JP2004325438A - Test state evaluating method, testing machine, and test condition evaluating method - Google Patents

Test state evaluating method, testing machine, and test condition evaluating method Download PDF

Info

Publication number
JP2004325438A
JP2004325438A JP2004060614A JP2004060614A JP2004325438A JP 2004325438 A JP2004325438 A JP 2004325438A JP 2004060614 A JP2004060614 A JP 2004060614A JP 2004060614 A JP2004060614 A JP 2004060614A JP 2004325438 A JP2004325438 A JP 2004325438A
Authority
JP
Japan
Prior art keywords
test
image
change
state
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004060614A
Other languages
Japanese (ja)
Other versions
JP3793818B2 (en
Inventor
Seisuke Kano
誠介 加納
Hirofumi Shimura
洋文 志村
Kazuhiro Honma
一弘 本間
Shinya Sasaki
信也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004060614A priority Critical patent/JP3793818B2/en
Publication of JP2004325438A publication Critical patent/JP2004325438A/en
Application granted granted Critical
Publication of JP3793818B2 publication Critical patent/JP3793818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To evaluate the state of machining and mechanical test, the state of machining such as cutting, grinding, and other energy working, the state of a testing machine using a standard substance or material, and the state of a workpiece using a standard testing machine, by performing successive observation/image recording on the same place and image analysis. <P>SOLUTION: In this test state evaluating method, observation/image recording is intermittently performed on changes in the surface state of a test/evaluation object under test/evaluation, and image analysis is performed to extract its characteristics. With respect to the result of observation/image recording and image analysis/characteristic extraction performed by an actual machine and the result on the same items obtained by the testing machine, comparison is performed by finding a change in mutual relation about the characteristics of at least one image or about time change of the characteristics. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、切削や研削やその他エネルギー加工における試験状態の評価方法、摩擦や摩耗の試験状態の評価方法及びそれを反映した加工機械と試験機械の特徴評価方法に関する。   The present invention relates to a method for evaluating a test state in cutting, grinding, and other energy processing, a method for evaluating a test state for friction and wear, and a method for evaluating characteristics of a processing machine and a test machine reflecting the evaluation method.

従来、ストロボライトでブレーキ材表面の一定場所に来るたびに照射することにより、摩擦中のブレーキ材の表面を直接観察することが行われていた(特許文献1参照)。
また、加工中のロール表面にストロボ光及び特定波長の光を各々照射して表面の凸凹パターンの演算、計測結果を求め、それに基づいて表面加工条件を調整することにより、加工精度と製品歩留まりの向上を図ることも知られている(特許文献2参照)。
さらに、すべり摩擦実験のその場観察システムを用いて、摩耗形態の時系列変化を観察することも行われていた(非特許文献1参照)。また、摩擦にともない発生する摩耗粉の形態を数値解析する手法とその計算結果を報告することも行われている(非特許文献2参照)。
Conventionally, the surface of a brake material during friction has been directly observed by irradiating the surface of the brake material with a strobe light every time a certain position is reached on the surface of the brake material (see Patent Document 1).
In addition, the surface of the roll being processed is irradiated with strobe light and light of a specific wavelength to calculate the surface irregularity pattern, obtain the measurement results, and adjust the surface processing conditions based on the results to improve processing accuracy and product yield. It is also known to improve (see Patent Document 2).
Furthermore, using an in-situ observation system for a sliding friction experiment, a time-series change in the form of wear has been observed (see Non-Patent Document 1). In addition, a method of numerically analyzing the form of wear powder generated due to friction and a calculation result thereof have been reported (see Non-Patent Document 2).

特開昭56-14529号公報JP-A-56-14529 特開平01-162584号公報JP 01-162584 A 加藤照子、堀切川一男、福田努、篠岡正規、高橋仁:ブロックとプレートの片当たり接触におけるすべり摩耗機構の解明、トライボロジスト、42,6(1997)454Teruko Kato, Kazuo Horikirikawa, Tsutomu Fukuda, Tadashi Shinooka, Hitoshi Takahashi: Elucidation of sliding wear mechanism in one-sided contact between block and plate, Tribologist, 42,6 (1997) 454 杉村丈一、梅田彰彦、山本雄二:摩耗粉の形態識別におけるニューラルネットワークの適用、日本機械学会論文集(C編)、61,590(1995)4055Sugimura, J., Umeda, A., Yamamoto, Y .: Application of Neural Network to Shape Detection of Wear Powder, Transactions of the Japan Society of Mechanical Engineers (C), 61,590 (1995) 4055

しかし、加工や試験の状態を直接評価する方法では、特定の加工方法や試験方法、加工条件や試験条件、使用する材料に依存した評価しかできなかった。このため、試験機械間の特徴比較や機械そのものの評価は、実際に特定の加工や試験を実施しなければできなかった。一般には、実際の機械で材料を評価した結果と、試験機械で試験した結果は、実施条件や装置特性の差など複雑なパラメーターの相互作用のため、一致しなかった。
これまでにも、運動する固体表面をストロボ法(レーザーストロボ法を含む)によって観察する方法や機械(加筆)装置が提案されてきたが、固体表面の一定微小領域を静止画像として記録・蓄積しつづける方法はない。また、取得した画像やその他運動物の静止画像の解析は、エラーを抽出するためのパターン認識が中心で、加工や試験の評価に応用した例はない。画像解析では、形状解析が中心で状態変化の特徴抽出や時系列変化の特徴抽出やこれらを用いた評価を扱う解析例はない。
本発明では、新たな材料や試験装置を開発した際に、実際の機械を模擬した試験装置を用いて加速試験を行うが、試験結果が実機試験の結果と一致する例は少なく、このような不一致の原因を考察する上でも、加工面や試験面の経時変化を記録・蓄積し解析する必要が生じてきていることに注目した。
これを実現するためには、運動と同期した照明による静止画像撮影(ストロボ撮影)技術と、ミクロな表面解析のための高倍率観察技術、取得した画像の経時変化に伴なう特徴抽出を扱う解析の必要が生じている。
However, in the method of directly evaluating the state of processing and test, only evaluation depending on a specific processing method and test method, processing conditions and test conditions, and materials used can be performed. For this reason, comparison of characteristics between test machines and evaluation of the machines themselves could not be performed unless specific processing and tests were actually performed. In general, the results of evaluating the material on an actual machine and the results of testing on a test machine did not agree due to the interaction of complex parameters such as differences in operating conditions and equipment characteristics.
Until now, methods and mechanical (additional) devices for observing a moving solid surface by a strobe method (including a laser strobe method) have been proposed. However, a certain minute area of the solid surface is recorded and accumulated as a still image. There is no way to continue. Analysis of acquired images and still images of other moving objects focuses on pattern recognition for extracting errors, and there is no example of application to processing or test evaluation. In image analysis, there is no analysis example that focuses on shape analysis and extracts features of state change and feature extraction of time-series change and evaluation using these features.
In the present invention, when a new material or a new test device is developed, an accelerated test is performed using a test device that simulates an actual machine. In examining the cause of the discrepancy, we noticed the need to record, accumulate, and analyze changes over time on the machined and test surfaces.
In order to realize this, we deal with still image shooting (strobe shooting) technology using illumination synchronized with motion, high-magnification observation technology for microscopic surface analysis, and feature extraction accompanying the temporal change of the acquired image. The need for analysis has arisen.

