JP2004327339A - Manufacturing method of ion movement utilizing device and fuel cell using ion movement utilizing device manufactured by method - Google Patents

Manufacturing method of ion movement utilizing device and fuel cell using ion movement utilizing device manufactured by method Download PDF

Info

Publication number
JP2004327339A
JP2004327339A JP2003122748A JP2003122748A JP2004327339A JP 2004327339 A JP2004327339 A JP 2004327339A JP 2003122748 A JP2003122748 A JP 2003122748A JP 2003122748 A JP2003122748 A JP 2003122748A JP 2004327339 A JP2004327339 A JP 2004327339A
Authority
JP
Japan
Prior art keywords
porous electrode
porous
thin film
electrode
dense solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003122748A
Other languages
Japanese (ja)
Other versions
JP4676680B2 (en
Inventor
Atsushi Mineshige
温 嶺重
Zenhachi Okumi
善八 小久見
Mitsuharu Tominaga
充治 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Raito Kogyo Kk
Original Assignee
Fuji Raito Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Raito Kogyo Kk filed Critical Fuji Raito Kogyo Kk
Priority to JP2003122748A priority Critical patent/JP4676680B2/en
Publication of JP2004327339A publication Critical patent/JP2004327339A/en
Application granted granted Critical
Publication of JP4676680B2 publication Critical patent/JP4676680B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an ion movement utilizing device having high current density per volume and the very low internal resistance of an ion conductor as well as a fuel cell of high power generation efficiency. <P>SOLUTION: The ion movement utilizing device can simplify a structure and operation of a device used for an electrochemical vapor deposition process, since oxygen dissociated from nickel oxide is used for oxidizing vapor of metal chloride. An oxidation reaction of metal chloride vapor is promoted on the whole surface of a porous electrode where the oxygen dissociated from the nickel oxide exists regardless of the shape of a porous electrode or presence of steps on its surface, and a dense solid film with a uniform thickness can be formed along the whole surface of the porous electrode regardless of the shape thereof. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、イオン導電性を有する金属酸化物の緻密固体薄膜をイオン導電体として利用するイオン移動利用デバイスの製造方法に関する。
【0002】
【従来の技術】
イオン移動利用デバイスは、イオン導電体をイオンが移動することによって所定の機能を発揮するものである。このイオン移動利用デバイスのうち、特にイオン導電体が金属酸化物の緻密固体薄膜で構成されたものは、イオン導電体の取扱いが容易であり、固体酸化物形燃料電池の単セルあるいは酸素センサや水素センサなどに応用されている。
【0003】
このようなイオン移動利用デバイスとして、イオン導電体となる緻密固体薄膜の両面に多孔性電極を被覆したものや、図5に示すように、支持体となる多孔性電極(1)の表面にイオン導電体となる緻密固体薄膜(2)および多孔性対極(3)を順に積層したもの(例えば、特許文献1参照。)などが知られており、これらの技術では、デバイス作動時におけるイオン導電体の内部抵抗を低減させるため、多孔性電極(1)に積層する緻密固体薄膜(2)の厚みを0.01〜1mm程度に抑えている。
【0004】
ここで、イオン導電体である緻密固体薄膜(2)の厚さを更に薄くすることができれば、イオン導電体の内部抵抗を更に低減させることができ、薄型で高効率のデバイスを得ることができる。このような技術として電気化学気相析出法が知られている。
【0005】
この電気化学気相析出法は、金属源として供給する金属塩化物蒸気と、酸素源として供給する気相の酸素とで酸化物を合成し、この酸化物を多孔性電極(1)の表面に厚さ数μmにて析出・被覆させるものである。図6に示すような、石英管(5)と、石英管(5)の内部に挿入したアルミナ管(6)と、石英管(5)の外周を囲繞するように設けられた管状炉(7)とを具備する電気化学気相析出装置(4)を用いるこの方法では、アルミナ管(6)先端の開口(6a)全面を密閉するように多孔性電極(1)を接合し、石英管(5)内のアルミナボート(8)に緻密固体薄膜(2)の原料となる金属塩化物(M・Cl)を投入する。そして、石英管(5)内にアルゴンガスなどの不活性ガスを通流しながら炉(7)を加熱して金属塩化物(M・Cl)を気化させるとともに、アルミナ管(6)内の圧力が石英管(5)内の圧力よりやや高くなるようにアルミナ管(6)内に水蒸気や気相の酸素(O)を供給する。すると、多孔性電極(1)を介して石英管(5)内に酸素(O)が供給され、反応初期には図7(A)に示すように、金属塩化物(M・Cl)の蒸気と多孔性電極(1)を介して拡散する酸素(O)とが直接反応し、化学気相析出(CVD)によって多孔性電極(1)表面に金属酸化物の粒子(2a)が析出する。そして、多孔性電極(1)表面に析出する金属酸化物の粒子(2a)が成長して緻密な膜(2)となり多孔性電極(1)の通気孔(1a)を覆い尽くすと、図7(B)に示すように化学気相析出に替わって(狭義の)電気化学気相析出(EVD)が進行し、金属酸化物の粒子(2a)で形成された緻密な固体薄膜(2)が成長する。
【0006】
このように電気化学気相析出法では、多孔性電極(1)の表面に厚さ数μm程度の均一なイオン導電性を有する緻密固体薄膜(2)を形成することができる。
【0007】
しかしながら、この技術では、多孔性電極材(1)の表面に均一な厚みの薄膜(2)を形成するため、多孔性電極(1)の厚みをほぼ均一にして多孔性電極(1)を通過する酸素(O)の量を一定にしなければならない事態が起こり得る。特に、多孔性電極材(1)の孔径が小さい場合、あるいは金属酸化物の薄膜(2)が十分な電子導電性を併せ持つ場合にはこのような制約が生じる。このため厚みにバラツキのある多孔性電極(1)の表面には均一な厚みの緻密固体薄膜(2)を形成しづらいという問題があった。また、多孔質支持体(1)の全面を気相酸素(O)が均一に通過するようにしなければならないため、アルミナ管(6)の開口(6a)の形状は多孔性電極(1)の形状とほぼ同じものでなければならない。したがって任意な形状の多孔性電極(1)の表面に均一な厚みの緻密固体薄膜(2)を形成するためには、多孔性電極(1)の形状に対応した開口(6a)を有するアルミナ管(6)を別個に準備しなければならず、経済的に緻密固体薄膜(2)を形成することが困難であるという問題もあった。
【0008】
一方、上述の技術とは別に、単位体積あたりの緻密固体薄膜(2)と多孔性電極(1)との接触面積を増やすことができれば、単位体積あたりの電流密度を向上させることができ、小型で高効率のデバイスを得ることができる。このような技術として、緻密固体薄膜(2)と多孔性電極(1)との間の境界面が微視的な3次元構造を有する燃料電池が知られている(例えば、特許文献2参照。)。
【0009】
この技術では、単位体積あたりの緻密固体薄膜と多孔性電極との接触面積を増やすことができ、単位体積あたりの電流密度を向上させることができる。
【0010】
しかしながら、多孔性電極(1)が3次元構造を有しているので、上述した電気化学気相析出法を用いたとしても段差被覆性に優れた均一な厚みの緻密固体薄膜(2)を形成することが困難であり、緻密固体薄膜(2)で多孔性電極(1)の表面全体を被覆するためには緻密固体薄膜(2)の厚みを大きくしなければならない。つまり、単位体積あたりの電流密度を向上させることはできるが、イオン導電体の内部抵抗を低減させることはできなかった。
【0011】
このように、イオン導電体の内部抵抗を低減させることと、単位体積あたりのイオン導電体と電極との接触面積を増やすこととを同時に解決できる技術は未だ明らかにされていない。
【0012】
【特許文献1】
特開平9−115542号公報(第2−5頁,第2図)
【特許文献2】
特開2001−319665号公報(第2−5頁,第2図)
【0013】
【発明が解決しようとする課題】
それゆえ、この発明の主たる課題は、単位体積あたりの電流密度が高く、かつ、イオン導電体の内部抵抗が極めて低いイオン移動利用デバイスの製造方法を提供することである。また、本発明の更なる課題は、発電効率の高い燃料電池を提供することである。
【0014】
【課題を解決するための手段】
請求項1に記載した発明は、「(a)酸化ニッケルを含有する板状焼成基材で構成された多孔性電極(12)の少なくとも一方の表面に複数の凹部(18)を形成し、(b)電気化学気相析出法を用いて酸化ニッケルから解離した酸素と金属塩化物蒸気とでイオン導電性を有する金属酸化物を合成するとともに、多孔性電極(12)の凹部(18)形成側表面に当該酸化物の緻密固体薄膜(14)を形成し、(c)緻密固体薄膜(14)の表面に多孔性電極(12)と対を成す多孔性対極(16)を積層する」イオン移動利用デバイス(10)の製造方法である。
【0015】
この発明では、多孔性電極(12)の少なくとも一方の表面が複数の凹部(18)を有する3次元構造となっているので、多孔性電極(12)の単位体積あたりの表面積を大きくすることができ、小型で効率のよいイオン移動利用デバイス(10)を得ることができる。
【0016】
また、従来の電気化学気相析出法のように金属塩化物蒸気の酸化に気相酸素を使用せず、酸化ニッケルから酸素を解離させて、この解離した酸素を金属塩化物蒸気の酸化に用いるので、電気化学気相析出工程に用いる装置(X)ならびにその装置操作を簡素化でき、多孔性電極(12)の形状や表面における段差の有無にかかわらず、酸化ニッケルから解離した酸素が存在する場所すなわち多孔性電極(12)表面全体で金属塩化物蒸気の酸化反応が進み、多孔性電極(12)の表面全体に沿うように、均一で且つ厚みの極めて薄い緻密固体薄膜(14)を形成することができる。
【0017】
また、従来の電気化学気相析出法のように、多孔性電極(12)の微細な通気孔(12a)を介して多孔性電極(12)の表面に酸素ガスを強制的に供給するものではないので、金属塩化物蒸気の酸化反応の一部は、多孔性電極(12)の表面から通気孔(12a)内に入った部分に存在する多孔性電極表面でも行われるようになる。このため多孔性電極(12)と緻密固体薄膜(14)との密着性を向上させることができ、多孔性電極(12)の反応性や緻密固体薄膜(14)のイオン輸送性などの効率を向上させることができる。
【0018】
そして、金属塩化物蒸気に酸素を供給する酸化ニッケルがニッケルに還元されるので、多孔性電極(12)は高い電子導電性を得ることができる。
【0019】
請求項2に記載した発明は、請求項1に記載のイオン移動利用デバイス(10)の製造方法において、「(b)工程の金属酸化物が酸化物イオン導電性を有する」ことを特徴とするものであり、これにより、緻密固体薄膜(14)が酸化物イオン透過膜として作用するので、固体酸化物形燃料電池の単セルや酸素ガスセンサとして有用な小型で効率のよいイオン移動利用デバイス(10)を得ることができる。
【0020】
請求項3に記載した発明は、請求項1に記載のイオン移動利用デバイス(10)の製造方法において、「(b)工程の金属酸化物がプロトン導電性を有する」ことを特徴とするものであり、これにより、緻密固体薄膜(14)がプロトン透過膜として作用するので、固体酸化物形燃料電池の単セルや水素ガスセンサとして有用な小型で効率のよいイオン移動利用デバイス(10)を得ることができる。
【0021】
請求項4に記載の発明は、「請求項1乃至3のいずれかに記載の方法で製造されたイオン移動利用デバイス(10)と、多孔性電極(12)に与える燃料ガスと多孔性対極(16)に与える酸素とを分離し、かつ電気的にイオン移動利用デバイス(10)同士を接続するインターコネクトとで構成された」ことを特徴とする燃料電池である。
【0022】
請求項1〜3に記載された方法で製造されたイオン移動利用デバイス(10)を利用するこの発明では、燃料極である多孔性電極(12)、電解質である緻密固体薄膜(14)および空気極である多孔性対極(16)における各部材間との接触面積を大きくすることができ、また、緻密固体薄膜(14)が極めて薄くその内部抵抗を低減できるので、このようなイオン移動利用デバイス(10)同士を、多孔性電極(12)に与える燃料ガスと多孔性対極(16)に与える酸素とを分離するインターコネクトで電気的に接続することによって発電効率の極めて高い固体酸化物形の燃料電池を得ることができる。
【0023】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明する。
【0024】
図1に示した本発明の製造方法により製造される一実施例のイオン移動利用デバイス(10)は、固体酸化物形燃料電池(以下、SOFC)の単セルとして使用されるものであり、多孔性電極(12)、緻密固体薄膜(14)、多孔性対極(16)などで構成されている。
【0025】
多孔性電極(12)は、ニッケル(以下、Ni)と金属酸化物のサーメット(金属と金属酸化物との複合体)からなり、イオン移動利用デバイス(10)に機械的強度を与える板状の多孔性焼結基材である。
【0026】
ここで、Niとサーメットを構成する金属酸化物としては、所定の温度(700〜1000℃)で高い酸化物イオン(以下、O2−)導電性を示す金属酸化物、例えば、酸化セリウム(以下、CeO)やCeOに酸化サマリウム(Sm)をドープした複合酸化物(Ce0.8Sm0.21.9;以下、SDC)などのセリア系酸化物およびイットリア安定化ジルコニア(以下、YSZ)などを用いることができ、特に、比較的低い温度(700℃前後)にて高いO2−導電性を示すセリア系酸化物が好適である。
【0027】
また、多孔性焼結基材を構成するNiと金属酸化物との重量比率は、目的とする多孔性電極(12)の電子導電性およびO2−導電性に対応するように、(Ni重量:金属酸化物重量=)3:7〜7:3の範囲で決定される。
【0028】
かかる構成の多孔性電極(12)は、水素を含む燃料ガスを化学的に燃焼させることができ、固体酸化物形燃料電池の燃料極として機能する。
【0029】
そして、多孔性電極(12)の少なくとも一方の表面には、直径0.01〜10mmの円穴状の凹部(18)が複数形成されている。
【0030】
緻密固体薄膜(14)は、所定の温度(700〜1000℃)で高いO2−導電性を示す金属酸化物からなり、多孔性電極(12)の凹部(18)が設けられた一方の表面全体を均一な厚みで被覆する緻密な固体薄膜である。この緻密固体薄膜(14)は、O2−のみを透過させることができるので、固体酸化物形燃料電池の電解質として機能する。
【0031】
緻密固体薄膜(14)を構成する金属酸化物としては、CeOやSDCなどのセリア系酸化物およびYSZなどを用いることができ、特に、電子導電性をもたないYSZが好適である。
【0032】
また、緻密固体薄膜(14)の厚みは1〜10μmの範囲であることが好ましく、より好ましくは2〜5μmの範囲である。緻密固体薄膜(14)の厚みが1μm未満の場合には、緻密固体薄膜(14)の機械的強度が弱くなり、逆に、10μmよりも大きい場合には、緻密固体薄膜(14)の内部抵抗が大きくなり、イオン移動利用デバイス(10)を固体酸化物形燃料電池の単セルとした際にその作動温度を高くしなければならないなど発電効率が低下するようになるからである。
【0033】
多孔性対極(16)は、金属酸化物からなり、緻密固体薄膜(14)の表面全体を被覆する多孔性焼結基材であり、前述した多孔性電極(12)と対をなす電極である。
【0034】
多孔性対極(16)を構成する金属酸化物としては、LaMnO系酸化物やLaCoO系酸化物などBサイトを3価の重金属で置換したペロブスカイト型構造を有する金属酸化物が好適である。
【0035】
かかる構成の多孔性対極(16)は、高い電子導電性を有するとともに、酸素を還元してイオン化することができ、固体酸化物形燃料電池の空気極として機能する。
【0036】
次に、本発明のイオン移動利用デバイス(10)の製造方法について説明する。
【0037】
本発明のイオン移動利用デバイス(10)の製造方法は、大別して「多孔性電極成形工程」、「緻密固体薄膜析出工程」および「多孔性対極積層工程」によって構成されている。
【0038】
まず、はじめの「多孔性電極成形工程」では、NiあるいはNiO粉末とSDC粉末とを上述した所定の重量比率(Ni換算重量:SDC重量=3:7〜7:3)で混合し、この混合粉末にエタノールを加え、電極性能を向上させるためボールミルを使って均一な粒径に細粒化しながら混合する。なお、Ni粉末とSDC粉末とを混合する際にコーンスターチなどの気孔形成用粉末材を加えるようにしてもよい。次に、ホットプレートなどの乾燥器を使い80℃程度の温度で前記混合粉末を乾燥した後、さらにこれを自動乳鉢などで粉砕する。続いて、この混合粉末に5%PVA溶液などのバインダーを当該混合粉末に対して40重量%程度加え、ホットプレートなどの乾燥器を使い80℃程度の温度で乾燥した後、再び自動乳鉢などで粉砕して原料混合物を得る。このようにして得られた原料混合物を所定形状の金型(本実施例では直径20mmの金型)に入れ、約50MPaの圧力で圧縮成形した後、1000〜1600℃の温度範囲で焼結する。すると、Niが酸化されて酸化ニッケル(以下、NiO)になるとともに、このNiOとSDCとがコンポジット(金属酸化物どうしの複合体)を形成し、多孔性を有した板状の焼結基材、つまり多孔性電極(12)が完成する。ここで、焼結温度が1000℃未満の場合には焼結が十分に行われず、また、1600℃を超える場合には形成される多孔性焼結基材の通気孔(12a)が減少するなどの不都合が生じる。
【0039】
なお、多孔性電極(12)の製造方法としては、以下のような方法で行ってもよい。すなわち、上述した所定の重量割合にて混合したNiあるいはNiO粉末とSDC粉末とをボールミルで均一な粒径に細粒化しながら混合する。次に、この混合粉末にメチルセルロース水溶液を当該混合粉末に対してメチルセルロース固形分が0.5重量%程度となるように添加してさらに混合を続ける。すると、粘土状の粉末混合物が得られる。続いて、粘土状になった粉末混合物を直径20mm程度の吐出口を有する口金付きの押出し成形機にかけて、吐出口から押出される粉末混合物を所定の厚みで切り取りコイン状に成形する。そして、コイン状の粉末混合物を1000〜1600℃の温度範囲で焼結すると、Niが酸化されてNiOになるとともに、このNiOとSDCとがコンポジットを形成し、多孔性電極(12)が完成する。
【0040】
このように押出し成形機で多孔性電極(12)を製造すると、圧縮成形で製造するものよりも空隙率が高く、より多くの通気孔(12a)が形成されたガス通流性の高い多孔性電極(12)を得ることができ、これよりイオン移動利用デバイス(10)の効率を向上させることができる。
【0041】
そして、上述した方法で得られた多孔性電極(12)の一方の表面に、レーザ加工,プラズマエッチング,イオンビーム加工および機械研削などのマイクロ加工により直径0.01〜10mmの円穴状の凹部(18)を凹設して「多孔性電極成形工程」が完了し、得られた多孔性電極(12)は次の「緻密固体薄膜析出工程」へと与えられる。
【0042】
「緻密固体薄膜析出工程」は、電気化学気相析出法により、多孔質電極(12)の凹部(18)形成側表面に電解質となる緻密固体薄膜(14)を形成する工程であり、図2に示すような電気化学気相析出装置(X)によって実行される。
【0043】
電気化学気相析出装置(X)は、石英管(20)および管状炉(22)などで構成されている。
【0044】
石英管(20)は、管状の本体(20a)と、本体(20a)内部へアルゴンガスなどの不活性ガスを供給する不活性ガス供給口(20b)と、図示しない吸引ポンプが接続されて、供給された不活性ガスや電気化学気相析出反応によって生成された塩素系排ガスなどを排出する不活性ガス排出口(20c)と、本体(20a)内部の温度などを検出する熱電対(24)とを具備している。
【0045】
この「緻密固体薄膜析出工程」では、まず、多孔性電極(12)の凹部(18)形成側表面に緻密固体薄膜(14)を形成すべく、当該凹部(18)形成側表面が本体(20a)内中央を向くようにして多孔性電極(12)を石英管(20)の本体(20a)内にセットする。また、これと同時に、YSZの原料となる塩化ジルコニウム(以下、ZrCl)の粉末(26)と塩化イットリウム(以下、YCl)の粉末(28)とをそれぞれ別個のアルミナボート(30)に入れて、本体(20a)の多孔性電極(12)がセットされた位置よりも不活性ガス供給口(20b)側の所定位置にセットする。
【0046】
そして、不活性ガス排出口(20c)に接続した吸引ポンプを作動させて不活性ガス供給口(20b)から高純度アルゴンガスなどの不活性ガスを本体(20a)内に導入し、管状炉(22)を作動させて石英管(20)を所定の温度まで加熱する。すると、多孔性電極(12)を構成するNiOから酸素が解離するとともに、ZrClの粉末(26)およびYClの粉末(28)から金属塩化物の蒸気が発生し、図3(A)に示すように、NiOから解離した解離酸素とYClおよびZrClの蒸気とが直接反応し、化学気相析出によって多孔性電極(12)の凹部(18)形成側表面に金属酸化物の粒子(14a)が析出する。
【0047】
続いて、多孔性電極(12)の凹部(18)形成側表面に析出する金属酸化物の粒子(14a)が成長して緻密な膜(14)となり多孔性電極(12)の通気孔(12a)を覆い尽くすと、図3(B)に示すように、化学気相析出に替わって(狭義の)電気化学気相析出が進行し、多孔性電極(12)の凹部(18)形成側表面の全面を被覆するように、金属酸化物の粒子(14a)で形成された均一の厚みの緻密な固体薄膜(14)が成長する。
【0048】
また、上述したように多孔性電極(12)の凹部(18)形成側表面に金属酸化物の緻密固体薄膜(14)が析出するのと同時に、多孔性電極(12)では、NiOが還元されて、NiOとSDCのコンポジットがNiとSDCのサーメット(金属と金属酸化物との複合体)へと変化し、多孔性電極(12)が高い電子導電性を獲得するようになる。
【0049】
なお、金属塩化物の酸化に伴って発生する塩素系排ガスは余剰な不活性ガスとともに吸引ポンプで吸引され、不活性ガス排出口(20c)から本体(20a)外へと排出される。
【0050】
そして、「緻密固体薄膜析出工程」にて凹部(18)形成側表面の全体が緻密固体薄膜(14)によって被覆された多孔性電極(12)は、続く「多孔性対極積層工程」に与えられる。
【0051】
「多孔性対極積層工程」では、まず、電極性能を向上させるためにボールミルを使って均一な粒径に細粒化したランタンストロンチウムマンガナイトなどのLaMnO系酸化物にPEG2000と水を体積比1:1で混合した混合液を加えてLaMnO系酸化物のスラリーを調製する。次にこのスラリーをスクリーン印刷法やスプレー法などを用いて緻密固体薄膜(14)の表面全体に均一に塗布する。そして、これを所定の温度(1200〜1600℃)に設定した電気炉などで加熱し、LaMnO系酸化物を焼結させる。すると、緻密固体薄膜(14)の表面にLaMnO系酸化物からなる多孔性の電極つまり多孔性対極(16)が形成され、SOFCの単セルとして利用可能なイオン移動利用デバイス(10)が完成する。
【0052】
この実施例によれば、多孔性電極(12)の一方の表面に複数の凹部(18)が形成された3次元構造となっているので、多孔性電極(12)の単位体積あたりの表面積を大きくすることができる。
【0053】
そして、金属塩化物蒸気の酸化に酸化ニッケルから解離した酸素を用いるので、電気化学気相析出装置(X)にアルミナ管(6)などの気相酸素供給手段が不要となり、装置ならびに合成操作を簡素化することができ、多孔性電極(12)の形状や表面における段差の有無にかかわらず、酸化ニッケルから解離した酸素の存在する多孔性電極(12)表面全体で金属塩化物蒸気の酸化反応が進み、どのような形状の多孔性電極(12)であってもその表面全体に沿うように均一な厚みの緻密固体薄膜(14)を形成することができる。
【0054】
さらに、従来の電気化学気相析出法のように、多孔性電極(12)の通気孔(12a)を介して多孔性電極(12)の表面に酸素ガスを強制的に供給しないので、金属塩化物蒸気の酸化反応の一部は、多孔性電極(12)の表面から通気孔(12a)内に入った部分に存在する多孔性電極表面でも行われるようになる。このため多孔性電極(12)と緻密固体薄膜(14)との密着性を向上させることができ、多孔性電極(12)の反応性や緻密固体薄膜(14)のイオン輸送性などの効率を向上させることができる。
【0055】
したがって、このような方法で製造されたイオン移動利用デバイス(10)同士を、耐熱性の材料からなり、多孔性電極(12)に与える燃料ガスと多孔性対極(16)に与える酸素とを分離するインターコネクトで電気的に接続することによって、発電効率の極めて高い固体酸化物形燃料電池を得ることができる。
【0056】
なお、上述の実施例では、緻密固体薄膜(14)がO2−導電性を示す金属酸化物によって構成される例を示したが、緻密固体薄膜(14)は、例えば、塩化ストロンチウム(SrCl)と塩化セリウム(CeCl)とを原料に、SrCeO系酸化物のようなプロトン(H)導電性を有するペロブスカイト型の金属酸化物で構成するようにしてもよい。かかる構成により、緻密固体薄膜(14)がプロトン透過膜として作用するので、固体酸化物形燃料電池の単セルや水素ガスセンサとして有用な小型で効率のよいイオン移動利用デバイス(10)を得ることができる。
【0057】
また、多孔性電極(12)の一方の表面に円穴状の凹部(18)を形成する例を示したが、凹部(18)は、多孔性電極(12)の単位体積あたりの表面積を大きくすることができるものであれば、その形状は如何なるものであっても良く、例えば矩形の穴を形成するようにしてもよい。
【0058】
また、多孔性電極(12)の一方の表面に凹部(18)を設ける例を示したが、図4に示すように、多孔性電極(12)の他の表面にも、目的とする多孔性電極(12)の機械的強度を維持できる範囲内で凹部(32)を形成するようにしてもよい。このような凹部(32)を形成することにより、固体酸化物形燃料電池の単セルとして使用した場合、多孔性電極(12)とこれに導入される燃料ガスとの接触面積が増大し、発電効率を向上させることができる。
【0059】
そして、イオン移動利用デバイス(10)の機械的強度を多孔性電極(12)が支持する構成を示したが、イオン移動利用デバイス(10)の機械的強度は、多孔性対極(16)が支持するようにしてもよいし、多孔性電極(12)と多孔性対極(16)とが協働して支持するようにしてもよい。
【0060】
【発明の効果】
本発明によれば、多孔性電極の少なくとも一方の表面が複数の凹部を有した3次元構造となっており、また、多孔性電極を構成する酸化ニッケルから酸素を解離させて金属塩化物蒸気の酸化に用いるので、電気化学気相析出装置ならびにその操作を簡素化でき、多孔性電極の形状や表面における段差の有無にかかわらず、多孔性電極表面全体で金属塩化物蒸気の酸化反応が進み、多孔性電極の表面全体を沿うように、均一で且つ厚みの極めて薄い緻密固体薄膜(14)を形成することができる。
【0061】
また、金属塩化物蒸気の酸化反応の一部は、多孔性電極の表面から通気孔内に入った部分でも行われるようになる。このため多孔性電極と緻密固体薄膜との密着性を向上させることができ、多孔性電極の反応性や緻密固体薄膜のイオン輸送性などの効率を向上させることができる。
【0062】
そして、金属塩化物蒸気に酸素を供給する酸化ニッケルがニッケルに還元されるので、多孔性電極は高い電子導電性を得ることができる。
【0063】
したがって、単位体積あたりの電流密度が高く、かつ、イオン導電体の内部抵抗が極めて低いイオン移動利用デバイスを製造することができる。
【図面の簡単な説明】
【図1】本発明の一実施例のイオン移動利用デバイスを示す断面図である。
【図2】本発明の一実施例の電気化学気相析出装置を示す概略図である。
【図3】本発明の一実施例の電気化学気相析出反応を示す説明図である。
【図4】本発明の他の実施例のイオン移動利用デバイスを示す断面図である。
【図5】従来のイオン移動利用デバイスを示す断面図である。
【図6】従来の電気化学気相析出装置を示す概略図である。
【図7】従来の電気化学気相析出反応を示す説明図である。
【符号の説明】
(10)…イオン移動利用デバイス
(12)…多孔性電極
(14)…緻密固体薄膜
(16)…多孔性対極
(18)…凹部
(20)・・・石英管
(22)・・・管状炉
(24)・・・熱電対計測装置
(30)・・・アルミナボート
(32)・・・凹部
(X)…電気化学気相析出装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an ion transfer utilizing device using a dense solid thin film of a metal oxide having ionic conductivity as an ionic conductor.
[0002]
[Prior art]
The ion movement utilizing device exerts a predetermined function by moving ions through an ion conductor. Among these ion transfer utilizing devices, those in which the ionic conductor is composed of a dense solid thin film of a metal oxide are particularly easy to handle the ionic conductor, and a single cell of a solid oxide fuel cell or an oxygen sensor or It is applied to hydrogen sensors.
[0003]
Examples of such an ion transfer utilization device include a device in which a porous solid electrode is coated on both surfaces of a dense solid thin film serving as an ion conductor, and a device in which a surface of a porous electrode (1) serving as a support is coated with an ion as shown in FIG. Known are those in which a dense solid thin film (2) serving as a conductor and a porous counter electrode (3) are sequentially laminated (see, for example, Patent Document 1). In these technologies, an ionic conductor during device operation is used. In order to reduce the internal resistance of the porous electrode (1), the thickness of the dense solid thin film (2) laminated on the porous electrode (1) is suppressed to about 0.01 to 1 mm.
[0004]
Here, if the thickness of the dense solid thin film (2) as an ionic conductor can be further reduced, the internal resistance of the ionic conductor can be further reduced, and a thin and highly efficient device can be obtained. . As such a technique, an electrochemical vapor deposition method is known.
[0005]
In this electrochemical vapor deposition method, an oxide is synthesized from a metal chloride vapor supplied as a metal source and gaseous oxygen supplied as an oxygen source, and this oxide is deposited on the surface of the porous electrode (1). It is deposited and coated with a thickness of several μm. As shown in FIG. 6, a quartz tube (5), an alumina tube (6) inserted inside the quartz tube (5), and a tubular furnace (7) provided so as to surround the outer periphery of the quartz tube (5). In this method using an electrochemical vapor deposition apparatus (4) comprising: a porous electrode (1) joined so as to seal the entire surface of an opening (6a) at the tip of an alumina tube (6); Metal chloride (M · Cl) as a raw material of the dense solid thin film (2) is placed in the alumina boat (8) in 5). X ). Then, the furnace (7) is heated while flowing an inert gas such as argon gas into the quartz tube (5), and the metal chloride (M · Cl X ) Is vaporized and water vapor or gaseous oxygen (O 2) is introduced into the alumina tube (6) so that the pressure in the alumina tube (6) becomes slightly higher than the pressure in the quartz tube (5). 2 Supply). Then, oxygen (O 2) is introduced into the quartz tube (5) through the porous electrode (1). 2 ) Is supplied, and at the beginning of the reaction, as shown in FIG. X ) And oxygen (O) diffusing through the porous electrode (1). 2 ) Reacts directly, and metal oxide particles (2a) are deposited on the surface of the porous electrode (1) by chemical vapor deposition (CVD). When the metal oxide particles (2a) deposited on the surface of the porous electrode (1) grow and become a dense film (2), and cover the air holes (1a) of the porous electrode (1), FIG. As shown in (B), (in a narrow sense) electrochemical vapor deposition (EVD) proceeds instead of chemical vapor deposition, and a dense solid thin film (2) formed of metal oxide particles (2a) is formed. grow up.
[0006]
As described above, in the electrochemical vapor deposition method, a dense solid thin film (2) having a uniform ionic conductivity with a thickness of about several μm can be formed on the surface of the porous electrode (1).
[0007]
However, in this technique, a thin film (2) having a uniform thickness is formed on the surface of the porous electrode material (1). Oxygen (O 2 May have to be constant. In particular, when the pore size of the porous electrode material (1) is small, or when the metal oxide thin film (2) has sufficient electronic conductivity, such a restriction is caused. For this reason, there is a problem that it is difficult to form a dense solid thin film (2) having a uniform thickness on the surface of the porous electrode (1) having a variation in thickness. In addition, the entire surface of the porous support (1) is vapor-phase oxygen (O 2 ) Must pass uniformly, so that the shape of the opening (6a) of the alumina tube (6) must be substantially the same as the shape of the porous electrode (1). Therefore, in order to form a dense solid thin film (2) having a uniform thickness on the surface of the porous electrode (1) having an arbitrary shape, an alumina tube having an opening (6a) corresponding to the shape of the porous electrode (1) is required. (6) must be prepared separately, and there is a problem that it is difficult to economically form the dense solid thin film (2).
[0008]
On the other hand, apart from the above-described technology, if the contact area between the dense solid thin film (2) and the porous electrode (1) per unit volume can be increased, the current density per unit volume can be improved and the size can be reduced. Thus, a highly efficient device can be obtained. As such a technique, a fuel cell in which a boundary surface between a dense solid thin film (2) and a porous electrode (1) has a microscopic three-dimensional structure is known (for example, see Patent Document 2). ).
[0009]
In this technique, the contact area between the dense solid thin film and the porous electrode per unit volume can be increased, and the current density per unit volume can be improved.
[0010]
However, since the porous electrode (1) has a three-dimensional structure, even if the above-mentioned electrochemical vapor deposition method is used, a dense solid thin film (2) having a uniform thickness and excellent step coverage can be formed. In order to cover the entire surface of the porous electrode (1) with the dense solid thin film (2), the thickness of the dense solid thin film (2) must be increased. That is, although the current density per unit volume can be improved, the internal resistance of the ionic conductor cannot be reduced.
[0011]
As described above, a technique capable of simultaneously reducing the internal resistance of the ionic conductor and increasing the contact area between the ionic conductor and the electrode per unit volume has not yet been clarified.
[0012]
[Patent Document 1]
JP-A-9-115542 (pages 2-5, FIG. 2)
[Patent Document 2]
JP 2001-319665 A (Pages 2-5, FIG. 2)
[0013]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION Therefore, a main object of the present invention is to provide a method for manufacturing a device utilizing ion transfer in which the current density per unit volume is high and the internal resistance of the ionic conductor is extremely low. A further object of the present invention is to provide a fuel cell having high power generation efficiency.
[0014]
[Means for Solving the Problems]
According to the invention described in claim 1, "(a) a plurality of recesses (18) are formed on at least one surface of a porous electrode (12) formed of a plate-like fired base material containing nickel oxide; b) A metal oxide having ionic conductivity is synthesized from oxygen dissociated from nickel oxide and a metal chloride vapor using an electrochemical vapor deposition method, and a concave (18) forming side of the porous electrode (12) is formed. Forming a dense solid thin film (14) of the oxide on the surface, and (c) stacking a porous counter electrode (16) paired with the porous electrode (12) on the surface of the dense solid thin film (14). It is a manufacturing method of a utilization device (10).
[0015]
In the present invention, since at least one surface of the porous electrode (12) has a three-dimensional structure having a plurality of concave portions (18), it is possible to increase the surface area per unit volume of the porous electrode (12). It is possible to obtain a small and efficient ion transfer utilization device (10).
[0016]
Also, unlike the conventional electrochemical vapor deposition method, gas phase oxygen is not used for oxidation of metal chloride vapor, but oxygen is dissociated from nickel oxide, and the dissociated oxygen is used for oxidation of metal chloride vapor. Therefore, the apparatus (X) used in the electrochemical vapor deposition step and the operation of the apparatus can be simplified, and oxygen dissociated from nickel oxide is present regardless of the shape of the porous electrode (12) or the presence or absence of steps on the surface. The oxidation reaction of the metal chloride vapor proceeds at the location, that is, the entire surface of the porous electrode (12), and a uniform and extremely thin dense solid thin film (14) is formed along the entire surface of the porous electrode (12). can do.
[0017]
Further, unlike the conventional electrochemical vapor deposition method, a method in which oxygen gas is forcibly supplied to the surface of the porous electrode (12) through the fine ventilation holes (12a) of the porous electrode (12) is not used. Therefore, a part of the oxidation reaction of the metal chloride vapor is also performed on the surface of the porous electrode existing in the portion that enters the vent hole (12a) from the surface of the porous electrode (12). Therefore, the adhesion between the porous electrode (12) and the dense solid thin film (14) can be improved, and the efficiency such as the reactivity of the porous electrode (12) and the ion transport property of the dense solid thin film (14) can be improved. Can be improved.
[0018]
Then, nickel oxide that supplies oxygen to the metal chloride vapor is reduced to nickel, so that the porous electrode (12) can obtain high electronic conductivity.
[0019]
According to a second aspect of the present invention, in the method for manufacturing the ion transfer device (10) according to the first aspect, "the metal oxide in the step (b) has oxide ion conductivity". Since the dense solid thin film (14) functions as an oxide ion permeable membrane, a small and efficient ion transfer utilization device (10) useful as a single cell of a solid oxide fuel cell or an oxygen gas sensor. ) Can be obtained.
[0020]
According to a third aspect of the present invention, there is provided the method for manufacturing an ion transfer device (10) according to the first aspect, wherein the metal oxide in the step (b) has proton conductivity. Since the dense solid thin film (14) acts as a proton-permeable membrane, a compact and efficient ion transfer device (10) useful as a single cell of a solid oxide fuel cell or a hydrogen gas sensor is provided. Can be.
[0021]
According to a fourth aspect of the present invention, there is provided an ion transfer utilization device (10) manufactured by the method according to any one of the first to third aspects, and a fuel gas and a porous counter electrode ( 16) and an interconnect for electrically connecting the ion transfer utilization devices (10) to each other.
[0022]
In the present invention using the ion transfer utilization device (10) produced by the method according to claims 1 to 3, a porous electrode (12) as a fuel electrode, a dense solid thin film (14) as an electrolyte, and air. Since the contact area between each member in the porous counter electrode (16), which is a pole, can be increased, and the internal resistance of the dense solid thin film (14) is extremely thin, and the internal resistance can be reduced. (10) The solid oxide fuel having extremely high power generation efficiency by electrically connecting each other with an interconnect for separating a fuel gas supplied to the porous electrode (12) and oxygen supplied to the porous counter electrode (16). You can get a battery.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0024]
The ion transfer device (10) according to one embodiment manufactured by the manufacturing method of the present invention shown in FIG. 1 is used as a single cell of a solid oxide fuel cell (hereinafter, SOFC), and has a porous structure. It comprises a porous electrode (12), a dense solid thin film (14), a porous counter electrode (16) and the like.
[0025]
The porous electrode (12) is made of a cermet (composite of a metal and a metal oxide) of nickel (hereinafter, referred to as Ni) and a metal oxide, and has a plate-like shape that provides mechanical strength to the ion transfer utilization device (10). It is a porous sintered substrate.
[0026]
Here, as a metal oxide constituting Ni and a cermet, a high oxide ion (hereinafter referred to as O) at a predetermined temperature (700 to 1000 ° C.) is used. 2- ) A metal oxide exhibiting conductivity, for example, cerium oxide (hereinafter, CeO) 2 ) And CeO 2 Samarium oxide (Sm 2 O 3 ) -Doped composite oxide (Ce) 0.8 Sm 0.2 O 1.9 A ceria-based oxide such as SDC) and yttria-stabilized zirconia (hereinafter YSZ) can be used, and particularly high O 2 at a relatively low temperature (around 700 ° C.). 2- Ceria-based oxides exhibiting conductivity are preferable.
[0027]
The weight ratio between Ni and the metal oxide constituting the porous sintered substrate depends on the electronic conductivity of the target porous electrode (12) and the O 2. 2- It is determined in the range of 3: 7 to 7: 3 (weight of Ni: weight of metal oxide =) so as to correspond to conductivity.
[0028]
The porous electrode (12) having such a configuration is capable of chemically burning a fuel gas containing hydrogen and functions as a fuel electrode of a solid oxide fuel cell.
[0029]
A plurality of circular recesses (18) having a diameter of 0.01 to 10 mm are formed on at least one surface of the porous electrode (12).
[0030]
The dense solid thin film (14) has high O 2 at a predetermined temperature (700 to 1000 ° C.). 2- It is a dense solid thin film made of a conductive metal oxide and covering the entire surface of the porous electrode (12) provided with the concave portion (18) with a uniform thickness. This dense solid thin film (14) 2- Since only permeation is possible, it functions as an electrolyte of a solid oxide fuel cell.
[0031]
The metal oxide constituting the dense solid thin film (14) is CeO 2 Ceria-based oxides such as SDC and SDC and YSZ can be used. In particular, YSZ having no electronic conductivity is preferable.
[0032]
Further, the thickness of the dense solid thin film (14) is preferably in the range of 1 to 10 μm, more preferably in the range of 2 to 5 μm. When the thickness of the dense solid thin film (14) is less than 1 μm, the mechanical strength of the dense solid thin film (14) becomes weak, and when it is more than 10 μm, the internal resistance of the dense solid thin film (14) This is because when the ion transfer utilization device (10) is used as a single cell of a solid oxide fuel cell, the operating temperature must be increased, and the power generation efficiency decreases.
[0033]
The porous counter electrode (16) is a porous sintered substrate made of a metal oxide and covering the entire surface of the dense solid thin film (14), and is an electrode paired with the porous electrode (12) described above. .
[0034]
Examples of the metal oxide constituting the porous counter electrode (16) include LaMnO. 3 Oxides and LaCoO 3 A metal oxide having a perovskite structure in which the B site is substituted with a trivalent heavy metal, such as a system oxide, is preferable.
[0035]
The porous counter electrode (16) having such a configuration has high electron conductivity and can reduce and ionize oxygen, and functions as an air electrode of a solid oxide fuel cell.
[0036]
Next, a method for manufacturing the ion transfer utilization device (10) of the present invention will be described.
[0037]
The method of manufacturing the device (10) utilizing ion transfer of the present invention is roughly divided into a "porous electrode forming step", a "dense solid thin film deposition step", and a "porous counter electrode laminating step".
[0038]
First, in the first “porous electrode forming step”, Ni or NiO powder and SDC powder are mixed at the above-mentioned predetermined weight ratio (Ni conversion weight: SDC weight = 3: 7 to 7: 3), and this mixing is performed. Ethanol is added to the powder and mixed with a ball mill to reduce the particle size to a uniform size to improve electrode performance. When the Ni powder and the SDC powder are mixed, a powder material for forming pores such as corn starch may be added. Next, the mixed powder is dried at a temperature of about 80 ° C. using a drier such as a hot plate, and then pulverized in an automatic mortar or the like. Subsequently, a binder such as a 5% PVA solution is added to the mixed powder in an amount of about 40% by weight based on the mixed powder, and dried at a temperature of about 80 ° C. using a drier such as a hot plate. Grind to obtain a raw material mixture. The raw material mixture thus obtained is put into a mold having a predetermined shape (a mold having a diameter of 20 mm in this embodiment), compression-molded at a pressure of about 50 MPa, and then sintered in a temperature range of 1000 to 1600 ° C. . Then, Ni is oxidized to nickel oxide (hereinafter, NiO), and the NiO and SDC form a composite (composite of metal oxides), and a porous plate-shaped sintered substrate is formed. That is, the porous electrode (12) is completed. Here, when the sintering temperature is lower than 1000 ° C., sintering is not sufficiently performed. When the sintering temperature is higher than 1600 ° C., the number of air holes (12a) of the formed porous sintered substrate decreases. Disadvantages occur.
[0039]
In addition, as a method for manufacturing the porous electrode (12), the following method may be used. That is, the Ni or NiO powder and the SDC powder mixed at a predetermined weight ratio described above are mixed with a ball mill while being refined to a uniform particle size. Next, an aqueous methylcellulose solution is added to the mixed powder so that the solid content of methylcellulose is about 0.5% by weight based on the mixed powder, and the mixing is further continued. Then, a clay-like powder mixture is obtained. Subsequently, the clay-like powder mixture is applied to an extruder equipped with a base having a discharge port having a diameter of about 20 mm, and the powder mixture extruded from the discharge port is cut into a predetermined thickness and formed into a coin shape. Then, when the coin-shaped powder mixture is sintered in a temperature range of 1000 to 1600 ° C., Ni is oxidized to NiO, and the NiO and SDC form a composite, whereby the porous electrode (12) is completed. .
[0040]
When the porous electrode (12) is manufactured by the extrusion molding machine in this manner, the porosity is higher than that manufactured by compression molding, and the porous electrode (12) having more air holes (12a) and having high gas permeability is formed. An electrode (12) can be obtained, from which the efficiency of the ion transfer utilization device (10) can be improved.
[0041]
Then, on one surface of the porous electrode (12) obtained by the above-described method, a circular recess having a diameter of 0.01 to 10 mm is formed by micro-machining such as laser machining, plasma etching, ion beam machining, and mechanical grinding. The “porous electrode forming step” is completed by recessing (18), and the obtained porous electrode (12) is provided to the next “dense solid thin film deposition step”.
[0042]
The "dense solid thin film deposition step" is a step of forming a dense solid thin film (14) to be an electrolyte on the surface of the porous electrode (12) on the side where the concave portion (18) is formed by electrochemical vapor deposition. This is performed by an electrochemical vapor deposition apparatus (X) as shown in FIG.
[0043]
The electrochemical vapor deposition apparatus (X) includes a quartz tube (20) and a tubular furnace (22).
[0044]
The quartz tube (20) is connected to a tubular main body (20a), an inert gas supply port (20b) for supplying an inert gas such as argon gas into the main body (20a), and a suction pump (not shown). An inert gas outlet (20c) for discharging the supplied inert gas or chlorine-based exhaust gas generated by an electrochemical vapor deposition reaction, and a thermocouple (24) for detecting a temperature or the like inside the main body (20a). Is provided.
[0045]
In this “dense solid thin film deposition step”, first, in order to form a dense solid thin film (14) on the surface of the porous electrode (12) on which the concave portion (18) is formed, the surface on which the concave portion (18) is formed is the main body (20 a). ) The porous electrode (12) is set in the main body (20a) of the quartz tube (20) so as to face the inner center. At the same time, zirconium chloride (hereinafter referred to as ZrCl 4 ) Powder (26) and yttrium chloride (hereinafter, YCl 3 ) And the powder (28) are placed in separate alumina boats (30), respectively, and are placed at predetermined positions on the inert gas supply port (20b) side of the main body (20a) at positions where the porous electrodes (12) are set. Set to.
[0046]
Then, by operating a suction pump connected to the inert gas discharge port (20c), an inert gas such as high-purity argon gas is introduced into the main body (20a) from the inert gas supply port (20b), and the tubular furnace ( 22) is operated to heat the quartz tube (20) to a predetermined temperature. Then, oxygen is dissociated from NiO constituting the porous electrode (12), and ZrCl 4 Powder (26) and YCl 3 Vapor of metal chloride is generated from the powder (28), and as shown in FIG. 3A, dissociated oxygen dissociated from NiO and YCl 3 And ZrCl 4 Reacts directly with the vapor, and metal oxide particles (14a) are deposited on the surface of the porous electrode (12) where the concave portion (18) is formed by chemical vapor deposition.
[0047]
Subsequently, metal oxide particles (14a) that precipitate on the surface of the porous electrode (12) on the side of the concave portion (18) are grown to form a dense film (14), and the pores (12a) of the porous electrode (12) are formed. 3), as shown in FIG. 3 (B), electrochemical vapor deposition (in a narrow sense) proceeds instead of chemical vapor deposition, and the surface of the porous electrode (12) on the side where the concave portion (18) is formed is formed. A dense solid thin film (14) having a uniform thickness and formed of metal oxide particles (14a) is grown so as to cover the entire surface.
[0048]
Further, as described above, the dense solid thin film (14) of the metal oxide is deposited on the surface of the porous electrode (12) where the concave portion (18) is formed, and at the same time, NiO is reduced in the porous electrode (12). Thus, the composite of NiO and SDC changes to a cermet of Ni and SDC (composite of metal and metal oxide), and the porous electrode (12) acquires high electronic conductivity.
[0049]
The chlorine-based exhaust gas generated as a result of oxidation of the metal chloride is sucked by a suction pump together with excess inert gas, and is discharged from the inert gas outlet (20c) to the outside of the main body (20a).
[0050]
Then, the porous electrode (12) having the entire surface on the concave portion (18) formation side covered with the dense solid thin film (14) in the “dense solid thin film deposition step” is given to the subsequent “porous counter electrode laminating step”. .
[0051]
In the “porous counter electrode laminating step”, first, LaMnO such as lanthanum strontium manganite, which has been refined to a uniform particle size using a ball mill in order to improve electrode performance. 3 A mixed solution of PEG2000 and water mixed at a volume ratio of 1: 1 was added to the system oxide to obtain LaMnO. 3 A slurry of a system oxide is prepared. Next, this slurry is uniformly applied to the entire surface of the dense solid thin film (14) by using a screen printing method, a spray method or the like. Then, this is heated in an electric furnace or the like set at a predetermined temperature (1200 to 1600 ° C.) to obtain LaMnO 2. 3 The system oxide is sintered. Then, the surface of the dense solid thin film (14) is LaMnO 3 A porous electrode made of a system oxide, that is, a porous counter electrode (16) is formed, and an ion transfer utilization device (10) usable as a single cell of an SOFC is completed.
[0052]
According to this embodiment, the porous electrode (12) has a three-dimensional structure in which a plurality of recesses (18) are formed on one surface, so that the surface area per unit volume of the porous electrode (12) is reduced. Can be larger.
[0053]
Further, since oxygen dissociated from nickel oxide is used for oxidizing the metal chloride vapor, gas phase oxygen supply means such as an alumina tube (6) is not required in the electrochemical vapor deposition apparatus (X), and the apparatus and the synthesis operation are not required. The oxidation reaction of metal chloride vapor can be simplified over the entire surface of the porous electrode (12) where oxygen dissociated from nickel oxide is present, regardless of the shape of the porous electrode (12) and the presence or absence of steps on the surface. The porous solid electrode (12) of any shape can form a dense solid thin film (14) having a uniform thickness along the entire surface thereof.
[0054]
Further, unlike the conventional electrochemical vapor deposition method, since oxygen gas is not forcibly supplied to the surface of the porous electrode (12) through the air holes (12a) of the porous electrode (12), metal chloride is not provided. Part of the oxidation reaction of the product vapor is also performed on the surface of the porous electrode existing in the portion that enters the vent hole (12a) from the surface of the porous electrode (12). Therefore, the adhesion between the porous electrode (12) and the dense solid thin film (14) can be improved, and the efficiency such as the reactivity of the porous electrode (12) and the ion transport property of the dense solid thin film (14) can be improved. Can be improved.
[0055]
Therefore, the ion transfer utilizing devices (10) manufactured by such a method are made of a heat-resistant material, and the fuel gas supplied to the porous electrode (12) and the oxygen supplied to the porous counter electrode (16) are separated. By electrically connecting the interconnects, a solid oxide fuel cell having extremely high power generation efficiency can be obtained.
[0056]
In the above embodiment, the dense solid thin film (14) 2- Although an example in which the metal oxide is made of a conductive metal oxide is shown, the dense solid thin film (14) is made of, for example, strontium chloride (SrCl 2 ) And cerium chloride (CeCl) 3 ) And SrCeO 3 Protons (H + ) It may be made of a perovskite-type metal oxide having conductivity. With this configuration, the dense solid thin film (14) acts as a proton permeable membrane, so that a small and efficient ion transfer utilization device (10) useful as a single cell of a solid oxide fuel cell or a hydrogen gas sensor can be obtained. it can.
[0057]
Also, an example in which a circular concave portion (18) is formed on one surface of the porous electrode (12) has been described, but the concave portion (18) increases the surface area per unit volume of the porous electrode (12). Any shape can be used, as long as the hole can be formed. For example, a rectangular hole may be formed.
[0058]
Also, an example in which the concave portion (18) is provided on one surface of the porous electrode (12) has been described, but as shown in FIG. The concave portion (32) may be formed as long as the mechanical strength of the electrode (12) can be maintained. By forming such a concave portion (32), when used as a single cell of a solid oxide fuel cell, the contact area between the porous electrode (12) and the fuel gas introduced into the porous electrode (12) is increased, and power generation is performed. Efficiency can be improved.
[0059]
The porous electrode (12) supports the mechanical strength of the ion transfer utilizing device (10). However, the mechanical strength of the ion transfer utilizing device (10) is supported by the porous counter electrode (16). Alternatively, the porous electrode (12) and the porous counter electrode (16) may cooperate and support each other.
[0060]
【The invention's effect】
According to the present invention, at least one surface of the porous electrode has a three-dimensional structure having a plurality of concave portions, and dissociates oxygen from nickel oxide constituting the porous electrode to form a metal chloride vapor. Since it is used for oxidation, the electrochemical vapor deposition apparatus and its operation can be simplified, and the oxidation reaction of metal chloride vapor proceeds on the entire surface of the porous electrode, regardless of the shape of the porous electrode and the presence or absence of steps on the surface, A uniform and extremely thin dense solid thin film (14) can be formed along the entire surface of the porous electrode.
[0061]
In addition, a part of the oxidation reaction of the metal chloride vapor is also performed in a portion that enters the vent from the surface of the porous electrode. For this reason, the adhesion between the porous electrode and the dense solid thin film can be improved, and the efficiency of the porous electrode, such as the reactivity and the ion transportability of the dense solid thin film, can be improved.
[0062]
Then, the nickel oxide that supplies oxygen to the metal chloride vapor is reduced to nickel, so that the porous electrode can obtain high electronic conductivity.
[0063]
Therefore, it is possible to manufacture an ion transfer utilizing device having a high current density per unit volume and an extremely low internal resistance of the ionic conductor.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an ion transfer utilizing device according to an embodiment of the present invention.
FIG. 2 is a schematic view showing an electrochemical vapor deposition apparatus according to one embodiment of the present invention.
FIG. 3 is an explanatory view showing an electrochemical vapor deposition reaction according to one embodiment of the present invention.
FIG. 4 is a sectional view showing an ion transfer utilizing device according to another embodiment of the present invention.
FIG. 5 is a cross-sectional view showing a conventional device utilizing ion transfer.
FIG. 6 is a schematic view showing a conventional electrochemical vapor deposition apparatus.
FIG. 7 is an explanatory view showing a conventional electrochemical vapor deposition reaction.
[Explanation of symbols]
(10)… Ion transfer utilization device
(12) ... porous electrode
(14)… Dense solid thin film
(16) ... Porous counter electrode
(18) ... recess
(20) ・ ・ ・ Quartz tube
(22) ・ ・ ・ Tube furnace
(24) ・ ・ ・ Thermocouple measuring device
(30) ・ ・ ・ Alumina boat
(32) ... recess
(X) ... electrochemical vapor deposition equipment

Claims (4)

(a)酸化ニッケルを含有する板状焼結基材で構成された多孔性電極の少なくとも一方の表面に複数の凹部を形成し、
(b)電気化学気相析出法を用いて前記酸化ニッケルから解離した酸素と金属塩化物蒸気とでイオン導電性を有する金属酸化物を合成するとともに、前記多孔性電極の凹部形成側表面に当該酸化物の緻密固体薄膜を形成し、
(c)前記緻密固体薄膜の表面に前記多孔性電極と対を成す多孔性対極を積層する、イオン移動利用デバイスの製造方法。
(A) forming a plurality of recesses on at least one surface of a porous electrode composed of a plate-shaped sintered substrate containing nickel oxide;
(B) a metal oxide having ionic conductivity is synthesized from oxygen dissociated from the nickel oxide and a metal chloride vapor using an electrochemical vapor deposition method, and Form a dense solid thin film of oxide,
(C) A method for manufacturing a device utilizing ion transfer, comprising stacking a porous counter electrode paired with the porous electrode on the surface of the dense solid thin film.
前記(b)工程の前記金属酸化物が酸化物イオン導電性を有することを特徴とする請求項1記載のイオン移動利用デバイスの製造方法。2. The method according to claim 1, wherein the metal oxide in the step (b) has oxide ion conductivity. 前記(b)工程の前記金属酸化物がプロトン導電性を有することを特徴とする請求項1記載のイオン移動利用デバイスの製造方法。2. The method according to claim 1, wherein the metal oxide in the step (b) has proton conductivity. 請求項1乃至3のいずれかに記載の方法で製造されたイオン移動利用デバイスと、
前記多孔性電極に与える燃料ガスと前記多孔性対極に与える酸素とを分離し、かつ電気的に前記イオン移動利用デバイス同士を接続するインターコネクトとで構成されたことを特徴とする燃料電池。
An ion transfer utilization device manufactured by the method according to claim 1,
A fuel cell, comprising: an interconnect that separates fuel gas supplied to the porous electrode and oxygen supplied to the porous counter electrode and electrically connects the ion transfer utilization devices.
JP2003122748A 2003-04-25 2003-04-25 Manufacturing method of ion transfer device Expired - Lifetime JP4676680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003122748A JP4676680B2 (en) 2003-04-25 2003-04-25 Manufacturing method of ion transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003122748A JP4676680B2 (en) 2003-04-25 2003-04-25 Manufacturing method of ion transfer device

Publications (2)

Publication Number Publication Date
JP2004327339A true JP2004327339A (en) 2004-11-18
JP4676680B2 JP4676680B2 (en) 2011-04-27

Family

ID=33500870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003122748A Expired - Lifetime JP4676680B2 (en) 2003-04-25 2003-04-25 Manufacturing method of ion transfer device

Country Status (1)

Country Link
JP (1) JP4676680B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266716A (en) * 2005-03-22 2006-10-05 Figaro Eng Inc Co2 sensor
JP2006344486A (en) * 2005-06-08 2006-12-21 Japan Fine Ceramics Center Solid oxide fuel cell and its manufacturing method
JP2008084791A (en) * 2006-09-28 2008-04-10 Dainippon Printing Co Ltd Solid oxide fuel cell and its stack structure
JP2010536119A (en) * 2007-08-03 2010-11-25 ロールス−ロイス・フューエル・セル・システムズ・リミテッド FUEL CELL AND METHOD FOR MANUFACTURING FUEL CELL

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05270955A (en) * 1992-03-25 1993-10-19 Kansai Electric Power Co Inc:The Formation of coating layer on oxide ceramic
JP2002329511A (en) * 2001-05-01 2002-11-15 Nissan Motor Co Ltd Stack for solid electrolyte fuel cell and solid electrolyte fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05270955A (en) * 1992-03-25 1993-10-19 Kansai Electric Power Co Inc:The Formation of coating layer on oxide ceramic
JP2002329511A (en) * 2001-05-01 2002-11-15 Nissan Motor Co Ltd Stack for solid electrolyte fuel cell and solid electrolyte fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266716A (en) * 2005-03-22 2006-10-05 Figaro Eng Inc Co2 sensor
JP4627671B2 (en) * 2005-03-22 2011-02-09 フィガロ技研株式会社 CO2 sensor
JP2006344486A (en) * 2005-06-08 2006-12-21 Japan Fine Ceramics Center Solid oxide fuel cell and its manufacturing method
JP2008084791A (en) * 2006-09-28 2008-04-10 Dainippon Printing Co Ltd Solid oxide fuel cell and its stack structure
JP2010536119A (en) * 2007-08-03 2010-11-25 ロールス−ロイス・フューエル・セル・システムズ・リミテッド FUEL CELL AND METHOD FOR MANUFACTURING FUEL CELL
JP2013225526A (en) * 2007-08-03 2013-10-31 Lg Fuel Cell Systems Inc Fuel cell and method for manufacturing fuel cell

Also Published As

Publication number Publication date
JP4676680B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
Fabbri et al. Towards the next generation of solid oxide fuel cells operating below 600 C with chemically stable proton‐conducting electrolytes
US7553573B2 (en) Solid state electrochemical composite
JP2004119108A (en) Unit cell for solid oxide fuel cell, and its manufacturing method
US8337939B2 (en) Method of processing a ceramic layer and related articles
JP2004319491A (en) Fuel cell or electrode having passive support
US20080299434A1 (en) Solid oxide type fuel cell and manufacturing method thereof
KR20110074528A (en) Electrolyte for an sofc battery, and method of making same
KR20040089525A (en) Fuel Cell and Passive Support
EP1930975A1 (en) Electrochemical device and electrochemical apparatus
US20060280864A1 (en) Method for electrode deposition for solid oxide fuel cells
CA2906467A1 (en) Fuel cell system including multilayer interconnect
JP2005044601A (en) Solid acid oxide fuel cell
JP2004055194A (en) Electrode of solid oxide type fuel cell
CN113394435A (en) Solid oxide fuel cell and method for manufacturing same
EP3343682B1 (en) Flat plate-shaped solid oxide fuel cell and cell module comprising same
JP4676680B2 (en) Manufacturing method of ion transfer device
JP2004355814A (en) Solid oxide fuel battery cell and its manufacturing method
JPH06196180A (en) Manufacture of solid electrolyte type fuel cell
JP3342610B2 (en) Solid oxide fuel cell
JP2005276683A (en) Fuel electrode, electrochemical cell and method of manufacturing fuel electrode
JP5176362B2 (en) Solid oxide fuel cell structure and solid oxide fuel cell using the same
JP6348643B2 (en) Electrochemical cell stack
JP2009087935A (en) Treating method of ceramic electrolyte and related product
JPH0696791A (en) Solid electrolytic fuel cell and its manufacture
KR101582743B1 (en) Porous support body and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4676680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term