JP2004326087A - Embodying equipment and its method for all-optical nor gate using gain saturation of semiconductor optical amplifier - Google Patents

Embodying equipment and its method for all-optical nor gate using gain saturation of semiconductor optical amplifier Download PDF

Info

Publication number
JP2004326087A
JP2004326087A JP2004083038A JP2004083038A JP2004326087A JP 2004326087 A JP2004326087 A JP 2004326087A JP 2004083038 A JP2004083038 A JP 2004083038A JP 2004083038 A JP2004083038 A JP 2004083038A JP 2004326087 A JP2004326087 A JP 2004326087A
Authority
JP
Japan
Prior art keywords
optical
signal
optical fiber
pattern
implementing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004083038A
Other languages
Japanese (ja)
Other versions
JP3974905B2 (en
Inventor
Young Tae Byun
ヨン テ ビョン
Je Hon Kim
ジェ ホン キム
Yon Min Chon
ヨン ミン チョン
Seok Lee
ソク イ
Deok Ha Woo
トク ハ ウ
Son Ho Kimu
ソン ホ キム
Jon Chan I
ジョン チャン イ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Science and Technology KIST
Original Assignee
Korea Institute of Science and Technology KIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Science and Technology KIST filed Critical Korea Institute of Science and Technology KIST
Publication of JP2004326087A publication Critical patent/JP2004326087A/en
Application granted granted Critical
Publication of JP3974905B2 publication Critical patent/JP3974905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide embodying equipment and its method for embodying, specially, a 10 Gbits/s all-optical NOR logic element in a logic element by using a light signal transmitted from an arbitrary point in an optical circuit like optical computing for a pump signal and an irradiation signal. <P>SOLUTION: An A+B signal which is the total of input signals of an input signal pattern (A) of 1100 and an input pattern (B) of 0110 is used for the pump signal (1110), and a clock signal is generated with the input signal pattern (A) of 1100 and used for the irradiation signal (1111), which is made incident on a semiconductor optical amplifier (SOA) together with the pump signal at the same time to obtain Boolean logical expressions (A+B). Consequently, a NOR logic element is embodied by an XGM (Cross Gain Modulation) method using a gain saturation characteristic of the semiconductor optical amplifier, so the structure is simplified and all-optical logic elements for other functions are constituted by the same method. Consequently, the all-optical logic element performs an important duty for all-optical circuit and all-optical system embodiments. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体の光増幅器の利得飽和特性を利用した全光学的NOR論理素子具現装置及びその方法(Embodying Equipment and Its Method for an all-optical NOR gate using gain saturation of a semiconductor optical amplifier)に関するものであり、更に詳細には光コンピューティングのような光回路の任意の地点から伝送される光信号をポンプ信号と照射信号で用い全光学的論理動作をする論理素子のうち特に10Gbit/s全光学的NOR論理素子を具現する装置及びその具現方法に関するものである。   The present invention relates to an embodying equipment and its method for an all-optical NOR gate using gain saturation of a semiconductor optical amplifier using a gain saturation characteristic of a semiconductor optical amplifier. More specifically, a logic element that performs an all-optical logic operation using an optical signal transmitted from an arbitrary point of an optical circuit such as optical computing as a pump signal and an irradiation signal, and particularly a 10 Gbit / s all-optical The present invention relates to an apparatus for implementing a logical NOR logic element and a method for implementing the same.

最近の傾向を見ると、システムの高速化と大容量化に対する要求が幾何学数的に増加している。   According to recent trends, the demand for higher speed and larger capacity of the system is increasing geometrically.

現在多くのシステムは、大部分シリコン物質、すなわち電気信号に基盤を置いており速度と情報処理容量の制限という大きな障壁が予想されるため、将来の依存性が不透明である。   Many systems are now largely based on silicon materials, ie electrical signals, and their future dependencies are uncertain because of the large barriers of speed and limited information processing capacity.

より詳細には、これに反しインジウムリン(Indium Phosphide : InP)に基盤を置いた光素子を利用したシステムは、速度や情報処理容量等すべての面で上記のような問題を十分に解決するものと予想される。   In more detail, systems using optical elements based on indium phosphide (InP), on the other hand, can sufficiently solve the above problems in all aspects such as speed and information processing capacity. It is expected to be.

一般的に、システムが構成されるときは、単一論理素子(AND, OR, XOR, NAND, NOR, NXOR)に基盤を置いて集積させる方法を使うが、これに光を用いたシステムにおいても同様である。   Generally, when a system is configured, a method of integrating based on a single logic element (AND, OR, XOR, NAND, NOR, NXOR) is used, but even in a system using light The same is true.

論理(logic)0と1と呼ばれる二つの安定した状態を有する論理素子はデジタルコンピュータの基本的な構成品(building block)である。   Logic elements having two stable states, called logic 0 and 1, are the basic building blocks of digital computers.

コンピュータは、この二つの論理状態(bits)によりすべての情報を記号化する。   The computer encodes all information using these two logical states (bits).

したがって、全光学的論理素子は間違いなく未来情報技術のための全光学的システムと光−電システムを開発するのにおいて重要な役割をするものである。   Therefore, all-optical logic elements will undoubtedly play an important role in developing all-optical and opto-electric systems for future information technology.

現在まで超高速光情報処理のための全光学的論理素子は、光の非線形成を用いるか、波長変換方式を活用し成されてきた。   Until now, all-optical logic elements for ultra-high-speed optical information processing have been realized by using a nonlinear structure of light or by utilizing a wavelength conversion method.

特に、半導体光増幅器(Semiconductor Optical Amplifier ; SOA)の 非線形利得を用いた全光学的NOR論理素子としては、非特許文献1乃至4に記載のように発展してきた。
単一光経路(arm) 超高速非線形干渉計(Single-arm ultrafast nonlinear interferometer : UNI)を用いたNOR[N. S. Patel, K. L. Hall, and K. A. Rauschenbach, Opt. Lett., 21, 1466(1996)] 単一波長の二つのポンプ信号で具現された全光学的NOR[A. Sharaiha, H.W. Li, F. Matchese and J, Le bihan, Electron. Lett., 33, 323(1997)] 互いに異なる二つの波長のポンプ信号を用いた全光学的NOR[ビョン ヨン テ、キム サン ヒョク、キム ドン ファン、ウ ドック ハ、キム ソン ホ、新物理、40,560(2000);Young Tae Byun, Sang Hyuck Kim, Deok Ha Woo, Seok Lee, Dong Hwan Kim, Sun Ho Kim, “Apparatus and Method for Realizing All-Optical NOR Logic Device", Patent No. (US 6,424,438 B1), Date of Patent (Jul. 23, 2002)]. 二つの半導体光増幅器を連結し具現された全光学的NOR(Ali Hamie, Ammar Sharaiha, Mikael Guegan, and Benoit Pucel, IEEE Photon. Technol. Lett., 14, 1439(2002)
In particular, all-optical NOR logic elements using the nonlinear gain of a semiconductor optical amplifier (SOA) have been developed as described in Non-Patent Documents 1 to 4.
NOR using a single optical path (arm) Single-arm ultrafast nonlinear interferometer (UN) [NS Patel, KL Hall, and KA Rauschenbach, Opt. Lett., 21, 1466 (1996)] All-optical NOR embodied by two pump signals of a single wavelength [A. Sharaiha, HW Li, F. Matchese and J, Le bihan, Electron. Lett., 33, 323 (1997)] All-optical NOR using pump signals of two different wavelengths [Byeong Young-tae, Kim Sang-hyuk, Kim Dong-hwan, U-dok-ha, Kim-sung-ho, New Physics, 40, 560 (2000); Young Tae Byun, Sang Hyuck Kim, Deok Ha Woo, Seok Lee, Dong Hwan Kim, Sun Ho Kim, “Apparatus and Method for Realizing All-Optical NOR Logic Device”, Patent No. (US 6,424,438 B1), Date of Patent (Jul. 23, 2002)]. All-optical NOR implemented by connecting two semiconductor optical amplifiers (Ali Hamie, Ammar Sharaiha, Mikael Guegan, and Benoit Pucel, IEEE Photon. Technol. Lett., 14, 1439 (2002)

前記非特許文献1のように、UNIを用いた全光学的NOR論理素子は高い動作速度の長所があるが、核心構成要素が光ファイバ素子で複雑であり、他の素子と集積が難しいので高集積化を要求する光演算システムに適用するのが難しい。   As described in Non-Patent Document 1, the all-optical NOR logic element using UNI has the advantage of high operation speed, but the core component is an optical fiber element, which is complicated, and it is difficult to integrate with other elements. It is difficult to apply to an optical operation system that requires integration.

反面、単一SOAを用いた全光学的論理素子は安定的であり、システムの規 模が小さく、他の光素子との結合が容易であるばかりでなく、偏光と波長に依存しない長点を有する[T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F, Gaborit, F. Poingt, and M. Renaud, Electron. Lett., 36, 1863(2000)].   On the other hand, all-optical logic elements using a single SOA are stable, have a small system size, are easy to couple with other optical elements, and have advantages that are independent of polarization and wavelength. [T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F, Gaborit, F. Poingt, and M. Renaud, Electron. Lett., 36, 1863 (2000) ].

しかし、光ファイバ干渉系なしに単一SOAの非線形特性だけを用いる 場合、全光学的NOR素子の構造が簡単で他の素子との集積が可能であるが動作速度が100MHz以下と遅くなる。   However, when only the nonlinear characteristics of a single SOA are used without an optical fiber interference system, the structure of an all-optical NOR element is simple and integration with other elements is possible, but the operating speed is slower at 100 MHz or less.

また、非特許文献4のように、二つのSOAを連結させ具現された全光学的NOR素子 は、単一SOAを用いた場合より広い波長で消光比(ON/OFF ratio)が向上する特性を有するが、動作速度が62.5MHzと低いという欠点がある。   Also, as in Non-Patent Document 4, an all-optical NOR element realized by connecting two SOAs has a characteristic that the extinction ratio (ON / OFF ratio) is improved over a wider wavelength range than when a single SOA is used. However, there is a disadvantage that the operation speed is as low as 62.5 MHz.

すなわち、光ファイバ干渉系を用いない既存の全光学的NOR論理素子である非特許文献2乃至4において、ポンプ信号(Pump signal)は、スクエア(square) 波を用い非ゼロ復帰(NRZ : non-return to zero)パターンで作られ、照射信号(probe signal)は、連続波(CW)のレーザ光が用いられる。   That is, in Non-Patent Documents 2 to 4 which are existing all-optical NOR logic elements that do not use an optical fiber interference system, a pump signal (Pump signal) uses a square wave to return to non-zero (NRZ: non-zero). (return to zero) pattern, and a continuous wave (CW) laser beam is used as an irradiation signal (probe signal).

この場合、全光学的NOR論理素子の動作速度は、NRZパターンと連続波(CW)型のよって100MHz以下に制限される。   In this case, the operation speed of the all-optical NOR logic element is limited to 100 MHz or less by the NRZ pattern and the continuous wave (CW) type.

したがって、構造が簡単で、他の光素子との集積化が可能であるだけでなく、動作速度が数GHz−数十GHzに向上された特性を有する全光学的NOR論理素子の開発が切実に要求される。   Therefore, the development of an all-optical NOR logic device that has a simple structure, not only can be integrated with other optical devices, but also has an operation speed improved to several GHz to several tens of GHz is urgently needed. Required.

本発明は、上述した必要性により考案されたものとして、本発明の目的は、半導体光増幅器の利得飽和特性を用い、10Gbit/s全光学的NOR論理素子を具現する技術を提供することにある。   An object of the present invention is to provide a technology for realizing a 10 Gbit / s all-optical NOR logic element by using the gain saturation characteristic of a semiconductor optical amplifier, as devised in view of the above-mentioned necessity. .

上述した目的を達成するために本願発明は、1100の入力信号パターンAと、0110の入力信号パターンBの入力信号の計であるA+B信号をポンプ信号(1110)に用い、前記1100の入力信号パターンAでクロック信号を作って照射信号(1111)に用い、前記照射信号とポンプ信号を半導体光増幅器(SOA)に同時に逆方向に入射させ、ブーリアン(Boolean)論理式〜(A+B)を得ることを特徴とする半導体増幅器の利得飽和を用いた全光学的NOR論理素子具現方法を提供しようとする。
上述した目的を達成するために、本発明は、1100の入力信号パターンAと、0110の入力信号パターンBを用いて、入力信号の計であるA+B信号を作ってポンプ信号(1110)に用いるポンプ信号具現手段と、前記1100の入力信号パターンAでクロック信号を作って照射信号(1111)に用いる照射信号具現手段と、前記照射信号とポンプ信号を半導体増幅器(SOA)に同時に逆方向に入射させ、ブーリアン(Boolean)論理式〜(A+B)を得るNOR具現手段を含む半導体光増幅器の利得飽和を用いた全光学的NOR論理素子具現装置を提供しようとする。
To achieve the above object, the present invention provides an input signal pattern A of 1100 and an A + B signal, which is a sum of input signals of an input signal pattern B of 0110, as a pump signal (1110). A clock signal is formed by the signal pattern A and used for the irradiation signal (1111), and the irradiation signal and the pump signal are simultaneously incident on the semiconductor optical amplifier (SOA) in the opposite directions, and a Boolean logic expression (A + B) And a method for implementing an all-optical NOR logic element using gain saturation of a semiconductor amplifier.
In order to achieve the above object, the present invention uses an input signal pattern A of 1100 and an input signal pattern B of 0110 to create an A + B signal, which is a total of input signals, to produce a pump signal (1110). Pump signal implementation means to be used, irradiation signal implementation means to make a clock signal with the input signal pattern A of the 1100 and use it for the irradiation signal (1111), and simultaneously apply the irradiation signal and the pump signal to the semiconductor amplifier (SOA) in the opposite direction. It is an object of the present invention to provide an all-optical NOR logic element implementation device using gain saturation of a semiconductor optical amplifier including a NOR implementation means for obtaining a Boolean logic expression (A + B).

全光学的NOR論理素子は、 他の単一全光学的論理素子(OR, NAND, AND, XOR, NXOR)とともに、コンピューティングや全光学的信号処理システムを構成する時、無くてはならない核心論理素子である。
NORはすべての論理計算の基本である全加算器(full adder)の核心素子であり、ほとんどすべての論理システムに適用される。
特に、本発明による全光学的NOR論理素子は、半導体光増幅器の利得飽和特性を用いるXGM(Cross Gain Modulation)方法で具現されるため構造が簡単であり、他の機能の全光学的論理素子が同じ方法で構成することができるので、全光学的回路及び全光学的システム具現に重要な役割をするものと期待される。
したがって、効率的な全光学的論理素子の集積技術が開発されれば、電気信号に依存しないで光信号だけで全ての制御が可能になる。
All-optical NOR logic, together with other single all-optical logic elements (OR, NAND, AND, XOR, NXOR), is the core logic that is essential when configuring computing and all-optical signal processing systems. Element.
NOR is the core element of the full adder, which is the basis of all logic calculations, and applies to almost all logic systems.
In particular, since the all-optical NOR logic element according to the present invention is embodied by an XGM (Cross Gain Modulation) method using the gain saturation characteristic of the semiconductor optical amplifier, the structure is simple, and the all-optical logic element having other functions is used. Since it can be configured in the same manner, it is expected to play an important role in implementing all-optical circuits and all-optical systems.
Therefore, if an efficient integration technique of all-optical logic elements is developed, all controls can be performed only by optical signals without depending on electrical signals.

以下、本願発明の実施例に対し添付された図面を参考に、その構成及び作用を説明しようと思う。
図1は、全光学的NOR論理素子の動作原理を概念的に示す。
本発明においては、動作速度を向上させるために照射信号(probe signal)とポンプ信号(pump signal)がすべてゼロ復帰(RZ : return to zero)パターンの信号で作られる。
Hereinafter, the configuration and operation of an embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1 conceptually illustrates the operating principle of an all-optical NOR logic element.
In the present invention, in order to improve the operation speed, the irradiation signal (probe signal) and the pump signal (pump signal) are all generated by a signal of a return to zero (RZ) pattern.

高い光の強さを有するポンプ信号がSOAに入射されれば、SOA内で運搬者枯渇(carrier depletion)現象が起こる。   If a pump signal having a high light intensity is incident on the SOA, a carrier depletion phenomenon occurs in the SOA.

したがって、一定の周期のパルス(pulse)形態である照射信号がSOA内に運搬者枯渇による利得変調(gain modulation)と同一に変調され出力されるので、出力信号はポンプ信号と逆の論理を持つようになる。   Therefore, since the irradiation signal in the form of a pulse having a constant period is modulated and output in the SOA in the same manner as the gain modulation due to carrier depletion, the output signal has a logic opposite to that of the pump signal. Become like

しかし、パルス信号が使用されるとき、パルスのOn−Off差が大きいので、パルス信号がないとき出力される信号の大きさが非常に小さく0とみなせる。   However, when a pulse signal is used, since the pulse On-Off difference is large, the magnitude of the signal output when there is no pulse signal can be regarded as 0, which is very small.

したがって、照射信号のパルス信号がないとき、出力信号はポンプ信号と関係なく0になる。   Therefore, when there is no pulse signal of the irradiation signal, the output signal becomes 0 regardless of the pump signal.

図2(a)と図2(b)は、全光学的NOR論理素子の基本構成とNOR論理表である。
図2(a)でパルスがあるときON状態であり、パルスがないときOFF状態と仮定すれば、ポンプ信号がOFF状態のときクロック信号は、SOAを通過し出力信号がON状態になる。
2A and 2B are a basic configuration of an all-optical NOR logic element and a NOR logic table.
In FIG. 2A, assuming that the pulse signal is in the ON state when there is a pulse and the OFF state when there is no pulse, the clock signal passes through the SOA and the output signal is in the ON state when the pump signal is in the OFF state.

したがって、図2(a)のようにA信号とB信号が合わさった次にクロック信号と共にそれぞれ逆方向にSOAに注入されれば、AとB信号のNOR値であるブーリアン(Boolean)論理式〜(A+B)が得られる。   Therefore, if the A signal and the B signal are combined and then injected into the SOA in the opposite directions together with the clock signal as shown in FIG. 2A, a Boolean logic expression that is the NOR value of the A and B signals (A + B) is obtained.

これは、図2(b)に示したNOR論理素子が真理表のブーリアン(Boolean)値と一致するので全光学的NOR論理素子が単一SOAを用いて具現できるということを意味する。   This means that the NOR logic element shown in FIG. 2B matches the Boolean value of the truth table, so that the all-optical NOR logic element can be implemented using a single SOA.

図3は、全光学的NOR論理素子の具現装置図である。
全光学的NOR論理素子の入力信号パターンAとBは、波長が1550nmであるモードロック光ファイバレーザ(mode-locked fiber laser : MLFL)で作られる。
FIG. 3 is a diagram illustrating an apparatus for implementing an all-optical NOR logic element.
The input signal patterns A and B of the all-optical NOR logic element are made with a mode-locked fiber laser (MLFL) having a wavelength of 1550 nm.

前記モードロック光ファイバレーザ(MLFL)は、パルス発生器(Pulse Generator : PG)により400psの周期を持つ2.5GHzで駆動される。
この時、生成されるパルスの幅は、大略38ps程度である。
The mode-locked optical fiber laser (MLFL) is driven at 2.5 GHz having a period of 400 ps by a pulse generator (PG).
At this time, the width of the generated pulse is approximately 38 ps.

モードロック光ファイバレーザ(MLFL)の出力は、最初に50:50光ファイバ結合器(fiber coupler : FC1)により分離された後、100psの時間遅延を得るために遅延手段である可変遅延器(Variable Delay : VD1)と、調節手段である光減衰器(Attenuator : ATTN1)と、偏光調節器(Polarization Controller : PC1)を通過した後、2番目に50:50光ファイバ結合器(FC2)に合わさることにより、10Gbit/sで動作される入力信号パターンA(1100)が発生する。   The output of the mode-locked optical fiber laser (MLFL) is first separated by a 50:50 fiber coupler (FC1), and then a variable delay (Variable) as a delay means to obtain a time delay of 100 ps. Delay: VD1), optical attenuator (Attenuator: ATTN1) as a control means, and polarization controller (Polarization Controller: PC1), then secondly match with 50:50 optical fiber coupler (FC2) As a result, an input signal pattern A (1100) operated at 10 Gbit / s is generated.

そして、2番目の50:50光ファイバ結合器(FC2)の出力端の上方光ファイバは、4番目の50:50光ファイバ結合器(FC4)から分離される。   Then, the upper optical fiber at the output end of the second 50:50 optical fiber coupler (FC2) is separated from the fourth 50:50 optical fiber coupler (FC4).

このうち、上方光ファイバの入射光(1100)は、100psの時間遅延を得るために遅延手段の可変遅延器(VD2)を通過することによって、入力信号パターンB(0110)が作られ、下方光ファイバの入射光(1100)は、調節手段である偏光調節器(PC2)と光減衰器(ATTN2)を通過する。   Of these, the incident light (1100) of the upper optical fiber passes through the variable delay device (VD2) of the delay means to obtain a time delay of 100 ps, whereby the input signal pattern B (0110) is created, and the lower light The incident light (1100) of the fiber passes through a polarization adjuster (PC2) and an optical attenuator (ATTN2) as adjusting means.

そして、上方光ファイバの出力光(B)と、下方光ファイバの出力光(A)が5番目の50:50光ファイバ結合器(FC5)で合わさることにより、入力信号パターンAとBの計、A+B(1110)が生成される。   Then, the output light (B) of the upper optical fiber and the output light (A) of the lower optical fiber are combined by a fifth 50:50 optical fiber coupler (FC5), so that the total of the input signal patterns A and B is obtained. A + B (1110) is generated.

一方、2番目50:50光ファイバ結合器(FC2)の下方光ファイバに結合された入力信号パターンA(1100)は、6番目の50:50光ファイバ結合器(FC6)から分離された後、下方光ファイバの入射光(1100)は200psの時間遅延を得るために遅延手段である可変遅延器(VD3)を通過し、下方光ファイバの入射光(1100)は調節手段である偏光調節器(PC3)と光減衰器(ATTN3)を通過し、7番目の光ファイバ結合器(FC7)で合わさることによりクロック信号パターン(1111)が作られる。   On the other hand, the input signal pattern A (1100) coupled to the lower optical fiber of the second 50:50 optical fiber coupler (FC2) is separated from the sixth 50:50 optical fiber coupler (FC6), The incident light (1100) of the lower optical fiber passes through a variable delay device (VD3) which is a delay means to obtain a time delay of 200 ps, and the incident light (1100) of the lower optical fiber is a polarization adjuster (which is an adjusting means). The clock signal pattern (1111) is created by passing through the PC3) and the optical attenuator (ATTN3) and combining them at the seventh optical fiber coupler (FC7).

5番目の50:50光ファイバ結合器(FC5)出力端の上方光ファイバのポンプ信号パターンA+B(1110)は、エルビウム添加(Er-doped)光ファイバ増幅器(EDFA)で増幅され、光循環装置(C)を通過した後、7番目の50:50光ファイバ結合器(FC7)出力端の上方光ファイバの照射信号パターンと逆方向に半導体光増幅器(SOA)に入射される。   The fifth 50:50 fiber optic coupler (FC5) pump signal pattern A + B (1110) of the optical fiber above the output end is amplified by an Er-doped optical fiber amplifier (EDFA) and optically circulated. After passing through the device (C), the light enters the semiconductor optical amplifier (SOA) in the direction opposite to the irradiation signal pattern of the upper optical fiber at the output end of the seventh 50:50 optical fiber coupler (FC7).

波長が異なる照射信号とポンプ信号が同じ方向から半導体増幅器(SOA)に入射される場合、照射信号を分離するために光フィルタが必要である[Young Tae Byun, Jae Hun Kim, Young Min Jeon, Seok, Deok Ha Woo, and Sun Ho Kim, “An All-Optical OR Gate by using casacaded SOAs,' 2002 International Topical meeting on Photonics in Switching, Hyatt Regency(Cheju Island, KOREA), 187(2002).].   When an irradiation signal and a pump signal with different wavelengths are incident on a semiconductor amplifier (SOA) from the same direction, an optical filter is required to separate the irradiation signals [Young Tae Byun, Jae Hun Kim, Young Min Jeon, Seok , Deok Ha Woo, and Sun Ho Kim, “An All-Optical OR Gate by using casacaded SOAs, '2002 International Topical meeting on Photonics in Switching, Hyatt Regency (Cheju Island, KOREA), 187 (2002).].

しかし、二つの信号が逆方向に半導体光増幅器(SOA)に入射される場合、光フィルタが必要でないばかりでなく、照射信号とポンプ信号の波長が同じでもよい。   However, when the two signals are incident on the semiconductor optical amplifier (SOA) in opposite directions, not only the optical filter is not necessary, but also the wavelength of the irradiation signal and the pump signal may be the same.

この時、前記半導体光増幅器(SOA)の利得飽和によりA+B信号の利得が変調された0001パターンを有するブーリアン(Boolean)論理式の信号が得られる。   At this time, a Boolean signal having a 0001 pattern in which the gain of the A + B signal is modulated by the gain saturation of the semiconductor optical amplifier (SOA) is obtained.

本発明で照射信号とポンプ信号の波長が同じ場合を例に挙げたが、波長が異なる場合にも全光学的NOR論理素子の動作を前記方法で得られる。   In the present invention, the case where the wavelengths of the irradiation signal and the pump signal are the same is described as an example. However, even when the wavelengths are different, the operation of the all-optical NOR logic element can be obtained by the above method.

未説明符号 ISOは光アイソレータ、PDは光検出器、OSCは信号分析器であるオシロスコープである。   Unexplained symbols ISO is an optical isolator, PD is a photodetector, and OSC is an oscilloscope, which is a signal analyzer.

図4は、10Gbit/sで動作される全光学的NOR論理素子の特性を示している図である。
図4(a)は、3番目の50:50光ファイバ結合器(FC3)から出力された1100のパターンを有する入力信号パターンAであり、図4(b)は、5番目の50:50光ファイバ結合器(FC5)で測定された0110のパターンを有する入力信号パターンBであり、図4(c)は、前記5番目の50:50光ファイバ結合器(FC5)出力端の下方光ファイバで測定された入力信号パターンAとBの計、A+Bであり、図4(d)は、7番目の50:50光ファイバ結合器(FC7)出力端の下方光ファイバで測定されたクロック信号のパターンである。
FIG. 4 is a diagram showing characteristics of an all-optical NOR logic element operated at 10 Gbit / s.
FIG. 4A shows an input signal pattern A having a 1100 pattern output from the third 50:50 optical fiber coupler (FC3), and FIG. 4B shows a fifth 50:50 optical fiber coupler. FIG. 4C shows an input signal pattern B having a pattern of 0110 measured by the fiber coupler (FC5). FIG. 4C shows the input signal pattern B at the lower end of the fifth 50:50 optical fiber coupler (FC5) output end. The sum of the measured input signal patterns A and B is A + B. FIG. 4D shows the pattern of the clock signal measured on the lower optical fiber at the output end of the seventh 50:50 optical fiber coupler (FC7). It is.

図4(e)は、二つの入力信号パターンの計であるA+Bパターン(1110)が照射信号であるクロック信号パターン(1111)と互いに逆方向に半導体光増幅器(SOA)を通過するとき作られた出力波形で論理信号が(1,0), (1,1), (0,1)である時は出力光がなく、(0,0)の時だけ出力光が存在する。   FIG. 4E is made when the A + B pattern (1110), which is the sum of the two input signal patterns, passes through the semiconductor optical amplifier (SOA) in the opposite direction to the clock signal pattern (1111) as the irradiation signal. When the logic signal is (1,0), (1,1), (0,1) in the output waveform, there is no output light, and only when (0,0), there is output light.

したがって、調査信号とポンプ信号の光の強さがそれぞれ0.3dBmと10.8dBmのとき、全光学的NOR論理素子の動作特性が具現されることを確認させてくれる。   Therefore, when the light intensities of the investigation signal and the pump signal are 0.3 dBm and 10.8 dBm, respectively, it is confirmed that the operation characteristics of the all-optical NOR logic element are realized.

前記言及されたそれぞれの光信号は40Ghzの光検出器とサンプリングオシロスコープを使用し測定された。   Each of the above mentioned optical signals was measured using a 40 Ghz photodetector and sampling oscilloscope.

以上のように、本願発明によれば、同一波長の二つの入力信号のパターンA(1100)とB(0110)により4つの論理信号[(1,0), (1,1), (0,1), (0,0)]を有するポンプ信号パターンA+B信号が得られ、入力信号パターンA(1100)が分離された後、一方の信号が200psだけ遅延され他方の信号(A)と合わさることにより、照射信号(1111)が得られる。   As described above, according to the present invention, four logic signals [(1,0), (1,1), (0, 1) are obtained by two input signal patterns A (1100) and B (0110) of the same wavelength. 1), (0,0)], and after the input signal pattern A (1100) is separated, one signal is delayed by 200 ps and the other signal (A) By combining, an irradiation signal (1111) is obtained.

そして、前記ポンプ信号と照射信号が互いに逆方向に半導体増幅器(SOA)を横切るとき、SOAの利得飽和特性により10Gbit/s全光学的論理NOR論理 素子が成功的に具現された。   Then, when the pump signal and the irradiation signal cross the semiconductor amplifier (SOA) in opposite directions, a 10 Gbit / s all-optical logic NOR logic element has been successfully implemented due to the gain saturation characteristic of the SOA.

すなわち、1100パターンを有するA信号と0110パターンを有するB信号がすべて論理0であるときだけ、出力信号が論理1であり、それ以外にはすべて論理0を有する。   That is, the output signal is logic 1 only when the A signal having the 1100 pattern and the B signal having the 0110 pattern are all logic 0, and all other signals have the logic 0.

この結果は、図2(b)のブーリアンNORの真理表と一致するので、全光学的NOR論理素子の発明が実験的に認められる。   Since this result matches the truth table of the Boolean NOR in FIG. 2B, the invention of the all-optical NOR logic element is experimentally recognized.

したがって、本発明によれば、コンピューティングと全光学的信号処理システ
ムの複雑な光経路上で全光学的論理動作が具現しやすくなる。
Therefore, according to the present invention, it is easy to implement all-optical logic operation on a complex optical path of a computing and all-optical signal processing system.

全光学的NOR論理素子の動作原理を示す特性図である。FIG. 4 is a characteristic diagram illustrating an operation principle of the all-optical NOR logic element. 全光学的NOR論理素子の基本構成と真理表である。3 is a basic configuration and a truth table of an all-optical NOR logic element. 本発明による全光学的NOR論理素子の具現装置の構成図である。1 is a configuration diagram of an apparatus for implementing an all-optical NOR logic element according to the present invention; 本発明により10Gbit/s で動作する全光学的NOR論理素子の特性図である。FIG. 4 is a characteristic diagram of an all-optical NOR logic element operating at 10 Gbit / s according to the present invention.

符号の説明Explanation of reference numerals

ATTN1, ATTN2, ATTN3 ・・・光減衰器、C ・・・光循環装置(circulator)、FDFA・・・エルビウム添加光ファイバ増幅器、FC1,…, FC7・・・光ファイバ結合器、ISO・・・光アイソレータ(optical isolator)、MLFL・・・モードロック光ファイバレーザ、OTDM MUX・・・光時間分割多重化装置、OSC・・・オシロスコープ、PC1,PC2,PC3 ・・・偏光調節器、PD・・・光検出器、PG・・・パルス発生器、SOA・・・半導体光増幅器、VD1,VD2,VD3・・・可変遅延器。 ATTN1, ATTN2, ATTN3 ... optical attenuator, C ... optical circulator, FDFA ... erbium-doped optical fiber amplifier, FC1, ..., FC7 ... optical fiber coupler, ISO ... Optical isolator, MLFL: Mode-locked optical fiber laser, OTDM MUX: Optical time division multiplexing device, OSC: Oscilloscope, PC1, PC2, PC3: Polarization controller, PD -Photodetector, PG: pulse generator, SOA: semiconductor optical amplifier, VD1, VD2, VD3: variable delay device.

Claims (14)

1100の入力信号パターンAと0110の入力信号パターンBの入力信号の計であるA+B信号をポンプ信号(1110)で利用して前記1100の入力信号パターンAでクロック信号を作り照射信号(1111)で利用して、
前記照射信号とポンプ信号を半導体増幅器(SOA)に同時に逆方向に入射させ、
ブーリアン(Boolean)論理式〜(A+B)を得ることを特徴とする半導体光増幅器の利得飽和を用いた全光学的NOR論理素子の具現方法。
The A + B signal, which is the sum of the input signals of the input signal pattern A of 1100 and the input signal pattern B of 0110, is used as the pump signal (1110) to form a clock signal with the input signal pattern A of 1100 and the irradiation signal (1111). Use
The irradiation signal and the pump signal are simultaneously incident on the semiconductor amplifier (SOA) in opposite directions,
A method for implementing an all-optical NOR logic device using gain saturation of a semiconductor optical amplifier, wherein a Boolean logic expression ~ (A + B) is obtained.
請求項1において、前記ポンプ信号は、モードロック光ファイバレーザの変造波形を多重化し1100の入力信号パターンAを作り、前記1100の入力信号を時間遅延させて0110の入力信号パターンBを作り、光ファイバ結合器を用いて得た二つの入力信号の計がA+B信号であることを特徴とする半導体光増幅器の利得飽和を用いた全光学的NOR論理素子の具現方法。   2. The pump signal according to claim 1, wherein the modulating waveform of the mode-locked optical fiber laser is multiplexed to generate an input signal pattern A of 1100, and the input signal of 1100 is time-delayed to generate an input signal pattern B of 0110. A method for implementing an all-optical NOR logic element using gain saturation of a semiconductor optical amplifier, wherein the sum of two input signals obtained using a fiber coupler is an A + B signal. 請求項2において、前記モードロック光ファイバレーザは、2.5GHzで動作し、波長が1550nmであり、10Gbit/sで多重化することを特徴とする半導体光増幅器の利得飽和を用いた全光学的NOR論理素子の具現方法。   3. The all-optical NOR using gain saturation of a semiconductor optical amplifier according to claim 2, wherein the mode-locked optical fiber laser operates at 2.5 GHz, has a wavelength of 1550 nm, and is multiplexed at 10 Gbit / s. A method for implementing a logic element. 請求項2において、前記1100の入力信号の時間遅延が100psであることを特徴とする半導体光増幅器の利得飽和を用いた全光学的NOR論理素子の具現方法。   3. The method according to claim 2, wherein a time delay of the input signal of 1100 is 100 ps. 請求項1において、前記照射信号は、前記1100の入力信号パターンAを時間遅延させた後、遅延されない入力信号パターンAと多重化することによって得たクロック信号であることを特徴とする半導体光増幅器の利得飽和を用いた全光学的NOR論理素子の具現方法。   2. The semiconductor optical amplifier according to claim 1, wherein the irradiation signal is a clock signal obtained by time-delaying the input signal pattern A of the 1100 and then multiplexing the input signal pattern A without delay. For implementing an all-optical NOR logic element using gain saturation. 請求項5において、前記照射信号は、前記1100の入力信号の遅延時間が200psであることを特徴とする半導体光増幅器の利得飽和を用いた全光学的NOR論理素子の具現方法。   6. The method of claim 5, wherein the irradiation signal has a delay time of 200 ps of the input signal of the 1100, and the gain saturation of the semiconductor optical amplifier is used. 請求項1において、前記照射信号とポンプ信号とが全てパルス形態でSOAに入射されることによりXGM(Cross Gain Modulation)方法でNOR論理素子が具現されることを特徴とする半導体光増幅器の利得飽和を用いた全光学的NOR論理素子の具現方法。   2. The gain saturation of a semiconductor optical amplifier according to claim 1, wherein the irradiation signal and the pump signal are all incident on the SOA in pulse form to implement a NOR logic element by an XGM (Cross Gain Modulation) method. A method for realizing an all-optical NOR logic element using the method. 請求項1、2、5のうちの何れか1項において、前記照射信号とポンプ信号の波長が互いに異なることを特徴とする半導体光増幅器の利得飽和を用いた全光学的NOR論理素子の具現方法。   6. The method according to claim 1, wherein the wavelength of the irradiation signal and the wavelength of the pump signal are different from each other. . 1100の入力信号パターンAと0110の入力信号パターンBを用い入力信号の計であるA+B信号を作り、ポンプ信号(1110)で用いるポンプ信号具現手段と、
前記1100の入力信号パターンAでクロック信号を作り照射信号(1111)で用いる照射信号具現手段と、
前記照射信号とポンプ信号とを半導体増幅器(SOA)に同時に逆方向に入射させ、ブーリアン(Boolean)論理式〜(A+B)を得るNOR具現手段を含むことを特徴とする半導体光増幅器の利得飽和を用いた全光学的NOR論理素子の具現装置。
A pump signal implementing means for generating an A + B signal as a total of the input signals by using the input signal pattern A of 1100 and the input signal pattern B of 0110, and using the pump signal (1110);
Irradiation signal implementation means for creating a clock signal with the input signal pattern A of the 1100 and using the illumination signal (1111),
The irradiation signal and the pump signal are simultaneously incident on the semiconductor amplifier (SOA) in the opposite direction, and a Boolean logic formula ~ (A + B) NOR implementation means for obtaining the gain of the semiconductor optical amplifier characterized by including An apparatus for implementing an all-optical NOR logic element using saturation.
請求項9において、前記ポンプ信号具現手段は、モードロック光ファイバレーザ(MLFL)の変調された波形を多重化し1100の入力信号パターンAを作るパターンA具現手段と、前記1100の入力信号を時間遅延させて0110の入力信号パターンBを作るパターンB具現手段と、第5光ファイバ結合器を用いて得た二つの入力信号の計であるA+B信号を作るA+B具現手段で構成されることを特徴とする半導体光増幅器の利得飽和を用いた全光学的NOR論理素子の具現装置。   10. The pattern signal implementing means according to claim 9, wherein the pump signal implementing means multiplexes a modulated waveform of a mode-locked optical fiber laser (MLFL) to form an input signal pattern A of 1100, and a time delay of the input signal of 1100. A pattern B implementing means for generating an input signal pattern B of 0110, and an A + B implementing means for producing an A + B signal which is a total of two input signals obtained by using the fifth optical fiber coupler. For implementing an all-optical NOR logic element using gain saturation of a semiconductor optical amplifier. 請求項10において、前記パターンA具現手段は、パルス発生器により駆動され、一定波長の光を出力するモードロック光ファイバレーザと、前記モードロック光ファイバレーザの出力光を分離する第1光ファイバ結合器と、第1光ファイバ結合器により分離された一方の出力光を遅延する第1可変遅延器と、第1光ファイバ結合器により分離された他方の出力光を調節する第1光減衰器及び第1偏光調節器と、前記遅延された出力光と調節された出力光とを合わせた第2光ファイバ結合器で構成されることを特徴とする半導体光増幅器の利得飽和を用いた全光学的NOR論理素子の具現装置。   11. A mode-locked optical fiber laser according to claim 10, wherein the pattern-A implementing means is driven by a pulse generator and outputs a light of a certain wavelength, and a first optical fiber coupling for separating output light of the mode-locked optical fiber laser. A first variable delay device for delaying one of the output lights separated by the first optical fiber coupler, a first optical attenuator for adjusting the other output light separated by the first optical fiber coupler, and An all-optical device using gain saturation of a semiconductor optical amplifier, comprising a first polarization controller and a second optical fiber coupler combining the delayed output light and the adjusted output light. Equipment for implementing NOR logic elements. 請求項11において、前記パターンB具現手段は、前記第2光ファイバ結合器の出力に連結された第3光ファイバ結合器の出力を分離する第4光ファイバ結合器と、前記第4光ファイバ結合器に分離された一方の出力光を遅延する第2可変遅延器と、前記第4光ファイバ結合器に分離された他方の出力光を調節する第2光減衰器及び第2偏光調節器で構成されることを特徴とする半導体光増幅器の利得飽和を用いた全光学的NOR論理素子の具現装置。   12. The optical fiber coupling device according to claim 11, wherein the pattern B implementing means comprises: a fourth optical fiber coupler for separating an output of a third optical fiber coupler connected to an output of the second optical fiber coupler; A second variable delay device for delaying one of the output lights separated by the optical fiber coupler, a second optical attenuator for adjusting the other output light separated by the fourth optical fiber coupler, and a second polarization adjuster. An apparatus for implementing an all-optical NOR logic element using gain saturation of a semiconductor optical amplifier. 請求項9において、前記照射信号具現手段は、前記1100の入力信号パターンAの出力を分離する第6光ファイバ結合器と、第6光ファイバ結合器により分離された一方の出力光を遅延する第3可変遅延器と、第6光ファイバ結合器より分離された他方の出力光を調節する第3光減衰器及び第3偏光調節器と、前記遅延された出力光と調節された出力光とを合わせる第7光ファイバ結合器で構成されることを特徴とする半導体光増幅器の利得飽和を用いた全光学的NOR論理素子の具現装置。   10. The irradiating signal implementation unit according to claim 9, wherein the irradiating signal implementation unit includes a sixth optical fiber coupler for separating an output of the input signal pattern A of the 1100, and a second optical fiber coupler for delaying one output light separated by the sixth optical fiber coupler. A third variable delay device, a third optical attenuator and a third polarization adjuster for adjusting the other output light separated from the sixth optical fiber coupler, and the delayed output light and the adjusted output light. An apparatus for implementing an all-optical NOR logic element using gain saturation of a semiconductor optical amplifier, comprising a seventh optical fiber coupler. 請求項9において、前記NOR具現手段は、前記ポンプ信号を増幅するエルビウム添加光ファイバ増幅器(EDFA)と、前記増幅されたポンプ信号を半導体光増幅器の一方で入射させる光循環装置と、前記ポンプ信号が一方に入射され、照射信号が他方に入射される場合、利得飽和特性により、ポンプ信号の利得が変調された0001パターンを有するブーリアン(Boolean)論理式〜(A+B)を得る半導体光増幅器で構成されることを特徴とする半導体光増幅器の利得飽和を用いた全光学的NOR論理素子の具現装置。   10. The optical pickup device according to claim 9, wherein the NOR implementing means comprises: an erbium-doped optical fiber amplifier (EDFA) for amplifying the pump signal; an optical circulating device for injecting the amplified pump signal into one of the semiconductor optical amplifiers; Is incident on one side, and when the irradiation signal is incident on the other side, the gain saturation characteristic causes the gain of the pump signal to be modulated. An apparatus for implementing an all-optical NOR logic element using gain saturation of a semiconductor optical amplifier, characterized by comprising:
JP2004083038A 2003-04-22 2004-03-22 Apparatus and method for realizing all-optical NOR logic device using gain saturation of semiconductor optical amplifier Expired - Fee Related JP3974905B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0025361A KR100523871B1 (en) 2003-04-22 2003-04-22 Emboding Equipment and Its Method for an all-optical NOR gate using gain saturation of a semiconductor optical amplifier

Publications (2)

Publication Number Publication Date
JP2004326087A true JP2004326087A (en) 2004-11-18
JP3974905B2 JP3974905B2 (en) 2007-09-12

Family

ID=33509577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004083038A Expired - Fee Related JP3974905B2 (en) 2003-04-22 2004-03-22 Apparatus and method for realizing all-optical NOR logic device using gain saturation of semiconductor optical amplifier

Country Status (2)

Country Link
JP (1) JP3974905B2 (en)
KR (1) KR100523871B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7277222B2 (en) * 2005-09-26 2007-10-02 Electronics And Telecommunications Research Institute Apparatus and method for wavelength conversion and clock signal extraction using semiconductor optical amplifiers
CN103969912A (en) * 2014-05-05 2014-08-06 杭州电子科技大学 Sagnac ring full-optical logic device based on electro-optical modulation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7277222B2 (en) * 2005-09-26 2007-10-02 Electronics And Telecommunications Research Institute Apparatus and method for wavelength conversion and clock signal extraction using semiconductor optical amplifiers
CN103969912A (en) * 2014-05-05 2014-08-06 杭州电子科技大学 Sagnac ring full-optical logic device based on electro-optical modulation
CN103969912B (en) * 2014-05-05 2016-09-14 杭州电子科技大学 Sagnac ring all-optical logic device based on Electro-optical Modulation

Also Published As

Publication number Publication date
KR20040091797A (en) 2004-11-02
JP3974905B2 (en) 2007-09-12
KR100523871B1 (en) 2005-10-26

Similar Documents

Publication Publication Date Title
CA1293795C (en) Optical device
US7248400B2 (en) Embodying equipment and method for an all-optical or logic gate by using single SOA
US7123407B2 (en) Apparatus and method for realizing all-optical NOR logic device using gain saturation characteristics of a semiconductor optical amplifier
Kaur et al. Ultrahigh speed reconfigurable logic operations based on single semiconductor optical amplifier
US6091536A (en) Optical processing device
KR100418654B1 (en) All-Optical XOR Gate by using Semiconductor Optical Amplifier
Stampoulidis et al. The European BOOM project: Silicon photonics for high-capacity optical packet routers
Vagionas et al. All optical flip flop with two coupled travelling waveguide SOA-XGM switches
Martinez et al. All-optical processing based on a logic XOR gate and a flip-flop memory for packet-switched networks
Mourgias-Alexandris et al. Optical thresholding device with a sigmoidal transfer function
KR100425374B1 (en) Realization Method and Apparatus of All-Optical Half Adder by Using SOA-Based Devices
JP3974905B2 (en) Apparatus and method for realizing all-optical NOR logic device using gain saturation of semiconductor optical amplifier
Kang et al. All-optical AND gate using probe and pump signals as the multiple binary points in cross phase modulation
El Dahdah et al. Ultrafast InGaAs/InGaAlAs multiple-quantum-well electro-absorption modulator for wavelength conversion at high bit rates
Zhang et al. 40 Gbit/s all-optical logic NOR gate based on nonlinear polarisation rotation in SOA and blue-shifted sideband filtering
Cabezón et al. Integrated multi-bit all-optical NOR gate for high speed data processing
Parolari et al. Coherent-to-incoherent light conversion for optical correlators
Miyahara et al. Monolithically integrated SOA-MZI wavelength converter with assist DFB-LD
Naito et al. Set/reset operation of a monolithically-integrated InP SOA-MZI-type all-optical flip-flop circuit with a feedback loop
KR100537039B1 (en) Realization method of All-Optical AND logical device
Kim et al. Realization of all-optical full adder using cross-gain modulation
Zheng et al. Error-free all-optical wavelength multicasting at 40 Gb/s on a compact InP-based chip
KR100491750B1 (en) Apparatus of All-Optical Memory based on EMILD structure
JP4598382B2 (en) Optical logic unit
Wang et al. 8x2. 5-Gb/s OTDM data demultiplexing using an SLALOM

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070221

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees