JP2004324822A - Liquid-sealing vibration-resistant device - Google Patents

Liquid-sealing vibration-resistant device Download PDF

Info

Publication number
JP2004324822A
JP2004324822A JP2003123012A JP2003123012A JP2004324822A JP 2004324822 A JP2004324822 A JP 2004324822A JP 2003123012 A JP2003123012 A JP 2003123012A JP 2003123012 A JP2003123012 A JP 2003123012A JP 2004324822 A JP2004324822 A JP 2004324822A
Authority
JP
Japan
Prior art keywords
internal pressure
liquid
orifice
resonance
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003123012A
Other languages
Japanese (ja)
Other versions
JP4341932B2 (en
Inventor
Atsushi Saito
淳 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamashita Rubber Co Ltd
Original Assignee
Yamashita Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamashita Rubber Co Ltd filed Critical Yamashita Rubber Co Ltd
Priority to JP2003123012A priority Critical patent/JP4341932B2/en
Publication of JP2004324822A publication Critical patent/JP2004324822A/en
Application granted granted Critical
Publication of JP4341932B2 publication Critical patent/JP4341932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To easily control inner pressure absorbing performance by preparing an inner pressure adjusting means in a liquid-sealing vibration-resistant device. <P>SOLUTION: A small assembled body 1 for an engine mount is provided with a first mounting member 2, a second mounting member 3 and an insulator 4, and is integrated with a bracket 5 by press-fitting it into the bracket 5. A hole oriffice 13 is arranged on a partition member 7, and an inner pressure absorbing membrane 27 is arranged on a side wall surrounding a primary fluid chamber 6. An adjusting chamber 28 surrounded by a second diaphragm 29 is arranged on a side opposite to the primary fluid chamber 6 of the inner pressure absorbing membrane 27, and magnetic viscous fluid 30 enclosed in the adjusting chamber 28 is changed at a coefficient of viscosity by means of magnetic force of a coil 32. Thus, an inner pressure adjusting means 37 is organized by these objects, mobility of the inner pressure absorbing membrane 27 is controlled while the coil 32 is changed at magnetic force, and inner pressure absorbing ability is also changed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は液封防振装置に係り、特に内圧を容易に制御できるようにしたものに関する。
【0002】
【従来の技術】
振動源側へ取付けられる第1の取付部材と、振動受側へ取付けられる第2の取付部材と、これらの間に介在して振動を吸収するインシュレータと、このインシュレータが壁の一部をなす液室とを備え、この液室を主液室及び副液室に区画してオリフィス通路を介して連絡するとともに、主液室を囲む璧部の一部に内圧吸収膜を設け、この膜剛性を剛又は柔に切り換えて変化させるようにした内圧吸収型液封エンジンマウントは公知である。この形式のエンジンマウントにおいては、内圧吸収膜を柔にすれば、内圧変化を吸収して低動バネとなり、剛にすればエンジンマウントにおける内部圧力の変化により発生するバネである拡張バネを高めてオリフィス通路に対する流量を増大させ、これによって共振効率を大きくして振動伝達を少なくするようになっている。
【0003】
このような膜剛性可変手段は、例えば、内圧吸収膜の主液室と反対側に負圧室を設けて、この負圧室内を負圧源又は大気へ接続切替えすることにより、内圧吸収膜を壁面等へ負圧で吸着固定すると剛になり、大気開放してフリー状態にすると柔になる。他にモーター等の機械的手段で強制的に内圧吸収膜を弾性変形させることも公知である(特許文献1・2参照)。さらに主液室と副液室の間に設けた弾性膜の周囲を支持部材で支持するとともに、この支持部材の支持力を磁性粘性流体の粘度変化により変化させるようにしたものもある(特許文献3参照)。
【0004】
【特許文献1】特開平10−325443号公報
【特許文献2】特開2003−4090号公報
【特許文献3】特開2002−213517号公報
【0005】
【発明が解決しようとする課題】
ところで、内圧吸収膜の駆動手段として吸気負圧を利用するものは、空気通路の配管や切換バルブが必要となり、装置全体が比較的複雑かつ重量が増加する。またソレノイド等の機械的手段を用いる場合も同様である。そのうえ、無段階かつ連続的に制御しようとすれば、吸気負圧による制御は困難であり、ソレノイド等の機械的手段によることになるが、この場合には高精度で作動する装置が必要となる。
そこで、本願発明は比較的簡単かつ軽量な構造で内圧制御ができるようにすることを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するため本願の液封防振装置に係る請求項1は、振動源側へ取付けられる第1の取付部材と、振動受側へ取付けられる第2の取付部材と、これらの間に介在して振動を吸収するインシュレータと、このインシュレータが壁の一部をなす液室とを備え、この液室を共振オリフィスで連絡される主液室及び副液室に区画した液封防振装置において、
前記主液室に対する内圧調整手段を設け、この内圧調整手段により内圧吸収能を調整するとともに、
前記内圧調整手段は、前記作動液の液圧を受けて変形又は変位する第1可動部と、この第1可動部によって少なくとも璧部の一部が形成された調整室と、この調整室内へ封入された磁性粘性流体と、調整室の容積変化を抑制するべく変形又は変位する第2可動部と、前記磁性粘性流体の粘度を変化させるために磁力を発生するコイルとを備え、
磁力変化で前記磁性粘性流体の粘度を変化させることにより前記第1可動部の変形又は変位量を変化させて前記内圧調整手段の内圧吸収能を制御することをことを特徴とする液封防振装置。
【0007】
請求項2は上記請求項1において、前記磁性粘性流体の粘度を連続的又は多段階に変化させることにより、前記内圧吸収能を連続的又は多段階に変化させることを特徴とする。
【0008】
請求項3は上記請求項1において、前記調整室内に前記磁性粘性流体の流動抵抗手段を設けたことを特徴とする。
【0009】
請求項4は上記請求項1において、前記第1可動部は弾性変形して内圧変化を吸収する弾性膜からなる内圧吸収膜であり、前記第2可動部はダイアフラムであり、少なくとも一部が大気開放されていることを特徴とする。
【0010】
請求項5は上記請求項1において、前記共振オリフィスがダンピングオリフィスであることを特徴とする。
【0011】
請求項6は上記請求項1において、前記共振オリフィスは、相対的に共振周波数が高低に異なる第1及び第2オリフィスを備え、共振周波数がより高い方の第2オリフィスが開閉式であることを特徴とする。
【0012】
請求項7は上記請求項1において、前記主液室と所定の開口径を有して連通するとともに開口部を弾性膜にて囲むことにより、所定の周波数にて液柱共振を発生するホールオリフィスを設けたことを特徴とする。
【0013】
【発明の効果】
請求項1によれば、内圧調整手段として、第1可動部と、この第1可動部との間に調整室を形成する第2可動部と、この調整室内に封入された磁性粘性流体と、この磁性粘性流体の粘度を変化させる磁力を発生するためのコイルとを備えたので、第1可動部が変位又は変形をしようとすると、それに伴う調整室の容積変化を第2可動部の変形又は変位で抑制するとともに第1可動部の変位又は変形を許容する。また、コイルによる磁力を変化させると、磁性粘性流体の粘度が変化して、第1可動部の動き易さが変化する。その結果、内圧変化に対する第1可動部の弾性変形量が変化して内圧を吸収する能力、すなわち内圧吸収能が変化する。したがって、この内圧調整手段によれば、磁力を変化させるだけで自在に内圧調整が可能になる。そのうえ、磁力の調整だけで制御できるから、迅速かつ容易に制御できる。
【0014】
請求項2によれば、磁性粘性流体の粘度を連続的又は多段階に変化させたので、内圧吸収能を連続的又は多段階に変化させて内圧吸収能を連続的又は多段階に変化させることができる。しかも、このような制御は磁力を変化させるだけで、段階的にも、さらには無段階かつ連続的にも、自在に内圧調整可能になる。そのうえ、磁力の調整だけで制御できるから容易に制御できる。
【0015】
請求項3によれば、調整室内に磁性粘性流体の流動抵抗手段を設けたので、粘度変化に対して膜剛性の変化を増幅させることができる。
【0016】
請求項4によれば、第1可動部が弾性変形して内圧変化を吸収する弾性膜からなる内圧吸収膜であり、第2可動部がダイアフラムであり、少なくとも一部が大気開放され、その変形によって第1可動部である弾性膜の変形を可能とし、それに伴う調整室の容積変化を抑制する。また、第1可動部及び第2可動部をそれぞれ膜部材とすることによりこれらを容易に形成できる。
【0017】
請求項5によれば、共振オリフィスがダンピングオリフィスである液封防振装置に適用すれば、内圧調整手段により、ダンピングオリフィスの共振周波数域で内圧吸収能を下げれば、ダンピングオリフィスの共振効率を上げて乗り心地領域の振動に対して高減衰を実現し、その他の領域では内圧吸収能を上げることにより低動バネ化を実現できる。しかも磁性粘性流体の粘度変化を利用する内圧調整手段により、このような制御を容易に実現できる。特に、ダンピングオリフィス以外の他の共振コントロール手段を有さない液封防振装置において効果的になる。
【0018】
請求項6によれば、共振オリフィスが共振周波数の高低に異なる第1及び第2オリフィスを備え、共振周波数の高い第2オリフィスを開閉式にした液封防振装置に適用すると、第2オリフィスの開閉に関連させて内圧調整することができる。すなわち第2オリフィスの共振周波数域において、第2オリフィスが開かれたとき内圧吸収能を下げて第2オリフィスの共振効率を上げることにより高位相かつ低動バネ化(動バネ曲線の極小値として出現するボトムを下げること)ができるとともに、他の領域で第2オリフィスが閉じられた状態でも内圧吸収により低動バネ化できる。またこのときも、第1オリフィスの共振を必要とする領域では、内圧調整手段により内圧吸収能を下げて第1オリフィスの共振効率を上げることができる。しかも磁性粘性流体の粘度変化を利用する内圧調整手段により、このような制御を容易に実現できる。
【0019】
請求項7によれば、ホールオリフィスを設けたので、内圧吸収能を調整することにより、ホールオリフィスの共振周波数及び位相を変化させることができる。その結果、ホールオリフィスに発生する液柱共振は、共振周波数及び位相が連続的又は多段階に追随変化して広範囲における共振周波数及び位相の制御が可能になる。特に位相の広範囲な制御によってベクトル成分の振動を吸収して振動伝達を低減させることができる。しかも、磁性粘性流体の粘度変化を利用する内圧調整手段により、このような制御を容易に実現できる。
【0020】
【発明の実施の形態】
以下、図面に基づいて実施形態を説明する。図1〜4は第1実施例に係り、図1は液封防振装置の全体断面図、図2は作動原理を説明する要部の拡大断面図、図3は拡張バネの変化に伴う共振点の変化を示す図、図4は拡張バネの変化に伴う位相の変化を示す図である。
【0021】
図1において、エンジンマウント小組体1は、第1の取付部材2,第2の取付部材3及びインシュレータ4を備える。第1の取付部材2は図示しないエンジン等の振動源側へ連結され、第2の取付部材3はブラケット5に嵌合され、ブラケット5は同じく図示しない車体等の振動受側へ連結される。インシュレータ4は、ゴムからなる略円錐状をなす公知の防振ゴムである。但し、ゴム及び他のエラストマー等の適宜弾性材料からなる略円錐状をなす公知の弾性防振部材とすることができ、第1の取付部材2と第2の取付部材3の間を防振的に連結する。
【0022】
第1の取付部材2,第2の取付部材3及びインシュレータ4及び仕切部材7に囲まれた内部に主液室6が形成され、ここに公知の非圧縮性の作動液が封入されている。主液室6は仕切部材7の外周部に形成されたダンピングオリフィス8を介して副液室9と連通されている。ダンピングオリフィス8は約10Hz前後の低周波数小振幅の乗り心地に影響する通常走行時の振動に対して高減衰にできる。副液室9は第1ダイアフラム10によって覆われている。
【0023】
仕切部材7は樹脂等の適宜材料からなるデイスク状の部材であり、その中央部に開口11が形成され、ここに弾性膜12が取り付けられている。この開口11と弾性膜12は主液室6における液体振動により、所定周波数(本実施例の場合約60Hz)で液柱共振するホールオリフィス13を形成してある。この共振周波数域は発進時の振動周波数域である。ホールオリフィスとはオリフィス通路の一端側を弾性膜で覆うことにより、主液室6の液体振動と弾性膜の振動とによってオリフィス通路内に液体流動を発生させて液柱共振を生じさせる形式の共振オリフィスである。
【0024】
ダンピングオリフィス8は、仕切部材7の外周部に径方向外方へ開放されて形成され、その一部に形成された入り口14aで主液室6と連通し、出口14bで副液室9と連通する。また、仕切部材7の外周部に径方向外方へ開放されるダンピングオリフィス8の開口部は第1ダイアフラム10の外周部と連続する筒状弾性壁15に密接してシールされる。筒状弾性壁15はインシュレータ4と同様のゴム等からなる適宜弾性部材からなり、第2の取付部材3の内周面及び外周面を覆っている。
【0025】
第2の取付部材3は、金属等からなる筒状の部材であり、ダンピングオリフィス8の外周側を囲む小径部16と主液室6を囲む大径部17を備え、図の上端部にはフランジ18が形成され、ブラケット5の上端部に重なる。さらにこのフランジ18にはインシュレータ4の下部に一体化されているリング金具19が重なり、ここでインシュレータ4、第2の取付部材3及びブラケット5がリベット等の適宜方法で結合一体化される。小径部16の下端部は底部20をなし、ブラケット5の内面に形成された段部21上へ置かれて位置決めされる。
【0026】
筒状弾性壁15の内部には仕切部材7が挿入され、その外周下部が底部20によって形成される段部22の上へ置かれて位置決めされる。この状態で第2の取付部材3の上端部におけるフランジ18とインシュレータ4のリング金具19とを図示しない曲げカシメ等で一体化することによりエンジンマウント小組体1が構成される。このエンジンマウント小組体1をブラケット5へ挿入してフランジ18をブラケット5の上端部とリベット等の適宜手段で一体化することにより、エンジンマウントが組み立てられる。
【0027】
仕切部材7の外周部には図の上方へ向かって突出する環状壁23が一体に形成され、この環状壁23と大径部17を覆う筒状弾性壁15のとの間に作動液が充填された環状室24が形成されている。環状壁23は周方向の一部に切り欠き部25を備え、ここで環状室24は主液室6と連通している。
【0028】
さらに、大径部17の切り欠き部25と対応する部分には開口26が形成され、筒状弾性壁15のうち開口26部分が内圧吸収膜27となっている。内圧吸収膜27は筒状弾性壁15と連続一体であってゴム等の適宜弾性材料からなる弾性膜であり、主液室6の内圧変動を弾性変形により吸収する。なお、筒状弾性壁15と別体に形成することもできる。
【0029】
図2に示すように、内圧吸収膜27の主液室6と反対側には調整室28が第2ダイアフラム29で囲まれて形成されている。この調整室28の内部には公知の磁性粘性流体30が封入されている。第2ダイアフラム29は調整室28と反対側の面のうち少なくとも一部が大気開放されており、外周部は固定リング31と一体化され、この固定リング31にコイル32が取り付けられている。固定リング31の外周部はブラケット5の外側面へ重ねられてリベット等の適宜手段で一体に取り付けられる。
【0030】
コイル32は調整室28の周囲を囲み、磁力を発生して磁性粘性流体30の粘度を、例えば、水様の状態からシャーベット状態まで瞬時に変化させることができるようになっている。コイル32の発生する磁力は、エンジンの回転数等の適宜センサー量に基づいて図示しない制御装置により連続的又は多段階に変化して発生するようになっており、この磁力の大きさに応じて磁性粘性流体30の粘度も変化するようになっている。本実施例では粘度が高中低の3段階に変化するように設定されている。この設定については後述する。
【0031】
磁性粘性流体30の粘度が高くなると、内圧吸収膜27は弾性変形しにくくなるので内圧吸収能が低くなり、防振装置としての内部圧力の変化により発生するバネである拡張バネを大きくし、ホールオリフィス13の共振周波数を高くする。
逆に、粘度を下げると、内圧吸収膜27は弾性変形容易になって内圧吸収能が高くなるので、拡張バネが小さくなり、ホールオリフィス13の共振周波数を低くくする。
【0032】
調整室28内には抵抗板33が設けられ、その外周部34はコイル32と一体化され、中央部には絞り通路35が形成され、磁性粘性流体30がこの絞り通路35を通過するとき、粘度抵抗によって減衰力を生じるようになっている。絞り通路35の開口径は、磁性粘性流体30が減衰力を生じることができる範囲で任意に設定できる。なお絞り通路35は比較的小径の複数の穴を設けることによって形成することができる。
【0033】
抵抗板33の外周部34とコイル32はブラケット5の側壁に形成された取付穴36に嵌合して固定される。コイル32の内周面側に重なる金具は、固定リング31であり、第2ダイアフラム29の外周部を焼き付け等で一体化してある。固定リング31の外周部はコイル32の外側面に重なる。固定リング31と外周部34
の間は適宜な手段でシールされる。
【0034】
また、固定リング31の表面に対する第2ダイアフラム29の一部による被覆部分を少なくして、その多くの部分が調整室28内へ直接臨むことにより、磁力の損失を防止している。なお、内圧吸収膜27、調整室28、第2ダイアフラム29、磁性粘性流体30及びコイル32をまとめて内圧調整手段37とする。また、内圧調整手段37を構成する内圧吸収膜27と第2ダイアフラム29の主液室6に対する位置関係を内外逆にしてもよい。
【0035】
次に、内圧吸収膜27における膜剛性の設定方法を説明する。図3は3段階の拡張バネにおけるホールオリフィス13の共振点変化を示す図であり、横軸に周波数、縦軸に動バネを示し、各曲線の極小点が共振点である。この図から明らかなように、拡張バネが小−中−大と変化すると、それぞれの共振点が低−中−高になる。
【0036】
この拡張バネは内圧調整手段37の内圧吸収能を変化させることにより実現でき、この内圧吸収能は内圧吸収膜27の動き易さの程度で決まる。さらに内圧吸収膜27の動き易さは、調整室に封入されている磁性粘性流体の流動性によって決まる。ここで粘度流動における流動性の指標を流動抵抗で表現すれば、流動抵抗が大きければ、内圧吸収膜27が動きにくくなり、拡張バネが大きくなる。一方、流動抵抗が小さければ、内圧吸収膜27が動き易くなり、拡張バネが小さくなる。
【0037】
また、流動抵抗の大きさは、抵抗板33の絞り通路35が一定であれば、磁性粘性流体の粘度で決まることになる。したがって、コイル32で発生する磁力の強さを調節して、磁性粘性流体の粘度を変化させれば、流動抵抗が変化して内圧吸収膜27の動き易さが変化し、それに対応する内圧吸収能が変化することになる。その結果、これに対応する拡張バネの変化が得られる。
【0038】
ゆえに、コイル32の磁力を変化させれば、自由に内圧吸収能を変化させて、任意の拡張バネを得ることが可能になる。そこで本実施例における内圧調整手段37は、磁力を0及び小・大の3段階に変化させて、拡張バネを小−中−大と3段階に制御できるようにした。なお、磁力変化のさせ方により拡張バネの大きさを多段階にも無段階かつ連続的にも制御できる。
【0039】
例えば、発進時の最大周波数の共振点を実現する拡張バネを与える内圧吸収能を実現する磁力を最大とすれば、拡張バネの中に対しては、磁力を小とし、拡張バネの小に対しては磁力を0とすることにより、磁力を3段階に切替えて共振点を低−中−高と変化させることができる。
【0040】
次に、本実施例の作用を説明する。発進時において、内圧調整手段37のコイル32には通電されず、磁力は当初段階では0に設定され、ホールオリフィス13は比較的低い周波数で液柱共振を発生して入力振動を吸収する。その後、エンジンの回転数が大きくなるにしたがって主液室6への入力振動の周波数が増大し、この周波数の増大に応じてコイル32に通電して電流を増大させることにより、磁性粘性流体30の粘度を上げて内圧調整手段37の内圧吸収能を中及び小へ切替え制御する。
【0041】
これにより、拡張バネを切替え制御して共振点を中又は高へ段階的に変化させる。その結果、低〜高の比較的広い周波数範囲で、拡張バネを3段階に切替え制御し、これに応じてホールオリフィス13の共振点を3段階に変化させて共振領域を広範囲にする。このとき、抵抗板33を設けたので、磁性粘性流体30が絞り通路35を通過するとき発生する減衰力は、粘度変化を増幅したものになる。その結果、内圧吸収能の変化を大きくでき、かつこの内圧吸収能変化を磁性粘性流体の粘度変化だけで形成する場合よりもより高くすることができる。
【0042】
