JP2004327324A - Backlight device and liquid crystal display - Google Patents

Backlight device and liquid crystal display Download PDF

Info

Publication number
JP2004327324A
JP2004327324A JP2003122412A JP2003122412A JP2004327324A JP 2004327324 A JP2004327324 A JP 2004327324A JP 2003122412 A JP2003122412 A JP 2003122412A JP 2003122412 A JP2003122412 A JP 2003122412A JP 2004327324 A JP2004327324 A JP 2004327324A
Authority
JP
Japan
Prior art keywords
light source
housing
cylindrical light
inverter circuit
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003122412A
Other languages
Japanese (ja)
Other versions
JP3944468B2 (en
Inventor
Hisanori Okazaki
尚徳 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAMA FINE OPTO CO Ltd
Original Assignee
TAMA FINE OPTO CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAMA FINE OPTO CO Ltd filed Critical TAMA FINE OPTO CO Ltd
Priority to JP2003122412A priority Critical patent/JP3944468B2/en
Publication of JP2004327324A publication Critical patent/JP2004327324A/en
Application granted granted Critical
Publication of JP3944468B2 publication Critical patent/JP3944468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the large-sizing of various electric components as a result of increase of drive voltage which is brought about by the enlargement of the axial length of the cylindrical light source (lamp) due to the large-sizing of an LCD and a backlight device. <P>SOLUTION: Two inverter circuit substrates 9U, 9D, 9L, 9R, 9UL, 9UC, 9UR, 9DL, 9DC, 9DR are arranged at both end positions on a short side and a long side directions of an opening part 1a of a case 1 of the LCD and the backlight device, and the electrode parts 5 of the cylindrical light sources 3, 3L 3R, 3U, 3D are connected to transformer terminals 5A, 5B of high voltage side of the two inverter circuit substrates 9U, 9D, 9L, 9R, 9UL, 9UC, 9UR, 9DL, 9DC, 9DR, and thereby the large-sizing of various electric components accompanied with increase of the drive voltage is prevented. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は電子機器に用いて有用なバックライト装置及び液晶表示装置(以下LCDと記す)に係わり、特にバックライト装置及びLCDの駆動電圧を低下させると共にバックライト装置或いはLCDの照光面の輝度分布バランス及び温度分布バランスを改善したバックライト装置及びLCDに関する。
【0002】
【従来の技術】
従来から、LCDに使用されているバックライト装置はマイクロコンピュータ、テレビジョン受像機等の電子機器の表示装置として広く利用されている。LCDは大きく分けてカラーフィルタ、TFTアレイを生成した二枚のガラス基板間に液晶を封じたセル及びバックライト装置からなり、液晶セルだけでは非発光性のため、バックライト装置の様な外部照射用の光源を必要としている。
【0003】
この様なLCDのバックライト装置の円筒状光源としては冷陰極管又は熱陰極管等の細径の蛍光管(ランプ)を用いるのが一般的である。バックライト装置の構造としては、導光板の側面に円筒状光源を配設したエッジライト方式と、筐体内部に反射体(以下反射板と記す)及び円筒状光源を収納し、筐体の開口部に配設した光透過拡散板へ円筒状光源からの直接光及び円筒状光源からの光を反射板で反射させた光を光透過拡散板で入射拡散させて均一な面状光を出光させる様にした直下方式が知られている。
【0004】
上述の直下方式或いはエッジライト方式はLCDの要求性能に応じて選択されるが、直下方式は円筒状光源の直接光を利用するためエッジライト方式に比較して光の利用効率が高く、ノートブックパソコン、モニタ、テレビジョン受像機等の情報機器や電子機器の様に高輝度を必要とする用途に広く用いられている。
【0005】
図9(A)は従来の直下方式のバックライト装置を示す平面図であり、図9(B)は図9(A)のA−A断面矢視図、図9(C)は図9(A)のB−B断面矢視図、図9(D)(E)は高電圧供給用のインバータ回路基板の取付け状態を示す略線的な平面図である。
【0006】
図9(A)乃至(E)に於いて、バックライト装置6のランプハウスとなる筐体1は上面に開口部1aを有する例えば、矩形状の箱状と成され、合成樹脂で一体成型するか、金属板或いは金属板と成型用の合成樹脂を組み合わせて作製する。
【0007】
筐体1内には高反射塗料を塗布するか、高反射フィルム材等を貼着させて反射面としての反射板2を形成する。図9(B)(C)に於いては、この反射板2は四辺を傾斜させた断面台形状の板材で形成されている。
【0008】
円筒状光源3は筐体1の底面から1〜2mm程度離間した位置に保持する。高反射グレード樹脂の射出成型で得た円筒光源支持台に設けたジャックに円筒状光源3の両端に設けたプラグを挿通して電極部5を構成する。又、筺体1内に配置する円筒状光源3の本数はLCDやバックライト装置6に要求される輝度によって決定する。
【0009】
上記した各部品を組み立て、開口部1aの上面に乳白色アクリル樹脂等を用いた光透過拡散板4を覆う様に配置させると共に、この光透過拡散板4上には図示しないが、少なくとも1枚以上の拡散シートや集光シートが配置されている。円筒状光源3から放射状に発した光は直接或いは筐体1内の反射板2で反射されて光透過拡散板4に到達し、光透過拡散板4で面発光に変換され、更に集光シートによって照光面の法線方向に光を集光させることでバックライト装置6が構成され、上述の拡散シートや集光シート上に液晶パネル8が載置されてLCDを構成している。
【0010】
上述の光透過拡散板4、集光シート、液晶パネル8等は筐体1の四辺に形成したフランジ部に取りつけた抑え部材を介して固定されている。この様なバックライト装置及びLCDは特許文献1に開示されている。
【0011】
また、筐体1の底部1bには図9(B)の断面図及び図9(D)の平面図に示すように、筺体1の右端側に切起片7が設けられる、この切起片7は円筒状光源3の電極部5の近傍に形成され、高圧電源供給用のインバータ回路基板9が切起片7を介して筺体1の底部1bに固定されている。図9(E)はインバータ回路基板9を筺体1の左端側に配し、複数のU字状に曲げた円筒状光源3の高低圧側の電極部5をインバータ回路基板9に接続し、筺体1の開口部1aの短辺方向に並設させたものである。この様なバックライト装置及びLCDは特許文献2に記載されている。
【0012】
【特許文献1】
特許公開2002−116705号公報(図10〜図12)
【特許文献2】
特許公開2000−352718号公報(第4頁、段落番号0030)
【0013】
【発明が解決しようとする課題】
上述した、従来構成のLCD及びバックライト装置ではLCDの大型化に伴って、バックライト装置の駆動電圧も輝度を向上させる為に高くなり、インバータ回路基板9の駆動電圧も高電圧化されている。
【0014】
一方、LCDの表示品位の優劣を表す重要な要素にバックライト装置6の照射面の輝度均一性がある。この輝度均一性を表す要素の1つに輝度ムラがある。輝度ムラは照光面内の輝度分布を数値でとらえたものであり、照光面内の規定された測定ポイントにおける法線方向の最大輝度と最小輝度の比率で示される。すなわち、輝度ムラは(最低輝度/最大輝度)×100%で定義される。
【0015】
例えば、29インチ(A=684mm×420mm)LCDで3φ、長さ642mmの円筒状光源3を開口部1aの短辺方向に等間隔で16本並設し、円筒状光源3の入力電圧を14V、入力電流を6.7Aとし、消費電力は94Wで測定した場合での平均輝度ムラは86.2%である。
【0016】
更に、上述のバックライト装置及びLCDでは図10の輝度特性曲線に示す様な特性に依って、輝度分布バランスが乱される問題があつた。図10の輝度特性曲線の縦軸は輝度を、横軸は筐体1の開口部1aの長辺に沿って並行に配設した円筒状光源3の長手方向を示すものであり、筐体1の開口部1a上に載置した光透過拡散板4上での輝度分布特性図を示すものである。
【0017】
図10に於いて、LCD等の調光時には円筒状光源3の管電流が例えば、3mAの如く低電流では、曲線11の様にインバータ回路基板9のある側の輝度が高く(明るく)、低圧側が低く(暗く)なる。又、逆に円筒状光源3の管電流が例えば、7mAの如く高電流では、インバータ回路基板9のある側の輝度が低く(暗く)、低圧側が高く(明るく)なり曲線12の如き特性を示す。
【0018】
此の様なことから、円筒状光源3の長手方向の略中央位置に輝度バランスを合わせるために、図10の輝度バランス曲線13に示すよう管電流を調整して最適化する必要が生ずる。図10では管電流を5mAに選択して、輝度バランスが円筒状光源3の長手方向の略中央位置で最高輝度と成るような最適化を行わなければならない課題を有していた。
【0019】
又、図11に示す様に、インバータ回路基板9を筺体1の右端側に配し、複数の直管状の円筒状光源3の高圧側及び低圧側の電極部5をインバータ回路基板9の高低圧側トランス端子5H及び5Lに接続し、筺体1の開口部1aの短辺方向に並設させたものでは、円筒状光源3に高電流を流すとインバータ回路基板9側が発熱し、インバータ回路基板9側が非常に熱くなる。その結果、図11に示す様に、筺体1の開口部1a上の照光面の右端側に高温度領域15を生じ、インバータ回路基板9から左端側に行くに従って、中温度領域16、小温度領域17となり、1方向のインバータ回路基板9側の底板1bの温度が上昇し、照光面上の温度分布に傾斜を生ずることになる。
【0020】
更に、図12に示す様にインバータ回路基板9を筺体1の右端側に配し、複数の直管状の円筒状光源3の高圧側の電極部5をインバータ回路基板9の高低圧トランス端子5H、5Lに接続し、筺体1の開口部1aの短辺方向に並設させたものでは、円筒状光源3の管軸長が長くなり、例えば、円筒状光源3の長さが1000mmにもなると、円筒状光源3を駆動する駆動電圧は1000V以上の高電圧を必要とする。この円筒状光源3の駆動始動時には、定常時の略2倍程度の電圧が必要となり、例えば、円筒状光源3に1000Vの電圧がかかる場合の駆動始動時には2000Vの高電圧が円筒状光源3にかかるようになる。このため、インバータ回路基板9のトランスが大きくなり、バックライト装置及びLCDの厚みが増すという課題を有していた。
【0021】
本発明は叙上の課題を解消するために成されたもので、発明が解決しようとする課題はバックライト装置が大型化され、円筒状光源3の管軸方向の長さが長くなり、駆動電圧の高電圧化に伴ない、インバータ回路基板9が筺体1の底部1b側に配設され、円筒状光源3の管軸長が例えば、30インチ用以上となっても、円筒状光源3の管電流を供給するための駆動電圧及びインバータ回路基板9のトランス電圧を低減させ、照光面上の輝度分布バランスを改善する為に、円筒状光源3の管電流の最適化を行ったので輝度分布バランス及び温度分布の均一化が図られ、輝度ムラを減少可能なバックライト装置及びLCDを提供することが出来る。
【0022】
【課題を解決するための手段】
本発明のバックライト装置は、筐体内に円筒状光源を配設し、筺体にインバータ回路基板を配したバックライト装置に於いて、インバータ回路基板を筐体の開口部の長手方向或いは短辺方向の底面両端位置に配する様にしたものである。
【0023】
本発明のバックライト装置は、バックライト装置の輝度分布特性を、筺体の開口部の底面両端位置に配したインバータ回路基板を中心に所定輝度値と成るように円筒状光源の管電流を調整する様にしたものである。
【0024】
本発明のバックライト装置は、筺体の開口部の底面両端位置に配したインバータ回路基板から高電圧を円筒状光源の1対の電極部に印加し、円筒状光源を筺体の開口部内の上下或いは左右方向に並設させ、インバータ回路基板のトランスの分担電圧を低下させる様にしたものである。
【0025】
本発明のバックライト装置は、筺体の開口部の底面両端位置に配したインバータ回路基板から高電圧を円筒状光源の1対の電極部に印加し、円筒状光源を筺体の開口部内の上下或いは左右方向に並設させ、筺体の開口部の底面両端位置に配したインバータ回路基板を中心に照光面の温度分布を均一化させる様にしたものである。
【0026】
本発明のバックライト装置は、円筒状光源の1対の電極部の両端を筐体の開口部の底面両端位置に配したインバータ回路基板の高電圧供給側に接続し、複数の筐体を左右或いは上下方向に並設する様にしたものである。
【0027】
本発明のバックライト装置は、円筒状光源の形状を曲管状とする様にしたものである。
【0028】
本発明のバックライト装置は、円筒状光源の形状を筺体の開口部の底面両端位置に配したインバータ回路基板の一対の電極部間に至る区間にわたって延設された直管とする様にしたものである。
【0029】
本発明の液晶表示装置は、筐体内に円筒状光源を配設し、筺体にインバータ回路基板を配したバックライトを有する液晶表示装置に於いて、インバータ回路基板を筐体の開口部の長手方向或いは短辺方向の底面両端位置に配する様にしたものである。
【0030】
本発明の液晶表示装置は、バックライトの輝度分布特性を、筺体の開口部の底面両端位置に配したインバータ回路基板を中心に所定輝度値と成るように円筒状光源の管電流を調整する様にしたものである。
【0031】
本発明の液晶表示装置は、筺体の開口部の底面両端位置に配したインバータ回路基板から高電圧を円筒状光源の1対の電極部に印加し、円筒状光源を筺体の開口部内の上下或いは左右方向に並設させ、インバータ回路基板のトランスの分担電圧を低下させる様にしたものである。
【0032】
本発明の液晶表示装置は、筺体の開口部の底面両端位置に配したインバータ回路基板から高電圧を円筒状光源の1対の電極部に印加し、円筒状光源を筺体の開口部内の上下或いは左右方向に並設させ、筺体の開口部の底面両端位置に配したインバータ回路基板を中心に照光面の温度分布を均一化させる様にしたものである。
【0033】
本発明のバックライト装置及びLCDに依れば、バックライト装置及びLCDが大型化され、円筒状光源の管軸方向の長さが長くなり、駆動電圧の高電圧化に伴って、インバータ回路基板が筺体の底部側に配設され、円筒状光源の管軸長が例えば、30インチ用以上となっても、円筒状光源に管電流を供給する為の駆動電圧及びインバータ回路基板のトランス電圧の低減化が図られ、照光面上の輝度分布バランスを改善する為に、円筒状光源の管電流の最適化を行ったので輝度分布バランス及び温度分布の均一化が図られ、輝度ムラを減少可能なものを得ることが出来る。
【0034】
【発明の実施の形態】
以下、本発明の1形態例を示すバックライト装置及びLCDの構成を図1乃至図8によって説明する。尚、図9乃至図12の従来構成との対応部分には同一符号を付して説明する。
【0035】
図1(A)乃至(C)は本発明のLCDに用いるバックライト装置の筐体を上から見た略線図であり、光透過拡散板を開口部から除去した筐体の平面図を示すものであり、図2(A)乃至(J)は図1と同様の本発明の他の形態を示すLCDに用いるバックライト装置の略線的平面図と、曲管状の円筒状光源の正面図及び波形説明図である。
【0036】
図1(A)乃至(C)及び図2(A)乃至(J)に示す本発明のバックライト装置6の筐体1は平面形状が長方形の箱型(厚みt=2mmのステンレス)であり、筐体1の内部には、複数本の円筒状光源(例えば、冷陰極管)3が、互に平行に配されている。筐体1の内面は図9(B)に示す様に白色の反射面と成る反射板が形成され、その四辺は反射効率を高めるため傾斜させ、断面略台形となる様に成されている。
【0037】
更に、筐体1の開口部1aの長辺方向の左右両端位置に図1(A)の様に左右側インバータ回路基板9L、9Rが筐体1の底部1bの裏面に固定される。筺体1の開口部1aの内面に並設される複数の円筒状光源群3の両面の電極部5は左右側インバータ回路基板9L、9Rの高圧側のトランス端子5A、5Bに接続されている。
【0038】
図1(A)の筐体1では左右側インバータ回路基板9L、9Rが筺体1の底部1bの左右両端裏面に固定されるが、この固定方法は底部1bの裏面に左右側インバータ回路基板9L、9Rを直接固定しても、所定のスペーサを介して底部1bの裏面に固定する様にしてもよい。
【0039】
図1(B)は本発明の他の形態例のバックライト装置を示すものであり、例えば横長のアスペクト比が9対16等のハイビジョン用のLCDに用いる筐体1の開口部1aの長辺方向の左右両端位置に2個の左右側インバータ回路基板9L、9Rを夫々筐体1の底部1bの裏面に固定している。筺体1の開口部1aの内面に並設される複数の円筒状光源群3の左右の電極部5は左右側インバータ回路基板9L、9Rの高圧側のトランス端子5A、5Bに接続されている。
【0040】
図1(C)は本発明の更に他の形態例のバックライト装置を示すものであり、実線で示すバックライト装置6の場合は、例えばアスペクト比が3対4等のLCDに用いるものであり、筐体1の開口部1aの短辺方向の上下位置に2個の上下側インバータ回路基板9U、9Dを筐体1の底部1bの裏面に固定している。筺体1の開口部1aの内面に並設される複数の上下側に延設された円筒状光源群3の上下の電極部5は上下インバータ回路基板9U、9Dの高圧側のトランス端子5A、5Bに接続されている。
【0041】
図1(C)に於いて、破線で示すものは、例えば横長のアスペクト比が9対16等のハイビジョン用のLCDに用いるものであり、筐体1の開口部1aの短辺方向の上下両端位置に夫々3個の上下インバータ回路基板9U、9D、9UL、9DL、9UR、9UDを筐体1の底部1bの裏面に固定しているが上下側インバータ回路基板9U、9Dは必要な個数に分割可能であり、勿論、上下側の2個だけでもよい、筺体1の開口部1aの内面に並設される複数の円筒状光源群3の上下の電極部5は上下インバータ回路基板9U、9Dの高圧側のトランス端子5A、5Bに接続されている。
【0042】
図2(A)乃至(C)に示すものは本発明のバックライト装置の更に他の構成を示すものであり、図2(A)は図1(A)で示したと同様に左右側インバータ回路基板9L、9Rを筺体1の底部1bの左右両端裏面に固定し、左右側円筒状光源群3L、3Rを曲管状の略U字状とし、左右側円筒状光源3L、3Rの高電圧供給側の電極部5を左右側インバータ回路基板9L、9Rのトランス端子5A、5Bに接続する様にプラグインさせたものである。
【0043】
図2(B)は、例えば横長のアスペクト比が9対16等のハイビジョン用のLCDに用いるものであり、筐体1の開口部1aの上下両端位置に夫々3個の上下側インバータ回路基板9U(9UL、9UC、9UR)及び9D(9DL、9DC、9DR)を筺体1の底部1bの裏面に固定している。筺体1の開口部1aの内面に並設される複数の上下側の曲管状の略U字状となした上下側円筒状光源群3U、及び3Dの両方の電極部5は上下側インバータ回路基板9U(9UL、9UC、9UR)及び9D(9DL、9DC、9DR)の高圧側のトランス端子5A、5Bに接続されている。
【0044】
図2(C)に示すものは、本発明のバックライト装置の更に他の構成を示すものであり、図2(C)は図1(A)及び図2(B)で示したと同様の左右側円筒状光源群3L、3Rの電極部(プラグ)5を筺体1の底部1bの左右両端裏面に固定した左右側インバータ回路基板9L、9Rに装着して、左右側円筒状光源群3L、3Rを曲管状の略U字状となしたものと、円筒状光源群3を直管状となしたものとを組み合わせたものであり、左右側円筒状光源群3L、3Rの高電圧供給側の電極部5を左右側インバータ回路基板9L、9Rの高電圧側のトランス端子5A、5Bに接続する様にプラグインさせたものである。
【0045】
上述の円筒状光源群3L、3R、3U、3Dでは、その形状を曲管状の略U字状となして円筒状光源群3L、3R、3U、3Dの高電圧供給側の電極部5を上下、左右側インバータ回路基板9U、9D、9L、9Rの高電圧側のトランス端子5A、5Bに接続する様にプラグインさせたが、図2(D)乃至図2(H)に示すように種々の形状にすることが出来る。即ち、図2(D)は曲管部を略M字状となしたものであり、図2(E)は曲管部を略コ字状となしたものであり、図2(F)は曲管部を略Ω字状となしたものであり、図2(G)は曲管部を略O字状となし脚部を狭めたものであり、図2(H)は曲管部を略凸字状となし脚部を広げたものである。上述の形状の他に適宜の形状とすることができる。要するに、頂部を曲管状となせばよい。
【0046】
図2(I)及び図2(J)に示すものは、例えば、図2(A)に示すように、左右側円筒状光源3L、3Rを曲管状の略U字状となして左右側円筒状光源3L、3Rの両方の電極部5を左右側インバータ回路基板9L、9Rの高電圧側のトランス端子5A、5B側に接続するようにプラグインさせたものであるが、左右インバータ回路基板9L、9Rのトランス端子5Aには図2(I)の波形18で示す入力電圧を印加し、トランス端子5B側には図2(I)の波形18で示す入力電圧とは逆位相の図2(J)で示す入力電圧を印加するようにすれば曲管部で電圧が零となり入力電圧を低減することが出来て、トランスの小型化を図ることが出来る。
【0047】
以下、本発明の1実施例を図3(A)(B)及び図4(A)(B)により説明する。図3(A)は本発明のバックライト装置の筐体の光透過拡散板を開口部から除去した筐体の平面図を示すものであり、図3(B)は図3(A)のC−C断面矢視図である。図3(A)(B)に於いて、本発明のバックライト装置6の筐体1は平面形状が長方形の箱型(厚みt=2mmのステンレス)であり、筐体1の内部には、複数本の円筒状光源群例えば、冷陰極管)3が、互に平行に配されている。筐体1の内面は図3(B)に示す様に白色の反射面と成る反射板2が形成され、その四辺は反射効率を高めるため傾斜させ、断面略台形となる様に成されている。
【0048】
図3(A)及び図3(B)の筐体1では左右側インバータ回路基板9L,9Rが筺体1の開口部1aの短辺方向と平行になる位置の底部1bの左右両端裏面に直接或いはスペーサ等を介して固定される。筺体1内に配される直管状の円筒状光源群3の電源部5は、この左右側インバータ回路基板9L、9Rの左右両端位置に配された筺体1の側板方向に延設されて高圧供給側トランス端子5A、5Bに接続されている。この左右側インバータ回路基板9L、9Rは底部1bと一体的に形成された切起片7で保持される。
【0049】
更に、本例のバックライト装置は図3(B)に示す様に筐体1の開口部1aを覆う様に、例えば、乳白色アクリル樹脂からなる長方形状の光透過拡散板4及び集光シート20をフランジ部23に配設すると共に、集光シート20上に液晶パネル8を枠部材21や抑え部材22を介して固定する様に成されている。
【0050】
図4(A)(B)に示す本発明のバックライト装置6は、更に他の構成を示すものであり、図4(A)は平面図、図4(B)は図4(A)のD−D断面矢視図である。図4(B)の構成ではLCDが大型化され、例えば40インチの場合、筐体1の長辺方向は図4(A)に示すL1 =900mm、短辺方向の長さL2 =570mm、高さ2cmと成るため、例えば直径3φで長さが900mm以上の円筒状光源3を得ることが困難と成るため、円筒状光源群3の軸長を570mmと成るように筺体1の開口部1aの短辺方向に上下円筒状光源群を配設したもので、本例では筐体1の短辺方向の上下両端位置に上下インバータ回路基板9U、9Dを配置し、この上下側インバータ回路基板9U、9D間に上下側円筒状光源群3が配置される。
【0051】
従って、図4(A)(B)に示すバックライト装置6では図4(A)に示す筺体1の開口部1aの短辺方向の上下両端位置に高電圧側のトランス端子5A、5Bが設けられ、破線で示す様に筺体1の底部1bの裏面に固定した上下インバータ回路基板9U、9Dのトランス端子5A、5Bに円筒状光源群3の両端の電極部5を接続させる。
【0052】
又、底部1b又は(及び)反射板2に必要に応じて透孔を穿ち、上下側インバータ回路基板9U、9Dの円筒状光源群3の管軸方向に沿って筐体1の短辺方向に並設したスリット状の打抜き部を形成し、円筒状光源群3と底板1bの浮遊容量を減少させる様にしても良い。勿論、筐体1の底部1b又は(及び)反射板2に穿つ透孔の大きさ及びその数は筐体1が最低限強度を保つ様に選択される。
【0053】
上述で詳記したバックライト装置6のうち図3(A)(B)に示す筐体1の様に構成し、画面サイズとして29インチを使用し、円筒状光源群3を16本、並設した反射板2から円筒状光源群3までの高さを2mmとし、EIAJで定める条件の測定点での輝度測定時の1本の円筒状光源群3の入力電圧は14V、入力電流は6.7A、消費電力94Wでの平均輝度ムラは92.7%の値を示している。
【0054】
又、X軸方向での輝度ムラBrd=最小(MIN)輝度/最大(MAX)輝度×100%の値は92.7%で従来に比べて6.5%の改善が成されている。
【0055】
図5(A)は筺体1の開口部1aの左右側の両端にインバータ回路基板9がある場合の画面左右及び中央の輝度比を計測したものであり、図5(B)は画面中央の輝度比を1.000とした画面左右及び中央の輝度比を示すもので、ともに円筒状光源3の電極部5をインバータ回路基板9の左右側の両端の高電圧側に接続した場合の輝度を示す。同図で曲線14aは円筒状光源3の管電流が3mA、曲線14cは円筒状光源3の管電流が4mA、曲線14eは円筒状光源3の管電流が5mA、曲線14gは円筒状光源3の管電流が6mA、曲線14iは円筒状光源3の管電流が7mAの場合を示し、インバータ回路基板9の高電圧側の管電流が大きい時から小さい時まで輝度特性曲線は図10の曲線13と同一の形状を示す。表1及び表2に実測値と円筒状光源3の中央輝度比を1.000とし、左右側の両端にインバータ回路基板9(筺体1の開口部1aの左右側)を配した時の輝度と管電流との関係データを示す。
【0056】
【表1】

Figure 2004327324
【0057】
【表2】
Figure 2004327324
【0058】
又、本発明の上述の各構成に依れば、例えば上下側或いは左右側インバータ回路基板9U、9D、9L、9Rを筐体1の開口部1aの短辺或は長辺方向の少なくとも上下或いは左右の両端位置に固定し、開口部1aの長辺又は短辺に対し、左右或は上下方向に円筒状光源群3、3L、3R、3U、3Dを平行に配設する様にしたので、LCDの調光時に管電流が3mAの様に低電流時、或は7mAの様な高電流時に於いても、図5の曲線14a乃至14iの様に円筒状光源群3、3L、3R、3U、3Dの最高輝度(BLmax)を上下側或いは左右側インバータ回路基板9U、9D、9L、9Rの高電圧供給側のトランス端子5A、5Bの両端側(開口部1aの長辺或は短辺方向の両端位置)に持ち来たすことで輝度特性の輝度曲線を管電流の大小にかかわらず輝度バランスを良好にすることが出来る。
【0059】
即ち、図10の如き輝度特性曲線を図5の如く、円筒状光源3の管電流を調整してLCD或はバックライト装置6の照光面上の画面左右及び中央の輝度比のバランスを良好にして、円筒状光源3L、3R、3U、3Dの管電流の最適化を図ることが出来る。
【0060】
上述の様な輝度特性曲線を図6(A)及び図6(B)により更に説明する。図6(A)及び図6(B)は直径3mmの円筒状光源3の電流依存性を示すものであり、縦軸は輝度比を示し、横軸は光透過拡散板4上の照光面位置であり、円筒状光源3の長軸方向を示しこの円筒状光源3の中央輝度比を1.000とし、グランド側とインバータ回路基板9(筺体1の開口部1aの右側)がある側の輝度を示している。又、図6(A)は、インバータ回路基板9が底板1bの裏側にある場合であり、図6(B)は、インバータ回路基板9が底板1bの裏側に無い場合である。
【0061】
図6(A)は筺体1の開口部1aの右側にインバータ回路基板9がある場合の画面中央の輝度比を1.000とした高電圧側の輝度を示し、同図で曲線14aは円筒状光源3の管電流が3mA、曲線14bは円筒状光源3の管電流が3.5mA、曲線14cは円筒状光源3の管電流が4mA、曲線14dは円筒状光源3の管電流が4.5mA、曲線14eは円筒状光源3の管電流が5mA、曲線14fは円筒状光源3の管電流が5.5mA、曲線14gは円筒状光源3の管電流が6mA、曲線14hは円筒状光源3の管電流が6.5mA、曲線14iは円筒状光源3の管電流が7mAの場合を示し、インバータ回路基板9の高電圧側の管電流が大きい時には輝度比は小さい値を示し、管電流が小さい時には輝度比は大きい値を示している。これは管電流が高圧側からグランド側に流れている間に、筺体1の底板1bとの間で生ずる浮遊容量を通して生ずる漏洩電流によって円筒状光源3のグランド側に流れる電流が小さくなっていく為に、グランド側の輝度が低くなると考えられる。又、高電圧側の管電流大きい時に輝度が小さい理由としては、後述する温度依存性により高電圧の円筒状光源3の発光効率が減少し高圧側の輝度が低くなると考えられる。表3に円筒状光源3の中央輝度比を1.000とし、グランド側とインバータ回路基板9(筺体1の開口部1aの右側)がある側の輝度と管電流との関係データを示す。
【0062】
【表3】
Figure 2004327324
【0063】
図6(B)は筺体1の開口部1aの右側にインバータ回路基板9が無い場合の画面中央の輝度比を1.000とした高電圧側の輝度を示し、同図で曲線14aは円筒状光源3の管電流が3mA、曲線14bは円筒状光源3の管電流が3.5mA、曲線14cは円筒状光源3の管電流が4mA、曲線14dは円筒状光源3の管電流が4.5mA、曲線14eは円筒状光源3の管電流が5mA、曲線14fは円筒状光源3の管電流が5.5mA、曲線14gは円筒状光源3の管電流が6mA、曲線14hは円筒状光源3の管電流が6.5mA、曲線14iは円筒状光源3の管電流が7mAの場合を示し、インバータ回路基板9の高電圧側の管電流が小さい時には輝度比は大きい値を示し、管電流が大きい時には輝度比は略1.000を示している。これは管電流が高電圧側からグランド側に流れている間に、筺体1の底板1bとの間で生ずる浮遊容量を通して生ずる漏洩電流によって円筒状光源3のグランド側に流れる電流が少なくなっていくが、図6(B)と図6(A)の輝度特性曲線とを比較すると、円筒状光源3の管電流が5mA乃至7mAでは温度が輝度に影響を与えない事がわかる。従って管電流が大きい時には輝度特性は高能率化され高輝度になると解される。表4に円筒状光源3の中央輝度比を1.000とし、インバータ回路基板9(筺体1の開口部1aの右側)が無い場合の高電圧側の輝度と管電流との関係データを示す。
【0064】
【表4】
Figure 2004327324
【0065】
これらの事から、円筒状光源3に高電流を流すとインバータ回路基板9の発熱により、温度が高い状態になり筺体1の底部1bに温度勾配が出来てインバータ回路基板9側の円筒状光源3の発光効率が悪くなり、低電圧側の円筒状光源3の発光効率が良くなり、高電圧側の輝度が低くなると解される。依って、本発明に依れば図5に示す様に管電流を調整して輝度特性曲線を上下側或いは左右側で円筒状光源群3、3L、3R、3U、3Dの最高輝度(BLmax)にあわせた略平坦な輝度特性曲線を得ることが出来る。
【0066】
更に、LCD及びバックライト装置6の温度分布についても、従来では図11に示した様に筐体1の照光面上の右側に高温度領域15が偏り、特に管電流が高電流に成ると温度傾斜が激しく、インバータ回路基板9が配設された側の温度上昇によって、温度分布バランスは図11の様に崩れることになる。
【0067】
これに対し、本発明のLCD及びバックライト装置6に依れば、上下側或いは左右側インバータ回路基板9U、9D、9L、9Rは図7に示す様に筐体1の開口部1aの長辺方向の上下側或いは左右側位置に持ち来たされているため、温度分布バランスも上下側或いは左右側インバータ回路基板9U、9D、9L、9Rを中心に照光面上の上下側或いは左右側が高温度領域15となり、照光面上の中心が中温度領域16と均一に温度分布が拡がって輝度分布バランスの崩れも生じにくくなる。
【0068】
更に、LCDやバックライト装置6が35乃至50インチ、或はハイビジョン用のテレビ受像機等と同様のアスペクト比を持つ様な表示装置になると、円筒状光源3のランプ長が長くなり、起動時には定常時の2倍の耐電圧を必要とするためインバータ回路基板9に用いるトランス、その他の能動素子及び受動素子は耐電圧性を増すため大型化され、バックライト装置6の筐体(ランプハウス)1の厚み等が増加することに成り、図12に示す様な筐体1の1端部にのみインバータ回路基板9を有するものではどうしても市場要求を充分に満足可能な薄型化が困難と成って来ている。
【0069】
然るに、本発明のLCD及びバックライト装置6に依れば、例えば、図8に示す様に筐体1の開口部1aの長辺方向の左右両端位置に左右側インバータ回路基板9L、9Rを設けて、円筒状光源群3の両端の電極部5を左右インバータ回路基板9L、9Rの高電圧側のトランス端子5A及び5Bに接続し,開口部1aの長辺方向と平行に並設する様にすることで、円筒状光源群3の1本毎の駆動電圧は1000Vであったものが半分の500Vで済むことになる。
【0070】
その為、左右ンバータ回路基板9L、9Rのトランス及び各種能動素子及び受動素子の耐電圧を低くすることが可能で、バックライト装置、筐体1の厚みを薄くすることが出来るだけでなく、低電圧駆動可能で安全性の高いLCD及びバックライト装置が提供可能と成る。
【0071】
更に、図2(A)乃至(H)で説明した様な曲管状の円筒状光源3や左右、上下側円筒状光源群3L、3R、3U、3Dを用いることによって、高電圧供給側のトランス端子5Aに図2(I)の駆動電圧(1/2V)を供給し、同じく高電圧供給側のトランス端子5Bに図2(J)の様に図2(I)と逆位相の駆動電圧(−1/2V)を供給することで直管状の円筒状光源3の管の中心位置及び左右、上下側円筒状光源群3L、3R、3U、3Dの曲管部分での電位は相殺されて零(接地電位)とすることが可能であり、入力用の駆動電圧を半分に低減可能なものが得られる。
【0072】
【発明の効果】
本発明のLCD及びバックライト装置に依れば、これら装置が大型化され、円筒状光源の軸長が長くなり、駆動電圧の高電圧化が成されても、インバータ回路基板を筐体の開口部の長辺方向或いは短辺方向の上下側或いは左右側位置に持ち来たし、2個のインバータ回路基板間に複数の円筒状光源群を並設させたので、これらインバータ回路基板の駆動電圧の低圧駆動が可能と成り、トランスや各種電気部品の小型化を図ることが可能と成る。又、照光面上での輝度分布バランス及び温度分布バランスを管電流の調整及びインバータ回路基板の開口部の両端位置への移動で均一化させることが可能と成り、円筒状光源の管壁と筐体の底部間の浮遊容量を減少させることもでき、筐体内の温度上昇を抑制可能なLCD及びバックライト装置を提供することが出来る。
【図面の簡単な説明】
【図1】本発明のLCDに用いるバックライト装置の1形態例を示す略線的平面図である。
【図2】本発明のLCDに用いるバックライト装置の他の形態例を示す略線的平面図及び曲管円筒状光源の略線的平面図並びに駆動電圧波形図である。
【図3】本発明のLCDに用いるバックライト装置の1実施例を示す平面図及び側断面図である。
【図4】本発明のLCDに用いるバックライト装置の他のバックライト装置の他の実施例を示す平面図及び側断面図底面図である。
【図5】本発明のバックライト装置に用いる円筒状光源の管電流をパラメータとした輝度と円筒状光源軸長との関係を示す輝度特性曲線図である。
【図6】本発明のバックライト装置の管電流依存性及び温度依存性を説明するための略線的平面図である。
【図7】本発明のバックライト装置の温度分布を説明するための略線的平面図である。
【図8】本発明のバックライト装置の円筒状光源駆動用の入力電圧説明用の略線的平面図である。
【図9】従来のバックライト装置の平面図、側断面図並びに略線的な筐体の平面図である。
【図10】従来のバックライト装置に用いる円筒状光源の管電流をパラメータとする輝度と円筒状光源軸長との関係を示す輝度特性曲線図である。
【図11】従来のバックライト装置の温度分布を説明するための略線的平面図である。
【図12】従来のバックライト装置の円筒状光源駆動用の入力電圧説明用の略線的平面図である。
【符号の説明】
1‥‥筐体、1a‥‥開口部、1b‥‥底部、3(3L、3R、3U、3D)‥‥円筒状光源(円筒状光源群)、4‥‥光透過拡散板、5‥‥電極部、5A,5B‥‥トランス端子、9、9U、9D、9L、9R、9UL、9UC、9UR、9DL、9DC、9DR‥‥インバータ回路基板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a backlight device and a liquid crystal display device (hereinafter, referred to as an LCD) useful for electronic devices, and more particularly to a backlight device and a drive voltage of the LCD, and a luminance distribution of an illumination surface of the backlight device or the LCD. The present invention relates to a backlight device and an LCD having improved balance and temperature distribution balance.
[0002]
[Prior art]
BACKGROUND ART Conventionally, backlight devices used for LCDs have been widely used as display devices for electronic devices such as microcomputers and television receivers. LCDs are roughly divided into a color filter, a cell in which liquid crystal is sealed between two glass substrates on which a TFT array is formed, and a backlight device. Since the liquid crystal cell alone does not emit light, external illumination such as a backlight device is used. Need a light source for
[0003]
In general, a thin fluorescent tube (lamp) such as a cold-cathode tube or a hot-cathode tube is used as a cylindrical light source of such an LCD backlight device. The structure of the backlight device includes an edge light type in which a cylindrical light source is disposed on a side surface of a light guide plate, a reflector (hereinafter, referred to as a reflective plate) and a cylindrical light source which are accommodated in a housing, and an opening in the housing. The direct light from the cylindrical light source and the light reflected from the cylindrical light source reflected by the reflecting plate are incident and diffused by the light transmitting / diffusing plate to the light transmitting / diffusing plate disposed in the section, thereby emitting uniform planar light. There is a known direct type.
[0004]
The above direct type or edge light type is selected according to the required performance of the LCD, but the direct type uses the direct light of the cylindrical light source, so that the light use efficiency is higher than the edge light type, and the notebook type It is widely used for applications requiring high luminance, such as information devices and electronic devices such as personal computers, monitors, and television receivers.
[0005]
FIG. 9A is a plan view showing a conventional direct-type backlight device, FIG. 9B is a cross-sectional view taken along the line AA of FIG. 9A, and FIG. FIG. 9A is a cross-sectional view taken along the line BB, and FIGS. 9D and 9E are schematic plan views showing a mounting state of an inverter circuit board for supplying a high voltage.
[0006]
9 (A) to 9 (E), a housing 1 serving as a lamp house of the backlight device 6 is formed in, for example, a rectangular box shape having an opening 1a on an upper surface, and is integrally molded with a synthetic resin. Alternatively, a metal plate or a combination of a metal plate and a synthetic resin for molding is used.
[0007]
A high-reflection paint is applied to the inside of the housing 1, or a high-reflection film material or the like is adhered to form the reflection plate 2 as a reflection surface. In FIGS. 9B and 9C, the reflection plate 2 is formed of a plate material having a trapezoidal cross section with four sides inclined.
[0008]
The cylindrical light source 3 is held at a position separated from the bottom surface of the housing 1 by about 1 to 2 mm. The electrode portions 5 are formed by inserting plugs provided at both ends of the cylindrical light source 3 into jacks provided on a cylindrical light source support obtained by injection molding of a high reflection grade resin. Further, the number of cylindrical light sources 3 arranged in the housing 1 is determined by the luminance required for the LCD and the backlight device 6.
[0009]
The above-described components are assembled and arranged on the upper surface of the opening 1a so as to cover the light transmission / diffusion plate 4 made of milky white acrylic resin or the like. Are provided. Light emitted radially from the cylindrical light source 3 is directly or reflected by the reflection plate 2 in the housing 1 and reaches the light transmission / diffusion plate 4, is converted into surface light by the light transmission / diffusion plate 4, and is further condensed. The backlight device 6 is configured by condensing light in the normal direction of the illuminating surface, and the liquid crystal panel 8 is mounted on the above-described diffusion sheet or condensing sheet to configure an LCD.
[0010]
The above-described light transmission / diffusion plate 4, light-collecting sheet, liquid crystal panel 8 and the like are fixed via holding members attached to flange portions formed on four sides of the housing 1. Such a backlight device and an LCD are disclosed in Patent Document 1.
[0011]
As shown in the cross-sectional view of FIG. 9B and the plan view of FIG. 9D, a cut-and-raised piece 7 is provided on the bottom 1b of the housing 1 on the right end side of the case 1. Numeral 7 is formed near the electrode section 5 of the cylindrical light source 3, and an inverter circuit board 9 for supplying high-voltage power is fixed to the bottom 1 b of the housing 1 via the cut-and-raised piece 7. FIG. 9E shows an arrangement in which the inverter circuit board 9 is arranged on the left end side of the housing 1, and the high and low voltage side electrode portions 5 of the plurality of U-shaped bent cylindrical light sources 3 are connected to the inverter circuit board 9. The openings 1a are arranged side by side in the short side direction. Such a backlight device and LCD are described in Patent Document 2.
[0012]
[Patent Document 1]
Patent Publication No. 2002-116705 (FIGS. 10 to 12)
[Patent Document 2]
Patent Publication No. 2000-352718 (page 4, paragraph number 0030)
[0013]
[Problems to be solved by the invention]
In the above-described conventional LCD and backlight device, as the size of the LCD increases, the driving voltage of the backlight device also increases to improve the luminance, and the driving voltage of the inverter circuit board 9 also increases. .
[0014]
On the other hand, an important factor indicating the display quality of the LCD is brightness uniformity of the irradiation surface of the backlight device 6. One of the elements representing the luminance uniformity is luminance unevenness. The luminance unevenness is a numerical value of the luminance distribution in the illuminated surface, and is indicated by a ratio between the maximum luminance and the minimum luminance in a normal direction at a specified measurement point in the illuminated surface. That is, the luminance unevenness is defined as (minimum luminance / maximum luminance) × 100%.
[0015]
For example, in a 29-inch (A = 684 mm × 420 mm) LCD, 16 cylindrical light sources 3 each having a diameter of 3φ and a length of 642 mm are arranged side by side at equal intervals in the short side direction of the opening 1 a, and the input voltage of the cylindrical light source 3 is 14 V The average luminance unevenness when the input current was measured at 6.7 A and the power consumption was 94 W was 86.2%.
[0016]
Further, in the above-described backlight device and LCD, there is a problem that the luminance distribution balance is disturbed by the characteristics as shown in the luminance characteristic curve of FIG. The vertical axis of the luminance characteristic curve in FIG. 10 indicates the luminance, and the horizontal axis indicates the longitudinal direction of the cylindrical light source 3 arranged in parallel along the long side of the opening 1 a of the housing 1. FIG. 3 is a diagram showing a luminance distribution characteristic diagram on the light transmission / diffusion plate 4 placed on the opening 1a of FIG.
[0017]
In FIG. 10, when the tube current of the cylindrical light source 3 is as low as 3 mA, for example, during dimming of an LCD or the like, the luminance on one side of the inverter circuit board 9 is high (bright) as indicated by a curve 11 and the low voltage is low. The side is low (dark). Conversely, when the tube current of the cylindrical light source 3 is as high as 7 mA, for example, the brightness on one side of the inverter circuit board 9 is low (dark) and the low voltage side is high (bright), indicating a characteristic as shown by a curve 12. .
[0018]
For this reason, it is necessary to adjust and optimize the tube current as shown by the luminance balance curve 13 in FIG. 10 in order to adjust the luminance balance to a substantially central position in the longitudinal direction of the cylindrical light source 3. In FIG. 10, there was a problem that the tube current was selected to be 5 mA and optimization had to be performed so that the luminance balance reached the maximum luminance at a substantially central position in the longitudinal direction of the cylindrical light source 3.
[0019]
As shown in FIG. 11, the inverter circuit board 9 is disposed on the right end side of the housing 1, and the high-voltage and low-voltage electrodes 5 of the plurality of straight tubular cylindrical light sources 3 are connected to the high-low voltage side of the inverter circuit board 9. In the one connected to the transformer terminals 5H and 5L and arranged in the short side direction of the opening 1a of the housing 1, when a high current is applied to the cylindrical light source 3, the inverter circuit board 9 side generates heat and the inverter circuit board 9 side generates heat. It gets very hot. As a result, as shown in FIG. 11, a high-temperature region 15 is formed on the right end side of the illuminating surface on the opening 1a of the housing 1, and the medium-temperature region 16 and the small-temperature region As a result, the temperature of the bottom plate 1b on the side of the inverter circuit board 9 in one direction rises, and the temperature distribution on the illuminated surface is inclined.
[0020]
Further, as shown in FIG. 12, the inverter circuit board 9 is disposed on the right end side of the housing 1 and the high voltage side electrode portions 5 of the plurality of straight tubular cylindrical light sources 3 are connected to the high / low voltage transformer terminals 5H of the inverter circuit board 9; 5L, and arranged side by side in the short side direction of the opening 1a of the housing 1, if the tube axis length of the cylindrical light source 3 becomes long, for example, if the length of the cylindrical light source 3 becomes 1000 mm, A driving voltage for driving the cylindrical light source 3 requires a high voltage of 1000 V or more. At the start of driving of the cylindrical light source 3, a voltage approximately twice as high as that at the time of steady state is necessary. For example, at the time of driving start when a voltage of 1000 V is applied to the cylindrical light source 3, a high voltage of 2000 V is applied to the cylindrical light source 3. It becomes like this. For this reason, there is a problem that the transformer of the inverter circuit board 9 becomes large and the thickness of the backlight device and the LCD increases.
[0021]
The present invention has been made in order to solve the above-mentioned problems, and the problem to be solved by the present invention is that the backlight device is enlarged, the length of the cylindrical light source 3 in the tube axis direction is increased, and With the increase in the voltage, the inverter circuit board 9 is disposed on the bottom 1b side of the housing 1, and even if the tube axis length of the cylindrical light source 3 becomes, for example, 30 inches or more, the cylindrical light source 3 is In order to reduce the drive voltage for supplying the tube current and the transformer voltage of the inverter circuit board 9 and to improve the balance of the brightness distribution on the illuminated surface, the tube current of the cylindrical light source 3 was optimized, so that the brightness distribution was It is possible to provide a backlight device and an LCD in which balance and temperature distribution are made uniform and luminance unevenness can be reduced.
[0022]
[Means for Solving the Problems]
The backlight device of the present invention provides a backlight device in which a cylindrical light source is provided in a housing and an inverter circuit board is provided in the housing. Are arranged at both end positions of the bottom surface.
[0023]
In the backlight device of the present invention, the tube current of the cylindrical light source is adjusted so that the brightness distribution characteristic of the backlight device has a predetermined brightness value centered on the inverter circuit boards disposed at both ends of the bottom of the opening of the housing. It is what we did.
[0024]
The backlight device of the present invention applies a high voltage to a pair of electrodes of a cylindrical light source from an inverter circuit board disposed at both ends of a bottom surface of an opening of a housing, and applies the cylindrical light source to the upper and lower sides of the opening of the housing. They are arranged side by side in the left-right direction to reduce the voltage shared by the transformer on the inverter circuit board.
[0025]
The backlight device of the present invention applies a high voltage to a pair of electrodes of a cylindrical light source from an inverter circuit board disposed at both ends of a bottom surface of an opening of a housing, and applies the cylindrical light source to the upper and lower sides of the opening of the housing. The temperature distribution of the illuminating surface is made uniform, centered on the inverter circuit boards arranged at both ends of the bottom surface of the opening of the housing, juxtaposed in the left-right direction.
[0026]
In the backlight device of the present invention, both ends of a pair of electrode portions of a cylindrical light source are connected to a high voltage supply side of an inverter circuit board disposed at both ends of a bottom surface of an opening of a housing, and a plurality of housings are connected to each other. Alternatively, they are arranged side by side in the vertical direction.
[0027]
In the backlight device of the present invention, the cylindrical light source has a curved tubular shape.
[0028]
The backlight device according to the present invention is configured such that the shape of the cylindrical light source is a straight tube extending over a section extending between a pair of electrode portions of the inverter circuit board disposed at both ends of the bottom surface of the opening of the housing. It is.
[0029]
In a liquid crystal display device having a backlight in which a cylindrical light source is provided in a housing and an inverter circuit board is provided in the housing, the inverter circuit board may be disposed in a longitudinal direction of an opening of the housing. Alternatively, they are arranged at both ends of the bottom surface in the short side direction.
[0030]
In the liquid crystal display device of the present invention, the tube current of the cylindrical light source is adjusted so that the luminance distribution characteristic of the backlight has a predetermined luminance value centered on the inverter circuit boards disposed at both ends of the bottom of the opening of the housing. It was made.
[0031]
The liquid crystal display device of the present invention applies a high voltage to a pair of electrodes of a cylindrical light source from an inverter circuit board disposed at both ends of the bottom surface of the opening of the housing, and applies the cylindrical light source to the top and bottom of the opening of the housing or They are arranged side by side in the left-right direction to reduce the voltage shared by the transformer on the inverter circuit board.
[0032]
The liquid crystal display device of the present invention applies a high voltage to a pair of electrodes of a cylindrical light source from an inverter circuit board disposed at both ends of the bottom surface of the opening of the housing, and applies the cylindrical light source to the top and bottom of the opening of the housing or The temperature distribution of the illuminating surface is made uniform, centered on the inverter circuit boards arranged at both ends of the bottom surface of the opening of the housing, juxtaposed in the left-right direction.
[0033]
According to the backlight device and the LCD of the present invention, the size of the backlight device and the LCD is increased, and the length of the cylindrical light source in the tube axis direction is increased. Is disposed on the bottom side of the housing, and the drive voltage for supplying the tube current to the cylindrical light source and the transformer voltage of the inverter circuit board even if the tube axis length of the cylindrical light source becomes, for example, 30 inches or more. The tube current of the cylindrical light source has been optimized in order to reduce the luminance and improve the luminance distribution balance on the illuminated surface, so that the luminance distribution balance and the temperature distribution are made uniform and the luminance unevenness can be reduced. Can be obtained.
[0034]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the configurations of a backlight device and an LCD according to one embodiment of the present invention will be described with reference to FIGS. 9 to 12 are denoted by the same reference numerals and will be described.
[0035]
1 (A) to 1 (C) are schematic diagrams of a case of a backlight device used for an LCD according to the present invention as viewed from above, and show plan views of the case where a light transmission / diffusion plate is removed from an opening. FIGS. 2A to 2J are a schematic plan view of a backlight device used in an LCD showing another embodiment of the present invention similar to FIG. 1, and a front view of a curved tubular light source. FIG.
[0036]
The housing 1 of the backlight device 6 of the present invention shown in FIGS. 1A to 1C and FIGS. 2A to 2J is a rectangular box shape (stainless steel having a thickness t = 2 mm) in a planar shape. Inside the housing 1, a plurality of cylindrical light sources (for example, cold cathode tubes) 3 are arranged in parallel with each other. As shown in FIG. 9 (B), the inner surface of the housing 1 is formed with a reflecting plate serving as a white reflecting surface, and its four sides are inclined so as to increase the reflection efficiency, and have a substantially trapezoidal cross section.
[0037]
Further, the left and right inverter circuit boards 9L and 9R are fixed to the back surface of the bottom 1b of the housing 1 at both left and right end positions in the long side direction of the opening 1a of the housing 1 as shown in FIG. The electrode portions 5 on both surfaces of the plurality of cylindrical light source groups 3 arranged side by side on the inner surface of the opening 1a of the housing 1 are connected to the high voltage side transformer terminals 5A and 5B of the left and right inverter circuit boards 9L and 9R.
[0038]
In the case 1 of FIG. 1A, the left and right inverter circuit boards 9L and 9R are fixed to the right and left rear surfaces of the bottom 1b of the case 1, respectively. 9R may be directly fixed, or may be fixed to the back surface of the bottom 1b via a predetermined spacer.
[0039]
FIG. 1B shows a backlight device according to another embodiment of the present invention. For example, a long side of an opening 1a of a housing 1 used for a high-definition LCD having a horizontally long aspect ratio of 9:16 or the like. Two left and right inverter circuit boards 9L and 9R are fixed to the back surface of the bottom 1b of the housing 1, respectively, at both left and right positions in the direction. The left and right electrode portions 5 of the plurality of cylindrical light source groups 3 arranged side by side on the inner surface of the opening 1a of the housing 1 are connected to the high voltage side transformer terminals 5A and 5B of the left and right inverter circuit boards 9L and 9R.
[0040]
FIG. 1C shows a backlight device according to still another embodiment of the present invention. The backlight device 6 shown by a solid line is used for an LCD having an aspect ratio of 3 to 4, for example. The two upper and lower inverter circuit boards 9U and 9D are fixed to the back surface of the bottom 1b of the housing 1 at upper and lower positions in the short side direction of the opening 1a of the housing 1. The upper and lower electrode portions 5 of a plurality of vertically extending cylindrical light source groups 3 arranged side by side on the inner surface of the opening 1a of the housing 1 are transformer terminals 5A and 5B on the high voltage side of the upper and lower inverter circuit boards 9U and 9D. It is connected to the.
[0041]
In FIG. 1C, those indicated by broken lines are used for a high-definition LCD having, for example, a horizontally long aspect ratio of 9:16, and include upper and lower ends of the opening 1a of the housing 1 in the short side direction. Three upper and lower inverter circuit boards 9U, 9D, 9UL, 9DL, 9UR, and 9UD are fixed to the rear surface of the bottom 1b of the housing 1, respectively, but the upper and lower inverter circuit boards 9U and 9D are divided into necessary numbers. The upper and lower electrode portions 5 of the plurality of cylindrical light source groups 3 arranged in parallel on the inner surface of the opening 1a of the housing 1 may be of course only two upper and lower sides. It is connected to the transformer terminals 5A and 5B on the high voltage side.
[0042]
FIGS. 2A to 2C show still another configuration of the backlight device of the present invention. FIG. 2A shows the left and right inverter circuits as shown in FIG. 1A. The substrates 9L and 9R are fixed to the right and left back surfaces of the left and right ends of the bottom 1b of the housing 1, and the left and right cylindrical light source groups 3L and 3R are formed into a substantially U-shaped curved tube, and the high voltage supply sides of the left and right cylindrical light sources 3L and 3R are formed. Is connected to the transformer terminals 5A, 5B of the left and right inverter circuit boards 9L, 9R.
[0043]
FIG. 2B is for use in a high-vision LCD having, for example, a horizontally long aspect ratio of 9:16. Three upper and lower inverter circuit boards 9U are provided at upper and lower ends of an opening 1a of the housing 1, respectively. (9UL, 9UC, 9UR) and 9D (9DL, 9DC, 9DR) are fixed to the back surface of the bottom 1b of the housing 1. Both the upper and lower electrode circuits 5 of the upper and lower curved substantially cylindrical U-shaped upper and lower cylindrical light sources 3U and 3D which are arranged in parallel on the inner surface of the opening 1a of the housing 1 are connected to the upper and lower inverter circuit boards. 9U (9UL, 9UC, 9UR) and 9D (9DL, 9DC, 9DR) are connected to high-voltage side transformer terminals 5A, 5B.
[0044]
FIG. 2 (C) shows still another configuration of the backlight device of the present invention, and FIG. 2 (C) shows the same left and right as shown in FIGS. 1 (A) and 2 (B). The electrode portions (plugs) 5 of the side cylindrical light source groups 3L, 3R are mounted on the left and right inverter circuit boards 9L, 9R fixed to the left and right end back surfaces of the bottom 1b of the housing 1, and the left and right cylindrical light source groups 3L, 3R are mounted. And a combination of a tube-shaped light source group 3L and a right-side cylindrical light source group 3L, 3R on the high voltage supply side. The part 5 is plugged in so as to be connected to the transformer terminals 5A and 5B on the high voltage side of the left and right inverter circuit boards 9L and 9R.
[0045]
In the above-mentioned cylindrical light source groups 3L, 3R, 3U, 3D, the shape is formed into a substantially tubular U-shape, and the electrodes 5 on the high voltage supply side of the cylindrical light source groups 3L, 3R, 3U, 3D are vertically moved. , Plugged into the high-voltage transformer terminals 5A, 5B of the left and right inverter circuit boards 9U, 9D, 9L, 9R, as shown in FIGS. 2 (D) to 2 (H). Shape. That is, FIG. 2 (D) shows a curved tube portion having a substantially M-shape, FIG. 2 (E) shows a curved tube portion having a substantially U-shape, and FIG. FIG. 2 (G) shows a curved tube portion having a substantially O-shape and a narrow leg portion, and FIG. 2 (H) shows a curved tube portion having a substantially Ω shape. It has a substantially convex shape and an unfolded leg. An appropriate shape other than the above-mentioned shape can be adopted. In short, the top may be formed in a curved tubular shape.
[0046]
2 (I) and FIG. 2 (J), for example, as shown in FIG. 2 (A), the left and right cylindrical light sources 3L and 3R are formed into a substantially U-shaped curved tubular shape. Although both electrode portions 5 of the rectangular light sources 3L and 3R are plugged in so as to be connected to the transformer terminals 5A and 5B on the high voltage side of the left and right inverter circuit boards 9L and 9R, the left and right inverter circuit boards 9L and 9R are connected. , 9R, to the transformer terminal 5A, the input voltage shown by the waveform 18 in FIG. 2 (I) is applied, and to the transformer terminal 5B side, the input voltage shown in the waveform 18 in FIG. If the input voltage indicated by J) is applied, the voltage becomes zero in the curved tube portion, the input voltage can be reduced, and the size of the transformer can be reduced.
[0047]
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 3 (A) and 3 (B) and FIGS. 4 (A) and 4 (B). FIG. 3A is a plan view of the housing of the backlight device of the present invention in which the light transmission / diffusion plate is removed from the opening, and FIG. 3B is a plan view of C of FIG. 3A. FIG. 3A and 3B, the housing 1 of the backlight device 6 of the present invention has a rectangular box shape (stainless steel with a thickness t = 2 mm) in a planar shape. A plurality of cylindrical light source groups (for example, cold cathode tubes) 3 are arranged in parallel with each other. As shown in FIG. 3 (B), the inner surface of the housing 1 is formed with a reflecting plate 2 serving as a white reflecting surface, and its four sides are inclined so as to enhance the reflection efficiency, and have a substantially trapezoidal cross section. .
[0048]
In the case 1 of FIGS. 3A and 3B, the left and right inverter circuit boards 9L and 9R are directly or on the right and left back surfaces of the bottom 1b at a position parallel to the short side direction of the opening 1a of the case 1. It is fixed via a spacer or the like. The power supply unit 5 of the straight tubular cylindrical light source group 3 disposed in the housing 1 is extended in the direction of the side plate of the housing 1 disposed at the left and right end positions of the left and right inverter circuit boards 9L and 9R to supply a high voltage. It is connected to the side transformer terminals 5A and 5B. The left and right inverter circuit boards 9L and 9R are held by a cut-and-raised piece 7 formed integrally with the bottom 1b.
[0049]
Further, as shown in FIG. 3 (B), the backlight device of the present embodiment covers, for example, a rectangular light transmission / diffusion plate 4 made of milky white acrylic resin and a light condensing sheet 20 so as to cover the opening 1 a of the housing 1. Is disposed on the flange portion 23, and the liquid crystal panel 8 is fixed on the light-collecting sheet 20 via the frame member 21 and the holding member 22.
[0050]
The backlight device 6 of the present invention shown in FIGS. 4 (A) and 4 (B) shows still another configuration. FIG. 4 (A) is a plan view and FIG. 4 (B) is a view of FIG. 4 (A). It is DD sectional arrow view. In the configuration shown in FIG. 4B, the size of the LCD is increased. For example, in the case of 40 inches, the long side direction of the housing 1 is L1 = 900 mm, the short side direction length L2 = 570 mm shown in FIG. Since it is difficult to obtain a cylindrical light source 3 having a diameter of 3φ and a length of 900 mm or more, for example, it is difficult to obtain a cylindrical light source group 3 having an axial length of 570 mm. In this example, upper and lower inverter circuit boards 9U and 9D are arranged at both upper and lower positions in the short side direction of the housing 1, and the upper and lower inverter circuit boards 9U and 9U are arranged in the short side direction. The upper and lower cylindrical light source groups 3 are arranged between 9D.
[0051]
Accordingly, in the backlight device 6 shown in FIGS. 4A and 4B, high-voltage-side transformer terminals 5A and 5B are provided at both upper and lower positions in the short side direction of the opening 1a of the housing 1 shown in FIG. Then, as shown by the broken line, the electrode portions 5 at both ends of the cylindrical light source group 3 are connected to the transformer terminals 5A and 5B of the upper and lower inverter circuit boards 9U and 9D fixed to the back surface of the bottom 1b of the housing 1.
[0052]
In addition, through holes are formed in the bottom portion 1b or / and the reflection plate 2 as necessary, and along the tube axis direction of the cylindrical light source group 3 of the upper and lower inverter circuit boards 9U and 9D in the short side direction of the housing 1. A slit-shaped punched portion may be formed in parallel to reduce the stray capacitance between the cylindrical light source group 3 and the bottom plate 1b. Of course, the size and number of through holes formed in the bottom 1b and / or the reflection plate 2 of the housing 1 are selected so that the housing 1 keeps the minimum strength.
[0053]
Of the backlight device 6 described above, the backlight device 6 is configured like the housing 1 shown in FIGS. 3A and 3B, uses a screen size of 29 inches, and has 16 cylindrical light source groups 3 arranged side by side. The height from the reflecting plate 2 to the cylindrical light source group 3 is 2 mm, and the input voltage and the input current of one cylindrical light source group 3 at the time of measuring the luminance at the measurement point under the conditions defined by EIAJ are 6. The average luminance unevenness at 7 A and power consumption of 94 W indicates a value of 92.7%.
[0054]
The value of luminance unevenness Brd = minimum (MIN) luminance / maximum (MAX) luminance × 100% in the X-axis direction is 92.7%, which is an improvement of 6.5% as compared with the conventional art.
[0055]
FIG. 5 (A) shows the measurement of the luminance ratio between the left, right and center of the screen when the inverter circuit boards 9 are provided at the left and right ends of the opening 1a of the housing 1, and FIG. 5 (B) shows the luminance at the center of the screen. It shows the luminance ratio between the left, right, and center of the screen with the ratio being 1.000, and shows the luminance when the electrode portion 5 of the cylindrical light source 3 is connected to the high voltage side at both ends on the left and right sides of the inverter circuit board 9. . In the figure, a curve 14a represents a tube current of the cylindrical light source 3 of 3 mA, a curve 14c represents a tube current of the cylindrical light source 3 of 4mA, a curve 14e represents a tube current of the cylindrical light source 3 of 5mA, and a curve 14g represents a curve of the cylindrical light source 3. The tube current is 6 mA, the curve 14i shows the case where the tube current of the cylindrical light source 3 is 7 mA, and the brightness characteristic curve from the time when the tube current on the high voltage side of the inverter circuit board 9 is large to small is the curve 13 in FIG. Show the same shape. Tables 1 and 2 show the measured values and the central luminance ratio of the cylindrical light source 3 as 1.000, and the luminance when the inverter circuit boards 9 (left and right sides of the opening 1a of the housing 1) are arranged on both left and right sides. 4 shows data relating to a tube current.
[0056]
[Table 1]
Figure 2004327324
[0057]
[Table 2]
Figure 2004327324
[0058]
Further, according to the above-described respective configurations of the present invention, for example, the upper and lower or left and right inverter circuit boards 9U, 9D, 9L, 9R are at least vertically or shorterly in the short side or long side direction of the opening 1a of the housing 1. The cylindrical light source groups 3, 3L, 3R, 3U, and 3D are arranged in parallel to the left and right sides of the opening 1a in the left and right or up and down directions. Even when the tube current is as low as 3 mA during the dimming of the LCD or when the tube current is as high as 7 mA, the cylindrical light source groups 3, 3L, 3R, and 3U as shown by the curves 14a to 14i in FIG. The maximum luminance (BLmax) of 3D is set at both ends of the transformer terminals 5A and 5B on the high voltage supply side of the upper and lower or left and right inverter circuit boards 9U, 9D, 9L and 9R (in the long side or short side direction of the opening 1a). At both end positions), the brightness curve of the brightness It is possible to improve the brightness balance regardless of size.
[0059]
That is, the luminance characteristic curve as shown in FIG. 10 is adjusted as shown in FIG. 5 by adjusting the tube current of the cylindrical light source 3 to improve the balance of the luminance ratio between the left, right, and center of the screen on the illuminated surface of the LCD or the backlight device 6. Thus, it is possible to optimize the tube currents of the cylindrical light sources 3L, 3R, 3U, and 3D.
[0060]
The above-described luminance characteristic curve will be further described with reference to FIGS. 6 (A) and 6 (B). FIGS. 6A and 6B show the current dependence of the cylindrical light source 3 having a diameter of 3 mm, the vertical axis shows the luminance ratio, and the horizontal axis shows the position of the illuminating surface on the light transmitting / diffusing plate 4. The central luminance ratio of the cylindrical light source 3 is 1.000, and the luminance on the ground side and on the side where the inverter circuit board 9 (the right side of the opening 1a of the housing 1) is located. Is shown. FIG. 6A shows a case where the inverter circuit board 9 is on the back side of the bottom plate 1b, and FIG. 6B shows a case where the inverter circuit board 9 is not on the back side of the bottom plate 1b.
[0061]
FIG. 6A shows the luminance on the high voltage side when the luminance ratio at the center of the screen is 1.000 when the inverter circuit board 9 is located on the right side of the opening 1a of the housing 1. In FIG. The tube current of the light source 3 is 3 mA, the curve 14b is a tube current of the cylindrical light source 3 of 3.5 mA, the curve 14c is a tube current of the cylindrical light source 3 of 4 mA, and the curve 14d is a tube current of the cylindrical light source 3 of 4.5 mA. The curve 14e shows the tube current of the cylindrical light source 3 of 5 mA, the curve 14f shows the tube current of the cylindrical light source 3 of 5.5 mA, the curve 14g shows the tube current of the cylindrical light source 3 of 6 mA, and the curve 14h shows the curve of the cylindrical light source 3. The tube current is 6.5 mA, and the curve 14i shows the case where the tube current of the cylindrical light source 3 is 7 mA. When the tube current on the high voltage side of the inverter circuit board 9 is large, the luminance ratio shows a small value and the tube current is small. Sometimes the luminance ratio shows a large value. This is because while the tube current is flowing from the high voltage side to the ground side, the current flowing to the ground side of the cylindrical light source 3 becomes smaller due to the leakage current generated through the stray capacitance generated between the tube current and the bottom plate 1b of the housing 1. In addition, it is considered that the luminance on the ground side decreases. Also, the reason why the luminance is small when the tube current on the high voltage side is large is considered that the luminous efficiency of the high voltage cylindrical light source 3 decreases and the luminance on the high voltage side decreases due to the temperature dependency described later. Table 3 shows the relationship data between the luminance and the tube current on the ground side and on the side where the inverter circuit board 9 (the right side of the opening 1a of the casing 1) is located, with the central luminance ratio of the cylindrical light source 3 being 1.000.
[0062]
[Table 3]
Figure 2004327324
[0063]
FIG. 6B shows the luminance on the high voltage side where the luminance ratio at the center of the screen is 1.000 when the inverter circuit board 9 is not provided on the right side of the opening 1a of the housing 1. In FIG. The tube current of the light source 3 is 3 mA, the curve 14b is a tube current of the cylindrical light source 3 of 3.5 mA, the curve 14c is a tube current of the cylindrical light source 3 of 4 mA, and the curve 14d is a tube current of the cylindrical light source 3 of 4.5 mA. The curve 14e shows the tube current of the cylindrical light source 3 of 5 mA, the curve 14f shows the tube current of the cylindrical light source 3 of 5.5 mA, the curve 14g shows the tube current of the cylindrical light source 3 of 6 mA, and the curve 14h shows the curve of the cylindrical light source 3. The tube current is 6.5 mA, and the curve 14i shows the case where the tube current of the cylindrical light source 3 is 7 mA. When the tube current on the high voltage side of the inverter circuit board 9 is small, the luminance ratio shows a large value and the tube current is large. Sometimes the luminance ratio shows around 1.000 This is because while the tube current is flowing from the high voltage side to the ground side, the current flowing to the ground side of the cylindrical light source 3 decreases due to the leakage current generated through the stray capacitance generated between the tube current and the bottom plate 1b. However, comparing the luminance characteristic curves of FIG. 6B and FIG. 6A, it can be seen that the temperature does not affect the luminance when the tube current of the cylindrical light source 3 is 5 mA to 7 mA. Therefore, it is understood that when the tube current is large, the luminance characteristics are improved and the luminance is increased. Table 4 shows the relationship data between the luminance on the high voltage side and the tube current when the central luminance ratio of the cylindrical light source 3 is 1.000 and there is no inverter circuit board 9 (to the right of the opening 1a of the housing 1).
[0064]
[Table 4]
Figure 2004327324
[0065]
From these facts, when a high current is applied to the cylindrical light source 3, the temperature of the inverter circuit board 9 becomes high due to the heat generated by the inverter circuit board 9, and a temperature gradient is formed on the bottom 1 b of the housing 1, and the cylindrical light source 3 on the inverter circuit board 9 side It is understood that the luminous efficiency of the cylindrical light source 3 on the low voltage side is improved, and the luminance on the high voltage side is reduced. Therefore, according to the present invention, as shown in FIG. 5, the tube current is adjusted so that the brightness characteristic curve is changed to the highest brightness (BLmax) of the cylindrical light source groups 3, 3L, 3R, 3U, 3D on the upper and lower sides or the left and right sides. , A substantially flat luminance characteristic curve can be obtained.
[0066]
Further, regarding the temperature distribution of the LCD and the backlight device 6, as shown in FIG. 11, the high temperature region 15 is biased to the right on the illuminating surface of the housing 1 in the related art. The inclination is so steep that the temperature distribution balance is broken as shown in FIG. 11 due to the temperature rise on the side where the inverter circuit board 9 is provided.
[0067]
On the other hand, according to the LCD and the backlight device 6 of the present invention, the upper and lower or left and right inverter circuit boards 9U, 9D, 9L, 9R have the long sides of the opening 1a of the housing 1 as shown in FIG. The temperature distribution balance is high because the upper and lower sides or the left and right sides on the illuminated surface are centered on the upper and lower or left and right inverter circuit boards 9U, 9D, 9L and 9R. The temperature distribution becomes the area 15 and the center on the illuminated surface is evenly spread with the medium temperature area 16, so that the luminance distribution balance is less likely to be lost.
[0068]
Further, when the LCD or the backlight device 6 is a display device having an aspect ratio similar to that of a 35 to 50 inch or high-definition television receiver or the like, the lamp length of the cylindrical light source 3 increases, and at the time of startup, The transformer and other active elements and passive elements used for the inverter circuit board 9 are required to have a withstand voltage twice as large as the normal state, and are increased in size to increase the withstand voltage. As a result, it is difficult to reduce the thickness of the case 1 having the inverter circuit board 9 only at one end as shown in FIG. It is coming.
[0069]
However, according to the LCD and the backlight device 6 of the present invention, for example, as shown in FIG. 8, the left and right inverter circuit boards 9L and 9R are provided at both left and right positions in the long side direction of the opening 1a of the housing 1. Then, the electrode portions 5 at both ends of the cylindrical light source group 3 are connected to the transformer terminals 5A and 5B on the high voltage side of the left and right inverter circuit boards 9L and 9R, and are arranged in parallel with the long side direction of the opening 1a. By doing so, the driving voltage for each of the cylindrical light source groups 3 is 1000 V, but only 500 V, which is a half.
[0070]
Therefore, the withstand voltage of the transformers of the left and right inverter circuit boards 9L and 9R and the various active elements and passive elements can be reduced, and not only the thickness of the backlight device and the housing 1 can be reduced, but also the thickness can be reduced. It is possible to provide a highly safe LCD and backlight device that can be driven by a voltage.
[0071]
Further, by using the curved tubular cylindrical light source 3 and the left and right, upper and lower cylindrical light source groups 3L, 3R, 3U, and 3D as described with reference to FIGS. The drive voltage (1/2 V) of FIG. 2 (I) is supplied to the terminal 5A, and the drive voltage (in the opposite phase to that of FIG. 2 (I)) as shown in FIG. By supplying −) V), the potentials at the center position of the tube of the straight tubular cylindrical light source 3 and at the curved portions of the left and right, upper and lower cylindrical light source groups 3L, 3R, 3U, and 3D are offset to zero. (Ground potential), so that the input drive voltage can be reduced by half.
[0072]
【The invention's effect】
According to the LCD and the backlight device of the present invention, even if these devices are enlarged, the axial length of the cylindrical light source is increased, and the driving voltage is increased, the inverter circuit board can be opened in the housing. Since a plurality of cylindrical light source groups are arranged side by side between two inverter circuit boards, the driving voltage of these inverter circuit boards is low. Driving becomes possible, and downsizing of a transformer and various electric components can be achieved. In addition, the luminance distribution balance and the temperature distribution balance on the illuminated surface can be made uniform by adjusting the tube current and moving to the both ends of the opening of the inverter circuit board. It is also possible to reduce the stray capacitance between the bottoms of the body and to provide an LCD and a backlight device capable of suppressing a rise in the temperature inside the housing.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing one embodiment of a backlight device used for an LCD of the present invention.
FIG. 2 is a schematic plan view, a schematic plan view of a curved tube cylindrical light source, and a drive voltage waveform diagram showing another embodiment of the backlight device used in the LCD of the present invention.
FIG. 3 is a plan view and a side sectional view showing one embodiment of a backlight device used for the LCD of the present invention.
FIG. 4 is a plan view and a side sectional view showing a bottom view of another embodiment of another backlight device used in the LCD of the present invention.
FIG. 5 is a luminance characteristic curve diagram showing the relationship between the luminance using the tube current of the cylindrical light source used in the backlight device of the present invention as a parameter and the axial length of the cylindrical light source.
FIG. 6 is a schematic plan view for explaining tube current dependency and temperature dependency of the backlight device of the present invention.
FIG. 7 is a schematic plan view for explaining a temperature distribution of the backlight device of the present invention.
FIG. 8 is a schematic plan view for explaining an input voltage for driving a cylindrical light source of the backlight device of the present invention.
FIG. 9 is a plan view, a side sectional view, and a schematic plan view of a housing of a conventional backlight device.
FIG. 10 is a luminance characteristic curve diagram showing a relationship between luminance using a tube current of a cylindrical light source used in a conventional backlight device as a parameter and an axial length of the cylindrical light source.
FIG. 11 is a schematic plan view illustrating a temperature distribution of a conventional backlight device.
FIG. 12 is a schematic plan view for explaining an input voltage for driving a cylindrical light source of a conventional backlight device.
[Explanation of symbols]
1 casing, 1a opening, 1b bottom, 3 (3L, 3R, 3U, 3D) cylindrical light source (cylindrical light source group), 4 light transmitting diffuser, 5 Electrode section, 5A, 5B {transformer terminal, 9, 9U, 9D, 9L, 9R, 9UL, 9UC, 9UR, 9DL, 9DC, 9DR} inverter circuit board

Claims (11)

筐体内に円筒状光源を配設し、該筺体にインバータ回路基板を配したバックライト装置に於いて、
上記インバータ回路基板を上記筐体の開口部の長手方向或いは短辺方向の底面両端位置に配したことを特徴とするバックライト装置。
In a backlight device in which a cylindrical light source is provided in a housing and an inverter circuit board is provided in the housing,
A backlight device wherein the inverter circuit board is disposed at both ends of a bottom surface in a longitudinal direction or a short side direction of an opening of the casing.
前記バックライト装置の輝度分布特性を、前記筺体の前記開口部の前記底面両端位置に配した前記インバータ回路基板を中心に所定輝度値と成るように前記円筒状光源の管電流を調整したことを特徴とする請求項1記載のバックライト装置。The tube current of the cylindrical light source is adjusted such that the luminance distribution characteristic of the backlight device has a predetermined luminance value centered on the inverter circuit boards disposed at both ends of the bottom surface of the opening of the housing. The backlight device according to claim 1, wherein: 前記筺体の前記開口部の前記底面両端位置に配した前記インバータ回路基板から高電圧を前記円筒状光源の1対の電極部に印加し、該円筒状光源を該筺体の該開口部内の上下或いは左右方向に並設させ、該インバータ回路基板のトランスの分担電圧を低下させたことを特徴とする請求項1又は請求項2記載のバックライト装置。A high voltage is applied to the pair of electrodes of the cylindrical light source from the inverter circuit boards disposed at both ends of the bottom surface of the opening of the housing, and the cylindrical light source is moved vertically or vertically within the opening of the housing. 3. The backlight device according to claim 1, wherein the backlight device is arranged side by side in a left-right direction to reduce a voltage shared by a transformer of the inverter circuit board. 前記筺体の前記開口部の前記底面両端位置に配した前記インバータ回路基板から高電圧を前記円筒状光源の1対の電極部に印加し、該円筒状光源を該筺体の該開口部内の上下或いは左右方向に並設させ、該筺体の該開口部の該底面両端位置に配した該インバータ回路基板を中心に照光面の温度分布を均一化させたことを特徴とする請求項1乃至請求項3記載のいずれか1項記載のバックライト装置。A high voltage is applied to the pair of electrodes of the cylindrical light source from the inverter circuit boards disposed at both ends of the bottom surface of the opening of the housing, and the cylindrical light source is moved vertically or vertically within the opening of the housing. 4. The temperature distribution of an illuminating surface is arranged in parallel in the left-right direction, and the temperature distribution of the illuminating surface is made uniform around the inverter circuit boards disposed at both ends of the bottom of the opening of the housing. The backlight device according to any one of the preceding claims. 前記円筒状光源の1対の電極部の両端を前記筐体の前記開口部の前記底面両端位置に配したインバータ回路基板の前記高電圧供給側に接続し、複数の筐体を左右或いは上下方向に並設したことを特徴とする請求項1乃至請求項4記載のいずれか1項記載のバックライト装置。Both ends of a pair of electrode portions of the cylindrical light source are connected to the high voltage supply side of an inverter circuit board disposed at both ends of the bottom surface of the opening of the housing, and a plurality of housings are arranged in a horizontal or vertical direction. The backlight device according to any one of claims 1 to 4, wherein the backlight device is arranged side by side. 前記円筒状光源の形状を曲管状としたことを特徴とする請求項1乃至請求項5記載のいずれか1項記載のバックライト装置。The backlight device according to any one of claims 1 to 5, wherein the cylindrical light source has a curved tubular shape. 前記円筒状光源の形状を前記筺体の前記開口部の前記底面両端位置に配した前記インバータ回路基板の一対の電極部間に至る区間にわたって延設された直管であることを特徴とする請求項1乃至請求項6記載のいずれか1項記載のバックライト装置。A straight tube extending over a section extending between a pair of electrode portions of the inverter circuit board, wherein the shape of the cylindrical light source is disposed at both ends of the bottom surface of the opening of the housing. The backlight device according to any one of claims 1 to 6. 筐体内に円筒状光源を配設し、該筺体にインバータ回路基板を配したバックライトを有する液晶表示装置に於いて、
上記インバータ回路基板を上記筐体の開口部の長手方向或いは短辺方向の底面両端位置に配することを特徴とする液晶表示装置。
In a liquid crystal display device having a backlight in which a cylindrical light source is provided in a housing and an inverter circuit board is provided in the housing,
A liquid crystal display device, wherein the inverter circuit board is arranged at both ends of a bottom surface in a longitudinal direction or a short side direction of an opening of the housing.
前記バックライトの輝度分布特性を、前記筺体の前記開口部の前記底面両端位置に配した前記インバータ回路基板を中心に所定輝度値と成るように前記円筒状光源の管電流を調整してなることを特徴とする請求項8記載の液晶表示装置。The tube current of the cylindrical light source is adjusted so that the luminance distribution characteristic of the backlight has a predetermined luminance value centered on the inverter circuit boards disposed at both ends of the bottom surface of the opening of the housing. 9. The liquid crystal display device according to claim 8, wherein: 前記筺体の前記開口部の前記底面両端位置に配した前記インバータ回路基板から高電圧を前記円筒状光源の1対の電極部に印加し、該円筒状光源を該筺体の該開口部内の上下或いは左右方向に並設させ、該インバータ回路基板のトランスの分担電圧を低下させたことを特徴とする請求項8記載の液晶表示装置。A high voltage is applied to the pair of electrodes of the cylindrical light source from the inverter circuit boards disposed at both ends of the bottom surface of the opening of the housing, and the cylindrical light source is moved vertically or vertically within the opening of the housing. 9. The liquid crystal display device according to claim 8, wherein the liquid crystal display device is arranged side by side in the left-right direction to reduce a voltage shared by a transformer of the inverter circuit board. 前記筺体の前記開口部の前記底面両端位置に配した前記インバータ回路基板から高電圧を前記円筒状光源の1対の電極部に印加し、該円筒状光源を該筺体の該開口部内の上下或いは左右方向に並設させ、該筺体の該開口部の該底面両端位置に配した該インバータ回路基板を中心に照光面の温度分布を均一化させたことを特徴とする請求項8記載の液晶表示装置。A high voltage is applied to the pair of electrodes of the cylindrical light source from the inverter circuit boards disposed at both ends of the bottom surface of the opening of the housing, and the cylindrical light source is moved vertically or vertically within the opening of the housing. 9. The liquid crystal display according to claim 8, wherein the temperature distribution of the illuminating surface is made uniform around the inverter circuit board disposed at both ends of the bottom of the opening of the housing in a horizontal direction. apparatus.
JP2003122412A 2003-04-25 2003-04-25 Backlight device and liquid crystal display device Expired - Fee Related JP3944468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003122412A JP3944468B2 (en) 2003-04-25 2003-04-25 Backlight device and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003122412A JP3944468B2 (en) 2003-04-25 2003-04-25 Backlight device and liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2004327324A true JP2004327324A (en) 2004-11-18
JP3944468B2 JP3944468B2 (en) 2007-07-11

Family

ID=33500652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003122412A Expired - Fee Related JP3944468B2 (en) 2003-04-25 2003-04-25 Backlight device and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3944468B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034747A1 (en) * 2007-09-13 2009-03-19 Sharp Kabushiki Kaisha Backlight device and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034747A1 (en) * 2007-09-13 2009-03-19 Sharp Kabushiki Kaisha Backlight device and display device

Also Published As

Publication number Publication date
JP3944468B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
CN100462801C (en) Backlight assembly and liquid crystal display device having the same
US8235571B2 (en) Backlight unit of liquid crystal display device and liquid crystal display device using the same
US7626652B2 (en) Backlight module and liquid crystal display device incorporating the same
JP2004220980A (en) Backlight device
GB2444795A (en) Backlight unit for a display device, comprising current balancing elements
KR100406120B1 (en) back light of display system
US7961272B2 (en) Liquid crystal display module having non-conductive first lamp holders and conductive second lamp holders
JP4371675B2 (en) Surface light source, backlight device, and liquid crystal display panel
KR101275966B1 (en) Backlight unit and liquid crystal display device having the same
CN101404847B (en) Backlight assembly and a display device having the same
US20050047174A1 (en) Direct-light illuminating unit of LCD module
JP3959051B2 (en) Backlight device and liquid crystal display device
JP3944468B2 (en) Backlight device and liquid crystal display device
JP2004325671A (en) Back light system and liquid crystal display device
US7364316B2 (en) Backlight unit
JPWO2010001657A1 (en) Liquid crystal display device and liquid crystal display unit
KR200414749Y1 (en) Connecting structure for lamps of a back-light unit
KR101331808B1 (en) Liquid crystal display device and back-light unit thereof
CN101510025B (en) Liquid crystal display device
KR100971947B1 (en) LCD module including Backlight unit
KR101174142B1 (en) Back light unit and lcd driving method using thereof
JP2004103303A (en) Lighting device and liquid crystal display device
US7397460B2 (en) Display device including lamp driving circuit
KR20070002453A (en) Backlight assembly and liquid crystal display having the same
KR20080073572A (en) Liquid crystal display device and back-light structure thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees