ltd Eddy current decelerator
JP2007110804A (en) * 2005-10-12 2007-04-26 Isuzu Motors Ltd Eddy current decelerator
JP2014039361A (en) * 2012-08-13 2014-02-27 Nippon Steel & Sumitomo Metal Eddy current type reduction gear

Similar Documents

Publication Publication Date Title
EP1367701B1 (en) Eddy current deceleration device
EP2184838B1 (en) Axial gap type motor
EP2617121B1 (en) Rotor for modulated pole machine
EP2448089A1 (en) Axial motor
EP3403315B1 (en) Rotor assembly
JP2007028868A (en) Stator for rotary electric machine
EP3062419A1 (en) Rotor for rotary electric machine
JPH0454862A (en) Eddy current type reduction gear
WO2015122156A1 (en) Eddy current deceleration device equipped with power generation function
CA1116682A (en) Axial air gap dynamo-electric machine
JP3765291B2 (en) Eddy current reducer
JP2004328863A (en) Eddy current type reduction gear unit
JP4605480B2 (en) Axial gap type motor
JP3765290B2 (en) Eddy current reducer
JP3941740B2 (en) Eddy current reducer
JP4296835B2 (en) Eddy current reducer
JP4020009B2 (en) Eddy current reducer
JP6088465B2 (en) Drive unit
JP4839851B2 (en) Eddy current reducer
JP2004173474A (en) Eddy current type decelerator
JP2006014565A (en) Disc type rotary electric machine
JP2004328891A (en) Eddy current type reduction gear unit
JP2004350412A (en) Eddy current type reduction gear
JP4003562B2 (en) Eddy current reducer
JP4882355B2 (en) Eddy current reducer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050831

A977 Report on retrieval

Effective date: 20070302

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070710