しかも、共振点の変化に応じて位相も変化する。図4はこの位相変化を示す図であり、横軸に周波数、縦軸に位相を示し、各曲線は拡張バネの大−中−小の3段階に対応する位相曲線であり、その極大値が各拡張バネで発生する最大位相である。この図に明らかなように、共振周波数が増大するにしたがって最大位相も波線で示すようにほぼ直線的に増大する。本実施例の予測最大位相は、拡張バネが小−中−大と変化するのに対応して、小−中−大に変化する。
【0043】
この結果、広範囲の周波数域(低〜高)で、比較的大きな位相を発生することができ、位相制御の必要な振動、例えば、車体振動を抑制できる。しかも、このような共振領域の広域化及び比較的大きな位相の発生を、一つのホールオリフィス13だけで実現でき、各共振点に応じた複数のオリフィスを設ける必要がないから、構造が簡単になる。しかもエンジンの回転数に応じて制御すれば、エンジンの運転状況に応じて正確に共振周波数や位相を追随変化させることができる。
【0044】
しかも、内圧調整手段37の内圧吸収能を、内圧吸収膜27が壁の一部をなす調整室28内における磁性粘性流体30の粘度変化で直接制御でき、かつコイル32に対する通電量だけで磁性粘性流体30の粘度を迅速かつ容易に制御できるから、内圧吸収能の制御が迅速・容易になり、かつ正確になる。また、ソレノイドやモーターなどの機械的手段を必要としないので、内圧調整手段37の構造が比較的簡単になる。
【0045】
次に、第2実施例を説明する。なお、前実施例と共通する部分には共通符号を用い、原則として共通部の重複説明は省略すものとする。図5は第2実施例に係る液封防振装置の全体断面図である。
【0046】
図5に示すように、この実施例のエンジンマウントは、仕切部材7が上下部材7a及び7bの上下合わせ構造になっており、その内部にはホールオリフィスに代わってアイドルオリフィス40が設けられている。アイドルオリフィス40は主液室6と副液室9を連通してアイドル時のエンジン振動周波数(約20Hz前後)で液柱共振を発生して低動バネ化することにより、第1の取付部材2側から第2の取付部材3側への振動伝達を低減する。
【0047】
アイドルオリフィス40の副液室9側の出口41は第1ダイアフラム10の中央部に形成された開閉バルブ43で開閉自在であり、アイドル周波数域でのみ開き、それ以外では閉じている。開閉バルブ43は押し付け部材44の伸縮によって開閉される。第1ダイアフラム10は副液室9を覆うが中央に開閉バルブ43を一体化している点が異なる。
【0048】
押し付け部材44と底部45との間に負圧室46が形成され、通気ノズル47を介して吸気負圧と大気とを接続切替えするようになっている。吸気負圧が適用されると、リターンバネ48に抗して図の下方へ移動して開閉バルブ43が出口41を開き、吸気負圧を遮断して大気開放すると、リターンバネ48により図の上方に移動して出口41を閉じる。
【0049】
本実施例では、対向配置された内圧調整手段37が一対で設けられる。各内圧調整手段37の構造は前実施例と同様である。各内圧吸収膜27は仕切部材7を構成する上部部材7aによって形成された環状壁23と主液室6の内壁面との間に形成された環状室24に臨み、環状壁23に対面している。
【0050】
次に、本実施例の作用を説明する。アイドル時には、開閉バルブ43が開いてアイドルオリフィス40が主液室6と副液室9を連通する。同時に各内圧調整手段37における各コイル32に通電して各内圧吸収膜27を最も動きにくくする。このためアイドルオリフィス40に対する液体流量が多くなり共振効率を大きくする。また、アイドル回転数は、ヘッドライトの点灯やエアコンのON・OFFで回転数が変化することが一般的であるが、その場合、内圧吸収能をアイドル回転数に応じて制御することもできる。
【0051】
逆に、アイドル時以外では、開閉バルブ43が閉じ、同時に各内圧調整手段37における各コイル32に通電停止して各内圧吸収膜27を最も動き易くすることにより内圧吸収能を最大にする。このため各内圧吸収膜27が柔の状態になり、主液室6の内圧変動を弾性変形により吸収し、低動バネにする。なお、開閉バルブ43が閉じている状態でも、シェイク振動時には、これを例えばエンジン偏位等を検知するような適宜センサーの信号に基づいて各内圧調整手段37を作動させることにより内圧吸収能を低下させる。このため各内圧吸収膜27が剛の状態になり、拡張バネが上がるため、ダンピングオリフィス8の共振効率が高くなり、高減衰を実現してシェイク振動を効果的に低減させることができる。
【0052】
このように複数の内圧調整手段37を設けると、あるレベルの性能を得るために単独の内圧調整手段37を用いると大きくなりすぎるような場合に、比較的小型の内圧調整手段37を複数用いることにより、要求される性能を容易に実現できる。また、大きな内圧調整手段37を一つだけ設けるよりは小さなものを複数設けた方が強度バランスが良くなる。
【0053】
次に、第3実施例を説明する。図6は第3実施例に係る液封防振装置の全体断面図である。図6に示すように、この実施例のエンジンマウントは、図5のエンジンマウントにホールオリフィス13を設けた点が異なる。すなわち、仕切部材7の側部に通路50を設け、その上端部に形成された主液室6に臨む入り口51をバルブ52で開閉自在とし、このバルブ52をモーター等の駆動手段53により径方向へ進退させて入り口51を開閉する。
【0054】
通路50の副液室9に臨む下端部54には弾性膜12が取り付けられ、この弾性膜12と通路50によってホールオリフィス13を構成する。このホールオリフィス13はバルブ52が開いた状態で主液室6の液体が入力振動により流動すると所定の入力振動数により液柱共振を発生する。この共振周波数は、各内圧吸収膜27が最も柔の状態にて約60Hzとなるように設定する。
【0055】
このため、アイドル周波数まではホールオリフィス13を閉じて前実施例同様に制御し、発進してから各内圧吸収膜27が最も柔の状態にてバルブ52を開く。これにより入力振動が約60Hzになるとホールオリフィス13が液柱共振して入力振動を吸収する。その後さらに入力振動の周波数が高くなれば、前実施例同様に複数の各内圧調整手段37を制御し、第1実施例同様にホールオリフィス13を利用して共振周波数及び位相を制御する。
【0056】
このようにすると、ダンピングオリフィス8、アイドルオリフィス40及びホールオリフィス13並びに複数の内圧調整手段37を用いて、最も広範な周波数域において効率的に防振することができる。
【0057】
次に、第4実施例を説明する。図7は第4実施例に係る液封防振装置の全体断面図であり、図1に対応する。図8は図7の一部を拡大した断面図であり、間に2に対応している。本実施例は、図1及び図2における内圧調整手段の構造及び配置を変更したものに相当する。以下、相違点のみ説明する。なお、同一部分については同一符号を付して説明を省略する。
【0058】
図7及び図8に示すように、この内圧調整手段37は、ブラケット5の内側に収容された配置になっている。第2ダイアフラム29は筒状弾性壁15の一部として、その内側に埋設されている大径部17に設けられた開口26を覆って形成されている。一方、内圧吸収膜27は筒状弾性壁15と別体に形成され、環状壁23の切り欠き部25内へ嵌合されている。
【0059】
内圧吸収膜27の周囲に枠金具60が一体化されている。この枠金具60は全体の断面が略コ字状であって中央に内圧吸収膜27が弾性変形をするための開口60aが形成され、外周部はコイル32の外周部へ重なる。コイル32の内周部には抵抗板33の外周部34が当接固定される。コイル32の内周側は一部が直接調整室28内へ臨み、磁力の損失を防止するようになっている。
【0060】
この状態で組み立てられると、内圧吸収膜27の周囲は、インシュレータ4の下部61、環状壁23のうち切り欠き部25の周囲をなす部分及び筒状弾性壁15の下部に形成された段部62でシールされる。符号63はこのシール面である。さらに、筒状弾性壁15に対面する外周部の端面はコイル32とともに筒状弾性壁15に当接してシールされる。したがって磁性粘性流体30を確実かつ容易にシールできる。
【0061】
そのうえ、調整室28は筒状弾性壁15の内側に設けられ、主液室6内に向かって開口するように形成されるから、シール面63は筒状弾性壁15より主液室6側に設けられる。したがって、仮にシール性が低下してシール面63から磁性粘性流体30が漏れたとしても、主液室6内へ漏れることになり、外部へ漏洩しない。このためシールが難しい磁性粘性流体60に対するシールが破られても内部の磁性粘性流体30が外部へ流出することを阻止できる。
【0062】
次に、第5実施例を説明する。図9は図1の第1実施例における仕切部材7からホールオリフィス13(図1)を省略したものに相当し、共振オリフィスはダンピングオリフィス8のみとなっている液封エンジンマウントへ内圧調整手段37を設けた例である。このように制御される共振オリフィスを有しない形式のエンジンマウント(非コントロール式マウント)においても、ダンピングオリフィスの働く振動領域では内圧調整手段37の内圧吸収能を下げ、それ以外の領域では内圧吸収能を上げてかつその程度を調節すれば低動バネ化できる。したがって、このような非コントロール式マウントでも、前各実施例同様に磁力を用いて容易に内圧を制御できる。
【0063】
なお、本願発明は上記各実施例に限定されず、種々に変更可能である。例えば、内圧吸収膜27の膜剛性調整段数をより多段階にすることができる。また、無段階に連続変化させることができる。さらにエンジンマウント以外の他の各種防振装置に適用することもできる。
また、図7・図8に示す第4実施例の内圧調整手段を、図1〜図6及び図9の各実施例に適用すことも自由にできる。
さらに、内圧吸収膜27及び第2ダイアフラム29は必ずしも膜状部材である必要はなく、これに代えて調整室内を摺動変位する可動板のような部材でもよい。また、いずれか一方を膜状部材とし、他方を可動板のような非膜状部材の組合せでもよい。
【図面の簡単な説明】
【図1】第1実施例に係る液封防振装置の全体断面図
【図2】作動原理を示す要部の拡大断面図
【図3】拡張バネの変化に伴う共振点の変化を示す図
【図4】拡張バネの変化に伴う位相の変化を示す図
【図5】第2実施例に係る液封防振装置の全体断面図
【図6】第3実施例に係る液封防振装置の全体断面図
【図7】第4実施例に係る液封防振装置の全体断面図
【図8】図7の一部を拡大した断面図
【図9】第5実施例に係る液封防振装置の全体断面図
【符号の説明】
1:エンジンマウント小組体、2:第1の取付部材、3:第2の取付部材、4:インシュレータ、5:ブラケット、6:主液室、7:仕切部材、8:ダンピングオリフィス、9:副液室、10:第1ダイアフラム、13:ホールオリフィス、27:内圧吸収膜、28:調整室、29:第2ダイアフラム、30:磁性粘性流体、32:コイル、33:抵抗板、37:内圧調整手段、40:アイドルオリフィス、43:開閉バルブ、50:通路、52:バルブ
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid ring vibration isolator, and more particularly, to a device capable of easily controlling an internal pressure.
[0002]
[Prior art]
A first mounting member mounted on the vibration source side, a second mounting member mounted on the vibration receiving side, an insulator interposed therebetween for absorbing vibration, and a liquid in which the insulator forms part of a wall. The liquid chamber is divided into a main liquid chamber and a sub liquid chamber and communicated with each other through an orifice passage, and an internal pressure absorbing film is provided in a part of a wall surrounding the main liquid chamber to reduce the film rigidity. 2. Description of the Related Art An internal pressure absorption type liquid-tight engine mount that is switched between rigid and soft is known. In this type of engine mount, if the internal pressure absorbing film is softened, the internal pressure change is absorbed and a low dynamic spring is obtained, and if the internal pressure absorbing film is made rigid, the expansion spring, which is a spring generated by the internal pressure change in the engine mount, is raised. The flow rate to the orifice passage is increased, thereby increasing resonance efficiency and reducing vibration transmission.
[0003]
Such a film stiffness varying means, for example, provides a negative pressure chamber on the opposite side of the main pressure chamber of the internal pressure absorbing film, and switches the connection of the negative pressure chamber to a negative pressure source or the atmosphere, thereby forming the internal pressure absorbing film. It becomes stiff when adsorbed and fixed to a wall or the like with negative pressure, and becomes soft when released to the atmosphere and put into a free state. It is also known to forcibly elastically deform the internal pressure absorbing film by mechanical means such as a motor (see Patent Documents 1 and 2). Further, there is a type in which the periphery of an elastic film provided between the main liquid chamber and the sub liquid chamber is supported by a supporting member, and the supporting force of the supporting member is changed by a change in the viscosity of the magnetic viscous fluid (Patent Document 1). 3).
[0004]
[Patent Document 1] JP-A-10-325443
[Patent Document 2] JP-A-2003-4090
[Patent Document 3] JP-A-2002-213517
[0005]
[Problems to be solved by the invention]
By the way, an apparatus utilizing an intake negative pressure as a driving means of the internal pressure absorbing film requires piping of an air passage and a switching valve, so that the entire apparatus is relatively complicated and the weight increases. The same applies when mechanical means such as a solenoid is used. Furthermore, if stepless and continuous control is to be performed, it is difficult to perform control based on intake negative pressure, and it is due to mechanical means such as a solenoid. In this case, a device that operates with high precision is required. .
Therefore, an object of the present invention is to enable internal pressure control with a relatively simple and lightweight structure.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the liquid sealing vibration isolator according to the present invention is characterized in that a first mounting member mounted on the vibration source side, a second mounting member mounted on the vibration receiving side, and A liquid seal vibration isolator comprising an insulator interposed to absorb vibration and a liquid chamber in which the insulator forms a part of a wall, and the liquid chamber is divided into a main liquid chamber and a sub liquid chamber connected by a resonance orifice. At
Providing an internal pressure adjusting means for the main liquid chamber, while adjusting the internal pressure absorbing capacity by this internal pressure adjusting means,
The internal pressure adjusting means includes: a first movable portion deformed or displaced by receiving the hydraulic pressure of the working fluid; an adjustment chamber in which at least a part of the wall portion is formed by the first movable portion; Provided, a magnetic viscous fluid, a second movable portion that is deformed or displaced to suppress a change in volume of the adjustment chamber, and a coil that generates a magnetic force to change the viscosity of the magnetic viscous fluid,
A liquid-sealing anti-vibration method, wherein the viscosity of the magnetic viscous fluid is changed by a change in magnetic force to change the amount of deformation or displacement of the first movable portion, thereby controlling the internal pressure absorbing ability of the internal pressure adjusting means. apparatus.
[0007]
A second aspect of the present invention is characterized in that, in the first aspect, the internal pressure absorbing ability is changed continuously or in multiple steps by changing the viscosity of the magnetic viscous fluid continuously or in multiple steps.
[0008]
According to a third aspect, in the first aspect, a flow resistance unit for the magnetic viscous fluid is provided in the adjustment chamber.
[0009]
According to a fourth aspect of the present invention, in the first aspect, the first movable portion is an internal pressure absorbing film made of an elastic film that elastically deforms to absorb a change in internal pressure, and the second movable portion is a diaphragm, and at least a part of the diaphragm is an atmosphere. It is characterized by being open.
[0010]
According to a fifth aspect of the present invention, in the first aspect, the resonance orifice is a damping orifice.
[0011]
According to a sixth aspect of the present invention, in the first aspect, the resonance orifice includes first and second orifices whose resonance frequencies are relatively different in height from each other, and the second orifice having a higher resonance frequency is an open / close type. Features.
[0012]
According to a seventh aspect of the present invention, there is provided the hole orifice according to the first aspect, wherein the hole orifice communicates with the main liquid chamber with a predetermined opening diameter and generates a liquid column resonance at a predetermined frequency by surrounding the opening with an elastic film. Is provided.
[0013]
【The invention's effect】
According to the first aspect, as the internal pressure adjusting means, a first movable part, a second movable part forming an adjustment chamber between the first movable part, a magnetic viscous fluid sealed in the adjustment chamber, And a coil for generating a magnetic force that changes the viscosity of the magnetic viscous fluid, so that when the first movable unit attempts to displace or deform, the volume change of the adjustment chamber accompanying the displacement or deformation of the second movable unit Displacement and deformation of the first movable portion are allowed while displacement is suppressed. Further, when the magnetic force by the coil is changed, the viscosity of the magnetic viscous fluid changes, and the ease of movement of the first movable portion changes. As a result, the amount of elastic deformation of the first movable portion with respect to the change in the internal pressure changes, and the ability to absorb the internal pressure, that is, the internal pressure absorbing ability changes. Therefore, according to this internal pressure adjusting means, the internal pressure can be freely adjusted only by changing the magnetic force. In addition, since the control can be performed only by adjusting the magnetic force, the control can be performed quickly and easily.
[0014]
According to the second aspect, since the viscosity of the magnetic viscous fluid is changed continuously or in multiple steps, the internal pressure absorbing capacity is changed continuously or in multiple steps to change the internal pressure absorbing capacity continuously or in multiple steps. Can be. In addition, such control merely changes the magnetic force, so that the internal pressure can be freely adjusted stepwise, or even steplessly and continuously. In addition, since the control can be performed only by adjusting the magnetic force, it can be easily controlled.
[0015]
According to the third aspect, since the flow resistance means of the magnetic viscous fluid is provided in the adjustment chamber, the change in the film rigidity can be amplified with respect to the change in the viscosity.
[0016]
According to the fourth aspect, the first movable portion is an internal pressure absorbing film made of an elastic film that elastically deforms and absorbs a change in internal pressure, the second movable portion is a diaphragm, and at least a part of the diaphragm is opened to the atmosphere. Thereby, the elastic film serving as the first movable portion can be deformed, and a change in volume of the adjustment chamber accompanying the deformation can be suppressed. In addition, by forming the first movable portion and the second movable portion as film members, these can be easily formed.
[0017]
According to the fifth aspect, when applied to a liquid ring vibration isolator in which the resonance orifice is a damping orifice, the internal pressure adjusting means lowers the internal pressure absorbing ability in the resonance frequency range of the damping orifice, thereby increasing the resonance efficiency of the damping orifice. Thus, high damping can be achieved with respect to vibrations in the riding comfort area, and in other areas, a low dynamic spring can be realized by increasing the internal pressure absorbing capacity. Moreover, such control can be easily realized by the internal pressure adjusting means utilizing the viscosity change of the magnetic viscous fluid. In particular, the present invention is effective in a liquid ring vibration isolator having no resonance control means other than the damping orifice.
[0018]
According to the sixth aspect, when the resonance orifice is provided with the first and second orifices having different resonance frequencies, and the second orifice having a high resonance frequency is opened and closed, the second orifice can be opened and closed. The internal pressure can be adjusted in connection with opening and closing. In other words, in the resonance frequency range of the second orifice, when the second orifice is opened, the internal pressure absorbing ability is reduced and the resonance efficiency of the second orifice is increased, thereby achieving high phase and low dynamic spring (appearing as a minimum value of the dynamic spring curve). The bottom of the second orifice can be lowered in other areas, and even when the second orifice is closed in other areas, the dynamic spring can be reduced by absorbing the internal pressure. Also in this case, in a region where the resonance of the first orifice is required, the internal pressure adjusting means can reduce the internal pressure absorbing ability and increase the resonance efficiency of the first orifice. Moreover, such control can be easily realized by the internal pressure adjusting means utilizing the viscosity change of the magnetic viscous fluid.
[0019]
According to the seventh aspect, since the hole orifice is provided, the resonance frequency and the phase of the hole orifice can be changed by adjusting the internal pressure absorbing ability. As a result, the resonance frequency and phase of the liquid column resonance generated in the hole orifice change continuously or in multiple stages, and the resonance frequency and phase can be controlled in a wide range. In particular, by controlling the phase over a wide range, the vibration of the vector component can be absorbed and the transmission of the vibration can be reduced. Moreover, such control can be easily realized by the internal pressure adjusting means utilizing the viscosity change of the magnetic viscous fluid.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments will be described with reference to the drawings. 1 to 4 relate to the first embodiment, FIG. 1 is an overall sectional view of a liquid ring vibration isolator, FIG. 2 is an enlarged sectional view of an essential part for explaining an operation principle, and FIG. FIG. 4 is a diagram showing a change in a point, and FIG. 4 is a diagram showing a change in a phase accompanying a change in an extension spring.
[0021]
In FIG. 1, the engine mount subassembly 1 includes a first mounting member 2, a second mounting member 3, and an insulator 4. The first mounting member 2 is connected to a vibration source side such as an engine (not shown), the second mounting member 3 is fitted to a bracket 5, and the bracket 5 is also connected to a vibration receiving side such as a vehicle body (not shown). The insulator 4 is a known anti-vibration rubber having a substantially conical shape made of rubber. However, a known elastic vibration isolating member having a substantially conical shape made of an appropriate elastic material such as rubber and other elastomers can be used, and a vibration isolating member between the first mounting member 2 and the second mounting member 3 can be provided. Connect to
[0022]
A main liquid chamber 6 is formed inside the first mounting member 2, the second mounting member 3, the insulator 4 and the partition member 7, and a well-known incompressible hydraulic fluid is sealed therein. The main liquid chamber 6 communicates with the sub liquid chamber 9 via a damping orifice 8 formed on the outer periphery of the partition member 7. The damping orifice 8 can provide a high damping to vibrations during normal running which affect the riding comfort of low frequency and small amplitude of about 10 Hz. The sub liquid chamber 9 is covered by the first diaphragm 10.
[0023]
The partition member 7 is a disk-shaped member made of a suitable material such as a resin, and has an opening 11 formed at the center thereof, and an elastic film 12 is attached thereto. The opening 11 and the elastic film 12 form a hole orifice 13 which resonates with a liquid column at a predetermined frequency (about 60 Hz in this embodiment) by liquid vibration in the main liquid chamber 6. This resonance frequency range is a vibration frequency range at the time of starting. The hole orifice is a type of resonance in which one end side of the orifice passage is covered with an elastic film to generate a liquid flow in the orifice passage by the liquid vibration of the main liquid chamber 6 and the vibration of the elastic film, thereby causing liquid column resonance. Orifice.
[0024]
The damping orifice 8 is formed on the outer periphery of the partition member 7 so as to open radially outward, and communicates with the main liquid chamber 6 at an inlet 14a formed at a part thereof and communicates with the sub-liquid chamber 9 at an outlet 14b. I do. Further, the opening of the damping orifice 8 which is opened radially outward to the outer periphery of the partition member 7 is tightly sealed with a cylindrical elastic wall 15 which is continuous with the outer periphery of the first diaphragm 10. The cylindrical elastic wall 15 is made of an appropriate elastic member made of rubber or the like similar to the insulator 4 and covers the inner peripheral surface and the outer peripheral surface of the second mounting member 3.
[0025]
The second mounting member 3 is a cylindrical member made of metal or the like, and includes a small-diameter portion 16 surrounding the outer peripheral side of the damping orifice 8 and a large-diameter portion 17 surrounding the main liquid chamber 6. A flange 18 is formed and overlaps the upper end of the bracket 5. Further, a ring fitting 19 integrated with a lower portion of the insulator 4 overlaps the flange 18, and the insulator 4, the second mounting member 3, and the bracket 5 are combined and integrated by an appropriate method such as a rivet. The lower end of the small diameter portion 16 forms a bottom portion 20 and is placed and positioned on a step 21 formed on the inner surface of the bracket 5.
[0026]
The partition member 7 is inserted into the inside of the cylindrical elastic wall 15, and the lower part of the outer periphery is placed on the step part 22 formed by the bottom part 20 and positioned. In this state, the engine mount subassembly 1 is configured by integrating the flange 18 at the upper end of the second mounting member 3 and the ring fitting 19 of the insulator 4 by bending or caulking (not shown). The engine mount is assembled by inserting the engine mount subassembly 1 into the bracket 5 and integrating the flange 18 with the upper end of the bracket 5 by appropriate means such as rivets.
[0027]
An annular wall 23 protruding upward in the drawing is integrally formed on the outer peripheral portion of the partition member 7, and the working fluid is filled between the annular wall 23 and the cylindrical elastic wall 15 covering the large diameter portion 17. An annular chamber 24 is formed. The annular wall 23 has a cutout 25 at a part in the circumferential direction, where the annular chamber 24 communicates with the main liquid chamber 6.
[0028]
Further, an opening 26 is formed at a portion corresponding to the cutout portion 25 of the large diameter portion 17, and the opening 26 portion of the cylindrical elastic wall 15 is an internal pressure absorbing film 27. The internal pressure absorbing film 27 is an elastic film made of an appropriate elastic material such as rubber, which is continuous and integral with the cylindrical elastic wall 15, and absorbs the internal pressure fluctuation of the main liquid chamber 6 by elastic deformation. In addition, it can also be formed separately from the cylindrical elastic wall 15.
[0029]
As shown in FIG. 2, an adjustment chamber 28 is formed on a side of the internal pressure absorbing film 27 opposite to the main liquid chamber 6 so as to be surrounded by a second diaphragm 29. A well-known magnetic viscous fluid 30 is sealed inside the adjustment chamber 28. At least a part of the second diaphragm 29 on the side opposite to the adjustment chamber 28 is open to the atmosphere, and the outer peripheral portion is integrated with a fixed ring 31. A coil 32 is attached to the fixed ring 31. The outer peripheral portion of the fixing ring 31 is overlaid on the outer surface of the bracket 5 and is integrally attached by a suitable means such as a rivet.
[0030]
The coil 32 surrounds the adjustment chamber 28, and generates a magnetic force so that the viscosity of the magnetic viscous fluid 30 can be instantaneously changed from a water-like state to a sherbet state. The magnetic force generated by the coil 32 is generated continuously or in multiple stages by a control device (not shown) based on an appropriate sensor amount such as the number of revolutions of the engine. The viscosity of the magnetic viscous fluid 30 also changes. In this embodiment, the viscosity is set so as to change in three stages of high, medium and low. This setting will be described later.
[0031]
When the viscosity of the magnetic viscous fluid 30 increases, the internal pressure absorbing film 27 is less likely to be elastically deformed, so that the internal pressure absorbing ability is reduced, and the expansion spring, which is a spring generated by a change in internal pressure as a vibration isolator, is increased. The resonance frequency of the orifice 13 is increased.
Conversely, when the viscosity is reduced, the internal pressure absorbing film 27 is easily elastically deformed and the internal pressure absorbing ability is increased, so that the expansion spring is reduced and the resonance frequency of the hole orifice 13 is reduced.
[0032]
A resistance plate 33 is provided in the adjustment chamber 28, an outer peripheral portion 34 of the resistance plate 33 is integrated with the coil 32, and a throttle passage 35 is formed in the center. When the magnetic viscous fluid 30 passes through the throttle passage 35, Damping force is generated by viscosity resistance. The opening diameter of the throttle passage 35 can be set arbitrarily within a range in which the magnetic viscous fluid 30 can generate a damping force. The throttle passage 35 can be formed by providing a plurality of relatively small holes.
[0033]
The outer peripheral portion 34 of the resistance plate 33 and the coil 32 are fitted and fixed in mounting holes 36 formed in the side wall of the bracket 5. The metal fitting overlapping the inner peripheral surface side of the coil 32 is a fixing ring 31, and the outer peripheral part of the second diaphragm 29 is integrated by baking or the like. The outer peripheral portion of the fixing ring 31 overlaps the outer surface of the coil 32. Fixed ring 31 and outer peripheral portion 34
Is sealed by an appropriate means.
[0034]
In addition, the portion of the surface of the fixing ring 31 that is covered by a portion of the second diaphragm 29 is reduced, and most of the portion directly faces the adjustment chamber 28, thereby preventing loss of magnetic force. The internal pressure absorbing film 27, the adjusting chamber 28, the second diaphragm 29, the magnetic viscous fluid 30, and the coil 32 are collectively referred to as an internal pressure adjusting unit 37. Further, the positional relationship between the main pressure chamber 6 and the internal pressure absorbing film 27 constituting the internal pressure adjusting means 37 and the second diaphragm 29 may be reversed.
[0035]
Next, a method of setting the film rigidity of the internal pressure absorbing film 27 will be described. FIG. 3 is a diagram showing a change in the resonance point of the hole orifice 13 in the three-stage expansion spring. The horizontal axis represents the frequency, the vertical axis represents the dynamic spring, and the minimum point of each curve is the resonance point. As is apparent from this figure, when the expansion spring changes from small-medium-large, the respective resonance points become low-medium-high.
[0036]
This expansion spring can be realized by changing the internal pressure absorbing ability of the internal pressure adjusting means 37, and the internal pressure absorbing ability is determined by the degree of easiness of movement of the internal pressure absorbing film 27. Further, the ease of movement of the internal pressure absorbing film 27 is determined by the fluidity of the magnetic viscous fluid sealed in the adjustment chamber. Here, if the index of the fluidity in the viscosity flow is expressed by the flow resistance, if the flow resistance is large, the internal pressure absorbing film 27 becomes difficult to move and the expansion spring becomes large. On the other hand, if the flow resistance is small, the internal pressure absorbing film 27 becomes easy to move, and the expansion spring becomes small.
[0037]
Further, the magnitude of the flow resistance is determined by the viscosity of the magnetic viscous fluid if the throttle passage 35 of the resistance plate 33 is constant. Therefore, if the strength of the magnetic force generated by the coil 32 is adjusted to change the viscosity of the magnetic viscous fluid, the flow resistance changes and the easiness of movement of the internal pressure absorbing film 27 changes. Noh will change. As a result, a corresponding change in the expansion spring is obtained.
[0038]
Therefore, if the magnetic force of the coil 32 is changed, it is possible to freely change the internal pressure absorbing ability and obtain an arbitrary expansion spring. Therefore, the internal pressure adjusting means 37 in the present embodiment changes the magnetic force into three stages of 0 and small and large so that the expansion spring can be controlled in three stages of small-medium-large. In addition, the size of the expansion spring can be controlled in multiple steps or continuously without step by changing the magnetic force.
[0039]
For example, if the magnetic force that realizes the internal pressure absorption ability that gives the expansion spring that realizes the resonance point of the maximum frequency at the time of starting is maximized, the magnetic force is made smaller in the expansion spring, and smaller than the expansion spring. By setting the magnetic force to 0, the magnetic force can be switched between three levels to change the resonance point from low to medium to high.
[0040]
Next, the operation of the present embodiment will be described. At the time of starting, the coil 32 of the internal pressure adjusting means 37 is not energized, the magnetic force is initially set to 0, and the hole orifice 13 generates liquid column resonance at a relatively low frequency to absorb input vibration. Thereafter, the frequency of the input vibration to the main liquid chamber 6 increases as the engine speed increases, and the current is increased by energizing the coil 32 in accordance with the increase in the frequency. The viscosity is increased and the internal pressure absorbing capacity of the internal pressure adjusting means 37 is switched between medium and small and controlled.
[0041]
Thus, the extension spring is switched and controlled to change the resonance point stepwise to middle or high. As a result, the expansion spring is controlled to be switched in three stages in a relatively wide frequency range from low to high, and the resonance point of the hole orifice 13 is changed in three stages in accordance with the switching, thereby making the resonance region wide. At this time, since the resistance plate 33 is provided, the damping force generated when the magnetic viscous fluid 30 passes through the throttle passage 35 is obtained by amplifying the viscosity change. As a result, the change in the internal pressure absorption capacity can be increased, and the change in the internal pressure absorption capacity can be made higher than in the case where the internal pressure absorption capacity is formed only by the viscosity change of the magnetic viscous fluid.
[0042]
In addition, the phase changes according to the change of the resonance point. FIG. 4 is a diagram showing this phase change, in which the horizontal axis shows the frequency and the vertical axis shows the phase, and each curve is a phase curve corresponding to three stages of large-medium-small of the extension spring. This is the maximum phase generated by each expansion spring. As is apparent from this figure, as the resonance frequency increases, the maximum phase also increases almost linearly as indicated by a broken line. The predicted maximum phase of this embodiment changes from small-medium-large in response to the expansion spring changing from small-medium-large.
[0043]
As a result, a relatively large phase can be generated in a wide frequency range (low to high), and vibrations requiring phase control, for example, body vibrations can be suppressed. Moreover, such a wide resonance area and the generation of a relatively large phase can be realized with only one hole orifice 13, and there is no need to provide a plurality of orifices corresponding to each resonance point, so that the structure is simplified. . In addition, if the control is performed according to the engine speed, the resonance frequency and phase can be accurately changed according to the operating condition of the engine.
[0044]
In addition, the internal pressure absorbing ability of the internal pressure adjusting means 37 can be directly controlled by a change in the viscosity of the magnetic viscous fluid 30 in the adjusting chamber 28 in which the internal pressure absorbing film 27 forms a part of the wall. Since the viscosity of the fluid 30 can be quickly and easily controlled, the control of the internal pressure absorption capacity is quick, easy, and accurate. Further, since no mechanical means such as a solenoid or a motor is required, the structure of the internal pressure adjusting means 37 is relatively simple.
[0045]
Next, a second embodiment will be described. Note that the same reference numerals are used for parts common to the previous embodiment, and in principle, redundant description of the common parts will be omitted. FIG. 5 is an overall sectional view of the liquid-sealed vibration isolator according to the second embodiment.
[0046]
As shown in FIG. 5, in the engine mount of this embodiment, the partition member 7 has an up-and-down structure of upper and lower members 7a and 7b, and an idle orifice 40 is provided in the interior thereof instead of the hole orifice. . The idle orifice 40 communicates with the main liquid chamber 6 and the sub liquid chamber 9 to generate a liquid column resonance at an engine vibration frequency during idling (about 20 Hz) to reduce the dynamic movement of the first mounting member 2. Vibration transmission from the side to the second mounting member 3 side is reduced.
[0047]
The outlet 41 of the idle orifice 40 on the side of the auxiliary liquid chamber 9 is openable and closable by an opening / closing valve 43 formed at the center of the first diaphragm 10, and is open only in an idle frequency range, and is closed in other cases. The opening and closing valve 43 is opened and closed by the expansion and contraction of the pressing member 44. The first diaphragm 10 covers the sub liquid chamber 9, but differs in that an opening / closing valve 43 is integrated at the center.
[0048]
A negative pressure chamber 46 is formed between the pressing member 44 and the bottom 45, and the connection between the intake negative pressure and the atmosphere is switched via a ventilation nozzle 47. When the intake negative pressure is applied, the valve moves downward in the figure against the return spring 48, and the opening / closing valve 43 opens the outlet 41. When the intake negative pressure is shut off and the atmosphere is released, the return spring 48 And exit 41 is closed.
[0049]
In the present embodiment, a pair of opposed internal pressure adjusting means 37 is provided. The structure of each internal pressure adjusting means 37 is the same as in the previous embodiment. Each of the internal pressure absorbing films 27 faces an annular chamber 24 formed between the annular wall 23 formed by the upper member 7 a constituting the partition member 7 and the inner wall surface of the main liquid chamber 6, and faces the annular wall 23. I have.
[0050]
Next, the operation of the present embodiment will be described. During idling, the open / close valve 43 is opened and the idle orifice 40 connects the main liquid chamber 6 and the sub liquid chamber 9. At the same time, each coil 32 in each internal pressure adjusting means 37 is energized to make each internal pressure absorbing film 27 most difficult to move. Therefore, the flow rate of the liquid to the idle orifice 40 increases, and the resonance efficiency increases. In general, the idle speed changes depending on whether the headlights are turned on or the air conditioner is turned on / off. In this case, the internal pressure absorbing ability can be controlled according to the idle speed.
[0051]
Conversely, when the engine is not idling, the opening / closing valve 43 is closed, and at the same time, the energization of each coil 32 in each internal pressure adjusting means 37 is stopped to make each internal pressure absorbing film 27 most movable, thereby maximizing the internal pressure absorbing capacity. For this reason, each internal pressure absorbing film 27 is in a soft state, and the internal pressure fluctuation of the main liquid chamber 6 is absorbed by elastic deformation to make a low dynamic spring. In addition, even when the opening / closing valve 43 is closed, at the time of shake vibration, the internal pressure absorbing ability is reduced by operating each internal pressure adjusting means 37 based on a signal from an appropriate sensor for detecting, for example, engine deviation. Let it. For this reason, each internal pressure absorbing film 27 is in a rigid state, and the expansion spring is raised, so that the resonance efficiency of the damping orifice 8 is increased, and high damping is realized, so that shake vibration can be effectively reduced.
[0052]
When a plurality of internal pressure adjusting means 37 are provided in this manner, if a single internal pressure adjusting means 37 becomes too large to obtain a certain level of performance, a plurality of relatively small internal pressure adjusting means 37 may be used. Thereby, required performance can be easily realized. Also, providing a plurality of small internal pressure adjusting means 37 provides better strength balance than providing only one.
[0053]
Next, a third embodiment will be described. FIG. 6 is an overall sectional view of the liquid-sealed vibration isolator according to the third embodiment. As shown in FIG. 6, the engine mount of this embodiment is different from the engine mount of FIG. 5 in that a hole orifice 13 is provided. That is, a passage 50 is provided on the side of the partition member 7, and the entrance 51 facing the main liquid chamber 6 formed at the upper end thereof is made openable and closable by a valve 52. The valve 52 is driven in a radial direction by a driving means 53 such as a motor. And the entrance 51 is opened and closed.
[0054]
An elastic film 12 is attached to a lower end 54 of the passage 50 facing the sub liquid chamber 9, and the elastic film 12 and the passage 50 constitute a hole orifice 13. When the liquid in the main liquid chamber 6 flows by input vibration with the valve 52 opened, the hole orifice 13 generates liquid column resonance at a predetermined input frequency. This resonance frequency is set to be about 60 Hz when each internal pressure absorbing film 27 is in the softest state.
[0055]
For this reason, until the idle frequency, the hole orifice 13 is closed, control is performed in the same manner as in the previous embodiment, and after starting, the valves 52 are opened with the internal pressure absorbing films 27 in the softest state. Thus, when the input vibration becomes about 60 Hz, the hole orifice 13 resonates with the liquid column and absorbs the input vibration. Thereafter, when the frequency of the input vibration further increases, the plurality of internal pressure adjusting means 37 are controlled as in the previous embodiment, and the resonance frequency and phase are controlled using the hole orifice 13 as in the first embodiment.
[0056]
In this way, vibration can be efficiently prevented in the widest frequency range using the damping orifice 8, the idle orifice 40, the hole orifice 13, and the plurality of internal pressure adjusting means 37.
[0057]
Next, a fourth embodiment will be described. FIG. 7 is an overall sectional view of a liquid-sealed vibration isolator according to the fourth embodiment, and corresponds to FIG. FIG. 8 is an enlarged cross-sectional view of a part of FIG. This embodiment corresponds to a modification of the structure and arrangement of the internal pressure adjusting means in FIGS. Hereinafter, only the differences will be described. Note that the same portions are denoted by the same reference numerals and description thereof will be omitted.
[0058]
As shown in FIGS. 7 and 8, the internal pressure adjusting means 37 is arranged to be accommodated inside the bracket 5. The second diaphragm 29 is formed as a part of the tubular elastic wall 15 so as to cover the opening 26 provided in the large-diameter portion 17 embedded inside the elastic wall 15. On the other hand, the internal pressure absorbing film 27 is formed separately from the cylindrical elastic wall 15 and is fitted into the cutout 25 of the annular wall 23.
[0059]
A frame fitting 60 is integrated around the inner pressure absorbing film 27. The frame fitting 60 has a substantially U-shaped cross section, has an opening 60 a formed in the center thereof for elastic deformation of the internal pressure absorbing film 27, and the outer peripheral portion overlaps the outer peripheral portion of the coil 32. An outer peripheral portion 34 of the resistance plate 33 is fixedly abutted on an inner peripheral portion of the coil 32. Part of the inner peripheral side of the coil 32 directly faces the adjustment chamber 28 to prevent loss of magnetic force.
[0060]
When assembled in this state, the periphery of the internal pressure absorbing film 27 includes a lower portion 61 of the insulator 4, a portion of the annular wall 23 surrounding the cutout portion 25, and a step 62 formed at a lower portion of the cylindrical elastic wall 15. Sealed with. Reference numeral 63 indicates this sealing surface. Further, the end face of the outer peripheral portion facing the cylindrical elastic wall 15 is sealed by contacting the cylindrical elastic wall 15 together with the coil 32. Therefore, the magnetic viscous fluid 30 can be reliably and easily sealed.
[0061]
In addition, since the adjustment chamber 28 is provided inside the cylindrical elastic wall 15 and is formed so as to open toward the inside of the main liquid chamber 6, the sealing surface 63 is closer to the main liquid chamber 6 than the cylindrical elastic wall 15. Provided. Therefore, even if the magnetic viscous fluid 30 leaks from the sealing surface 63 due to a decrease in sealing performance, the magnetic viscous fluid 30 leaks into the main liquid chamber 6 and does not leak to the outside. Therefore, even if the seal for the magnetic viscous fluid 60, which is difficult to seal, is broken, the internal magnetic viscous fluid 30 can be prevented from flowing out.
[0062]
Next, a fifth embodiment will be described. FIG. 9 corresponds to the one in which the hole orifice 13 (FIG. 1) is omitted from the partition member 7 in the first embodiment of FIG. 1, and the internal pressure adjusting means 37 is connected to the liquid-tight engine mount having only the damping orifice 8 as the resonance orifice. This is an example in which is provided. Even in an engine mount (non-control type mount) having no resonance orifice controlled in this way, the internal pressure absorbing capability of the internal pressure adjusting means 37 is reduced in the vibration region where the damping orifice works, and the internal pressure absorbing capability is reduced in other regions. By raising and adjusting the degree, the dynamic spring can be reduced. Therefore, even in such a non-control type mount, the internal pressure can be easily controlled using magnetic force as in the previous embodiments.
[0063]
The present invention is not limited to the above embodiments, but can be variously modified. For example, the number of stages of adjusting the film rigidity of the internal pressure absorbing film 27 can be increased. Further, it can be continuously changed steplessly. Further, the present invention can be applied to various other vibration isolators other than the engine mount.
Further, the internal pressure adjusting means of the fourth embodiment shown in FIGS. 7 and 8 can be freely applied to each embodiment of FIGS. 1 to 6 and 9.
Further, the internal pressure absorbing film 27 and the second diaphragm 29 do not necessarily need to be film-like members, but may be members such as a movable plate that slides and displaces in the adjustment chamber. Further, one of the members may be a film member, and the other may be a combination of a non-film member such as a movable plate.
[Brief description of the drawings]
FIG. 1 is an overall sectional view of a liquid ring vibration isolator according to a first embodiment.
FIG. 2 is an enlarged sectional view of a main part showing an operation principle.
FIG. 3 is a diagram showing a change in a resonance point due to a change in an extension spring.
FIG. 4 is a diagram showing a change in phase due to a change in an extension spring.
FIG. 5 is an overall sectional view of a liquid-sealed vibration isolator according to a second embodiment.
FIG. 6 is an overall cross-sectional view of a liquid ring vibration isolator according to a third embodiment.
FIG. 7 is an overall sectional view of a liquid ring vibration isolator according to a fourth embodiment.
FIG. 8 is an enlarged cross-sectional view of a part of FIG. 7;
FIG. 9 is an overall sectional view of a liquid ring vibration isolator according to a fifth embodiment.
[Explanation of symbols]
1: engine mount subassembly, 2: first mounting member, 3: second mounting member, 4: insulator, 5: bracket, 6: main liquid chamber, 7: partition member, 8: damping orifice, 9: auxiliary Liquid chamber, 10: first diaphragm, 13: hole orifice, 27: internal pressure absorbing film, 28: adjustment chamber, 29: second diaphragm, 30: magnetic viscous fluid, 32: coil, 33: resistance plate, 37: internal pressure adjustment Means, 40: idle orifice, 43: open / close valve, 50: passage, 52: valve

Claims (7)

振動源側へ取付けられる第1の取付部材と、振動受側へ取付けられる第2の取付部材と、これらの間に介在して振動を吸収するインシュレータと、このインシュレータが壁の一部をなす液室とを備え、この液室を共振オリフィスで連絡される主液室及び副液室に区画した液封防振装置において、
前記主液室に対する内圧調整手段を設け、この内圧調整手段により内圧吸収能を調整するとともに、
前記内圧調整手段は、前記作動液の液圧を受けて変形又は変位する第1可動部と、この第1可動部によって少なくとも璧部の一部が形成された調整室と、この調整室内へ封入された磁性粘性流体と、調整室の容積変化を抑制するべく変形又は変位する第2可動部と、前記磁性粘性流体の粘度を変化させるために磁力を発生するコイルとを備え、
磁力変化で前記磁性粘性流体の粘度を変化させることにより前記第1可動部の変形又は変位量を変化させて前記内圧調整手段の内圧吸収能を制御することを特徴とする。
A first mounting member mounted on the vibration source side, a second mounting member mounted on the vibration receiving side, an insulator interposed therebetween for absorbing vibration, and a liquid in which the insulator forms part of a wall. And a liquid-sealing vibration isolator that divides the liquid chamber into a main liquid chamber and a sub-liquid chamber that are connected by a resonance orifice.
Providing an internal pressure adjusting means for the main liquid chamber, while adjusting the internal pressure absorbing capacity by this internal pressure adjusting means,
The internal pressure adjusting means includes: a first movable portion deformed or displaced by receiving the hydraulic pressure of the working fluid; an adjustment chamber in which at least a part of the wall portion is formed by the first movable portion; Provided, a magnetic viscous fluid, a second movable portion that is deformed or displaced to suppress a change in volume of the adjustment chamber, and a coil that generates a magnetic force to change the viscosity of the magnetic viscous fluid,
The internal pressure absorbing ability of the internal pressure adjusting means is controlled by changing the amount of deformation or displacement of the first movable portion by changing the viscosity of the magnetic viscous fluid by changing the magnetic force.
前記磁性粘性流体の粘度を連続的又は多段階に変化させることにより、前記内圧吸収能を連続的又は多段階に変化させることを特徴とする請求項1の液封防振装置。2. The liquid ring vibration isolator according to claim 1, wherein the internal pressure absorbing capacity is changed continuously or in multiple steps by changing the viscosity of the magnetic viscous fluid continuously or in multiple steps. 前記調整室内に前記磁性粘性流体の流動抵抗手段を設けたことを特徴とする請求項1の液封防振装置。2. The liquid ring vibration isolator according to claim 1, wherein a flow resistance means for the magnetic viscous fluid is provided in the adjustment chamber. 前記第1可動部は弾性変形して内圧変化を吸収する弾性膜からなる内圧吸収膜であり、前記第2可動部はダイアフラムであり、少なくとも一部が大気開放されていることを特徴とする請求項1の液封防振装置。The said 1st movable part is an internal-pressure absorption film which consists of an elastic film which elastically deforms and absorbs internal pressure change, The said 2nd movable part is a diaphragm, At least one part is open-to-atmosphere, The Claims characterized by the above-mentioned. Item 6. A liquid-sealed vibration isolator according to Item 1. 前記共振オリフィスがダンピングオリフィスであることを特徴とする請求項1の液封防振装置。2. The liquid ring vibration isolator according to claim 1, wherein said resonance orifice is a damping orifice. 前記共振オリフィスは、相対的に共振周波数が高低に異なる第1及び第2オリフィスを備え、共振周波数がより高い方の第2オリフィスが開閉式であることを特徴とする請求項1の液封防振装置。2. The liquid-sealing prevention device according to claim 1, wherein the resonance orifice includes first and second orifices having relatively different resonance frequencies at different heights, and the second orifice having a higher resonance frequency is an opening / closing type. Shaking device. 前記主液室と所定の開口径を有して連通するとともに開口部を弾性膜にて囲むことにより、所定の周波数にて液柱共振を発生するホールオリフィスを設けたことを特徴とする請求項1の液封防振装置。A hole orifice that communicates with the main liquid chamber with a predetermined opening diameter and surrounds the opening with an elastic film to generate liquid column resonance at a predetermined frequency is provided. 1. Liquid-sealed vibration isolator.
JP2003123012A 2003-04-25 2003-04-25 Liquid seal vibration isolator Expired - Fee Related JP4341932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003123012A JP4341932B2 (en) 2003-04-25 2003-04-25 Liquid seal vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123012A JP4341932B2 (en) 2003-04-25 2003-04-25 Liquid seal vibration isolator

Publications (2)

Publication Number Publication Date
JP2004324822A true JP2004324822A (en) 2004-11-18
JP4341932B2 JP4341932B2 (en) 2009-10-14

Family

ID=33501014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123012A Expired - Fee Related JP4341932B2 (en) 2003-04-25 2003-04-25 Liquid seal vibration isolator

Country Status (1)

Country Link
JP (1) JP4341932B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198541A (en) * 2006-01-27 2007-08-09 Tokai Rubber Ind Ltd Fluid-sealed vibration isolating device
KR101167289B1 (en) 2010-11-09 2012-07-23 주식회사 파브코 engin mount

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109915533B (en) * 2019-03-28 2020-06-30 吉林大学 Multi-inertia-channel semi-active control hydraulic suspension based on magnetorheological fluid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198541A (en) * 2006-01-27 2007-08-09 Tokai Rubber Ind Ltd Fluid-sealed vibration isolating device
JP4623428B2 (en) * 2006-01-27 2011-02-02 東海ゴム工業株式会社 Fluid filled vibration isolator
KR101167289B1 (en) 2010-11-09 2012-07-23 주식회사 파브코 engin mount

Also Published As

Publication number Publication date
JP4341932B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
US7210674B2 (en) Fluid-filled vibration damping device
JP4381333B2 (en) Fluid filled vibration isolator
JP5568472B2 (en) Fluid filled vibration isolator
US6491290B2 (en) Fluid-filled vibration damping device having pressure receiving chamber whose spring stiffness is controllable
US20080054152A1 (en) Series-type engine mount and method of manufacturing series-type engine mount
JP4075054B2 (en) Fluid-filled engine mount for vehicles
JP3603651B2 (en) Manufacturing method of fluid filled type vibration damping device
JP4341932B2 (en) Liquid seal vibration isolator
JP4263159B2 (en) Vibration isolator
JP4158108B2 (en) Pneumatic switching type fluid-filled engine mount
JP2944470B2 (en) Liquid sealing rubber device
JP4623428B2 (en) Fluid filled vibration isolator
JP4356967B2 (en) Liquid seal vibration isolator
JP2004232708A (en) Liquid sealed vibration control device
JP4341933B2 (en) Liquid seal vibration isolator
JPH09257093A (en) Fluid-sealed mount device
JPH02240430A (en) Fluid sealed type tubular mount device
JPH0729317Y2 (en) Fluid-filled mounting device
JPH11101294A (en) Fluid-filled mount device
JP2004076819A (en) Active liquid sealed vibration control device
JP2004108421A (en) Mount of liquid encapsulated type
JP2001280405A (en) Liquid sealed vibration isolator
JP2000291719A (en) Vibration proofing device
WO2004067993A1 (en) Liquid-seal vibration isolating device
JP2001208126A (en) Vibration isolator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees