JP2004327349A - Evaporation type getter and vacuum container - Google Patents

Evaporation type getter and vacuum container Download PDF

Info

Publication number
JP2004327349A
JP2004327349A JP2003123147A JP2003123147A JP2004327349A JP 2004327349 A JP2004327349 A JP 2004327349A JP 2003123147 A JP2003123147 A JP 2003123147A JP 2003123147 A JP2003123147 A JP 2003123147A JP 2004327349 A JP2004327349 A JP 2004327349A
Authority
JP
Japan
Prior art keywords
metal wire
getter
tube
container
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003123147A
Other languages
Japanese (ja)
Other versions
JP3698148B2 (en
Inventor
Yasushi Nakajima
靖志 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003123147A priority Critical patent/JP3698148B2/en
Publication of JP2004327349A publication Critical patent/JP2004327349A/en
Application granted granted Critical
Publication of JP3698148B2 publication Critical patent/JP3698148B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a getter, having a small and simple structure and easy to manufacture, and to provide a vacuum container suitable for the getter. <P>SOLUTION: The evaporation type getter comprises tubing 2 using fibers made of a conductive metal wire (for example, a metal containing Ti as a main component), and a material having appropriate thermal resistance and electric insulation so that the material is not melted at the evaporation operation temperature of the metal. A structure with the metal wire inserted is provided in an inner space of the tubing. Electrical current is applied to the metal wire to allow the material to evaporate, and to attach at least to the tubing. Because the metal wire which can be high temperature is wrapped by the insulating tubing, the metal wire can be evaporated with maintaining the heat of the heated metal wire. Accordingly, the insulating structure can be simple, easy to manufacture, small, and low cost. Because the tubing uses fibers, the surface area is wider allowing a wider deposition area to be obtained for an improved discharge speed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は真空環境下で用いるセンサ等の実装に用いるもので、特に小型・廉価な実装に適するゲッターおよびそのゲッターに適した真空容器に関する。
【0002】
【従来の技術】
【特許文献1】特開2003−004524号公報
【非特許文献1】真空ハンドブック(日本真空技術株式会社発行)
古くは真空管やブラウン管、近年ではマイクロマシン技術を用いて製作されたセンサ類(振動型ジャイロ、遠赤外線センサ、共振形フィルタ)等においては、動作原理として、もしくは、その性能を向上させるために真空容器内に実装することが求められる。真空容器においては、容器内のガスをどんなに排気除去しても、その内壁の吸着ガスが残留して後刻放出されたり、構成部材の封着部分でのガスリークや素材本体における微小な透過ガスが存在することは周知のことである。そして真空封止後の時間経過に従い、上記ガスによって真空容器内の真空度が低下し、上記電子管やセンサの性能を低下させることになる。このため、これら電子部品の真空容器内に「ゲッター」と呼ばれる固体真空ポンプを封入し、上記ガスを除去することによって真空容器内の真空度を維持する技術が適用されてきた。
ゲッターとして広く用いられるのは、蒸発形ゲッター、非蒸発形ゲッターがあり、またこれらにそれぞれ加熱するための電熱ヒータを付加したものとしないものがある。特に、近年盛んに研究開発が進められているセンサ類においては、小型化が求められ、また旧来の電子管のように製造時に部材全体を高温にすることが許されない装置が多いので、真空容器へのゲッター挿入においては手法が限定されている。
ゲッターを小型のパッケージに封入する場合の現実的手法として、
▲1▼非蒸発形ゲッターを加熱して活性化した後に封入する、
▲2▼ヒーター内蔵非蒸発型ゲッターを封入して封止後過熱して活性化させる、
▲3▼蒸発型ゲッターを封入して別体のヒーターで加熱して蒸発させる、
▲4▼蒸発型ゲッター自身を電気ヒータとして蒸発させる、等の方法が考えられている。
【0003】
【発明が解決しようとする課題】
しかし、上記の各方法では下記のような問題があり、小型で安価なゲッターとしては不十分なものであった。