上記目的を達成するために本発明は、機械加工や機械試験の状態、切削・研削・その他エネルギー加工などの機械加工の状態、標準の物質や材料を用いた加工機械の状態、標準の加工機械を用いた被加工物の状態を、連続した同一場所の観察・画像記録を行い、画像解析することで評価する。
例えば、機械要素材料の評価を実際の機械で使用する前に行う試験の評価を行う。実際の機械や加工で現れる画像の特徴を抽出するで、実際の機械や加工で現れる画像の特徴と試験機での画像の特徴を比較し、試験機械の評価を行う。
加工や試験で得られる時間的連像画像の特徴の変化から、加工や試験の状態を評価する。
加工方法や試験方法、加工条件や試験条件、使用する試験材料に依存しない、画像の特徴から、加工・試験の状態を評価する。
加工や試験の運動に同期した照明を行うとともにCCDカメラで観察面を結像するシステムを用いて、同一場所の画像を時間的に連続して観察・記録する方法で、記録した画像をもとに計算機処理して画像の特徴及び特徴の時間変化を抽出し、比較することによって加工や試験の状態を評価する。実際に使用する加工や機械の状態を模倣した試験機械に現れる特徴を、その他の試験装置に現れる特徴と比較し、その他の試験機械の評価を行う。
すなわち、本発明は、試験評価中の被試験評価物の表面状態変化を、被試験物の同一場所において観察・画像記録を間歇的に行い、画像解析し、特徴抽出を行う方法において、実際の機械における観察・画像記録及び画像解析・特徴抽出を行った結果と、試験機における同項目の結果について、少なくとも1つの画像の特徴または特徴の時間変化について相互関係の変化を求め、比較することによる試験状態の評価方法を見出した。
In order to achieve the above object, the present invention relates to a state of machining and mechanical testing, a state of machining such as cutting, grinding and other energy processing, a state of a processing machine using standard substances and materials, and a standard processing machine. The state of the workpiece using is evaluated by performing continuous image observation and image recording at the same place, and image analysis.
For example, the evaluation of a test performed before using the machine element material in an actual machine is performed. By extracting the features of the image appearing in the actual machine or processing, the features of the image appearing in the actual machine or processing are compared with the features of the image in the test machine, and the test machine is evaluated.
The state of the processing and the test is evaluated from the change of the feature of the temporal continuous image obtained by the processing and the test.
The state of processing and testing is evaluated from the processing method and test method, the processing conditions and test conditions, and the characteristics of images that do not depend on the test material used.
Using a system that illuminates in synchronization with the movement of processing and testing, and uses a system that forms an image of the observation surface with a CCD camera, the system continuously observes and records images at the same location based on the recorded image. Then, computer processing is performed to extract features of the image and changes over time of the features, and the state of processing and testing is evaluated by comparison. The features that appear in a test machine that imitates the processing and machine conditions actually used are compared with the features that appear in other test equipment, and the other test machines are evaluated.
That is, the present invention relates to a method for intermittently observing and recording images at the same location of a test object, performing image analysis, and performing feature extraction on the surface state change of the test object during test evaluation. By comparing and comparing the results of observation / image recording and image analysis / feature extraction on a machine with the results of the same item on a test machine, at least one image feature or the temporal change of the feature. A method for evaluating the test condition was found.

従来技術では、加工や試験の評価は実際の加工や試験を実施しなければ評価できなかったばかりでなく、装置間の比較ができなかったため、装置の評価を行うことが困難であった。本発明では、機械加工や機械試験の状態、切削・研削・その他エネルギー加工などの機械加工の状態を、連続した同一場所の観察・画像記録を行い、画像解析することで状態の評価を行う。機械要素材料の評価を実際の機械で使用する前に行う試験の評価を行う。実際の機械や加工で現れる画像の特徴を抽出するで、実際の機械や加工で現れる画像の特徴と試験機での画像の特徴を比較し、試験機の評価を行う。加工や試験で得られる時間的連像画像の特徴の変化から、加工や試験の状態を評価する。加工方法や試験方法、加工条件や試験条件、使用する試験材料に依存しない、画像の特徴から、加工・試験の状態を評価する。加工や試験の運動に同期した照明を行うとともにCCDカメラで観察面を結像するシステムを用いて、同一場所の画像を時間的に連続して観察・記録する方法で、記録した画像をもとに計算機処理して画像の特徴及び特徴の時間変化を抽出し、比較することによって加工や試験の状態を評価する。実際に使用する加工や機械の状態を模倣した試験機に現れる特徴を、その他の試験装置に現れる特徴と比較し、その他の試験装置の評価を行う。このため、機械分野、精密機械加工分野、切削・研削・エネルギー加工分野、トライボロジー分野、機械装置・摩擦試験機等に応用、材料試験にも応用、高速で運動する粒子の観察や解析などにも適応可能。その他時間変化を伴なう試験の評価が可能。機械装置の電気的・機械的むらや、接触面の状態変化を評価可能。切削加工の工具形状の最適化や潤滑剤の選択、接合・切断における欠陥検査にも応用可能である。 In the prior art, evaluation of processing and testing was not only possible without actual processing and testing, but was not possible to compare between devices, so it was difficult to evaluate devices. In the present invention, the state of machining or mechanical testing, or the state of machining such as cutting, grinding, or other energy processing, is continuously observed and image-recorded at the same location, and the state is evaluated by image analysis. The evaluation of the test to be performed before using the machine element material in an actual machine is performed. By extracting the features of the image appearing in the actual machine or processing, the features of the image appearing in the actual machine or processing are compared with the features of the image in the testing machine, and the testing machine is evaluated. The state of the processing and the test is evaluated from the change of the feature of the temporal continuous image obtained by the processing and the test. The state of processing and testing is evaluated from the processing method and test method, the processing conditions and test conditions, and the characteristics of images that do not depend on the test material used. Using a system that illuminates in synchronization with the processing and testing movements and uses a CCD camera to form an image of the observation surface, a method of continuously observing and recording images at the same location over time, based on the recorded images Then, computer processing is performed to extract features of the image and changes over time of the features, and the state of processing and testing is evaluated by comparison. The features that appear in a test machine that imitates the processing and machine conditions actually used are compared with the features that appear in other test devices, and the other test devices are evaluated. For this reason, it is applied to the machinery field, precision machining field, cutting / grinding / energy processing field, tribology field, machinery / friction testing machine, etc., also to material testing, observation and analysis of high-speed moving particles, etc. Adaptable. Other tests with time change can be evaluated. Evaluate electrical and mechanical unevenness of mechanical devices and changes in the state of contact surfaces. It can also be applied to optimization of cutting tool shape, selection of lubricant, and defect inspection in joining and cutting.

本発明を具体化する一例を図1に示す。試験機に固定された材料20は、往復運動または回転運動する。これに、所定の荷重10をかけたピン15を押し付け、試験を行う。試験装置の形式は問わないが、顕微鏡45及びトリガーセンサー25が取り付けられるスペースの確保が必須条件となる。材料20の運動にレーザー発振器55からのパルス光とCCDカメラ70のシャッターを同期させるため、材料20の運動を検出するトリガーセンサー25からの信号をケーブル30を介して、パルスジェネレーター35で受け、レーザー発振器55のジッターを考慮した信号をケーブル80を通してレーザー発振器55に送るとともに、CCDカメラ70のシャッター開閉時間と開放時間を考慮した信号をケーブル75を通してCCDカメラ70に送る。レーザー発振器55から発振された光は光ファイバー50を通って、顕微鏡45に入りプローブ光40として摩擦面の一定の位置に集光される。加工面で反射した光は同一の光路を通って顕微鏡45にもどるが、プローブ光と分けられてCCDカメラ70に入り結像する。画像は電気信号としてケーブル65を通ってコンピューター60には入り、静止画像として逐次記録・蓄積される。試験終了後、記録・蓄積された画像群を解析用コンピューター90に転送し、位置補正や明るさの補正を行った後に、特徴抽出のための処理を行う。この処理は、例えば次の表1を示すことができる。

Figure 2004325438
このような特徴比較を、実際の機械及び複数の試験機において行い、特徴マッチングの工程において、それぞれを比較する。 FIG. 1 shows an example embodying the present invention. The material 20 fixed to the test machine reciprocates or rotates. A test is performed by pressing a pin 15 with a predetermined load 10 applied thereto. Although the type of the test apparatus is not limited, securing a space for mounting the microscope 45 and the trigger sensor 25 is an essential condition. In order to synchronize the pulse light from the laser oscillator 55 and the shutter of the CCD camera 70 with the movement of the material 20, the signal from the trigger sensor 25 that detects the movement of the material 20 is received by the pulse generator 35 via the cable 30 and the laser A signal considering the jitter of the oscillator 55 is sent to the laser oscillator 55 via the cable 80, and a signal considering the shutter opening / closing time and the opening time of the CCD camera 70 is sent to the CCD camera 70 via the cable 75. Light emitted from the laser oscillator 55 passes through the optical fiber 50, enters the microscope 45, and is collected as probe light 40 at a fixed position on the friction surface. The light reflected on the processing surface returns to the microscope 45 through the same optical path, but is separated from the probe light and enters the CCD camera 70 to form an image. The image enters the computer 60 through the cable 65 as an electric signal, and is sequentially recorded and stored as a still image. After the test is completed, the recorded / stored image group is transferred to the analysis computer 90, and after performing position correction and brightness correction, processing for feature extraction is performed. This processing can be shown, for example, in Table 1 below.

Figure 2004325438
Such feature comparison is performed in an actual machine and a plurality of test machines, and each is compared in a feature matching process.

本発明について実施例を用いてさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1)
2−1 レーザーストロボ応用摩擦面観察システム
摩擦面の観察システムの構成を紹介する。本システムの特徴は、摩擦面観察に必要なプローブ光にパルスYAGの2倍高調波(波長:532nm、パルス幅:5nsec)を用いた点にある。この光を顕微鏡に導入し、摩擦面からの反射光を顕微鏡内に戻しCCDカメラによって画像をコンピューターに取り込んでいる。試験片の運動からトリガー信号をとり、パルスジェネレーターを介してレーザー発振器及びCCDカメラに送っている。これによってレーザーは試験片の運動に連動して光を照射し、CCDカメラのシャッターが開く機構となっている。レーザー光は光ファイバーによって伝送している。光は顕微鏡の対物レンズを出た後直接またはミラーを通して荷重方向(試験片の運動方向と垂直な方向)から摩擦面に照射され、摩擦面から反射した光が顕微鏡内に戻り、CCDカメラに到達する。このシステムでは顕微鏡を取り替えることにより、観察倍率は5倍から250倍まで可変である。
2−2 実験条件
摩擦試験機には高速往復動摩擦試験機を用いた。試験片往復速度は600rpm(10Hz)、ストローク50mmである。試験片形状は14x17x70mmのブロックで、相手材形状は直径8mm長さ23mmの円柱である。材料にはSS400,FC250,S45Cをそれぞれ対で用いた。試験片はエメリー紙により仕上げ研摩をした後、アセトンと石油ベンジンの混合液で3回超音波洗浄し、デシケーターで保管した。摩擦試験では、潤滑油を25ml用いた。所定の荷重にて60rpmで10分間のならし運転を行った後回転数を上げ600rpmにして画像の取り込みと摩擦係数の記録を行った。試験時間を30分間としこの間連続して10Hzで画像を640x480画素256階調で記録蓄積した。これは静止画像18000枚分である。荷重は30分後の摩擦面の違いを考え、SS400とS45Cでは24.5, 49, 98Nの3条件で、FC25に対しては49, 73.5, 98Nの3条件とした。観察結果の画像の倍率は、5倍または35倍とした。
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(Example 1)
2-1 Laser strobe applied friction surface observation system The configuration of the friction surface observation system is introduced. The feature of this system is that the probe light necessary for observing the friction surface uses the 2nd harmonic (wavelength: 532 nm, pulse width: 5 nsec) of pulse YAG. This light is introduced into the microscope, the light reflected from the friction surface is returned to the microscope, and the image is captured by a CCD camera into a computer. The trigger signal is taken from the movement of the test piece and sent to the laser oscillator and CCD camera via the pulse generator. This allows the laser to emit light in conjunction with the movement of the test piece, opening the CCD camera shutter. Laser light is transmitted by an optical fiber. After the light exits the microscope objective lens, the light is applied to the friction surface directly or through a mirror from the load direction (perpendicular to the specimen movement direction), and the light reflected from the friction surface returns to the microscope and reaches the CCD camera I do. In this system, the observation magnification is variable from 5 times to 250 times by replacing the microscope.
2-2 Experimental conditions A high-speed reciprocating friction tester was used as a friction tester. The reciprocating speed of the test piece is 600 rpm (10 Hz) and the stroke is 50 mm. The shape of the test piece is a block of 14x17x70mm, and the shape of the mating member is a cylinder having a diameter of 8mm and a length of 23mm. SS400, FC250 and S45C were used as a pair for each material. The test piece was finish-polished with emery paper, ultrasonically washed three times with a mixed solution of acetone and petroleum benzine, and stored in a desiccator. In the friction test, 25 ml of lubricating oil was used. After performing a running-in operation at 60 rpm for 10 minutes under a predetermined load, the rotation speed was increased to 600 rpm, and the image was taken in and the friction coefficient was recorded. The test time was 30 minutes, and during this period, images were continuously recorded and accumulated at 10 Hz at 256 gradations of 640 × 480 pixels. This is equivalent to 18000 still images. Considering the difference in the friction surface after 30 minutes, the load was set to 3 conditions of 24.5, 49, 98N for SS400 and S45C, and 3 conditions of 49, 73.5, 98N for FC25. The magnification of the image of the observation result was 5 times or 35 times.

(実施例2)
FC250の試験片に対しFC250のピンで荷重98Nの条件で摩擦試験を行った場合の画像を結果の一例として示す。図2は30分間の試験後の試験片表面である。
試験片は激しく摩耗し筋や凸凹が形成された。このような摩耗形態にいたる過程を低倍率で観察した結果の一部を試験開始からの経過時間順に図3(a)〜(f)に示す。図3(a)には画像取り込み時の試験片運動方向を、図3(f)にはスケールを入れた。またそれぞれの画像には特徴的な筋を白抜きで示した。
(Example 2)
An example of a result when a friction test is performed on a test piece of FC250 with a pin of FC250 under a load of 98 N is shown as an example of the result. FIG. 2 shows the specimen surface after the test for 30 minutes.
The test piece was severely worn, and streaks and irregularities were formed. Some of the results of observing the process leading to such abrasion mode at low magnification are shown in FIGS. 3 (a) to 3 (f) in the order of elapsed time from the start of the test. FIG. 3 (a) shows the test piece movement direction during image capture, and FIG. 3 (f) shows the scale. Characteristic streaks are outlined in each image.

摩擦試験開始直後(図3(a))には無数の線が運動方向と平行に存在することが認められる。比較的特長的な線(図3(a) の[1]と[2])が170秒後の画像(図3(b))では、幅が広くはっきりとした線として認められた。また、この図には新たに[3]で示した線が現れた。この直後に摩擦面は大きく変化した。
図3(c)にはこれまでに無い線が現れた。その後摩擦面は試験終了(図3(f):1800秒後)まで大きな変化は無かった。図3(c)から図3(f)では注目すべきポイントや線に共通のマークをつけた([4][5][6])。まず図3(c)の[4]のポイントであるが、この時点ではうすい数本の線のみが観察できる。5秒後の図3(d)ではこのポイントに1mm程度の大きさの黒い影が認められる。画面上の黒い影は反射光が周りに比べて少なかったところであり、その原因の一つとして摩擦面にできたくぼみが考えられる。この影は図3(e)では観察できたが、図3(f)ではほとんど認められなかった。
図3(c)の[5][6]の線は[4]とは逆に明るく見える。これはその周辺と比べ光の反射が多かったところで、回りに比べ高くなっている、または平らになっている、などの理由が考えられる。この場合も[4]のポイント同様時間的に変化し、幅が広がったり連続的な線になったりといった挙動を示した。
また、取り込んだ画像を1枚1枚見比べていくことも重要であるが、全体の画像の変化や画像に現れる特徴的な変化を追跡・解析することも重要であると考えられる。そこで、これらの画像の初期の変化に注目し、大きな変化の認められた20〜200secまでの2000枚の画像のうち10sec毎の180枚の画像を用いて、初期50枚の画像の平均像を基準とした画像間の相互相関を計算した結果を図4に示す。
Immediately after the start of the friction test (FIG. 3 (a)), it is recognized that countless lines exist parallel to the direction of movement. Relatively characteristic lines ([1] and [2] in Fig. 3 (a)) were recognized as wide and clear lines in the image (Fig. 3 (b)) after 170 seconds. Also, a new line indicated by [3] appears in this figure. Immediately after this, the friction surface changed significantly.
An unprecedented line appears in FIG. 3 (c). Thereafter, the friction surface did not change significantly until the end of the test (FIG. 3 (f): after 1800 seconds). In FIG. 3 (c) to FIG. 3 (f), a common mark is attached to a point or a line to be noted ([4], [5], and [6]). First, at point [4] in FIG. 3 (c), at this point only a few thin lines can be observed. In FIG. 3 (d) after 5 seconds, a black shadow having a size of about 1 mm is observed at this point. The black shadow on the screen is where the reflected light is less than the surroundings, and one of the causes may be a depression formed on the friction surface. This shadow could be observed in FIG. 3 (e), but was hardly recognized in FIG. 3 (f).
The lines [5] and [6] in FIG. 3 (c) appear brighter, contrary to [4]. This may be because, for example, the light is reflected more than its surroundings and is higher or flatter than its surroundings. In this case as well, it changed over time, as in the point [4], and exhibited behaviors such as widening and continuous lines.
It is also important to compare the captured images one by one, but it is also important to track and analyze changes in the overall image and characteristic changes that appear in the images. Therefore, paying attention to the initial changes of these images, an average image of the initial 50 images is obtained by using 180 images every 10 seconds out of the 2000 images from 20 to 200 seconds where a large change is recognized. FIG. 4 shows the result of calculating the cross-correlation between the reference images.

相互相関の計算には次式を用いた。 The following equation was used to calculate the cross-correlation.

式1Equation 1

Figure 2004325438
ただし、rxyは相互相関係数、Sは分散を示しそれぞれ次式で表される。
Figure 2004325438
Here, r xy indicates the cross-correlation coefficient, and S indicates the variance, each of which is represented by the following equation.

式2Equation 2

Figure 2004325438
ここで、Sxは平均画像の各ピクセルに対応した階調列の分散、Syは各画像の各ピクセルに対応した階調列の分散、Sxyは平均画像と各画像の各ピクセルに対応した階調列の共分散を示す。
この相関係数計算式を用いて画像を解析した結果が図4である。図4(上段)は、実画像の相関を示している。この相関係数の変化を見ると安定した変化を示した後、ゆっくりとした相関係数の低下があり、急激な低下へと発展した。これは摩擦係数の変化と極めて類似の変化を示している。
相関係数の変化からも、摩擦開始から175秒後の画像に現れた変化がはっきりと認められる。30秒後までの相関が悪い原因は平均画像がぼやけた画像であったためで、本質的ではないと考えられる。注目すべき点は、100秒後付近から相関が少しずつ落ち始め170秒後付近で大きく落ち込む点である。図3(a) と図3(b)の変化はわずかではあるが、[1]や[2]の線がシャープになり、[3]の線が現れるなどの変化があった。これらの変化が相関の緩やかな低下につながったと考えられる。
一方、図4(下段)は、同じ画像群をそれぞれフーリエ変換し周期性の変化を調べた結果である。フーリエ変換後の実部の相関係数変化を「○」で、虚部を「X」でプロットして示した。相関係数の変化は、実部と虚部、さらには実画像の係数変化ともほぼ同じであるが、フーリエ変換後の相関係数の時間変化には、実画像の相関係数の時間変化で見られたゆっくりとした低下の間に、急激な相関係数の低下が認められ、この間に画像の周期性に乱れがあったことがわかった。
Figure 2004325438
Here, Sx is the variance of the gradation sequence corresponding to each pixel of the average image, Sy is the variance of the gradation sequence corresponding to each pixel of each image, and Sxy is the gradation corresponding to each pixel of the average image and each image. Show column covariance.
FIG. 4 shows the result of analyzing the image using the correlation coefficient calculation formula. FIG. 4 (upper part) shows the correlation between real images. Looking at the change in the correlation coefficient, the correlation coefficient showed a stable change, and then there was a slow decrease in the correlation coefficient, which led to a sharp decrease. This shows a change very similar to the change in the coefficient of friction.
The change in the correlation coefficient also clearly shows the change that appeared in the image 175 seconds after the start of friction. The cause of the poor correlation up to 30 seconds later is that the average image was a blurred image, which is considered to be not essential. The point to be noted is that the correlation starts to decrease little by little after about 100 seconds, and falls greatly around 170 seconds later. Although the changes in FIGS. 3 (a) and 3 (b) were slight, there were changes such as the lines [1] and [2] being sharpened and the line [3] appearing. It is thought that these changes led to a gradual decrease in correlation.
On the other hand, FIG. 4 (lower part) shows the result of examining a change in periodicity by Fourier transforming the same image group. The change in the correlation coefficient of the real part after the Fourier transform is plotted with “○”, and the imaginary part is plotted with “X”. The change of the correlation coefficient is almost the same as the change of the real part and the imaginary part, and also the change of the coefficient of the real image. During the slow decrease observed, a sharp decrease in the correlation coefficient was observed, indicating that the periodicity of the image was disturbed during this time.

本発明の実施に用いたレーザーストロボ応用摩擦面観察システムの概要。1 is an outline of a laser strobe applied friction surface observation system used in the embodiment of the present invention. FC250を用いた摩擦試験片の表面写真。The surface photograph of the friction test piece using FC250. 本発明で用いた観察システムにより取り込んだFC250摩擦面の画像。2 is an image of a friction surface of FC250 captured by the observation system used in the present invention. 摩擦面画像の相関関係変化図。FIG. 4 is a diagram illustrating a correlation change of a friction surface image.

Claims (5)

試験評価中の被試験評価物の表面状態変化を、被試験物の同一場所において観察・画像記録を間歇的に行い、画像解析し、特徴抽出を行う方法において、実際の機械における観察・画像記録及び画像解析・特徴抽出を行った結果と、試験機における同項目の結果について、少なくとも1つの画像の特徴または特徴の時間変化について相互関係の変化を求め、比較することによる試験状態の評価方法。 Observation and image recording on the actual machine in the method of intermittently observing and recording the surface condition of the DUT during test evaluation at the same location of the DUT, analyzing the image, and extracting features And a method of evaluating a test state by obtaining a change of a correlation between at least one image feature or a time change of the feature and comparing the result of the image analysis and feature extraction with the result of the same item in the tester. 複数の試験機で請求項1に記載した評価方法を行い、相互関係の変化が一致したものを、複数の試験機から選び出す試験機の評価方法。 2. A method for evaluating a testing machine, wherein the testing method according to claim 1 is performed by a plurality of testing machines, and a test machine having a change in mutual relationship selected from the plurality of testing machines. 画像の特徴が、少なくとも1画素の明るさの強弱または強弱変化の周期性である請求項2に記載した試験機の評価方法。 3. The method according to claim 2, wherein the feature of the image is a periodicity of the intensity of the brightness of at least one pixel or a change in the intensity. 複数の試験条件で請求項1に記載した評価方法を行い、相互関係の変化が一致したものを、複数の試験条件から選び出す試験条件の評価方法。 A method for evaluating test conditions, wherein the evaluation method according to claim 1 is performed under a plurality of test conditions, and a test condition having a change in mutual relationship is selected from the plurality of test conditions. 画像の特徴が、少なくとも1画素の明るさの強弱または強弱変化の周期性である請求項4に記載した試験条件の評価方法。

The method of evaluating test conditions according to claim 4, wherein the feature of the image is a periodicity of a change in brightness or a change in brightness of at least one pixel.

JP2004060614A 2003-04-07 2004-03-04 Test condition evaluation method, test machine, and test condition evaluation method. Expired - Lifetime JP3793818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004060614A JP3793818B2 (en) 2003-04-07 2004-03-04 Test condition evaluation method, test machine, and test condition evaluation method.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003103427 2003-04-07
JP2004060614A JP3793818B2 (en) 2003-04-07 2004-03-04 Test condition evaluation method, test machine, and test condition evaluation method.

Publications (2)

Publication Number Publication Date
JP2004325438A true JP2004325438A (en) 2004-11-18
JP3793818B2 JP3793818B2 (en) 2006-07-05

Family

ID=33512959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004060614A Expired - Lifetime JP3793818B2 (en) 2003-04-07 2004-03-04 Test condition evaluation method, test machine, and test condition evaluation method.

Country Status (1)

Country Link
JP (1) JP3793818B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042066A (en) * 2014-08-19 2016-03-31 株式会社オーエム製作所 Machine tool
CN105738240A (en) * 2016-02-29 2016-07-06 上海交通大学 Quality evaluation method of CFRP cut and machined surface at full-range fiber orientation angle
JP2018025518A (en) * 2016-08-12 2018-02-15 学校法人 芝浦工業大学 Method for measuring deformation property value of material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915731B (en) * 2010-06-18 2012-06-27 南京工业大学 Characterization method of phase dispersing uniformity of composite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042066A (en) * 2014-08-19 2016-03-31 株式会社オーエム製作所 Machine tool
CN105738240A (en) * 2016-02-29 2016-07-06 上海交通大学 Quality evaluation method of CFRP cut and machined surface at full-range fiber orientation angle
CN105738240B (en) * 2016-02-29 2018-07-27 上海交通大学 The evaluation method of the CFRP machining surface quality of gamut fibrinopeptides A
JP2018025518A (en) * 2016-08-12 2018-02-15 学校法人 芝浦工業大学 Method for measuring deformation property value of material

Also Published As

Publication number Publication date
JP3793818B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
Devillez et al. Cutting tool crater wear measurement with white light interferometry
Dhanasekar et al. Evaluation of surface roughness based on monochromatic speckle correlation using image processing
CN101050949A (en) Measuring system and its measuring method for large field object micro surface three dimension topography
US11776283B2 (en) Method for the cytometric analysis of cell samples
WO2009116359A1 (en) Contact area measurement device and method for measuring contact area
JP2012131023A (en) Cutting tool abnormality sensing apparatus
US6873722B2 (en) Method of qualitatively ascertaining the position and degree of severity of chatter marks in a fine-machined surface of a workpiece
AT504940A1 (en) METHOD AND APPARATUS FOR THE OPTICAL MEASUREMENT OF THE TOPOGRAPHY OF A SAMPLE
Bodini et al. Evaluation of wear in rolling contact tests by means of 2D image analysis
JP3793818B2 (en) Test condition evaluation method, test machine, and test condition evaluation method.
JP2005189069A (en) Method and apparatus for measuring surface shape
Guo et al. Preliminary study of phase-shifting strobo-stereoscopy for cutting tool monitoring
Hashmi et al. Surface Characteristics Measurement Using Computer Vision: A Review.
Zhang Detection and monitoring of wear using imaging methods
Kumar et al. Oil condition monitoring for HEMM–a case study
CN109883355B (en) Method and device for automatically searching interference fringes
Otieno et al. Imaging and wear analysis of micro-tools using machine vision
Fischer et al. A lateral-scanning white-light interferometer for topography measurements on rotating objects in process environments
JP2007071790A (en) Device and method for diagnosing operation of mems
Zhang et al. A vision system for online wear detection
Priya et al. Machine vision for surface roughness assessment of inclined components
Moreas et al. Advanced sensor for on-line topography in continuous annealing lines
Zhu Machine vision based smart machining system monitoring
Kwon et al. Visualization and measurement
Świłło et al. Industrial Application of Surface Crack Detection in Sheet Metal Stamping Using Shift-and-Add Speckle Imaging

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350