JP2004327265A - 半導体電極の製造方法、並びにそれを用いた光電変換素子 - Google Patents

半導体電極の製造方法、並びにそれを用いた光電変換素子 Download PDF

Info

Publication number
JP2004327265A
JP2004327265A JP2003121105A JP2003121105A JP2004327265A JP 2004327265 A JP2004327265 A JP 2004327265A JP 2003121105 A JP2003121105 A JP 2003121105A JP 2003121105 A JP2003121105 A JP 2003121105A JP 2004327265 A JP2004327265 A JP 2004327265A
Authority
JP
Japan
Prior art keywords
semiconductor
hot air
semiconductor electrode
manufacturing
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003121105A
Other languages
English (en)
Inventor
Tamotsu Horiuchi
保 堀内
Taketoshi Miura
偉俊 三浦
Rei Fujita
玲 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2003121105A priority Critical patent/JP2004327265A/ja
Publication of JP2004327265A publication Critical patent/JP2004327265A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】光電変換特性に優れた光電変換素子を提供する。
【解決手段】表面に導電性を有する基板とその導電性表面上に被覆された半導体層と、その半導体層の表面に吸着した色素からなる半導体電極の製造方法であって、半導体微粒子の分散液を基板上に塗布後、熱風を用いて半導体微粒子間を熱溶融して多孔質半導体層を形成する。熱風の温度は100℃〜700℃、風速は10m/分以上、風量は0.01m立方メートル/分以上であることが好ましい。半導体としては酸化チタン、酸化亜鉛、酸化スズが特に好ましい。
【選択図】 なし

Description

【0001】
【発明の属する技術分野】
本発明は、半導体電極の製造方法、並びにをそれを用いた光電変換素子に関するものである。
【0002】
【従来の技術】
大量の化石燃料の使用で引き起こされるCO濃度増加による地球温暖化、更に人口増加に伴うエネルギー需要の増大は、人類の存亡にまで関わる問題と認識されている。そのため近年、無限で有害物質を発生しない太陽光の利用が精力的に検討されている。このクリーンエネルギー源である太陽光利用として現在実用化されているものは住宅用の単結晶シリコン、多結晶シリコン、アモルファスシリコンおよびテルル化カドミウムやセレン化インジウム銅等の無機系太陽電池が挙げられる。
【0003】
しかしながら、これらの無機系太陽電池にも欠点がある。例えばシリコン系では、非常に純度の高いものが要求され、当然精製の工程は複雑でプロセス数が多く、製造コストが高い。それ以外にも軽量化等の要求もあり、特に、ユーザーへのペイバックが長い点でも不利であり、普及には問題があった。
【0004】
その一方で、有機材料を使う太陽電池も多く提案されている。有機太陽電池としては、p型有機半導体と仕事関数の小さい金属を接合させるショットキー型光電変換素子、p型有機半導体とn型無機半導体、あるいはp型有機半導体と電子受容性有機化合物を接合させるヘテロ接合型光電変換素子等があり、利用される有機半導体は、クロロフィル、ペリレン等の合成色素や顔料、ポリアセチレン等の導電性高分子材料、またはそれらの複合材料等である。これらを真空蒸着法、キャスト法、またはディッピング法等により、薄膜化し電池材料が構成されている。有機材料は低コスト、大面積化が容易等の長所もあるが、変換効率は1%以下と低いものが多く、また耐久性も悪いという問題もあった。
【0005】
こうした状況の中で、良好な特性を示す太陽電池がスイスのグレッツェル博士らによって報告された(非特許文献1参照)。この文献には電池作製に必要な材料および製造技術も開示されている。提案された電池は色素増感型太陽電池、あるいはグレッツェル型太陽電池と呼ばれ、ルテニウム錯体で分光増感された酸化チタン多孔質薄膜を作用電極とする湿式太陽電池である。この方式の利点は酸化チタン等の安価な酸化物半導体を高純度まで精製する必要がないこと、従って安価で、更に利用できる光は広い可視光領域にまでわたっており、可視光成分の多い太陽光を有効に電気へ変換できることである。
【0006】
この太陽電池における酸化チタン多孔質薄膜の製造方法は、電気炉を用いて450〜550℃程度の温度で長時間焼成する工程が必要である(例えば、非特許文献2、3参照)。しかしながら電気炉を用いた焼成方法は、焼成温度に達するまでの昇温時間、焼成時間、更に焼成終了後に電気炉内が低温まで下がる降温時間の合計に膨大な製造時間を必要とし、その結果、製造コストが高くなってしまう。
【0007】
【非特許文献1】
Nature,353,737(1991)
【特許文献2】
シャープ技報No.79、53−56(2001)
【特許文献3】
住友大阪セメント テクニカルレポート 2001, 20−22 (2001)
【0008】
【発明が解決しようとする課題】
本発明の目的は高性能かつ低コストで製造可能な光電変換素子を提供することである。
【0009】
【課題を解決するための手段】
本発明者らは上記目的を達成すべく鋭意検討した結果、半導体を基板上に塗布した後、熱風を用いて焼成することで、高性能かつ低コストの半導体電極を作製することが出来た。
【0010】
【発明の実施の形態】
本発明の光電変換素子は、導電性支持体、導電性支持体上に設置した色素によって増感された半導体層、電荷移動層及び対極からなる。感光層は単層構成でも積層構成でもよく、目的に応じて設計される。また、導電性支持体の導電層と感光層の境界、感光層と移動層の境界等、この素子における境界においては、各層の構成成分は相互に拡散、または混合していてもよい。
【0011】
導電性支持体は、金属のように支持体そのものに導電性があるもの、または表面に導電剤を含む導電層を有するガラスあるいはプラスチックの支持体を用いることができる。後者の場合、導電剤としては白金、金、銀、銅、アルミニウム等の金属、炭素、あるいはインジウム−スズ複合酸化物(以降「ITO」と略記する)、フッ素をドーピングした酸化スズ等の金属酸化物(以降「FTO」と略記する)等が挙げられる。導電性支持体は、光を10%以上透過する透明性を有していることが好ましく、50%以上透過することがより好ましい。この中でも、ITOやFTOからなる導電層をガラス上に堆積した導電性ガラスが特に好ましい。
【0012】
透明導電性基板の抵抗を下げる目的で、金属リード線を用いてもよい。金属リード線の材質はアルミニウム、銅、銀、金、白金、ニッケル等の金属が挙げられる。金属リード線は、透明基板に蒸着、スパッタリング、圧着等で設置し、その上にITOやFTOを設ける方法、あるいは透明導電層上に金属リード線を設置する。
【0013】
半導体としては、シリコン、ゲルマニウムのような単体半導体、あるいは金属のカルコゲニドに代表される化合物半導体、またはペロブスカイト構造を有する化合物等を使用することができる。金属のカルコゲニドとしてはチタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、あるいはタンタルの酸化物、カドミウム、亜鉛、鉛、銀、アンチモン、ビスマスの硫化物、カドミウム、鉛のセレン化物、カドミウムのテルル化物等が挙げられる。他の化合物半導体としては亜鉛、ガリウム、インジウム、カドミウム、等のリン化物、ガリウム砒素、銅−インジウム−セレン化物、銅−インジウム−硫化物等が好ましい。また、ペロブスカイト構造を有する化合物としては、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸ナトリウム、チタン酸バリウム、ニオブ酸カリウム等が好ましい。
【0014】
本発明に用いられる半導体は、単結晶でも多結晶でもよい。変換効率としては単結晶が好ましいが、製造コスト、原材料確保等の点では多結晶が好ましく、その半導体の粒径は4nm以上、10μm以下であることが好ましい。
【0015】
導電性支持体上に半導体層を形成する方法としては、半導体微粒子の分散液またはコロイド溶液を導電性支持体上に塗布する方法、ゾル−ゲル法等がある。その分散液の作製方法としては、前述のゾル−ゲル法、乳鉢等で機械的に粉砕する方法、ミルを使って粉砕しながら分散する方法、あるいは半導体を合成する際に溶媒中で微粒子として析出させ、そのまま使用する方法等が挙げられる。
【0016】
機械的粉砕、あるいはミルを使用して粉砕して作製する分散液の場合、少なくとも半導体微粒子単独、あるいは半導体微粒子と樹脂の混合物を水あるいは有機溶剤に分散して形成される。使用される樹脂としては、スチレン、酢酸ビニル、アクリル酸エステル、メタクリル酸エステル等によるビニル化合物の重合体や共重合体、シリコーン樹脂、フェノキシ樹脂、ポリスルホン樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリエステル樹脂、セルロースエステル樹脂、セルロースエーテル樹脂、ウレタン樹脂、フェノール樹脂、エポキシ樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリアミド樹脂、ポリイミド樹脂等が挙げられる。
【0017】
半導体微粒子を分散する溶媒としては、水、メタノール、エタノール、あるいはイソプロピルアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン、あるいはメチルイソブチルケトン等のケトン系溶媒、ギ酸エチル、酢酸エチル、あるいは酢酸n−ブチル等のエステル系溶媒、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、あるいはジオキサン等のエーテル系溶媒、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、あるいはN−メチル−2−ピロリドン等のアミド系溶媒、ジクロロメタン、クロロホルム、ブロモホルム、ヨウ化メチル、ジクロロエタン、トリクロロエタン、トリクロロエチレン、クロロベンゼン、o−ジクロロベンゼン、フルオロベンゼン、ブロモベンゼン、ヨードベンゼン、あるいは1−クロロナフタレン等のハロゲン化炭化水素系溶媒、n−ペンタン、n−ヘキサン、n−オクタン、1,5−ヘキサジエン、シクロヘキサン、メチルシクロヘキサン、シクロヘキサジエン、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、エチルベンゼン、あるいはクメン等の炭化水素系溶媒を挙げることができる。これらは単独、あるいは2種以上の混合溶媒として用いることができる。
【0018】
得られた分散液の塗布方法としては、ローラ法、ディップ法、エアナイフ法、ブレード法、ワイヤーバー等、スライドホッパ法、エクストルージョン法、カーテン法、スピン法、あるいはスプレー法を挙げることができる。
【0019】
更に半導体層は、単層であっても多層であってもよい。多層の場合、粒径の異なる半導体微粒子の分散液を多層塗布したり、種類の異なる半導体や、樹脂、添加剤の組成が異なる塗布層を多層塗布することもできる。また、一度の塗布で膜厚が不足する場合には多層塗布は有効な手段である。
【0020】
一般的に、半導体層の膜厚が増大するほど単位投影面積当たりの担持色素量も増えるため光の捕獲率が高くなるが、生成した電子の拡散距離も増えるために電荷の再結合も多くなってしまう。従って、半導体層の膜厚は0.1〜100μmが好ましく、1〜30μmがより好ましい。
【0021】
半導体微粒子は導電性支持体上に塗布した後、粒子同士の電子的コンタクト及び塗膜強度の向上や支持体との密着性向上の点から、熱風により加熱処理を行う。加熱処理温度は100℃以上、700℃以下が好ましく、150℃以上、650℃以下がより好ましい。照射時間は20分以内が好ましく、15分以内が更に好ましい。照射する風速は1m/分以上が好ましく、10m/分以上が更に好ましい。風量は、0.01m/分以上が好ましく、0.05m/分以上が更に好ましい。熱風照射は半導体電極を静止した状態で行っても、動いていても構わなく、熱風照射口と半導体電極の距離は出来るだけ近い方が好ましいが、特に制限はない。
【0022】
熱風処理した後の半導体層は、更にUV照射、マイクロ波照射、プレス処理あるいは電子線照射等の処理を行っても構わない。これらの処理は単独であっても二種類以上であってもよい。マイクロ波照射は、半導体電極の半導体層形成側から照射しても、裏側から照射しても構わない。照射時間には特に制限が無いが、1時間以内で行うことが好ましく、30分以内が更に好ましい。プレス処理は、100kg/cm以上が好ましく、1000kg/cmが更に好ましい。プレスする時間は特に制限が無いが、1時間以内で行うことが好ましい。
【0023】
半導体微粒子は多くの色素を吸着できるように表面積の大きなものが好ましい。このため半導体層を支持体上に塗設した状態での表面積は、投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。
【0024】
本発明で使用する色素の具体例は、特表平7−500630号公報、特開平10−233238号公報、特開2000−26487号公報、特開2000−323191号公報、特開2001−59062号公報等に記載の金属錯体化合物、特開平11−86916号公報、特開平11−214730号公報、特開2000−106224号公報、特開2001−76773号公報、特願2001−186599号等に記載のシアニン色素、特開平11−214731号公報、特開平11−238905号公報、特開2001−52766号公報、特開2001−76775号公報、特願2001−192395号、特願2002−61830号、特願2002−220145号、特願2002−280105号、特願2002−368719号、特願2003−23205号等に記載のメロシアニン色素、特開平10−92477号公報、特開平11−273754号公報、特開平11−273755号公報、特願2001−214126号等に記載の9−アリールキサンテン化合物、特開平10−93118号公報、特願2001−214126号等に記載のトリアリールメタン化合物、特開平10−93118号公報、特開2002−164089号公報等に記載のクマリン化合物、アクリジン化合物、特開昭47−37543号公報、特開昭53−95033号公報、特開昭53−132347号公報、特開昭53−133445号公報、特開昭54−12742号公報、特開昭54−20736号公報、特開昭54−20737号公報、特開昭54−21728号公報、特開昭54−22834号公報、特開昭55−69148号公報、特開昭55−69654号公報、特開昭55−79449号公報、特開昭55−117151号公報、特開昭56−46237号公報、特開昭56−116039号公報、特開昭56−116040号公報、特開昭56−119134号公報、特開昭56−143437号公報、特開昭57−63537号公報、特開昭57−63538号公報、特開昭57−63541号公報、特開昭57−63542号公報、特開昭57−63549号公報、特開昭57−66438号公報、特開昭57−74746号公報、特開昭57−78542号公報、特開昭57−78543号公報、特開昭57−90056号公報、特開昭57−90057号公報、特開昭57−90632号公報、特開昭57−116345号公報、特開昭57−202349号公報、特開昭58−4151号公報、特開昭58−90644号公報、特開昭58−144358号公報、特開昭58−177955号公報、特開昭59−31962号公報、特開昭59−33253号公報、特開昭59−71059号公報、特開昭59−72448号公報、特開昭59−78356号公報、特開昭59−136351号公報、特開昭59−201060号公報、特開昭60−15642号公報、特開昭60−140351号公報、特開昭60−179746号公報、特開昭61−11754号公報、特開昭61−90164号公報、特開昭61−90165号公報、特開昭61−90166号公報、特開昭61−112154号公報、特開昭61−269165号公報、特開昭61−281245号公報、特開昭61−51063号公報、特開昭62−267363号公報、特開昭63−68844号公報、特開昭63−89866号公報、特開昭63−139355号公報、特開昭63−142063号公報、特開昭63−183450号公報、特開昭63−282743号公報、特開昭64−21455号公報、特開昭64−78259号公報、特開平1−200267号公報、特開平1−202757号公報、特開平1−319754号公報、特開平2−72372号公報、特開平2−254467号公報、特開平3−95561号公報、特開平3−278063号公報、特開平4−96068号公報、特開平4−96069号公報、特開平4−147265号公報、特開平5−142841号公報、特開平5−303226号公報、特開平6−324504号公報、特開平7−168379号公報、特願2001−161942号、特願2001−175875号等に記載のアゾ化合物、特開平9−199744号公報、特開平10−233238号公報、特開平11−204821号公報、特開平11−265738号公報等に記載のフタロシアニン化合物、ポルフィリン化合物等を挙げることができる。これらの色素は少なくとも1種、または2種以上の混合として光電変換材料として用いることが出来る。
【0025】
本発明の電荷移動層としては、酸化還元対を有機溶媒に溶解した電解液、酸化還元対を有機溶媒に溶解した液体をポリマーマトリックスに含浸したゲル電解質、酸化還元対を含有する溶融塩、固体電解質、有機正孔輸送材料等を用いることができる。
【0026】
本発明で使用される電解液は、電解質、溶媒、及び添加物から構成されることが好ましい。好ましい電解質はヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化セシウム、ヨウ化カルシウム等の金属ヨウ化物−ヨウ素の組み合わせ、テトラアルキルアンモニウムヨ−ダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等の4級アンモニウム化合物のヨウ素塩−ヨウ素の組み合わせ、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化セシウム、臭化カルシウム等の金属臭化物−臭素の組み合わせ、テトラアルキルアンモニウムブロマイド、ピリジニウムブロマイド等の4級アンモニウム化合物の臭素塩−臭素の組み合わせ、フェロシアン酸塩−フェリシアン酸塩、フェロセン−フェリシニウムイオン等の金属錯体、ポリ硫化ナトリウム、アルキルチオール−アルキルジスルフィド等のイオウ化合物、ビオロゲン色素、ヒドロキノン−キノン等が挙げられる。上述の電解質は単独の組み合わせであっても混合であってもよい。電解質がイオン性液体の場合は、特に溶媒を用いなくても構わない。
【0027】
電解液における電解質濃度は、0.05〜20Mが好ましく、0.1〜15Mが更に好ましい。電解液に用いる溶媒としては、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒、3−メチル−2−オキサゾリジノン等の複素環化合物、ジオキサン、ジエチルエーテル、エチレングリコールジアルキルエーテル等のエーテル系溶媒、メタノール、エタノール、ポリプロピレングリコールモノアルキルエーテル等のアルコール系溶媒、アセトニトリル、ベンゾニトリル等のニトリル系溶媒、ジメチルスルホキシド、スルホラン等の非プロトン性極性溶媒等が好ましい。また、t−ブチルピリジン、2−ピコリン、2,6−ルチジン等の塩基性化合物を併用しても構わない。
【0028】
本発明では、電解質はポリマー添加、オイルゲル化剤添加、多官能モノマー類を含む重合、ポリマーの架橋反応等の手法によりゲル化させることもできる。ポリマー添加によりゲル化させる場合の好ましいポリマーとしては、ポリアクリロニトリル、ポリフッ化ビニリデン等を挙げることができる。オイルゲル化剤添加によりゲル化させる場合の好ましいゲル化剤としては、ジベンジルデン−D−ソルビトール、コレステロール誘導体、アミノ酸誘導体、トランス−(1R,2R)−1,2−シクロヘキサンジアミンのアルキルアミド誘導体、アルキル尿素誘導体、N−オクチル−D−グルコンアミドベンゾエート、双頭型アミノ酸誘導体、4級アンモニウム誘導体等を挙げることができる。
【0029】
多官能モノマーによって重合する場合の好ましいモノマーとしては、ジビニルベンゼン、エチレングルコールジメタクリレート、エチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート等を挙げることができる。更に、アクリルアミド、メチルアクリレート等のアクリル酸やα−アルキルアクリル酸から誘導されるエステル類やアミド類、マレイン酸ジメチル、フマル酸ジエチル等のマレイン酸やフマル酸から誘導されるエステル類、ブタジエン、シクロペンタジエン等のジエン類、スチレン、p−クロロスチレン、スチレンスルホン酸ナトリウム等の芳香族ビニル化合物、ビニルエステル類、アクリロニトリル、メタクリロニトリル、含窒素複素環を有するビニル化合物、4級アンモニウム塩を有するビニル化合物、N−ビニルホルムアミド、ビニルスルホン酸、ビニリデンフルオライド、ビニルアルキルエーテル類、N−フェニルマレイミド等の単官能モノマーを含有してもよい。モノマー全量に占める多官能性モノマーは、0.5〜70質量%が好ましく、1.0〜50質量%がより好ましい。
【0030】
上述のモノマーは、ラジカル重合によって重合することができる。本発明で使用できるゲル電解質用モノマーは、加熱、光、電子線あるいは電気化学的にラジカル重合することができる。架橋高分子が加熱によって形成される場合に使用される重合開始剤は、2,2´−アゾビスイソブチロニトリル、2,2´−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル−2,2´−アゾビス(2−メチルプロピオネート)等のアゾ系開始剤、ベンゾイルパーオキシド等の過酸化物系開始剤等が好ましい。これらの重合開始剤の添加量は、モノマー総量に対して、0.01〜20質量%が好ましく、0.1〜10質量%がより好ましい。
【0031】
ポリマーの架橋反応により電解質をゲル化させる場合、架橋反応に必要な反応性基を含有するポリマー及び架橋剤を併用することが望ましい。架橋可能な反応性基に好ましい例としては、ピリジン、イミダゾール、チアゾール、オキサゾール、トリアゾール、モルフォリン、ピペリジン、ピペラジン等の含窒素複素環を挙げることができ、好ましい架橋剤は、ハロゲン化アルキル、ハロゲン化アラルキル、スルホン酸エステル、酸無水物、酸クロリド、イソシアネート等の窒素原子に対して求電子反応可能な2官能以上の試薬を挙げることができる。
【0032】
無機固体化合物を電解質の代わりに用いる場合、ヨウ化銅、チオシアン化銅等をキャスト法、塗布法、スピンコート法、浸漬法、電解メッキ等の手法により電極内部に導入することができる。
【0033】
また、本発明では電解質の代わりに有機電荷輸送物質を用いることができる。電荷輸送物質には正孔輸送物質と電子輸送物質がある。前者の例としては、例えば特公昭34−5466号公報等に示されているオキサジアゾール類、特公昭45−555号公報等に示されているトリフェニルメタン類、特公昭52−4188号公報等に示されているピラゾリン類、特公昭55−42380号公報等に示されているヒドラゾン類、特開昭56−123544号公報等に示されているオキサジアゾール類、特開昭54−58445号公報に示されているテトラアリールベンジジン類、特開昭58−65440号公報、あるいは特開昭60−98437号公報に示されているスチルベン類等を挙げることができる。その中でも、本発明に使用される電荷輸送物質としては、特開昭60−24553号公報、特開平2−96767号公報、特開平2−183260号公報、並びに特開平2−226160号公報に示されているヒドラゾン類、特開平2−51162号公報、並びに特開平3−75660号公報に示されているスチルベン類が特に好ましい。また、これらは単独、あるいは2種以上の混合物として用いることができる。
【0034】
一方、電子輸送物質としては、例えばクロラニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン、1,3,7−トリニトロジベンゾチオフェン、あるいは1,3,7−トリニトロジベンゾチオフェン−5,5−ジオキシド等がある。これらの電子輸送物質は単独、あるいは2種以上の混合物として用いることができる。
【0035】
また、更に増感効果を増大させる増感剤として、ある種の電子吸引性化合物を添加することもできる。この電子吸引性化合物としては例えば、2,3−ジクロロ−1,4−ナフトキノン、1−ニトロアントラキノン、1−クロロ−5−ニトロアントラキノン、2−クロロアントラキノン、フェナントレンキノン等のキノン類、4−ニトロベンズアルデヒド等のアルデヒド類、9−ベンゾイルアントラセン、インダンジオン、3,5−ジニトロベンゾフェノン、あるいは3,3′,5,5′−テトラニトロベンゾフェノン等のケトン類、無水フタル酸、4−クロロナフタル酸無水物等の酸無水物、テレフタラルマロノニトリル、9−アントリルメチリデンマロノニトリル、4−ニトロベンザルマロノニトリル、あるいは4−(p−ニトロベンゾイルオキシ)ベンザルマロノニトリル等のシアノ化合物、3−ベンザルフタリド、3−(α−シアノ−p−ニトロベンザル)フタリド、あるいは3−(α−シアノ−p−ニトロベンザル)−4,5,6,7−テトラクロロフタリド等のフタリド類等を挙げることができる。
【0036】
これらの有機電荷輸送材料を用いて電荷移動層を形成する場合、樹脂を併用することが好ましく、ポリスチレン樹脂、ポリビニルアセタール樹脂、ポリスルホン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリフェニレンオキサイド樹脂、ポリアリレート樹脂、アクリル樹脂、メタクリル樹脂、フェノキシ樹脂等が挙げられる。これらの中でも、ポリスチレン樹脂、ポリビニルアセタール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂が優れている。又、これらの樹脂は、単独あるいは共重合体として2種以上を混合して用いることができる。
【0037】
これらの樹脂の中には、引っ張り、曲げ、圧縮等の機械的強度に弱いものがある。この性質を改良するために、可塑性を与える物質を加えることができる。具体的には、フタル酸エステル(例えばDOP、DBP等)、リン酸エステル(例えばTCP、TOP等)、セバシン酸エステル、アジピン酸エステル、ニトリルゴム、塩素化炭化水素等があげられる。これらの物質は、必要以上に添加すると特性に悪影響を及ぼすので、その割合は結着剤樹脂に対し20%以下が好ましい。その他、酸化防止剤やカール防止剤等を必要に応じて添加することができる。
【0038】
用いられる樹脂量は、電荷輸送物質1質量部に対して0.001〜20質量部が好ましく、0.01〜5質量部以下がより好ましい。樹脂の比率が高すぎると効率が低下し、また、樹脂の比率が低くなりすぎると繰り返し特性の悪化や塗膜の欠損を招くおそれがある。
【0039】
電荷移動層の形成方法は大きく2通りの方法が挙げられる。1つは増感色素を担持した半導体微粒子含有層の上に、先に対極を貼り合わせ、その隙間に液状の電荷移動層を挟み込む方法、もう一つは、半導体微粒子含有層の上に直接電荷移動層を付与する方法である。後者の場合、対極はその後新たに付与することになる。
【0040】
前者の場合、電荷移動層の挟み込み方法として、浸漬等による毛管現象を利用する常圧プロセスと常圧より低い圧力にして気相を液相に置換する真空プロセスが挙げられる。後者の場合、湿式の電荷移動層においては未乾燥のまま対極を付与し、エッジ部の液漏洩防止を施す必要がある。また、ゲル電解液の場合においては、湿式で塗布して重合等の方法により固体化する方法もある。その場合、乾燥、固定化した後に対極を付与してもよい。電解液の他、有機電荷輸送材料の溶解液やゲル電解質を付与する方法としては、半導体微粒子含有層や色素の付与と同様に、浸漬法、ローラ法、ディップ法、エアーナイフ法、エクストルージョン法、スライドホッパー法、ワイヤーバー法、スピン法、スプレー法、キャスト法、各種印刷法等が挙げられる。
【0041】
対極は通常前述の導電性支持体と同様に導電性層を有する支持体を用いることもできるが、強度や密封性が十分に保たれるような構成では支持体は必ずしも必要ではない。対極に用いる材料の具体例としては、白金、金、銀、銅、アルミニウム、ロジウム、インジウム等の金属、炭素、ITO、FTO等の導電性金属酸化物等が挙げられる。対極の厚さには特に制限はない。
【0042】
感光層に光が到達するためには、前述の導電性支持体と対極の少なくとも一方は実質的に透明でなければならない。本発明の光電変換素子においては、導電性支持体が透明であり、太陽光を支持体側から入射させる方法が好ましい。この場合、対極には光を反射させる材料を使用することが好ましく、金属、導電性酸化物を蒸着したガラス、プラスチック、あるいは金属薄膜が好ましい。
【0043】
対極の塗設については前述の通り、電荷移動層の上に付与する場合と半導体微粒子層上に付与する場合の2通りがある。何れの場合も対極材料の種類や電荷移動層の種類により、適宜、電荷移動層上または半導体微粒子含有層上に対極材料を塗布、ラミネート、蒸着、貼り合わせ等の手法により形成可能である。また、電荷移動層が固体の場合には、その上に直接、前述の導電性材料を塗布、蒸着、CVD等の手法で対極を形成することができる。
【0044】
【実施例】
次に本発明を実施例により更に詳細に説明するが、本発明はこれらに何ら限定されるものではない。
【0045】
実施例1
酸化チタン(日本アエロジル社製P−25)3g、アセチルアセトン0.2g、界面活性剤(アルドリッチ社製Triton X−100)0.3g、アセチルアセトン0.2g、水6.3gをジルコニアビーズと共にペイントコンディショナーで6時間分散処理を施した。この分散液に、ポリエチレングリコール(#20,000)1.2gを加えてペーストを作製した。得たペーストをFTOガラス基板上に塗布し、室温で乾燥後、ヒーティングガン(白光工業株式会社製No.882)による風量0.18m/分、風速290m/分の熱風(400℃)を、10分間照射して半導体電極を作製した。熱風を照射を終了した5分後には半導体電極の温度は室温まで冷却されており、熱風照射による焼成時間は合計でわずか15分間と非常に短時間であった。
【0046】
【化1】
Figure 2004327265
【0047】
(1)で示した色素のt−ブタノール/アセトニトリル(1/1、0.5mM)溶液に、先に作製した半導体電極を室温で15時間浸漬し、吸着処理を施した。
【0048】
電解液としては、ヨウ化リチウム0.1M、ヨウ素0.05M、ヨウ化1,2−ジメチル−3−n−プロピルイミダゾリニウム0.5M、4−t−ブチルピリジン0.6Mの3−メトキシアセトニトリル溶液を用いた。対極にはチタン板に白金をスパッタリングしたものを使用した。
【0049】
両電極間に電解液を浸して光電変換素子を作製した。ここに、作用電極側から光源としてソーラーシミュレーター(AM1.5G、照射強度100mW/cm)から発生した疑似太陽光を照射した。その結果、開放電圧0.74V、短絡電流密度11.52mA/cm、形状因子0.60、変換効率5.11%という良好な特性が得られた。
【0050】
比較例1
実施例1のヒーティングガンによる熱風の10分間照射を、電気炉(400℃)による1時間に変更した。電気炉による焼成時間は、400℃まで昇温する時間が20分、焼成時間が1時間、冷却時間が8時間であり、合計が9時間20分と非常に長時間を必要とした。得られた半導体電極を実施例1と同様にして光電変換素子を作製し、実施例1と同様にして特性を評価した。その結果、開放電圧0.70V、短絡電流密度11.28mA/cm、形状因子0.48、変換効率3.79%と、実施例1よりも低い特性であった。
【0051】
比較例2
実施例1のヒーティングガンによる熱風の10分間照射を、ホットプレートによる10分間の加熱(400℃)に変更した以外は、実施例1と同様にして光電変換素子を作製した。その結果、開放電圧0.44V、短絡電流密度2.71mA/cm、形状因子0.33、変換効率0.39%と、実施例1よりも低い特性であった。
【0052】
実施例2
実施例1のヒーティングガンによる熱風の10分間照射を、プラジェット(石崎電機製作所製PJ−214A)による熱風(400℃、風速1000m/分)に8分間照射に変更した。焼成に要した時間は、合計13分であった。得られた半導体電極を実施例1と同様にして光電変換素子を作製し、実施例1と同様にして特性を評価した。その結果、開放電圧0.74V、短絡電流密度11.88mA/cm、形状因子0.59、変換効率5.19%と良好な特性が得られた。
【0053】
【化2】
Figure 2004327265
【0054】
実施例3
(1)で示した色素を、(2)で示す色素に変更した以外は実施例1と同様にして半導体電極を作製し、実施例1と同様にして光電変換素子を作製した。その結果、開放電圧0.62V、短絡電流密度13.5mA/cm、形状因子0.62、変換効率5.19%の特性が得られた。
【0055】
【発明の効果】
以上から明らかなように、本発明によれば非常に良好な特性を示し、かつ製造に必要な時間を大幅に減少することが可能である。

Claims (13)

  1. 表面に導電性を有する基板と、その導電性表面上に被覆された半導体層と、その半導体層の表面に吸着した色素からなる半導体電極において、半導体の分散液を基板上に塗布後、熱風を用いて半導体層を作製することを特徴とする半導体電極の製造方法。
  2. 表面に導電性を有する基板と、その導電性表面上に被覆された多孔質半導体層と、その多孔質半導体層の表面に吸着した色素からなる半導体電極において、半導体微粒子の分散液を基板上に塗布後、熱風を用いて半導体微粒子間を熱溶融して多孔質半導体層を形成することを特徴とする半導体電極の製造方法。
  3. 前記熱風が、100℃以上、700℃以下であることを特徴とする請求項1あるいは2記載の半導体電極の製造方法。
  4. 前記熱風が、150℃以上、650℃以下であることを特徴とする請求項1あるいは2記載の半導体電極の製造方法。
  5. 前記熱風が、10m/分以上の風速であることを特徴とする請求項1〜4の何れかに記載の半導体電極の作製方法。
  6. 前記熱風が、50m/分以上の風速であることを特徴とする請求項1〜4の何れかに記載の半導体電極の作製方法。
  7. 前記熱風が、0.01m/分以上の風量であることを特徴とする請求項1〜6の何れかに記載の半導体電極の作製方法。
  8. 前記熱風が、0.05m/分以上の風量であることを特徴とする請求項1〜6の何れかに記載の半導体電極の作製方法。
  9. 前記熱風が、100℃以上、700℃以下であり、かつ熱風照射時間が20分以内であることを特徴とする請求項1〜8の何れかに記載の半導体電極の製造方法。
  10. 前記熱風が、150℃以上、650℃以下であり、かつ熱風照射時間が15分以内であることを特徴とする請求項1〜8の何れかに記載の半導体電極の製造方法。
  11. 前記半導体が、チタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、タンタル、カドミウム、鉛、銀、アンチモン、ビスマス、モリブデン、アルミニウム、ガリウム、クロム、コバルト、ニッケルから選ばれる金属カルコゲニド化合物を少なくとも1種含むことを特徴とする請求項1あるいは2記載の半導体電極の作製方法。
  12. 前記金属カルコゲニドが、少なくとも酸化チタン、酸化亜鉛、酸化スズの何れか一種以上を含有することを特徴とする請求項1あるいは2記載の半導体電極の作製方法。
  13. 請求項1あるいは請求項2記載の製造方法で得られた半導体電極を用いることを特徴とする光電変換素子。
JP2003121105A 2003-04-25 2003-04-25 半導体電極の製造方法、並びにそれを用いた光電変換素子 Pending JP2004327265A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121105A JP2004327265A (ja) 2003-04-25 2003-04-25 半導体電極の製造方法、並びにそれを用いた光電変換素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121105A JP2004327265A (ja) 2003-04-25 2003-04-25 半導体電極の製造方法、並びにそれを用いた光電変換素子

Publications (1)

Publication Number Publication Date
JP2004327265A true JP2004327265A (ja) 2004-11-18

Family

ID=33499768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121105A Pending JP2004327265A (ja) 2003-04-25 2003-04-25 半導体電極の製造方法、並びにそれを用いた光電変換素子

Country Status (1)

Country Link
JP (1) JP2004327265A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050575A1 (ja) 2008-10-29 2010-05-06 富士フイルム株式会社 色素、これを用いた光電変換素子、光電気化学電池、および色素の製造方法
JP2010177182A (ja) * 2009-02-02 2010-08-12 Hitachi Zosen Corp 透明電極上における光触媒膜の形成方法
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2014129575A1 (ja) 2013-02-22 2014-08-28 富士フイルム株式会社 光電変換素子、光電変換素子の製造方法および色素増感太陽電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050575A1 (ja) 2008-10-29 2010-05-06 富士フイルム株式会社 色素、これを用いた光電変換素子、光電気化学電池、および色素の製造方法
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
JP2010177182A (ja) * 2009-02-02 2010-08-12 Hitachi Zosen Corp 透明電極上における光触媒膜の形成方法
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2014129575A1 (ja) 2013-02-22 2014-08-28 富士フイルム株式会社 光電変換素子、光電変換素子の製造方法および色素増感太陽電池

Similar Documents

Publication Publication Date Title
JP4187476B2 (ja) 光電変換材料、半導体電極、並びにそれを用いた光電変換素子
JP4610160B2 (ja) 光電変換材料、半導体電極、並びにそれを用いた光電変換素子
JP2004235052A (ja) 光電変換材料、並びにそれを用いた光電変換素子
JP2003007359A (ja) 光電変換素子
JP2003007360A (ja) 光電変換素子
JP2007048680A (ja) 光電変換材料、半導体電極並びにそれを用いた光電変換素子
JP5096758B2 (ja) 光電変換材料、半導体電極並びにそれを用いた光電変換素子
JP2004235011A (ja) ヨウ素−シクロデキストリン包接化物用いた電解液、並びにそれを用いた光電変換素子
JP2005132914A (ja) 光電変換材料、半導体電極並びにそれを用いた光電変換素子
JP4326272B2 (ja) 色素増感型太陽電池用色素
JP2007115673A (ja) 光電変換材料、半導体電極並びにそれを用いた光電変換素子
JP2005019251A (ja) 光電変換材料、半導体電極並びにそれを用いた光電変換素子
JP4610158B2 (ja) 光電変換素子
JP2004319120A (ja) 半導体電極の作製方法、並びにそれを用いた光電変換素子
JP2006244752A (ja) 光電変換材料、半導体電極並びにそれを用いた光電変換素子
JP2007095584A (ja) 光電変換材料、半導体電極並びにそれを用いた光電変換素子
JP2004327265A (ja) 半導体電極の製造方法、並びにそれを用いた光電変換素子
JP2006190534A (ja) 光電変換材料、半導体電極並びにそれを用いた光電変換素子
JP2007231171A (ja) 増感色素単量体、増感色素重合体、光電変換材料、半導体電極及び光電変換素子
JP2003173826A (ja) 半導体電極の作製方法、並びにそれを用いた光電変換素子
JP2004342397A (ja) 半導体電極の製造方法、並びにそれを用いた光電変換素子
JP6159654B2 (ja) 色素増感型太陽電池用色素、半導体電極及び色素増感型太陽電池
JP2003197281A (ja) 光電変換素子
JP4180841B2 (ja) 光電変換素子
JP2003051345A (ja) 光電変換素子