▲1▼は真空装置内で加熱して封入・組立・封止を行うための設備が必要となり、製造装置が複雑かつ大型となるが生産性が高いので大量生産向きであり、少量生産の場合はコスト高となってしまう(特許文献1参照)。
▲2▼はゲッター自体の製造が難しく非常に高価であるために、真空容器としてもコストダウンが困難である。
▲3▼は蒸発型ゲッターが高価なだけでなく、熱容量が大きいので、小さな部分には入れられない、等の問題がある。
▲4▼はチタンゲッタポンプ若しくはチタンサプリメーションポンプ(非特許文献1の第90頁参照)と呼ばれる真空排気用のポンプと原理は同じで、真空中で蒸着された金属の清浄表面にはガス分子が吸着結合して補足され、結果として真空排気される原理を用いる。
小型の真空容器に低コストでゲッターを挿入するためにはゲッター材そのものの低コスト化が可能な▲4▼の手法が最も適すると考えられる。しかし、この場合の真空容器内では、例えばチタン合金線を蒸発源とし、これに直接通電してチタンを加熱蒸発させることと、蒸発チタンを付着させる蒸発源周囲の壁面と、蒸発金属が拡散することによる他の構成部材への影響を排除する遮蔽板と、さらに蒸発源と周囲との電気的絶縁が要求される。そのため小型化した場合には蒸発源が細線となって、従来のポンプと同様の蒸発源を自立させた構造は用い難い、という問題があった。
本発明は上記のごとき問題を解決するためになされたものであり、構造が簡単で小型化および製造が容易なゲッターおよびそれに適した真空容器を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明においては、導電性の金属線(例えばTiを主成分とする金属)と、該金属の蒸発操作温度にて融解しない耐熱性と電気的絶縁性を有する材料からなる繊維を用いたチューブとを有し、上記チューブの内部空間に上記金属線を通した構造を備え、上記金属線に電流を印加してその材料を蒸発させ、少なくとも上記チューブに付着させて使用するように構成している。
【0005】
【発明の効果】
本発明においては、絶縁性のチューブにより高温となる金属線を包むので、加熱時の金属線を保温しながら金属線を蒸発させることが出来る。そのため、絶縁構造が簡単で製造が容易になり、小型で安価となる。また、チューブは繊維を用いるので表面積が大きく、蒸着面積が大きく取れるので、排気速度を向上させることが出来る等の効果が得られる。
【0006】
【発明の実施の形態】
以下、図面を用いて本発明を詳細に説明する。なお、以下の図は形態の一例を示すもので、その寸法比等は限定されるものではない。
図1は、第1の実施例図であり、本発明のゲッター材料となる金属線1を耐熱性の絶縁材料からなる織物のチューブ2で被覆した構造を示す斜視図である。なお、図1においてはゲッター3の端部の一方を描画している。
【0007】
図1において、金属線1はチタン、ジルコニウム、バナジウム、鉄、アルミニウム、金属バリウム等の従来からガスを吸着する性能が高い材料の単一材もしくは合金、あるいは、モリブデン、タンタル、ニッケル等の構造材となる材料との合金からなる。
ゲッターとなる金属線は、前記非特許文献1に記載のチタンサブリメーションポンプ用材料として、あるいはサエス社カタログにもあるような非蒸発形ゲッター材料として知られているものである。
【0008】
本実施例においては、例えばチタンとモリブデンの合金を、太さ200μmの金属線1として用いた。
上記の金属線1としてい用いた合金の操作と作用に関しては古くから知られるものであるが以下に簡単に述べる。
金属線1に真空中で電流を印加してその電気抵抗により発熱させると、1000℃程度からチタンが蒸発し始める。真空中で蒸発したチタンは、真空容器内に残留する空気の分子と結合して周囲に付着したり、結合せずに活性なチタン膜を周囲の壁面に形成した後に、飛来する空気分子を捕捉する。なお、金属線への電流印加はパルス的に行われることが多い。
【0009】
本実施例においては、金属線1の周囲にチューブ2を被覆する。つまりチューブ2の内部空間に金属線1を通した構造を有している。
本構造はヒータ線の接続に用いられる「ガラスシース」と呼ばれる被覆に構造が類似しているが、ガラスシースは耐熱温度が500℃程度しかなく、本発明におけるゲッター蒸発温度では溶解してしまい、被覆材料とならない。そのため、本実施例においては、アルミナセラミクス繊維を、直径1mmのチューブ状に編んだ物を用いた。
【0010】
アルミナセラミクス繊維には、例えば三菱鉱山マテリアル社の商品名「アルマックス」や三菱化学産資株式会社の商品名「マフテックファイバー」などがある。ゲッター材がチタンの場合は、1400℃程度までの耐熱温度があれば実用上十分であり、上記の物質は十分な耐用性を有する。
なお、高温で電気的絶縁性を有し、溶解しない材料であればアルミナ繊維以外の材料でも使用出来る。
【0011】
上記の金属線1とチューブ2とにより構成される本ゲッター3は、電流印加によって自己発熱させる。そのため、金属線1と電流供給端子との接続部(ゲッターの端部)では、金属線1を電気的に接続する必要があるが、金属線1を接続するために、チューブ2の被覆を無くして金属線1を剥き出しにすると、金属線1が加熱された際に、気化された材料がチューブ2の外部に放出されてしまい、それが付着することによって電流供給端子と周辺部との絶縁性が低下するおそれがある。
図2は、上記の問題に対処するための構造を示す図であり、図2(A)は斜視図、図2(B)は断面図である。
【0012】
図2に示すように、圧着端子様の金具4を用いてチューブ2の端部41をカシメると共に、金属線1も別箇所42でカシメて該金具4と電気的に接続する。そして電流供給端子へは上記金具4を用いて接続する。なお、金具4の材料としては、例えば4−2アロイを用いることができる。つまり、金属線1のうちの蒸発させたくない領域に位置するチューブ2を金属線1に密着させたものである。このように構成することにより、電流供給端子付近でゲッター材が蒸発して電流供給端子近傍に付着することによる絶縁低下を防止することが出来る。
【0013】
次に、本ゲッターの使用方法について、円盤状の真空容器に実装する場合を例として説明する。
図3は、真空容器のキャップを取り除いた状態、つまり、センサチップ5とゲッター3を取り付けたステム6の部分を示す斜視図である。この上を破線で示すキャップ63で覆い、内部を真空とすることにより、真空容器となる。
この真空容器は、コバール、ステンレス、4−2アロイ、真空用アルミニウム等のガス透過の小さい材料を用いて、内部を真空に保つために、ステム6とキャップ63とを気密接合して形成している。
ハーメチック端子61を配置したステム6の中心部には、例えばシリコン半導体プロセスを用いて形成したセンサチップ5をステム6の中心にダイボンドし、センサチップ5の周囲のハーメチック端子61にワイヤボンディング7により電気的接続を行った。
【0014】
本実施例ではセンサチップサイズに対して周囲に余裕を持たせて、可能な限り薄型に実装する例として、ゲッター3はセンサチップの電気的接続に用いるハーメチック端子61の周囲に配置し、同様に周囲に設置したハーメチックの電流供給端子62に超音波溶接で接続した。なお、ハーメチック端子61および電流供給端子62とステム6とは当然電気的に絶縁されている。
【0015】
その後、真空中でキャップ63(図3ではゲッターを図示するため、キャップ外形は破線で、外壁面は素通しで描画)をステム6に合せて周囲を気密溶接して、容器が完成する。
真空中の溶接時あるいは上記気密溶接後、電流供給端子62を介してゲッター3に電流を印加してチタンを蒸発させて、ゲッターを活性化させる。
この際、織物で作成したチューブでは、チューブ2の長さを選ぶことにより、図4に示したように、ゲッター3が円形に湾曲するので、織物で形成したチューブ内周側は目が詰る(21)。このとき目の詰まった部分21では外部から見通すことが出来ない程度の繊維密度にしておくと、金属線1のチタンが蒸発した場合に、センサチップ5が配置されている内側方向はチタン蒸気がチューブ2の繊維に付着して周囲には着き回らない。一方、チューブの外周側は目が荒くなるので(22)、蒸発したチタン蒸気はチューブの繊維に付着するほかにチューブの繊維の目を通過して真空容器の外周壁内側にも蒸着される。なお、図4では、上記の作用が判りやすように、チューブ2を構成する縦横の繊維のうち、一方向の繊維のみを描画している。
【0016】
上記の作用により、蒸発したチタンが付着するのは主に繊維上となる。繊維はその体積に対して非常に広い表面積を有するため、チタンの蒸着面積は非常に広い。蒸発形ゲッターの吸着原理より金属蒸着面積が広いほど吸着の効率が向上する。したがって、本ゲッターは細いチューブを用いるのにもかかわらず排気速度を確保することが出来る。
また、チューブ外周から飛び出した蒸気も、外周壁で蒸着膜となって吸着に寄与するだけでなく、蒸着面は母材からのガス放出が抑制されるため真空度維持にも好都合である。
なお、図2に示した金具4は必ずしも必要ではなく、金属蒸気の付着対策を施すことが出来るのであれば、金属線1を直接電流供給端子に接合しても一向に差し支えない。
【0017】
以上、本発明に係るゲッターでは、基本的にゲッターとなる金属線と耐熱性の絶縁繊維で作成したチューブとで構成されるので、非蒸発型ゲッターの様にゲッター材料合金の微粉末を作成する必要も無く、安価な材料と容易な手法で製造できるので基本的にコストが低く、また取り付けに必要な真空容器も複雑に成り勝ちな絶縁のための加工が不要に成るので、ゲッターのコストダウンおよび真空容器のコストダウンを同時に図ることができる。
【0018】
次に、図5は、本発明の第2の実施例を示す斜視図である。本実施例は第1の実施例で説明したゲッター3を機構的に支持して3次元的にセンサチップ等の真空実装を行うものである。
本発明に係るゲッター3は小型の真空容器に用いるので、活性化時に周囲に熱影響を及ぼさない様に用いるため熱容量を極力小さくしたい。従って必然的に金属線1は第1の実施例のように非常に細いものとなる。よって機械的強度が不足しがちになるので、ゲッター3をセンサチップ等の上方に設置する場合には、機構的に支持する必要がある。例えばゲッター3をステム6の面から離して設置したい場合のように、ゲッター3を触れさせたくない部分から隔離して設置する場合に本実施例を適用する。
【0019】
図5はキャップを溶接する前において、ゲッター3を取り付けた状態のステムを示す。支持具8は、例えば金属で形成され、ステム6の内周に沿った円環状の部分から、円の内側に向かって複数の枝状の支持部材が延びた形状を有している。この複数の枝状の支持部材の上にゲッター3を円形に曲げて配設している。
ゲッター3は金属蒸気がチューブ2の外部に飛散しないよう網の目を密にせねばならないが、織物なので機密性は無く、真空排気は問題なく行われる。
また、真空中なので、通電により高温となる金属線1からの熱は放射熱のみが問題となるが、これは耐熱絶縁材料のチューブ2で遮断されるので、他の容器内のセンサチップ5等の部品に害を及ぼすことはない。
また、この場合、金属線1はチューブ2により電気的に絶縁されているので、支持具8に載せるだけで絶縁と共に機械的支持が出来るので、真空容器の耐震性等の機械的信頼性向上が容易に図られる。したがって構造が簡単で安価な真空容器を実現出来る。
【0020】
なお、実施例1および2において、チューブ2は、その外部から内部の金属線1を見通すことが出来ない程度の繊維密度を有する部分を設けている。つまり、ゲッターを円形に曲げて載置すると、内側の繊維が密になって目がつまり、見通すことが出来ない程度になる。金属線から蒸発金属が放出される際には、蒸気は直線的に移動する。真空容器においては、一般に容器の中心側にセンサチップ等の内蔵物が配置され、周辺部は壁面のみとなる。したがって容器外周に沿って円形にゲッター3を設置すれば、円形のチューブ2の繊維密度は内周側が自動的に高くなって金属蒸気をチューブ2で捕捉し、外周側は繊維密度が低くなって織り目から金属蒸気が放出され、真空容器内壁がTiコートされて蒸着面となるだけでなく、壁面からのガス放出も抑制することができる。つまり、金属蒸着されては支障がある部位に当る方向の繊維密度を高くして蒸気をチューブ2に全て付着させ、支障の無い部分は周囲の真空容器内壁にも付着させる。
【0021】
次に、図6は、本発明の第3の実施例を示す斜視図である。なお、内部構造を説明するためにキャップ63の手前部分約4分の1を切り取って図示し、かつ、キャップ63を透明状に表示している。
本実施例はゲッター3を遮蔽空間に設置するもので、金属蒸気の着き回り防止を重視したものである。図6において、遮蔽板9は、ステム6内の中心部分(センサチップ5の搭載部分)と外周部とを分けるように、ステム6の円周に沿った円環状をしており、かつ、円環の縦方向の途中に段差を設けている。この段差は、図5の支持具8と同様の機能を有するものであり、この段差にゲッター3を円形に曲げて配設する。
なお、遮蔽板9は、ゲッター3から飛散する金属蒸気に対して中心部を遮蔽するものであり、気密構造にするものではない。
【0022】
この実施例においても、ゲッター3は金属線1を絶縁性のチューブ2が包んでいるので、絶縁構造が不要であり、ゲッター3を段差に直接載置すればよい。
また、この実施例の場合には、遮蔽板9を設けてゲッター3から飛散する金属蒸気に対して中心部を遮蔽しているので、前記図5の実施例のように、チューブ2の繊維の目の細かさを管理する必要は無く、信頼性が高い真空容器を低コストで実現可能である。
【図面の簡単な説明】
【図1】本発明の第1の実施例におけるゲッターを示す斜視図。
【図2】本発明の第1の実施例におけるゲッターの接続部分を示す図であり、(A)はゲッター端部の斜視図、(B)はゲッター端部の断面図。
【図3】本発明の第1の実施例におけるゲッターを設置した真空容器のステムを示す斜視図。
【図4】本発明の第1の実施例におけるゲッターのチューブの繊維の目の変化を説明するための斜視図。
【図5】本発明の第2の実施例における真空容器を示す斜視図。
【図6】本発明の第3の実施例における真空容器を示す斜視図。
【符号の説明】
1…金属線 2…チューブ
21…チューブの繊維の目が詰まった部分
22…チューブの繊維の目が粗くなった部分
3…蒸発型ゲッター 4…金具
41…金具4上のチューブ2のカシメ部分
42…金具4上の金属線1のカシメ部分
5…センサチップ 6…ステム
61…ハーメチック端子 62…ハーメチックの電流供給端子
63…真空容器のキャップ 7…ワイヤボンディング
8…支持具 9…遮蔽板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a getter used for mounting a sensor or the like used in a vacuum environment, and particularly to a getter suitable for small-sized and inexpensive mounting and a vacuum container suitable for the getter.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2003-004524 [Non-Patent Document 1] Vacuum Handbook (published by Nippon Vacuum Technology Co., Ltd.)
In the past, vacuum tubes and cathode ray tubes, and in recent years, sensors (vibrating gyros, far-infrared sensors, resonance filters) manufactured using micromachine technology, etc., use a vacuum vessel as an operating principle or to improve its performance. It is required to be implemented within. In vacuum vessels, no matter how much the gas inside the vessel is exhausted and removed, the adsorbed gas on the inner wall remains and is released later, or gas leaks at the sealing part of the components or small permeated gas in the material body exist. Doing is well known. Then, as the time elapses after the vacuum sealing, the degree of vacuum in the vacuum container is reduced by the gas, and the performance of the electron tube and the sensor is reduced. For this reason, a technique has been applied in which a solid vacuum pump called a “getter” is sealed in the vacuum container of these electronic components and the above-mentioned gas is removed to maintain the degree of vacuum in the vacuum container.
There are evaporable getters and non-evaporable getters widely used as getters, and some of these getters are provided with or without an electric heater for heating them. In particular, for sensors that have been actively researched and developed in recent years, miniaturization is required, and many devices, such as conventional electron tubes, do not allow the entire member to be heated to high temperatures during manufacturing. The method is limited in getter insertion.
As a practical method for enclosing getters in small packages,
(1) The non-evaporable getter is heated and activated, and then sealed.
{Circle around (2)} A non-evaporable getter with a built-in heater is enclosed, sealed and heated to activate.
{Circle around (3)} The evaporable getter is sealed and heated by a separate heater to evaporate.
(4) A method of evaporating the evaporable getter itself as an electric heater has been considered.
[0003]
[Problems to be solved by the invention]
However, each of the above methods has the following problems, and is insufficient as a small and inexpensive getter.
(1) requires equipment for enclosing, assembling, and sealing by heating in a vacuum device, which makes the manufacturing equipment complicated and large, but is highly productive and suitable for mass production. Increases the cost (see Patent Document 1).
In the case of (2), since the getter itself is difficult to manufacture and very expensive, it is difficult to reduce the cost as a vacuum vessel.
The problem (3) is that not only is the evaporable getter expensive, but also because it has a large heat capacity, it cannot be put into a small part.
(4) has the same principle as that of a vacuum evacuation pump called a titanium getter pump or a titanium supplementation pump (refer to page 90 of Non-patent Document 1), in which gas molecules are deposited on a clean surface of a metal deposited in vacuum. Are adsorbed and captured, and the result is evacuated.
In order to insert a getter into a small vacuum vessel at low cost, it is considered that the method (4) that can reduce the cost of the getter material itself is most suitable. However, in the vacuum vessel in this case, for example, a titanium alloy wire is used as an evaporation source, and the titanium alloy wire is directly energized to heat and evaporate titanium, and the wall surface around the evaporation source on which the evaporated titanium is attached, and the evaporated metal is diffused. It is required to provide a shielding plate for eliminating the influence of other components on the structure, and to further provide electrical insulation between the evaporation source and the surroundings. Therefore, when the size is reduced, the evaporation source becomes a thin line, and there is a problem that it is difficult to use a structure in which the same evaporation source as a conventional pump is used independently.
The present invention has been made to solve the above problems, and an object of the present invention is to provide a getter which has a simple structure, is small in size and easy to manufacture, and a vacuum container suitable for the getter.
[0004]
[Means for Solving the Problems]
In the present invention, a tube made of a conductive metal wire (for example, a metal mainly composed of Ti) and a fiber made of a material having heat resistance and electrical insulation that does not melt at the evaporating operation temperature of the metal. Having a structure in which the metal wire passes through the inner space of the tube, and is configured to apply an electric current to the metal wire to evaporate the material, and adhere to at least the tube for use. .
[0005]
【The invention's effect】
In the present invention, since the metal wire to be heated is wrapped by the insulating tube, the metal wire can be evaporated while keeping the metal wire warm during heating. Therefore, the insulating structure is simple, the manufacturing is easy, and the device is small and inexpensive. Further, since the tube uses fibers, the surface area is large and the vapor deposition area can be large, so that effects such as an improvement in the pumping speed can be obtained.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. The following figures show an example of the form, and the dimensional ratio and the like are not limited.
FIG. 1 is a diagram of a first embodiment, and is a perspective view showing a structure in which a metal wire 1 serving as a getter material of the present invention is covered with a woven tube 2 made of a heat-resistant insulating material. In FIG. 1, one of the ends of the getter 3 is drawn.
[0007]
In FIG. 1, a metal wire 1 is a single material or an alloy of a material having a high performance of adsorbing gas, such as titanium, zirconium, vanadium, iron, aluminum, and metal barium, or a structural material such as molybdenum, tantalum, and nickel. And an alloy with the material to be used.
The metal wire serving as a getter is known as a material for a titanium sublimation pump described in Non-Patent Document 1 or as a non-evaporable getter material as described in a catalog of Saes Corporation.
[0008]
In this embodiment, for example, an alloy of titanium and molybdenum was used as the metal wire 1 having a thickness of 200 μm.
The operation and action of the alloy used as the metal wire 1 has been known for a long time, but will be briefly described below.
When a current is applied to the metal wire 1 in a vacuum to generate heat by its electric resistance, titanium starts to evaporate from about 1000 ° C. Titanium evaporated in a vacuum binds to air molecules remaining in the vacuum vessel and adheres to the surroundings, or forms an active titanium film on the surrounding wall without bonding, and then captures flying air molecules I do. Note that the current application to the metal wire is often performed in a pulsed manner.
[0009]
In the present embodiment, the tube 2 is covered around the metal wire 1. That is, it has a structure in which the metal wire 1 passes through the internal space of the tube 2.
This structure is similar in structure to the coating called "glass sheath" used for connection of the heater wire, but the glass sheath has a heat-resistant temperature of only about 500 ° C, and melts at the getter evaporation temperature in the present invention, Not a coating material. Therefore, in this example, a material obtained by knitting alumina ceramic fibers into a tube having a diameter of 1 mm was used.
[0010]
Examples of the alumina ceramic fiber include “Almax” (trade name of Mitsubishi Mining Materials Co., Ltd.) and “Muff Tech Fiber” (trade name) of Mitsubishi Chemical Corporation. When the getter material is titanium, a heat-resistant temperature up to about 1400 ° C. is practically sufficient, and the above-mentioned substances have sufficient durability.
It should be noted that any material other than alumina fiber can be used as long as it has electrical insulation at high temperatures and does not dissolve.
[0011]
The getter 3 composed of the metal wire 1 and the tube 2 generates heat by applying a current. Therefore, it is necessary to electrically connect the metal wire 1 at the connection portion (the end of the getter) between the metal wire 1 and the current supply terminal. When the metal wire 1 is exposed, when the metal wire 1 is heated, the vaporized material is released to the outside of the tube 2 and adheres to the insulating material to insulate the current supply terminal from the peripheral portion. May decrease.
2A and 2B are views showing a structure for addressing the above-described problem, FIG. 2A is a perspective view, and FIG. 2B is a cross-sectional view.
[0012]
As shown in FIG. 2, the end 41 of the tube 2 is caulked using a metal fitting 4 like a crimp terminal, and the metal wire 1 is also caulked at another location 42 to be electrically connected to the metal fitting 4. And it connects to a current supply terminal using the said metal fittings 4. In addition, as a material of the metal fitting 4, for example, a 4-2 alloy can be used. That is, the tube 2 located in a region of the metal wire 1 which is not desired to be evaporated is brought into close contact with the metal wire 1. With such a configuration, it is possible to prevent a decrease in insulation due to the getter material evaporating near the current supply terminal and attaching near the current supply terminal.
[0013]
Next, a method of using the getter will be described by taking as an example a case where the getter is mounted on a disk-shaped vacuum container.
FIG. 3 is a perspective view showing a state where the cap of the vacuum container is removed, that is, a portion of the stem 6 to which the sensor chip 5 and the getter 3 are attached. The upper part is covered with a cap 63 indicated by a broken line, and the inside is evacuated to form a vacuum container.
This vacuum container is formed by using a material having low gas permeability such as Kovar, stainless steel, 4-2 alloy, aluminum for vacuum, etc., in order to keep the inside vacuum, and by forming the stem 6 and the cap 63 in an airtight manner. I have.
A sensor chip 5 formed by using, for example, a silicon semiconductor process is die-bonded to the center of the stem 6 on which the hermetic terminal 61 is disposed, and is electrically connected to the hermetic terminal 61 around the sensor chip 5 by wire bonding 7. Connection was made.
[0014]
In this embodiment, the getter 3 is arranged around a hermetic terminal 61 used for electrical connection of the sensor chip. It was connected to a hermetic current supply terminal 62 installed around it by ultrasonic welding. The hermetic terminal 61 and the current supply terminal 62 are naturally electrically insulated from the stem 6.
[0015]
Thereafter, a cap 63 (in FIG. 3, the outer shape of the cap is shown by a broken line and the outer wall surface is drawn in a transparent manner to illustrate a getter in FIG. 3) is hermetically welded around the stem 6 to complete the container.
At the time of welding in a vacuum or after the above-mentioned hermetic welding, a current is applied to the getter 3 via the current supply terminal 62 to evaporate the titanium and activate the getter.
At this time, in the case of a tube made of a woven fabric, by selecting the length of the tube 2, the getter 3 is curved in a circular shape as shown in FIG. 21). At this time, if the fiber density is set so that the closed portion 21 cannot be seen from the outside, when the titanium of the metal wire 1 evaporates, the inside of the sensor chip 5 where the sensor chip 5 is disposed will have titanium vapor. It adheres to the fibers of the tube 2 and does not move around. On the other hand, since the outer peripheral side of the tube becomes rough (22), the evaporated titanium vapor adheres to the fiber of the tube and also passes through the eye of the fiber of the tube and is also deposited on the inner peripheral wall of the vacuum vessel. Note that, in FIG. 4, only the fibers in one direction are drawn among the vertical and horizontal fibers constituting the tube 2 so that the above-described operation can be easily understood.
[0016]
Due to the above action, the evaporated titanium is mainly attached on the fiber. Since the fiber has a very large surface area with respect to its volume, the deposition area of titanium is very large. According to the adsorption principle of the evaporative getter, the larger the metal deposition area, the higher the efficiency of adsorption. Therefore, the getter can secure a pumping speed despite using a thin tube.
In addition, the vapor that jumps out of the outer periphery of the tube is not only a vapor deposition film on the outer peripheral wall and contributes to adsorption, but also the vapor deposition surface is advantageous in maintaining a vacuum degree because gas emission from the base material is suppressed.
Note that the metal fitting 4 shown in FIG. 2 is not always necessary, and the metal wire 1 may be directly joined to the current supply terminal as long as a countermeasure against metal vapor can be taken.
[0017]
As described above, since the getter according to the present invention is basically composed of a metal wire serving as a getter and a tube made of heat-resistant insulating fiber, a fine powder of a getter material alloy is prepared like a non-evaporable getter. There is no need for it, so it can be manufactured with inexpensive materials and easy methods, so the cost is basically low. In addition, the vacuum vessel required for installation is complicated, and the process for insulation, which tends to be complicated, is not required, so the cost of getters is reduced. In addition, the cost of the vacuum container can be reduced at the same time.
[0018]
Next, FIG. 5 is a perspective view showing a second embodiment of the present invention. In this embodiment, the getter 3 described in the first embodiment is mechanically supported, and a three-dimensional vacuum mounting of a sensor chip or the like is performed.
Since the getter 3 according to the present invention is used in a small vacuum vessel, it is desired to minimize the heat capacity in order to use the getter 3 so as not to affect the surroundings during activation. Therefore, the metal wire 1 is inevitably very thin as in the first embodiment. Therefore, the mechanical strength tends to be insufficient, so that when the getter 3 is installed above the sensor chip or the like, it is necessary to mechanically support the getter 3. For example, this embodiment is applied to a case where the getter 3 is installed away from a portion where the getter 3 is not to be touched, such as a case where the getter 3 is to be installed away from the surface of the stem 6.
[0019]
FIG. 5 shows the stem with the getter 3 attached before the cap is welded. The support 8 is made of, for example, metal, and has a shape in which a plurality of branch-like support members extend from an annular portion along the inner periphery of the stem 6 toward the inside of the circle. A getter 3 is disposed on the plurality of branch-like support members by bending the getter 3 into a circular shape.
The getter 3 must have a dense mesh so that the metal vapor does not scatter to the outside of the tube 2, but since it is a woven fabric, there is no confidentiality and vacuum evacuation is performed without any problem.
Also, since it is in a vacuum, the heat from the metal wire 1 which becomes high temperature by energization is only radiant heat. However, since this is cut off by the tube 2 made of a heat-resistant insulating material, the sensor chip 5 in another container or the like can be used. There is no harm to the parts.
Further, in this case, since the metal wire 1 is electrically insulated by the tube 2, the metal wire 1 can be mechanically supported together with the insulation simply by being placed on the support 8, so that the mechanical reliability such as the earthquake resistance of the vacuum vessel can be improved. Easy to achieve. Therefore, an inexpensive vacuum vessel having a simple structure can be realized.
[0020]
In Examples 1 and 2, the tube 2 is provided with a portion having a fiber density such that the metal wire 1 inside cannot be seen through from the outside. In other words, when the getter is bent and placed in a circular shape, the inner fibers become dense and the eyes become clogged, that is, it becomes impossible to see through. When the evaporated metal is released from the metal wire, the vapor moves linearly. In a vacuum container, a built-in component such as a sensor chip is generally arranged on the center side of the container, and the peripheral portion is only a wall surface. Therefore, if the getter 3 is installed in a circular shape along the outer periphery of the container, the fiber density of the circular tube 2 automatically increases on the inner peripheral side, the metal vapor is captured by the tube 2, and the fiber density decreases on the outer peripheral side. The metal vapor is released from the weave, and the inner wall of the vacuum vessel is coated with Ti to serve as a deposition surface, and gas release from the wall surface can be suppressed. In other words, the vapor density is increased in the direction of hitting a site where there is a problem with metal vapor deposition, so that the vapor is entirely adhered to the tube 2, and the region where there is no problem is also adhered to the inner wall of the surrounding vacuum vessel.
[0021]
Next, FIG. 6 is a perspective view showing a third embodiment of the present invention. In order to explain the internal structure, about a quarter of the front part of the cap 63 is cut out and shown, and the cap 63 is displayed in a transparent state.
In the present embodiment, the getter 3 is installed in a shielded space, and emphasis is placed on preventing the metal vapor from coming around. In FIG. 6, the shielding plate 9 has an annular shape along the circumference of the stem 6 so as to separate a central portion (a mounting portion of the sensor chip 5) in the stem 6 from an outer peripheral portion. A step is provided in the middle of the ring in the vertical direction. This step has a function similar to that of the support 8 in FIG.
The shielding plate 9 shields the central portion from the metal vapor scattered from the getter 3, and does not have an airtight structure.
[0022]
Also in this embodiment, since the getter 3 wraps the metal wire 1 with the insulating tube 2, an insulating structure is not required, and the getter 3 may be directly placed on the step.
Further, in the case of this embodiment, the shielding plate 9 is provided to shield the central portion from the metal vapor scattered from the getter 3, so that the fiber of the tube 2 is cut off as in the embodiment of FIG. There is no need to control the fineness of the eyes, and a highly reliable vacuum vessel can be realized at low cost.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a getter according to a first embodiment of the present invention.
FIGS. 2A and 2B are views showing a connection portion of a getter according to the first embodiment of the present invention, wherein FIG. 2A is a perspective view of a getter end, and FIG.
FIG. 3 is a perspective view showing a stem of a vacuum vessel provided with a getter according to the first embodiment of the present invention.
FIG. 4 is a perspective view for explaining a change in a fiber eye of a getter tube according to the first embodiment of the present invention.
FIG. 5 is a perspective view showing a vacuum vessel according to a second embodiment of the present invention.
FIG. 6 is a perspective view showing a vacuum vessel according to a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Metal wire 2 ... Tube 21 ... The part where the fiber of the tube was clogged 22 ... The part where the fiber of the tube was coarse 3 ... Evaporation type getter 4 ... The metal fitting 41 ... The crimping part 42 of the tube 2 on the metal fitting 4. ... Caulked portion of metal wire 1 on metal fitting 5 Sensor chip 6 Stem 61 Hermetic terminal 62 Hermetic current supply terminal 63 Vacuum vessel cap 7 Wire bonding 8 Supporting tool 9 Shield plate

Claims (8)

導電性の金属線と、該金属の蒸発操作温度にて融解しない耐熱絶縁材料からなる繊維を用いたチューブとを有し、上記チューブの内部空間に上記金属線を通した構造を備え、上記金属線に電流を印加してその材料を蒸発させ、少なくとも上記チューブに付着させて使用することを特徴とする蒸発型ゲッター。A conductive metal wire, and a tube using a fiber made of a heat-resistant insulating material that does not melt at the evaporating operation temperature of the metal, comprising a structure in which the metal wire is passed through the inner space of the tube; An evaporable getter, wherein a current is applied to a wire to evaporate the material, and the material is attached to at least the tube. 上記導電性の金属線は、Tiを主成分とする金属線である、ことを特徴とする請求項1に記載の蒸発形ゲッター。The evaporable getter according to claim 1, wherein the conductive metal wire is a metal wire containing Ti as a main component. 上記金属線のうちの蒸発させたくない領域に位置する上記チューブを上記金属線に密着させたことを特徴とする請求項1または請求項2に記載の蒸発形ゲッター。The evaporable getter according to claim 1, wherein the tube located in a region of the metal wire that is not desired to be evaporated is brought into close contact with the metal wire. 上記金属線の端部とその部分に位置する上記チューブとを金具によってカシメることにより、上記チューブを上記金属線に密着させたことを特徴とする請求項3に記載の蒸発形ゲッター。4. The evaporable getter according to claim 3, wherein the tube is closely attached to the metal wire by caulking an end of the metal wire and the tube located at the portion with the metal fitting. 上記チューブは、その外部から内部の金属線を見通すことが出来ない程度の繊維密度を有する部分を含むことを特徴とする請求項1乃至請求項4の何れかに記載の蒸発型ゲッター。The evaporable getter according to any one of claims 1 to 4, wherein the tube includes a portion having a fiber density such that a metal wire inside the tube cannot be seen from the outside. 真空となる容器と、該容器に気密封止接合されて該容器の内側と外側に貫通し、かつ該容器から電気的に絶縁された電流供給端子とを有し、該電流供給端子に請求項1乃至請求項5の何れかに記載の蒸発型ゲッターを接合した構造を有することを特徴とする真空容器。A vacuum-equipped container, and a current supply terminal hermetically sealed to the container and penetrating inside and outside of the container, and electrically insulated from the container. A vacuum container having a structure in which the evaporable getter according to any one of claims 1 to 5 is joined. 上記容器内に、上記蒸発型ゲッターを機構的に支持する支持部を設け、上記蒸発型ゲッターを上記支持部で支持して上記容器内に収納したことを特徴とする請求項6に記載の真空容器。7. The vacuum according to claim 6, wherein a support portion for mechanically supporting the evaporable getter is provided in the container, and the evaporable getter is supported by the support portion and housed in the container. container. 上記容器内に遮蔽された空間を設け、上記蒸発型ゲッターを上記空間内に収納したことを特徴とする請求項6に記載の真空容器。The vacuum container according to claim 6, wherein a shielded space is provided in the container, and the evaporable getter is stored in the space.
JP2003123147A 2003-04-28 2003-04-28 Evaporable getter and vacuum vessel Expired - Lifetime JP3698148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003123147A JP3698148B2 (en) 2003-04-28 2003-04-28 Evaporable getter and vacuum vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123147A JP3698148B2 (en) 2003-04-28 2003-04-28 Evaporable getter and vacuum vessel

Publications (2)

Publication Number Publication Date
JP2004327349A true JP2004327349A (en) 2004-11-18
JP3698148B2 JP3698148B2 (en) 2005-09-21

Family

ID=33501118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123147A Expired - Lifetime JP3698148B2 (en) 2003-04-28 2003-04-28 Evaporable getter and vacuum vessel

Country Status (1)

Country Link
JP (1) JP3698148B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177766A (en) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd Detector
CN110616388A (en) * 2019-10-16 2019-12-27 上海晶维材料科技有限公司 Preparation method of anti-pulverization block getter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177766A (en) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd Detector
JP4677780B2 (en) * 2004-12-22 2011-04-27 日産自動車株式会社 Detector
CN110616388A (en) * 2019-10-16 2019-12-27 上海晶维材料科技有限公司 Preparation method of anti-pulverization block getter

Also Published As

Publication number Publication date
JP3698148B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
US5012102A (en) Methods of producing vacuum devices and infrared detectors with a getter
US5177364A (en) Infrared detector construction including a getter and method for manufacturing same
EP2570874B1 (en) Atomic sensor device and method for gettering an atomic sensor
JP2016085945A (en) X-ray generation tube, x-ray generator and radiography system
JP2008532213A (en) High pressure discharge lamp with built-in getter device
US6838822B2 (en) Electron tube with a ring-less getter
JP3698148B2 (en) Evaporable getter and vacuum vessel
JP4722354B2 (en) Equipment for removing pollutants
CN115397767A (en) Micro-electro-mechanical system and method of manufacturing the same
JP3220472B2 (en) Cold cathode fluorescent discharge tube
JPH05151916A (en) Image display device with field emission element
JP2017054768A (en) X-ray tube
US7397185B2 (en) Electron tube and a method for manufacturing same
JPH09231918A (en) Double-sided getter
NO863759L (en) KEEP FOR GETS WHICH ARE FURNISHED ELECTRIC.
JP4417505B2 (en) Getter flash shield
TW484163B (en) Apparatus for removing contaminants
TW571328B (en) Getter assembly applied in vacuum display panel
JPH10199453A (en) Electron source integrated vacuum airtight vessel and activating method of getter
JP3396912B2 (en) Getter and fluorescent display tube having getter
EP3002642A2 (en) Systems and methods for a dual purpose getter container
JP2000057983A (en) X-ray tube device
JPH1074476A (en) X-ray tube
JPH0737487A (en) Vacuum container and gettering method
KR20070056617A (en) Electron emission display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Ref document number: 3698148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 9

EXPY Cancellation because of completion of term