JP2004326087A - Embodying equipment and its method for all-optical nor gate using gain saturation of semiconductor optical amplifier - Google Patents
Embodying equipment and its method for all-optical nor gate using gain saturation of semiconductor optical amplifier Download PDFInfo
- Publication number
- JP2004326087A JP2004326087A JP2004083038A JP2004083038A JP2004326087A JP 2004326087 A JP2004326087 A JP 2004326087A JP 2004083038 A JP2004083038 A JP 2004083038A JP 2004083038 A JP2004083038 A JP 2004083038A JP 2004326087 A JP2004326087 A JP 2004326087A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- signal
- optical fiber
- pattern
- implementing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F3/00—Optical logic elements; Optical bistable devices
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
本発明は、半導体の光増幅器の利得飽和特性を利用した全光学的NOR論理素子具現装置及びその方法(Embodying Equipment and Its Method for an all-optical NOR gate using gain saturation of a semiconductor optical amplifier)に関するものであり、更に詳細には光コンピューティングのような光回路の任意の地点から伝送される光信号をポンプ信号と照射信号で用い全光学的論理動作をする論理素子のうち特に10Gbit/s全光学的NOR論理素子を具現する装置及びその具現方法に関するものである。 The present invention relates to an embodying equipment and its method for an all-optical NOR gate using gain saturation of a semiconductor optical amplifier using a gain saturation characteristic of a semiconductor optical amplifier. More specifically, a logic element that performs an all-optical logic operation using an optical signal transmitted from an arbitrary point of an optical circuit such as optical computing as a pump signal and an irradiation signal, and particularly a 10 Gbit / s all-optical The present invention relates to an apparatus for implementing a logical NOR logic element and a method for implementing the same.
最近の傾向を見ると、システムの高速化と大容量化に対する要求が幾何学数的に増加している。 According to recent trends, the demand for higher speed and larger capacity of the system is increasing geometrically.
現在多くのシステムは、大部分シリコン物質、すなわち電気信号に基盤を置いており速度と情報処理容量の制限という大きな障壁が予想されるため、将来の依存性が不透明である。 Many systems are now largely based on silicon materials, ie electrical signals, and their future dependencies are uncertain because of the large barriers of speed and limited information processing capacity.
より詳細には、これに反しインジウムリン(Indium Phosphide : InP)に基盤を置いた光素子を利用したシステムは、速度や情報処理容量等すべての面で上記のような問題を十分に解決するものと予想される。 In more detail, systems using optical elements based on indium phosphide (InP), on the other hand, can sufficiently solve the above problems in all aspects such as speed and information processing capacity. It is expected to be.
一般的に、システムが構成されるときは、単一論理素子(AND, OR, XOR, NAND, NOR, NXOR)に基盤を置いて集積させる方法を使うが、これに光を用いたシステムにおいても同様である。 Generally, when a system is configured, a method of integrating based on a single logic element (AND, OR, XOR, NAND, NOR, NXOR) is used, but even in a system using light The same is true.
論理(logic)0と1と呼ばれる二つの安定した状態を有する論理素子はデジタルコンピュータの基本的な構成品(building block)である。
Logic elements having two stable states, called
コンピュータは、この二つの論理状態(bits)によりすべての情報を記号化する。 The computer encodes all information using these two logical states (bits).
したがって、全光学的論理素子は間違いなく未来情報技術のための全光学的システムと光−電システムを開発するのにおいて重要な役割をするものである。 Therefore, all-optical logic elements will undoubtedly play an important role in developing all-optical and opto-electric systems for future information technology.
現在まで超高速光情報処理のための全光学的論理素子は、光の非線形成を用いるか、波長変換方式を活用し成されてきた。 Until now, all-optical logic elements for ultra-high-speed optical information processing have been realized by using a nonlinear structure of light or by utilizing a wavelength conversion method.
特に、半導体光増幅器(Semiconductor Optical Amplifier ; SOA)の 非線形利得を用いた全光学的NOR論理素子としては、非特許文献1乃至4に記載のように発展してきた。
前記非特許文献1のように、UNIを用いた全光学的NOR論理素子は高い動作速度の長所があるが、核心構成要素が光ファイバ素子で複雑であり、他の素子と集積が難しいので高集積化を要求する光演算システムに適用するのが難しい。
As described in Non-Patent
反面、単一SOAを用いた全光学的論理素子は安定的であり、システムの規 模が小さく、他の光素子との結合が容易であるばかりでなく、偏光と波長に依存しない長点を有する[T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F, Gaborit, F. Poingt, and M. Renaud, Electron. Lett., 36, 1863(2000)]. On the other hand, all-optical logic elements using a single SOA are stable, have a small system size, are easy to couple with other optical elements, and have advantages that are independent of polarization and wavelength. [T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F, Gaborit, F. Poingt, and M. Renaud, Electron. Lett., 36, 1863 (2000) ].
しかし、光ファイバ干渉系なしに単一SOAの非線形特性だけを用いる 場合、全光学的NOR素子の構造が簡単で他の素子との集積が可能であるが動作速度が100MHz以下と遅くなる。 However, when only the nonlinear characteristics of a single SOA are used without an optical fiber interference system, the structure of an all-optical NOR element is simple and integration with other elements is possible, but the operating speed is slower at 100 MHz or less.
また、非特許文献4のように、二つのSOAを連結させ具現された全光学的NOR素子 は、単一SOAを用いた場合より広い波長で消光比(ON/OFF ratio)が向上する特性を有するが、動作速度が62.5MHzと低いという欠点がある。 Also, as in Non-Patent Document 4, an all-optical NOR element realized by connecting two SOAs has a characteristic that the extinction ratio (ON / OFF ratio) is improved over a wider wavelength range than when a single SOA is used. However, there is a disadvantage that the operation speed is as low as 62.5 MHz.
すなわち、光ファイバ干渉系を用いない既存の全光学的NOR論理素子である非特許文献2乃至4において、ポンプ信号(Pump signal)は、スクエア(square) 波を用い非ゼロ復帰(NRZ : non-return to zero)パターンで作られ、照射信号(probe signal)は、連続波(CW)のレーザ光が用いられる。 That is, in Non-Patent Documents 2 to 4 which are existing all-optical NOR logic elements that do not use an optical fiber interference system, a pump signal (Pump signal) uses a square wave to return to non-zero (NRZ: non-zero). (return to zero) pattern, and a continuous wave (CW) laser beam is used as an irradiation signal (probe signal).
この場合、全光学的NOR論理素子の動作速度は、NRZパターンと連続波(CW)型のよって100MHz以下に制限される。 In this case, the operation speed of the all-optical NOR logic element is limited to 100 MHz or less by the NRZ pattern and the continuous wave (CW) type.
したがって、構造が簡単で、他の光素子との集積化が可能であるだけでなく、動作速度が数GHz−数十GHzに向上された特性を有する全光学的NOR論理素子の開発が切実に要求される。 Therefore, the development of an all-optical NOR logic device that has a simple structure, not only can be integrated with other optical devices, but also has an operation speed improved to several GHz to several tens of GHz is urgently needed. Required.
本発明は、上述した必要性により考案されたものとして、本発明の目的は、半導体光増幅器の利得飽和特性を用い、10Gbit/s全光学的NOR論理素子を具現する技術を提供することにある。 An object of the present invention is to provide a technology for realizing a 10 Gbit / s all-optical NOR logic element by using the gain saturation characteristic of a semiconductor optical amplifier, as devised in view of the above-mentioned necessity. .
上述した目的を達成するために本願発明は、1100の入力信号パターンAと、0110の入力信号パターンBの入力信号の計であるA+B信号をポンプ信号(1110)に用い、前記1100の入力信号パターンAでクロック信号を作って照射信号(1111)に用い、前記照射信号とポンプ信号を半導体光増幅器(SOA)に同時に逆方向に入射させ、ブーリアン(Boolean)論理式〜(A+B)を得ることを特徴とする半導体増幅器の利得飽和を用いた全光学的NOR論理素子具現方法を提供しようとする。
上述した目的を達成するために、本発明は、1100の入力信号パターンAと、0110の入力信号パターンBを用いて、入力信号の計であるA+B信号を作ってポンプ信号(1110)に用いるポンプ信号具現手段と、前記1100の入力信号パターンAでクロック信号を作って照射信号(1111)に用いる照射信号具現手段と、前記照射信号とポンプ信号を半導体増幅器(SOA)に同時に逆方向に入射させ、ブーリアン(Boolean)論理式〜(A+B)を得るNOR具現手段を含む半導体光増幅器の利得飽和を用いた全光学的NOR論理素子具現装置を提供しようとする。
To achieve the above object, the present invention provides an input signal pattern A of 1100 and an A + B signal, which is a sum of input signals of an input signal pattern B of 0110, as a pump signal (1110). A clock signal is formed by the signal pattern A and used for the irradiation signal (1111), and the irradiation signal and the pump signal are simultaneously incident on the semiconductor optical amplifier (SOA) in the opposite directions, and a Boolean logic expression (A + B) And a method for implementing an all-optical NOR logic element using gain saturation of a semiconductor amplifier.
In order to achieve the above object, the present invention uses an input signal pattern A of 1100 and an input signal pattern B of 0110 to create an A + B signal, which is a total of input signals, to produce a pump signal (1110). Pump signal implementation means to be used, irradiation signal implementation means to make a clock signal with the input signal pattern A of the 1100 and use it for the irradiation signal (1111), and simultaneously apply the irradiation signal and the pump signal to the semiconductor amplifier (SOA) in the opposite direction. It is an object of the present invention to provide an all-optical NOR logic element implementation device using gain saturation of a semiconductor optical amplifier including a NOR implementation means for obtaining a Boolean logic expression (A + B).
全光学的NOR論理素子は、 他の単一全光学的論理素子(OR, NAND, AND, XOR, NXOR)とともに、コンピューティングや全光学的信号処理システムを構成する時、無くてはならない核心論理素子である。
NORはすべての論理計算の基本である全加算器(full adder)の核心素子であり、ほとんどすべての論理システムに適用される。
特に、本発明による全光学的NOR論理素子は、半導体光増幅器の利得飽和特性を用いるXGM(Cross Gain Modulation)方法で具現されるため構造が簡単であり、他の機能の全光学的論理素子が同じ方法で構成することができるので、全光学的回路及び全光学的システム具現に重要な役割をするものと期待される。
したがって、効率的な全光学的論理素子の集積技術が開発されれば、電気信号に依存しないで光信号だけで全ての制御が可能になる。
All-optical NOR logic, together with other single all-optical logic elements (OR, NAND, AND, XOR, NXOR), is the core logic that is essential when configuring computing and all-optical signal processing systems. Element.
NOR is the core element of the full adder, which is the basis of all logic calculations, and applies to almost all logic systems.
In particular, since the all-optical NOR logic element according to the present invention is embodied by an XGM (Cross Gain Modulation) method using the gain saturation characteristic of the semiconductor optical amplifier, the structure is simple, and the all-optical logic element having other functions is used. Since it can be configured in the same manner, it is expected to play an important role in implementing all-optical circuits and all-optical systems.
Therefore, if an efficient integration technique of all-optical logic elements is developed, all controls can be performed only by optical signals without depending on electrical signals.
以下、本願発明の実施例に対し添付された図面を参考に、その構成及び作用を説明しようと思う。
図1は、全光学的NOR論理素子の動作原理を概念的に示す。
本発明においては、動作速度を向上させるために照射信号(probe signal)とポンプ信号(pump signal)がすべてゼロ復帰(RZ : return to zero)パターンの信号で作られる。
Hereinafter, the configuration and operation of an embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1 conceptually illustrates the operating principle of an all-optical NOR logic element.
In the present invention, in order to improve the operation speed, the irradiation signal (probe signal) and the pump signal (pump signal) are all generated by a signal of a return to zero (RZ) pattern.
高い光の強さを有するポンプ信号がSOAに入射されれば、SOA内で運搬者枯渇(carrier depletion)現象が起こる。 If a pump signal having a high light intensity is incident on the SOA, a carrier depletion phenomenon occurs in the SOA.
したがって、一定の周期のパルス(pulse)形態である照射信号がSOA内に運搬者枯渇による利得変調(gain modulation)と同一に変調され出力されるので、出力信号はポンプ信号と逆の論理を持つようになる。 Therefore, since the irradiation signal in the form of a pulse having a constant period is modulated and output in the SOA in the same manner as the gain modulation due to carrier depletion, the output signal has a logic opposite to that of the pump signal. Become like
しかし、パルス信号が使用されるとき、パルスのOn−Off差が大きいので、パルス信号がないとき出力される信号の大きさが非常に小さく0とみなせる。 However, when a pulse signal is used, since the pulse On-Off difference is large, the magnitude of the signal output when there is no pulse signal can be regarded as 0, which is very small.
したがって、照射信号のパルス信号がないとき、出力信号はポンプ信号と関係なく0になる。 Therefore, when there is no pulse signal of the irradiation signal, the output signal becomes 0 regardless of the pump signal.
図2(a)と図2(b)は、全光学的NOR論理素子の基本構成とNOR論理表である。
図2(a)でパルスがあるときON状態であり、パルスがないときOFF状態と仮定すれば、ポンプ信号がOFF状態のときクロック信号は、SOAを通過し出力信号がON状態になる。
2A and 2B are a basic configuration of an all-optical NOR logic element and a NOR logic table.
In FIG. 2A, assuming that the pulse signal is in the ON state when there is a pulse and the OFF state when there is no pulse, the clock signal passes through the SOA and the output signal is in the ON state when the pump signal is in the OFF state.
したがって、図2(a)のようにA信号とB信号が合わさった次にクロック信号と共にそれぞれ逆方向にSOAに注入されれば、AとB信号のNOR値であるブーリアン(Boolean)論理式〜(A+B)が得られる。 Therefore, if the A signal and the B signal are combined and then injected into the SOA in the opposite directions together with the clock signal as shown in FIG. 2A, a Boolean logic expression that is the NOR value of the A and B signals (A + B) is obtained.
これは、図2(b)に示したNOR論理素子が真理表のブーリアン(Boolean)値と一致するので全光学的NOR論理素子が単一SOAを用いて具現できるということを意味する。 This means that the NOR logic element shown in FIG. 2B matches the Boolean value of the truth table, so that the all-optical NOR logic element can be implemented using a single SOA.
図3は、全光学的NOR論理素子の具現装置図である。
全光学的NOR論理素子の入力信号パターンAとBは、波長が1550nmであるモードロック光ファイバレーザ(mode-locked fiber laser : MLFL)で作られる。
FIG. 3 is a diagram illustrating an apparatus for implementing an all-optical NOR logic element.
The input signal patterns A and B of the all-optical NOR logic element are made with a mode-locked fiber laser (MLFL) having a wavelength of 1550 nm.
前記モードロック光ファイバレーザ(MLFL)は、パルス発生器(Pulse Generator : PG)により400psの周期を持つ2.5GHzで駆動される。
この時、生成されるパルスの幅は、大略38ps程度である。
The mode-locked optical fiber laser (MLFL) is driven at 2.5 GHz having a period of 400 ps by a pulse generator (PG).
At this time, the width of the generated pulse is approximately 38 ps.
モードロック光ファイバレーザ(MLFL)の出力は、最初に50:50光ファイバ結合器(fiber coupler : FC1)により分離された後、100psの時間遅延を得るために遅延手段である可変遅延器(Variable Delay : VD1)と、調節手段である光減衰器(Attenuator : ATTN1)と、偏光調節器(Polarization Controller : PC1)を通過した後、2番目に50:50光ファイバ結合器(FC2)に合わさることにより、10Gbit/sで動作される入力信号パターンA(1100)が発生する。 The output of the mode-locked optical fiber laser (MLFL) is first separated by a 50:50 fiber coupler (FC1), and then a variable delay (Variable) as a delay means to obtain a time delay of 100 ps. Delay: VD1), optical attenuator (Attenuator: ATTN1) as a control means, and polarization controller (Polarization Controller: PC1), then secondly match with 50:50 optical fiber coupler (FC2) As a result, an input signal pattern A (1100) operated at 10 Gbit / s is generated.
そして、2番目の50:50光ファイバ結合器(FC2)の出力端の上方光ファイバは、4番目の50:50光ファイバ結合器(FC4)から分離される。 Then, the upper optical fiber at the output end of the second 50:50 optical fiber coupler (FC2) is separated from the fourth 50:50 optical fiber coupler (FC4).
このうち、上方光ファイバの入射光(1100)は、100psの時間遅延を得るために遅延手段の可変遅延器(VD2)を通過することによって、入力信号パターンB(0110)が作られ、下方光ファイバの入射光(1100)は、調節手段である偏光調節器(PC2)と光減衰器(ATTN2)を通過する。 Of these, the incident light (1100) of the upper optical fiber passes through the variable delay device (VD2) of the delay means to obtain a time delay of 100 ps, whereby the input signal pattern B (0110) is created, and the lower light The incident light (1100) of the fiber passes through a polarization adjuster (PC2) and an optical attenuator (ATTN2) as adjusting means.
そして、上方光ファイバの出力光(B)と、下方光ファイバの出力光(A)が5番目の50:50光ファイバ結合器(FC5)で合わさることにより、入力信号パターンAとBの計、A+B(1110)が生成される。 Then, the output light (B) of the upper optical fiber and the output light (A) of the lower optical fiber are combined by a fifth 50:50 optical fiber coupler (FC5), so that the total of the input signal patterns A and B is obtained. A + B (1110) is generated.
一方、2番目50:50光ファイバ結合器(FC2)の下方光ファイバに結合された入力信号パターンA(1100)は、6番目の50:50光ファイバ結合器(FC6)から分離された後、下方光ファイバの入射光(1100)は200psの時間遅延を得るために遅延手段である可変遅延器(VD3)を通過し、下方光ファイバの入射光(1100)は調節手段である偏光調節器(PC3)と光減衰器(ATTN3)を通過し、7番目の光ファイバ結合器(FC7)で合わさることによりクロック信号パターン(1111)が作られる。 On the other hand, the input signal pattern A (1100) coupled to the lower optical fiber of the second 50:50 optical fiber coupler (FC2) is separated from the sixth 50:50 optical fiber coupler (FC6), The incident light (1100) of the lower optical fiber passes through a variable delay device (VD3) which is a delay means to obtain a time delay of 200 ps, and the incident light (1100) of the lower optical fiber is a polarization adjuster (which is an adjusting means). The clock signal pattern (1111) is created by passing through the PC3) and the optical attenuator (ATTN3) and combining them at the seventh optical fiber coupler (FC7).
5番目の50:50光ファイバ結合器(FC5)出力端の上方光ファイバのポンプ信号パターンA+B(1110)は、エルビウム添加(Er-doped)光ファイバ増幅器(EDFA)で増幅され、光循環装置(C)を通過した後、7番目の50:50光ファイバ結合器(FC7)出力端の上方光ファイバの照射信号パターンと逆方向に半導体光増幅器(SOA)に入射される。 The fifth 50:50 fiber optic coupler (FC5) pump signal pattern A + B (1110) of the optical fiber above the output end is amplified by an Er-doped optical fiber amplifier (EDFA) and optically circulated. After passing through the device (C), the light enters the semiconductor optical amplifier (SOA) in the direction opposite to the irradiation signal pattern of the upper optical fiber at the output end of the seventh 50:50 optical fiber coupler (FC7).
波長が異なる照射信号とポンプ信号が同じ方向から半導体増幅器(SOA)に入射される場合、照射信号を分離するために光フィルタが必要である[Young Tae Byun, Jae Hun Kim, Young Min Jeon, Seok, Deok Ha Woo, and Sun Ho Kim, “An All-Optical OR Gate by using casacaded SOAs,' 2002 International Topical meeting on Photonics in Switching, Hyatt Regency(Cheju Island, KOREA), 187(2002).]. When an irradiation signal and a pump signal with different wavelengths are incident on a semiconductor amplifier (SOA) from the same direction, an optical filter is required to separate the irradiation signals [Young Tae Byun, Jae Hun Kim, Young Min Jeon, Seok , Deok Ha Woo, and Sun Ho Kim, “An All-Optical OR Gate by using casacaded SOAs, '2002 International Topical meeting on Photonics in Switching, Hyatt Regency (Cheju Island, KOREA), 187 (2002).].
しかし、二つの信号が逆方向に半導体光増幅器(SOA)に入射される場合、光フィルタが必要でないばかりでなく、照射信号とポンプ信号の波長が同じでもよい。 However, when the two signals are incident on the semiconductor optical amplifier (SOA) in opposite directions, not only the optical filter is not necessary, but also the wavelength of the irradiation signal and the pump signal may be the same.
この時、前記半導体光増幅器(SOA)の利得飽和によりA+B信号の利得が変調された0001パターンを有するブーリアン(Boolean)論理式の信号が得られる。 At this time, a Boolean signal having a 0001 pattern in which the gain of the A + B signal is modulated by the gain saturation of the semiconductor optical amplifier (SOA) is obtained.
本発明で照射信号とポンプ信号の波長が同じ場合を例に挙げたが、波長が異なる場合にも全光学的NOR論理素子の動作を前記方法で得られる。 In the present invention, the case where the wavelengths of the irradiation signal and the pump signal are the same is described as an example. However, even when the wavelengths are different, the operation of the all-optical NOR logic element can be obtained by the above method.
未説明符号 ISOは光アイソレータ、PDは光検出器、OSCは信号分析器であるオシロスコープである。 Unexplained symbols ISO is an optical isolator, PD is a photodetector, and OSC is an oscilloscope, which is a signal analyzer.
図4は、10Gbit/sで動作される全光学的NOR論理素子の特性を示している図である。
図4(a)は、3番目の50:50光ファイバ結合器(FC3)から出力された1100のパターンを有する入力信号パターンAであり、図4(b)は、5番目の50:50光ファイバ結合器(FC5)で測定された0110のパターンを有する入力信号パターンBであり、図4(c)は、前記5番目の50:50光ファイバ結合器(FC5)出力端の下方光ファイバで測定された入力信号パターンAとBの計、A+Bであり、図4(d)は、7番目の50:50光ファイバ結合器(FC7)出力端の下方光ファイバで測定されたクロック信号のパターンである。
FIG. 4 is a diagram showing characteristics of an all-optical NOR logic element operated at 10 Gbit / s.
FIG. 4A shows an input signal pattern A having a 1100 pattern output from the third 50:50 optical fiber coupler (FC3), and FIG. 4B shows a fifth 50:50 optical fiber coupler. FIG. 4C shows an input signal pattern B having a pattern of 0110 measured by the fiber coupler (FC5). FIG. 4C shows the input signal pattern B at the lower end of the fifth 50:50 optical fiber coupler (FC5) output end. The sum of the measured input signal patterns A and B is A + B. FIG. 4D shows the pattern of the clock signal measured on the lower optical fiber at the output end of the seventh 50:50 optical fiber coupler (FC7). It is.
図4(e)は、二つの入力信号パターンの計であるA+Bパターン(1110)が照射信号であるクロック信号パターン(1111)と互いに逆方向に半導体光増幅器(SOA)を通過するとき作られた出力波形で論理信号が(1,0), (1,1), (0,1)である時は出力光がなく、(0,0)の時だけ出力光が存在する。 FIG. 4E is made when the A + B pattern (1110), which is the sum of the two input signal patterns, passes through the semiconductor optical amplifier (SOA) in the opposite direction to the clock signal pattern (1111) as the irradiation signal. When the logic signal is (1,0), (1,1), (0,1) in the output waveform, there is no output light, and only when (0,0), there is output light.
したがって、調査信号とポンプ信号の光の強さがそれぞれ0.3dBmと10.8dBmのとき、全光学的NOR論理素子の動作特性が具現されることを確認させてくれる。 Therefore, when the light intensities of the investigation signal and the pump signal are 0.3 dBm and 10.8 dBm, respectively, it is confirmed that the operation characteristics of the all-optical NOR logic element are realized.
前記言及されたそれぞれの光信号は40Ghzの光検出器とサンプリングオシロスコープを使用し測定された。 Each of the above mentioned optical signals was measured using a 40 Ghz photodetector and sampling oscilloscope.
以上のように、本願発明によれば、同一波長の二つの入力信号のパターンA(1100)とB(0110)により4つの論理信号[(1,0), (1,1), (0,1), (0,0)]を有するポンプ信号パターンA+B信号が得られ、入力信号パターンA(1100)が分離された後、一方の信号が200psだけ遅延され他方の信号(A)と合わさることにより、照射信号(1111)が得られる。 As described above, according to the present invention, four logic signals [(1,0), (1,1), (0, 1) are obtained by two input signal patterns A (1100) and B (0110) of the same wavelength. 1), (0,0)], and after the input signal pattern A (1100) is separated, one signal is delayed by 200 ps and the other signal (A) By combining, an irradiation signal (1111) is obtained.
そして、前記ポンプ信号と照射信号が互いに逆方向に半導体増幅器(SOA)を横切るとき、SOAの利得飽和特性により10Gbit/s全光学的論理NOR論理 素子が成功的に具現された。 Then, when the pump signal and the irradiation signal cross the semiconductor amplifier (SOA) in opposite directions, a 10 Gbit / s all-optical logic NOR logic element has been successfully implemented due to the gain saturation characteristic of the SOA.
すなわち、1100パターンを有するA信号と0110パターンを有するB信号がすべて論理0であるときだけ、出力信号が論理1であり、それ以外にはすべて論理0を有する。
That is, the output signal is
この結果は、図2(b)のブーリアンNORの真理表と一致するので、全光学的NOR論理素子の発明が実験的に認められる。 Since this result matches the truth table of the Boolean NOR in FIG. 2B, the invention of the all-optical NOR logic element is experimentally recognized.
したがって、本発明によれば、コンピューティングと全光学的信号処理システ
ムの複雑な光経路上で全光学的論理動作が具現しやすくなる。
Therefore, according to the present invention, it is easy to implement all-optical logic operation on a complex optical path of a computing and all-optical signal processing system.
ATTN1, ATTN2, ATTN3 ・・・光減衰器、C ・・・光循環装置(circulator)、FDFA・・・エルビウム添加光ファイバ増幅器、FC1,…, FC7・・・光ファイバ結合器、ISO・・・光アイソレータ(optical isolator)、MLFL・・・モードロック光ファイバレーザ、OTDM MUX・・・光時間分割多重化装置、OSC・・・オシロスコープ、PC1,PC2,PC3 ・・・偏光調節器、PD・・・光検出器、PG・・・パルス発生器、SOA・・・半導体光増幅器、VD1,VD2,VD3・・・可変遅延器。 ATTN1, ATTN2, ATTN3 ... optical attenuator, C ... optical circulator, FDFA ... erbium-doped optical fiber amplifier, FC1, ..., FC7 ... optical fiber coupler, ISO ... Optical isolator, MLFL: Mode-locked optical fiber laser, OTDM MUX: Optical time division multiplexing device, OSC: Oscilloscope, PC1, PC2, PC3: Polarization controller, PD -Photodetector, PG: pulse generator, SOA: semiconductor optical amplifier, VD1, VD2, VD3: variable delay device.
Claims (14)
前記照射信号とポンプ信号を半導体増幅器(SOA)に同時に逆方向に入射させ、
ブーリアン(Boolean)論理式〜(A+B)を得ることを特徴とする半導体光増幅器の利得飽和を用いた全光学的NOR論理素子の具現方法。 The A + B signal, which is the sum of the input signals of the input signal pattern A of 1100 and the input signal pattern B of 0110, is used as the pump signal (1110) to form a clock signal with the input signal pattern A of 1100 and the irradiation signal (1111). Use
The irradiation signal and the pump signal are simultaneously incident on the semiconductor amplifier (SOA) in opposite directions,
A method for implementing an all-optical NOR logic device using gain saturation of a semiconductor optical amplifier, wherein a Boolean logic expression ~ (A + B) is obtained.
前記1100の入力信号パターンAでクロック信号を作り照射信号(1111)で用いる照射信号具現手段と、
前記照射信号とポンプ信号とを半導体増幅器(SOA)に同時に逆方向に入射させ、ブーリアン(Boolean)論理式〜(A+B)を得るNOR具現手段を含むことを特徴とする半導体光増幅器の利得飽和を用いた全光学的NOR論理素子の具現装置。 A pump signal implementing means for generating an A + B signal as a total of the input signals by using the input signal pattern A of 1100 and the input signal pattern B of 0110, and using the pump signal (1110);
Irradiation signal implementation means for creating a clock signal with the input signal pattern A of the 1100 and using the illumination signal (1111),
The irradiation signal and the pump signal are simultaneously incident on the semiconductor amplifier (SOA) in the opposite direction, and a Boolean logic formula ~ (A + B) NOR implementation means for obtaining the gain of the semiconductor optical amplifier characterized by including An apparatus for implementing an all-optical NOR logic element using saturation.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0025361A KR100523871B1 (en) | 2003-04-22 | 2003-04-22 | Emboding Equipment and Its Method for an all-optical NOR gate using gain saturation of a semiconductor optical amplifier |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004326087A true JP2004326087A (en) | 2004-11-18 |
JP3974905B2 JP3974905B2 (en) | 2007-09-12 |
Family
ID=33509577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004083038A Expired - Fee Related JP3974905B2 (en) | 2003-04-22 | 2004-03-22 | Apparatus and method for realizing all-optical NOR logic device using gain saturation of semiconductor optical amplifier |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3974905B2 (en) |
KR (1) | KR100523871B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7277222B2 (en) * | 2005-09-26 | 2007-10-02 | Electronics And Telecommunications Research Institute | Apparatus and method for wavelength conversion and clock signal extraction using semiconductor optical amplifiers |
CN103969912A (en) * | 2014-05-05 | 2014-08-06 | 杭州电子科技大学 | Sagnac ring full-optical logic device based on electro-optical modulation |
-
2003
- 2003-04-22 KR KR10-2003-0025361A patent/KR100523871B1/en not_active IP Right Cessation
-
2004
- 2004-03-22 JP JP2004083038A patent/JP3974905B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7277222B2 (en) * | 2005-09-26 | 2007-10-02 | Electronics And Telecommunications Research Institute | Apparatus and method for wavelength conversion and clock signal extraction using semiconductor optical amplifiers |
CN103969912A (en) * | 2014-05-05 | 2014-08-06 | 杭州电子科技大学 | Sagnac ring full-optical logic device based on electro-optical modulation |
CN103969912B (en) * | 2014-05-05 | 2016-09-14 | 杭州电子科技大学 | Sagnac ring all-optical logic device based on Electro-optical Modulation |
Also Published As
Publication number | Publication date |
---|---|
KR20040091797A (en) | 2004-11-02 |
JP3974905B2 (en) | 2007-09-12 |
KR100523871B1 (en) | 2005-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1293795C (en) | Optical device | |
US7248400B2 (en) | Embodying equipment and method for an all-optical or logic gate by using single SOA | |
US7123407B2 (en) | Apparatus and method for realizing all-optical NOR logic device using gain saturation characteristics of a semiconductor optical amplifier | |
Kaur et al. | Ultrahigh speed reconfigurable logic operations based on single semiconductor optical amplifier | |
US6091536A (en) | Optical processing device | |
KR100418654B1 (en) | All-Optical XOR Gate by using Semiconductor Optical Amplifier | |
Stampoulidis et al. | The European BOOM project: Silicon photonics for high-capacity optical packet routers | |
Vagionas et al. | All optical flip flop with two coupled travelling waveguide SOA-XGM switches | |
Martinez et al. | All-optical processing based on a logic XOR gate and a flip-flop memory for packet-switched networks | |
Mourgias-Alexandris et al. | Optical thresholding device with a sigmoidal transfer function | |
KR100425374B1 (en) | Realization Method and Apparatus of All-Optical Half Adder by Using SOA-Based Devices | |
JP3974905B2 (en) | Apparatus and method for realizing all-optical NOR logic device using gain saturation of semiconductor optical amplifier | |
Kang et al. | All-optical AND gate using probe and pump signals as the multiple binary points in cross phase modulation | |
El Dahdah et al. | Ultrafast InGaAs/InGaAlAs multiple-quantum-well electro-absorption modulator for wavelength conversion at high bit rates | |
Zhang et al. | 40 Gbit/s all-optical logic NOR gate based on nonlinear polarisation rotation in SOA and blue-shifted sideband filtering | |
Cabezón et al. | Integrated multi-bit all-optical NOR gate for high speed data processing | |
Parolari et al. | Coherent-to-incoherent light conversion for optical correlators | |
Miyahara et al. | Monolithically integrated SOA-MZI wavelength converter with assist DFB-LD | |
Naito et al. | Set/reset operation of a monolithically-integrated InP SOA-MZI-type all-optical flip-flop circuit with a feedback loop | |
KR100537039B1 (en) | Realization method of All-Optical AND logical device | |
Kim et al. | Realization of all-optical full adder using cross-gain modulation | |
Zheng et al. | Error-free all-optical wavelength multicasting at 40 Gb/s on a compact InP-based chip | |
KR100491750B1 (en) | Apparatus of All-Optical Memory based on EMILD structure | |
JP4598382B2 (en) | Optical logic unit | |
Wang et al. | 8x2. 5-Gb/s OTDM data demultiplexing using an SLALOM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061122 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20070221 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20070226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070507 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070615 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100622 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110622 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |