JP2004324626A - Hydrogen and power generation by use of exhaust heat of electric power plant - Google Patents

Hydrogen and power generation by use of exhaust heat of electric power plant Download PDF

Info

Publication number
JP2004324626A
JP2004324626A JP2003153524A JP2003153524A JP2004324626A JP 2004324626 A JP2004324626 A JP 2004324626A JP 2003153524 A JP2003153524 A JP 2003153524A JP 2003153524 A JP2003153524 A JP 2003153524A JP 2004324626 A JP2004324626 A JP 2004324626A
Authority
JP
Japan
Prior art keywords
hydrogen
power plant
power generation
steam
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003153524A
Other languages
Japanese (ja)
Inventor
Goro Igarashi
五郎 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003153524A priority Critical patent/JP2004324626A/en
Publication of JP2004324626A publication Critical patent/JP2004324626A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To generate hydrogen from exhaust end steam and so on of a thermal (steam) power plant or a nuclear power plant and generate electric power by hydrogen burning. <P>SOLUTION: (1) An exhaust end steam of a thermal (steam) power plant is provided for hydrogen production. (2) A steam in which one steam generator (countermeasure for radioactivity) is provided in an exhaust end steam of a nuclear power plant is provided for hydrogen production. (3) Produced hydrogen is provided for an internal combustion engine such as hydrogen engine or a solid oxide or molten carbonate fuel cell. (4) The motion heat energy of the solid oxide or molten carbonate fuel cell is provided for hydrogen production or sea water desalination. (5) Produced hydrogen is provided for the fuel of a cremator or dust incinerator. (6) The hydrogen production to the combustion and so on form a part of facilities in a power plant. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
この出願は、火力発電(気力発電)設備または原子力発電設備の排気端蒸気等からの水素製造および水素燃焼による発電等に関するものである。
【0002】
【従来の技術】
火力発電(気力発電)は、石油、石炭、液化天然ガス(LNG)等の燃料を燃やしてボイラーで蒸気をつくり、この蒸気により蒸気タービンを回して発電機を動かすのであり、原子力発電は核分裂を利用して、熱エネルギーを取り出し、蒸気タービンを回して発電機を動かすのである。これは燃料または核分裂エネルギーを熱エネルギーに変えて、水を熱して発生する蒸気の働きによりタービンを回して機械エネルギー(回転運動)に変換し、発電機によって電気エネルギーを得ているのである。熱機関を効率よく動かすためには、高熱源と低熱源が必要となるので、腹水器を設けて海水等で冷却するので、熱エネルギーの相当部分は腹水器で失われるのである。
【0003】
【発明が解決しようとする課題点】
火力発電(気力発電)または原子力発電の熱エネルギーの相当部分は腹水器で失われる。熱エネルギーの有効利用による原子力発電設備の排気端蒸気熱、または火力発電(気力発電)設備の排気端蒸気からの水素の製造、および製造水素を燃料とした発電、海水の淡水化等の開発をしようとするものである。
【0004】
【課題を解決するための手段】
1・火力(気力を含む)発電設備の排気端蒸気を水素の製造に設ける。
2・原子力発電設備の排気端蒸気熱に1蒸気発生器(熱交換器)を設けた蒸気を水素の製造に設ける。
3・火力(気力を含む)発電設備または原子力発電設備からの製造水素を、水素エンジン等の内燃機関に設ける。
4・火力(気力を含む)発電設備または原子力発電設備からの製造水素を、固体酸化物形または溶融炭酸塩形等の燃料電池に設ける。
5・固体酸化物形または溶融炭酸塩形等の燃料電池の動作熱エネルギーを水素の製造に設ける。
6・海水の淡水化に、固体酸化物形または溶融炭酸塩形等の燃料電池の動作熱エネルギーを設ける。
7・火力(気力を含む)発電設備または原子力発電設備もしくは燃料電池設備の製造水素を、火葬用燃焼炉に設ける。
8・火力(気力を含む)発電設備または原子力発電設備もしくは燃料電池設備の製造水素を、塵焼却炉に設ける。
【0005】
【作用】
火力発電(気力発電を含む)設備または原子力発電設備の排気端蒸気からの水素製造であるが、原子力発電設備では、放射能漏れ等の対策から排気端に1蒸気発生器(熱交換器)を設けた蒸気からの水素製造である。
火力発電(気力発電を含む)設備または原子力発電設備からの製造水素を内燃機関、または燃料電池に設けた発電である。
火力発電(気力発電を含む)設備または原子力発電設備からの製造水素を、大型燃料電池または中型燃料電池に設けた燃料電池の動作熱エネルギーによる、水の熱分解・水蒸気分解・熱化学サイクルによる水の分解等による水素製造であり、海水の淡水化である。
火力発電(気力発電を含む)設備または原子力発電設備もしくは燃料電池設備からの製造水素を設けた火葬用燃焼炉または塵焼却炉等である。
【0006】
【実施例1】
請求項1の実施例について説明する。
火力(気力を含む)発電設備の排気端蒸気を水素製造に設けた構成。
火力発電は、ボイラーによって燃料(石炭・重油等)の発熱エネルギーが水に伝えられ、これを蒸発して温度と圧力を高くする。次にこの水蒸気を蒸気タービンに入れ、タービン中で水蒸気を膨張させてタービンの羽根車をまわす。こうして水蒸気の熱エネルギーは機械エネルギーに転換され、タービン軸および発電機の回転となり発電する。残った水蒸気は低圧低温となる。タービンの出口には腹水器を設けて、放出され低圧低温の水蒸気を絶えず循環水で冷却して水に凝結させる。放出される水蒸気の熱エネルギーは腹水器で失われるのである。
したがって、蒸気タービン出口の排気端蒸気を設けた水素製造である。
水素は2次エネルギーであり、製造には何らかの1次エネルギーが必要となるので、火力発電設備等の排気端蒸気を設けて水素を得るのである。
蒸気を設けた水素製造方法は、水蒸気分解・熱分解等があり、この分解法等による水素製造である。
上記、火力発電設備の記述は、気力発電設備を含むものである。
現在、東京電力と三井物産は英国の発電会社インターナショナルパワーと共同で、アラブ首長国連邦(UAE)に発電・淡水化事業を展開。火力発電設備と、そこで発生する蒸気から淡水を得る。
【0007】
【実施例2】
請求項2の実施例について説明する。
原子力発電設備の排気端蒸気熱に1蒸気発生器(熱交換器)を設けた蒸気を水素製造に設けた構成。
原子力発電は、原子核分裂を原理とする原子炉から熱エネルギーを取り出すものである。原子炉内に水、液体金属・空気(またはガス)などを循環させて熱エネルギーを取り出し、熱交換器を通して蒸気とし、蒸気タービン発電機によって発電を行う。したがって、火力発電の一変形であるということができるのであるが、放射能漏れ等の対策から、蒸気タービン出口の排気端蒸気熱に1蒸気発生器を設け、その1蒸気発生器の蒸気から水素を得るのである。
水素製造方法は、実施例1に記述の火力発電と同様であり、省略する。
【0008】
【実施例3】
請求項3の実施例について説明する。
実施例1または実施例2に記述の製造水素を、発電所内に設けた発電用内燃機関に設けた構成。
火力(気力を含む)発電設備または原子力発電設備等で設けた水素を内燃機関に設けて発電するものである。この内燃機関には、水素ディーゼル・エンジンや水素エンジン等がある。水素エンジンの基本構成は2サイクル・エンジンの燃焼室に水素を直接噴射し、ピストンの凹みで生じたガス流に電気による熱面で着火させるのであり、クリーンなハイパワーが得られる。
製造水素を内燃機関の水素ディーゼルエンジン・水素エンジン等の燃料に設けて発電するものであり、エンジンの排気は無公害の水蒸気である。
発電所内に設けることにより、水素製造から水素エンジン等の燃焼および発電までが一環した設備となるのである。
【0009】
【実施例4】
請求項4の実施例について説明する。
実施例1または実施例2に記述の製造水素を、発電所内に設けた燃料電池に設けた構成。
火力(気力)発電設備または原子力発電設備等で設けた水素を燃料電池に設けるのである。この燃料電池には、固体酸化物形燃料電池(SOFC)、溶融炭酸塩形燃料電池(MCFC)、リン酸形燃料電池(PAFC)、高分子電解質形燃料電池(PEFC)等がある。
燃料電池のSOFCは、水素と一酸化炭素および石炭ガスも燃料ガスとして直接供給ができるのである。MCFCは、水素と一酸化炭素および石炭を燃料とし、空気極に二酸化炭素が必要であり、二酸化炭素の濃縮機能および火力発電所の二酸化炭素の排出量を低減できるのである。PAFCの燃料は、天然ガス、LPG、メタノール、消化ガス、バイオガス等であり燃料改質処理と水素であり、冷却水が必要である。PEFCは、燃料として天然ガスやメタノール等を利用するが改質が必要である。
したがって、発電所内に設ける燃料電池は、固体酸化物形(SOFC)または溶融炭酸塩形(MCFC)の大型または中型の燃料電池を設け、燃料に製造水素を供給するのである。
【0010】
【実施例5】
請求項5の実施例について説明する。
発電所内に設けた燃料電池が発生した熱エネルギーを、水素製造に設けた構成。
燃料電池は水素と酸素に化学反応を起こさせ、発電する。心臓部は電極と電解質または電解質膜であり、これをセルと呼んでいる。セルは中心に電解質または電解質膜をおき、両側に電極を設けた構造であり、電極は燃料極と空気極とがある。水素が燃料極であり、酸素が空気極である。この燃料電池が動作する際、熱エネルギーを発生するのである。この発生した熱エネルギーを水素製造に設けるのである。
燃料電池の動作する温度は、固体酸化物形(SOFC)900〜1000℃、溶融炭酸塩形(MCFC)600〜700℃、リン酸形(PAFC)170〜200℃、高分子電解質形(PEFC)80〜100℃程度である。
熱エネルギーを設けた水素製造方法は、水の熱分解・水蒸気分解・熱化学サイクルによる水の分解等による水素製造法である。
発電所内に設ける燃料電池は、動作熱エネルギーの利用により、高温大型または中型の固体酸化物形または溶融炭酸塩形の燃料電池の設置である。
【0011】
【実施例6】
請求項6の実施例について説明する。
発電所内に設けた燃料電池の動作熱エネルギーを、海水の淡水化に設けた構成。
燃料電池が動作する際、発生する熱エネルギーを設けた海水の淡水である。
熱エネルギーによる海水の蒸発もしくは蒸気であり、海水での冷却により淡水となるのである。
発電所内の燃料電池は海水の淡水化により、高温大形の固体酸化物形(SOFC)または中型の溶融炭酸塩形(MCFC)を設けるのである。
したがつて、燃料電池の動作熱エネルギーによる海水の蒸発もしくは蒸気から淡水を得るのである。
なお、燃料電池の動作熱エネルギーは、ガスタービンや蒸気タービンとの複合発電等の超高効率発電システム構想などがある。
【0012】
【実施例7】
請求項7の実施例について説明する。
実施例1または実施例2もしくは実施例5に記述の製造水素を、発電所内に設けた火葬用の燃焼炉に設けた構成。
火力発電(気力発電を含む)設備または原子力発電設備もしくは燃料電池設備からの製造水素を火葬用燃焼炉の燃料に設けるのである。
水素を燃料とする燃焼炉では、二酸化炭素等の大気汚染や地球環境問題がなく、排気は水蒸気であり無公害である。このような水素を燃料とする燃焼炉を発電所内に設けて、水素製造から燃焼まで、一環した火葬用の燃焼設備となるのである。
【0013】
【実施例8】
請求項8の実施例について説明する。
実施例1または実施例2もしくは実施例5に記述の製造水素を、発電所内に設けた塵焼却炉に設けた構成。
火力発電(気力発電を含む)設備または原子力発電設備もしくは燃料電池設備からの製造水素を塵焼却炉の燃料に設けるのである。
焼却の際、発生するダイオキシン等の対策では、800℃以上の温度が必要である焼却炉の燃焼に水素を設けるのである。
したがって、無公害の水素を塵焼却炉の燃料に設けて、大気汚染等の諸問題を軽減するものである。水素製造から燃焼まで、一環した塵焼却設備を発電所内に設けるのである。
【0014】
本出願は、火力(気力)発電設備または原子力発電設備の排気端等の蒸気からの水素の製造であり、製造した水素を燃料とした発電または燃焼等である。したがって、発電所内に一環した設備を設ける記述であるが、水素の液化または水素を高圧ボンベ等に設けることにより、燃焼炉および焼却炉等は、発電所内の設置を必要としないのである。
【0015】
火力発電(気力発電を含む)所内または原子力発電所内に設ける燃料電池の動作熱エネルギーによる水素製造または淡水化は、固体酸化物(SOFC)形や溶融炭酸塩(MCFC)形等の高温大規模または中規模の燃料電池の設置である。ちなみに固体酸化物形の動作温度は1000℃であり、溶融炭酸塩形の動作温度は600〜700℃である。
現在、固体酸化物型の研究および開発により、発電効率60%の見通し、作動温度800℃が可能である。NTTはセラミックス製電極を改良し、電気抵抗を十分の一程度に下げた。また、三菱マテリアルと関西電力などは、約千度と高い作動温度を約二百度下げられる電極材料を開発したことにより、上記の発電効率および作動温度が可能になるのである。
【0016】
本出願の参考文献等。
1・発電・変電 第3編 火力発電 第4編 原子力発電 電気学会。
2・燃料電池のすべて 第1章〜第7章 日本実業出版社。
3・自動車メカニズム図鑑 水素エンジンの構成 グランプリ出版。
4・2003年2月16日掲載 ガイアの夜明け 開発進む燃料電池 日本経済新聞。
5・2003年3月11日掲載 UAEの発電・淡水化事業 東電連合が受注 日本経済新聞。
6・2003年4月 4日掲載 燃料電池「火力」並み目指す 固体酸化物型の研究進む 日本経済新聞。
7・世界大百科事典 発電・水素・放射能・火葬 平凡社。
【0017】
【発明の効果】
火力発電(気力発電を含む)設備または原子力発電設備の排気端蒸気等から水素を得るのである。この水素を内燃機関または燃料電池に設けた複合発電であり、発電効率の向上である。燃料電池の動作熱エネルギーを設けた水素製造または海水の淡水化であり、水素を設けた無公害の火葬用燃焼炉または塵焼却炉である。したがって、海水等で失われる熱エネルギーからの水素製造であり、燃焼には無公害の水素を設けた発電等である。
【図面の簡単な説明】
【図1】原子力発電の加圧水形軽水炉(PWR)原理参考図
【符号の説明】
1 蒸気発生器(熱交換器)
[0001]
[Industrial applications]
This application relates to production of hydrogen from steam at the exhaust end of a thermal power generation (pneumatic power generation) facility or a nuclear power generation facility, power generation by hydrogen combustion, and the like.
[0002]
[Prior art]
Thermal power generation (thermal power generation) burns fuel such as oil, coal, and liquefied natural gas (LNG) to produce steam in a boiler, and this steam turns a steam turbine to operate a generator. It uses it to extract heat energy and turn a steam turbine to run a generator. It converts fuel or fission energy into heat energy, and the steam generated by heating water turns the turbine to convert it into mechanical energy (rotational motion), which is obtained by a generator. In order to operate the heat engine efficiently, a high heat source and a low heat source are required. Therefore, since ascites is provided and cooled with seawater or the like, a considerable part of heat energy is lost in the ascites.
[0003]
[Problems to be solved by the invention]
A significant portion of the thermal energy of thermal or nuclear power is lost in the ascites. Production of hydrogen from steam at the exhaust end of nuclear power generation facilities or steam from the exhaust end of thermal power generation (pneumatic power generation) facilities through effective use of thermal energy, and development of power generation using the produced hydrogen as fuel, desalination of seawater, etc. What you are trying to do.
[0004]
[Means for Solving the Problems]
1. Provide steam at the exhaust end of thermal (including energy) power generation equipment for hydrogen production.
2. Steam provided with one steam generator (heat exchanger) for the steam heat at the exhaust end of the nuclear power plant is provided for the production of hydrogen.
3. Hydrogen produced from thermal (including aerodynamic) power generation equipment or nuclear power generation equipment is provided to an internal combustion engine such as a hydrogen engine.
4. Hydrogen produced from thermal (including aerodynamic) power generation equipment or nuclear power generation equipment is provided in a fuel cell of solid oxide type or molten carbonate type.
5. Provide the operating thermal energy of the fuel cell, such as solid oxide form or molten carbonate form, for hydrogen production.
6. For the desalination of seawater, the operating thermal energy of the fuel cell such as solid oxide type or molten carbonate type is provided.
7. The hydrogen produced by the thermal (including vigor) power generation facility or the nuclear power generation facility or the fuel cell facility is provided in the cremation furnace.
8. Provide hydrogen to the dust incinerator with thermal power generation (including power) or nuclear power generation equipment or fuel cell equipment.
[0005]
[Action]
Hydrogen is produced from steam at the exhaust end of thermal power generation (including pneumatic power generation) equipment or nuclear power generation equipment. In nuclear power generation equipment, one steam generator (heat exchanger) is installed at the exhaust end to prevent radioactive leakage. Hydrogen production from the provided steam.
This is power generation in which hydrogen produced from thermal power generation (including pneumatic power generation) equipment or nuclear power generation equipment is provided in an internal combustion engine or a fuel cell.
Hydrogen produced from thermal power generation (including thermal power generation) equipment or nuclear power generation equipment is used to generate water from the thermal decomposition, steam decomposition, and thermochemical cycles of water using the operating thermal energy of the fuel cells installed in large or medium-sized fuel cells. Hydrogen production by the decomposition of seawater and desalination of seawater.
It is a crematory combustion furnace or dust incinerator provided with hydrogen produced from thermal power generation (including pneumatic power generation) equipment, nuclear power generation equipment or fuel cell equipment.
[0006]
Embodiment 1
An embodiment according to claim 1 will be described.
A configuration in which steam at the exhaust end of thermal (including aerodynamic) power generation equipment is provided for hydrogen production.
In thermal power generation, heat generated by fuel (coal, heavy oil, etc.) is transferred to water by a boiler, which evaporates and raises the temperature and pressure. Next, the steam is put into a steam turbine, and the steam is expanded in the turbine to rotate an impeller of the turbine. Thus, the heat energy of the steam is converted into mechanical energy, and the turbine shaft and the generator rotate to generate electricity. The remaining steam becomes low pressure and low temperature. At the outlet of the turbine, an ascites is provided to continuously cool the discharged low-pressure and low-temperature steam with circulating water to condense into water. The thermal energy of the released steam is lost in the ascites.
Therefore, the hydrogen production is performed by providing the steam at the exhaust end of the steam turbine outlet.
Since hydrogen is secondary energy and some primary energy is required for production, hydrogen is obtained by providing steam at the exhaust end of a thermal power plant or the like.
Hydrogen production methods using steam include steam decomposition and thermal decomposition, and hydrogen production is performed by this decomposition method or the like.
The above description of the thermal power plant includes the thermal power plant.
Currently, TEPCO and Mitsui & Co., together with the UK-based power generation company International Power, are developing power generation and desalination projects in the United Arab Emirates (UAE). Fresh water is obtained from the thermal power plant and the steam generated there.
[0007]
Embodiment 2
An embodiment according to claim 2 will be described.
A configuration in which one steam generator (heat exchanger) is provided for hydrogen production at the exhaust end steam heat of a nuclear power plant.
In nuclear power generation, thermal energy is extracted from a nuclear reactor based on nuclear fission. Water, liquid metal, air (or gas), etc. are circulated in the reactor to extract heat energy, turn it into steam through a heat exchanger, and generate power using a steam turbine generator. Therefore, it can be said that this is a variation of thermal power generation. However, in order to prevent radioactive leakage and the like, a steam generator is provided at the steam heat at the exhaust end of the steam turbine outlet, and hydrogen is converted from the steam of the steam generator. You get
The method for producing hydrogen is the same as that of the thermal power generation described in the first embodiment, and a description thereof will be omitted.
[0008]
Embodiment 3
A third embodiment will be described.
A configuration in which the produced hydrogen described in Example 1 or Example 2 is provided in an internal combustion engine for power generation provided in a power plant.
Hydrogen provided in a thermal (including aerodynamic) power generation facility or a nuclear power generation facility is provided in an internal combustion engine to generate power. The internal combustion engine includes a hydrogen diesel engine and a hydrogen engine. The basic structure of a hydrogen engine is to inject hydrogen directly into the combustion chamber of a two-stroke engine and ignite the gas flow generated by the depression of the piston with a hot surface of electricity, thereby obtaining clean high power.
Produced hydrogen is used as fuel for an internal combustion engine such as a hydrogen diesel engine or a hydrogen engine to generate power, and the engine exhaust is non-polluting steam.
By providing it in a power plant, it becomes an integrated facility from hydrogen production to combustion and power generation of a hydrogen engine and the like.
[0009]
Embodiment 4
An embodiment according to claim 4 will be described.
A configuration in which the produced hydrogen described in Example 1 or Example 2 is provided in a fuel cell provided in a power plant.
Hydrogen provided by a thermal power plant or a nuclear power plant is provided in the fuel cell. The fuel cell includes a solid oxide fuel cell (SOFC), a molten carbonate fuel cell (MCFC), a phosphoric acid fuel cell (PAFC), a polymer electrolyte fuel cell (PEFC), and the like.
SOFCs in fuel cells can also directly supply hydrogen, carbon monoxide, and coal gas as fuel gas. The MCFC uses hydrogen, carbon monoxide, and coal as fuels and requires carbon dioxide in the cathode, which can reduce the carbon dioxide concentration function and the carbon dioxide emission of the thermal power plant. PAFC fuels are natural gas, LPG, methanol, digestive gas, biogas, etc., which are fuel reforming and hydrogen, and require cooling water. PEFC uses natural gas, methanol, or the like as a fuel, but requires reforming.
Therefore, the fuel cell installed in the power plant is provided with a large or medium-sized solid oxide fuel cell (SOFC) or molten carbonate fuel cell (MCFC) fuel cell, and supplies the produced hydrogen to the fuel.
[0010]
Embodiment 5
An embodiment according to claim 5 will be described.
A configuration in which thermal energy generated by a fuel cell provided in a power plant is provided for hydrogen production.
Fuel cells generate a chemical reaction between hydrogen and oxygen to generate electricity. The heart is an electrode and an electrolyte or electrolyte membrane, called a cell. The cell has a structure in which an electrolyte or an electrolyte membrane is placed at the center and electrodes are provided on both sides. The electrodes include a fuel electrode and an air electrode. Hydrogen is the fuel electrode and oxygen is the air electrode. When this fuel cell operates, it generates thermal energy. The generated thermal energy is provided for hydrogen production.
The operating temperatures of the fuel cell are as follows: solid oxide form (SOFC) 900-1000 ° C, molten carbonate form (MCFC) 600-700 ° C, phosphoric acid form (PAFC) 170-200 ° C, polymer electrolyte form (PEFC) It is about 80-100 ° C.
The hydrogen production method using thermal energy is a hydrogen production method based on thermal decomposition of water, steam decomposition, water decomposition by a thermochemical cycle, and the like.
The fuel cell provided in the power plant is a high-temperature large- or medium-sized solid oxide or molten carbonate fuel cell installed by utilizing operating thermal energy.
[0011]
Embodiment 6
An embodiment according to claim 6 will be described.
A configuration in which the operating thermal energy of the fuel cell provided in the power plant is provided for desalination of seawater.
It is seawater freshwater provided with thermal energy generated when the fuel cell operates.
It is evaporation or steam of seawater due to heat energy, and becomes freshwater by cooling with seawater.
A fuel cell in a power plant is provided with high-temperature large-sized solid oxide (SOFC) or medium-sized molten carbonate (MCFC) by desalination of seawater.
Therefore, fresh water is obtained from the evaporation or steam of seawater due to the operating thermal energy of the fuel cell.
The operating thermal energy of the fuel cell includes a concept of an ultra-high-efficiency power generation system such as combined power generation with a gas turbine or a steam turbine.
[0012]
Embodiment 7
An embodiment according to claim 7 will be described.
A configuration in which the produced hydrogen described in Example 1, Example 2, or Example 5 is provided in a cremation combustion furnace provided in a power plant.
Hydrogen produced from thermal power generation (including pneumatic power generation) equipment, nuclear power generation equipment, or fuel cell equipment is provided as fuel for the crematory combustion furnace.
In a combustion furnace using hydrogen as a fuel, there is no air pollution such as carbon dioxide or a global environmental problem, and the exhaust gas is water vapor and is non-polluting. By providing such a combustion furnace using hydrogen as a fuel in a power plant, a complete cremation combustion facility from hydrogen production to combustion is provided.
[0013]
Embodiment 8
An embodiment according to claim 8 will be described.
A configuration in which the produced hydrogen described in Example 1, Example 2, or Example 5 is provided in a dust incinerator provided in a power plant.
Hydrogen produced from thermal power generation (including pneumatic power generation) equipment or nuclear power generation equipment or fuel cell equipment is provided as fuel for dust incinerators.
At the time of incineration, hydrogen is provided for combustion in an incinerator which requires a temperature of 800 ° C. or more in order to prevent dioxins and the like generated.
Therefore, non-polluting hydrogen is provided to the fuel of the dust incinerator to reduce various problems such as air pollution. From the hydrogen production to the combustion, an integrated dust incineration facility will be installed in the power plant.
[0014]
The present application relates to the production of hydrogen from steam at an exhaust end of a thermal power plant or a nuclear power plant, such as power generation or combustion using the produced hydrogen as a fuel. Therefore, although it is a description of providing integrated equipment in a power plant, the liquefaction of hydrogen or the provision of hydrogen in a high-pressure cylinder or the like does not require the installation of a combustion furnace or an incinerator in the power plant.
[0015]
Hydrogen production or desalination by operating thermal energy of a fuel cell installed in a thermal power plant (including a thermal power plant) or a nuclear power plant is performed on a large scale or at a high temperature such as a solid oxide (SOFC) type or a molten carbonate (MCFC) type. The installation of a medium-scale fuel cell. Incidentally, the operating temperature of the solid oxide type is 1000 ° C., and the operating temperature of the molten carbonate type is 600 to 700 ° C.
At present, the research and development of the solid oxide type allows the prospect of power generation efficiency of 60% and operating temperature of 800 ° C. NTT has improved ceramic electrodes and reduced electrical resistance to about one-tenth. In addition, Mitsubishi Materials and Kansai Electric Power have developed electrode materials that can lower the operating temperature, which is as high as about 1,000 degrees, by about 200 degrees, thereby enabling the above-mentioned power generation efficiency and operating temperature.
[0016]
References of the present application.
1. Power generation and transformation Part 3 Thermal power generation Part 4 Nuclear power generation The Institute of Electrical Engineers of Japan.
2. All about fuel cells Chapters 1 to 7 Japan Business Publishing Company.
3. Automobile mechanism picture book Composition of hydrogen engine Grand Prix publication.
4. February 16th, 2003 Gaia's Dawn Fuel cells under development Nihon Keizai Shimbun.
5. Published on March 11, 2003 UAE's power generation and desalination business The TEPCO received an order Nihon Keizai Shimbun.
6, April 4, 2003 Posted in Nihon Keizai Shimbun, advancing research on solid oxides, aiming at the same level as "thermal power" fuel cells.
7. World Encyclopedia Power Generation, Hydrogen, Radioactivity, Cremation Heibonsha.
[0017]
【The invention's effect】
Hydrogen is obtained from thermal power generation (including pneumatic power generation) equipment or steam at the exhaust end of nuclear power generation equipment. This is a combined power generation in which the hydrogen is provided in an internal combustion engine or a fuel cell, and the power generation efficiency is improved. It is a hydrogen-free or seawater desalination provided with operating thermal energy of a fuel cell, and is a non-polluting crematory combustion furnace or dust incinerator provided with hydrogen. Therefore, it is hydrogen production from heat energy lost in seawater or the like, and power generation or the like provided with non-polluting hydrogen for combustion.
[Brief description of the drawings]
Fig. 1 Reference diagram of the principle of pressurized water reactor (PWR) for nuclear power generation.
1 steam generator (heat exchanger)

Claims (8)

火力発電(気力発電)設備の排気端蒸気を水素製造に設けたことを特徴とした発電所の排気熱利用による水素と発電。Hydrogen and power generation by utilizing the exhaust heat of a power plant, characterized in that the steam at the exhaust end of a thermal power plant is used for hydrogen production. 原子力発電設備の排気端蒸気熱に1蒸気発生器(熱交換器)を設けた蒸気を水素製造に設けたことを特徴とした発電所の排気熱利用による水素と発電。Hydrogen and power generation by utilizing the exhaust heat of a power plant, wherein a steam having a steam generator (heat exchanger) provided for the steam heat at the exhaust end of a nuclear power plant is provided for hydrogen production. 請求項1または請求項2に記載の製造水素を、発電所内に設けた発電用の内燃機関に設けたことを特徴とした発電所の排気熱利用による水素と発電。3. Hydrogen and power generation by utilizing exhaust heat of a power plant, wherein the produced hydrogen according to claim 1 or 2 is provided in an internal combustion engine for power generation provided in the power plant. 請求項1または請求項2に記載の製造水素を、発電所内に設けた燃料電池に設けたことを特徴とした発電所の排気熱利用による水素と発電。3. Hydrogen and power generation by utilizing exhaust heat of a power plant, wherein the produced hydrogen according to claim 1 or 2 is provided in a fuel cell provided in the power plant. 発電所内に設けた燃料電池の動作熱エネルギーを、水素製造に設けたことを特徴とした発電所の排気熱利用による水素と発電。Hydrogen and power generation using the exhaust heat of the power plant, wherein the operating thermal energy of the fuel cell provided in the power plant is provided for hydrogen production. 海水の淡水化に、燃料電池の動作熱エネルギーを設けたことを特徴とした発電所の排気熱利用による水素と発電。Hydrogen and power generation by utilizing the exhaust heat of a power plant, characterized by the use of fuel cell operating thermal energy for desalination of seawater. 請求項1または請求項2もしくは請求項5に記載の製造水素を、発電所内に設けた火葬用の燃焼炉に設けたことを特徴とした発電所の排気熱利用による水素と発電。6. Hydrogen and power generation using exhaust heat of a power plant, wherein the produced hydrogen according to claim 1, 2, or 5 is provided in a cremation combustion furnace provided in the power plant. 請求項1または請求項2もしくは請求項5に記載の製造水素を、発電所内に設けた塵焼却炉に設けたことを特徴とした発電所の排気熱利用による水素と発電。6. Hydrogen and power generation by utilizing exhaust heat of a power plant, wherein the produced hydrogen according to claim 1, 2, or 5 is provided in a dust incinerator provided in the power plant.
JP2003153524A 2003-04-22 2003-04-22 Hydrogen and power generation by use of exhaust heat of electric power plant Withdrawn JP2004324626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153524A JP2004324626A (en) 2003-04-22 2003-04-22 Hydrogen and power generation by use of exhaust heat of electric power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153524A JP2004324626A (en) 2003-04-22 2003-04-22 Hydrogen and power generation by use of exhaust heat of electric power plant

Publications (1)

Publication Number Publication Date
JP2004324626A true JP2004324626A (en) 2004-11-18

Family

ID=33508274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153524A Withdrawn JP2004324626A (en) 2003-04-22 2003-04-22 Hydrogen and power generation by use of exhaust heat of electric power plant

Country Status (1)

Country Link
JP (1) JP2004324626A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100664970B1 (en) 2004-12-31 2007-01-04 전상문 Hybrid internal combustion engine using thermochemical reaction
WO2014065185A1 (en) * 2012-10-26 2014-05-01 川崎重工業株式会社 Sunlight-utilizing gas turbine power generation system provided with hydrogen-generating unit
CN105895179A (en) * 2016-04-13 2016-08-24 中国核电工程有限公司 Method of using nuclear power plant cooling tower waste heat to heat sea light raw water and reduce warm water discharge
CN112562879A (en) * 2020-12-03 2021-03-26 东北大学 Energy cascade utilization multi-element energy supply system based on nuclear energy
KR20220111561A (en) * 2021-02-02 2022-08-09 한국수력원자력 주식회사 Hydrogen production system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100664970B1 (en) 2004-12-31 2007-01-04 전상문 Hybrid internal combustion engine using thermochemical reaction
WO2014065185A1 (en) * 2012-10-26 2014-05-01 川崎重工業株式会社 Sunlight-utilizing gas turbine power generation system provided with hydrogen-generating unit
JP2014084838A (en) * 2012-10-26 2014-05-12 Kawasaki Heavy Ind Ltd Solar light utilization gas turbine power generating system including hydrogen generating device
CN104797798A (en) * 2012-10-26 2015-07-22 川崎重工业株式会社 Sunlight-utilizing gas turbine power generation system provided with hydrogen-generating unit
US10196978B2 (en) 2012-10-26 2019-02-05 Kawasaki Jukogyo Kabushiki Kaisha Sunlight-utilizing gas turbine power generation system provided with hydrogen-generating unit
CN105895179A (en) * 2016-04-13 2016-08-24 中国核电工程有限公司 Method of using nuclear power plant cooling tower waste heat to heat sea light raw water and reduce warm water discharge
CN105895179B (en) * 2016-04-13 2021-11-16 中国核电工程有限公司 Method for heating sea fresh water by using waste heat of cooling tower of nuclear power plant and reducing warm water discharge
CN112562879A (en) * 2020-12-03 2021-03-26 东北大学 Energy cascade utilization multi-element energy supply system based on nuclear energy
CN112562879B (en) * 2020-12-03 2024-05-14 东北大学 Energy cascade utilization multi-element energy supply system based on nuclear energy
KR20220111561A (en) * 2021-02-02 2022-08-09 한국수력원자력 주식회사 Hydrogen production system
KR102482919B1 (en) 2021-02-02 2022-12-28 한국수력원자력 주식회사 Hydrogen production system

Similar Documents

Publication Publication Date Title
Roushenas et al. Thermo-environmental analysis of a novel cogeneration system based on solid oxide fuel cell (SOFC) and compressed air energy storage (CAES) coupled with turbocharger
Gholamian et al. Evolutionary based multi-criteria optimization of an integrated energy system with SOFC, gas turbine, and hydrogen production via electrolysis
SE531872C2 (en) Procedure for incremental energy conversion
Wang et al. Energy, exergy, exergoeconomic, environmental (4E) evaluation and multi-objective optimization of a novel SOFC-ICE-SCO2-HRSG hybrid system for power and heat generation
Yang et al. Thermodynamic performance study of the SOFC-STIG distributed energy system fueled by LNG with CO2 recovery
Sadeghi et al. Performance and economic investigation of a combined phosphoric acid fuel cell/organic Rankine cycle/electrolyzer system for sulfuric acid production; Energy‐based organic fluid selection
Yadav et al. Comprehensive review on performance assessment of solid oxide fuel cell-based hybrid power generation system
Zhou et al. Proposal of a tri-generation system by co-combustion of groundnut shell biomass and synthesis gas exiting from a solid oxide fuel cell: Environmental assessment and multi-objective optimization
Sinha et al. Integrated fuel cell hybrid technology
Ammar et al. Overview of the green hydrogen applications in marine power plants onboard ships
Hai et al. The novel integration of biomass gasification plant to generate efficient power, and the waste recovery to generate cooling and freshwater: a demonstration of 4E analysis and multi-criteria optimization
KR20210035135A (en) System for capturing carbon dioxide using fuel cell and method thereof
JP2004324626A (en) Hydrogen and power generation by use of exhaust heat of electric power plant
JP7292474B2 (en) Hybrid power plant with CO2 capture
KR20100002360A (en) Hybrid power plant system using fuel cell generation and thermoelectric generation
Hai et al. Innovative proposal of energy scheme based on biogas from digester for producing clean and sustainable electricity, cooling and heating: Proposal and multi-criteria optimization
JP2005133702A (en) Combined power-generation by waste-heat utilization
Wang et al. Technical design of an innovative biomass/gasification-driven power plant with heat recovery hybrid system: CO2 emission comparison between the designed plant and fossil fuel-powered plants
CN105244525A (en) Power generation systems and methods utilizing cascaded fuel cells
Ma et al. Efficient and Sustainable Power Propulsion for All-Electric Ships: An Integrated Methanol-fueled SOFC-sCO2 System
Nandwana et al. Exergy Analysis and Optimization of Gasifier-Solid Oxide Fuel Cell-Gas Turbine Hybrid System
Layne et al. Hybrid fuel cell heat engines: recent efforts
Cheng et al. Design and energy efficiency analysis of hydrogen-fueled SOFC-‘GT+ ST’combined cycle system
JP2005264800A (en) Combustion equipment, gas-turbine electric-power generator, combustion method, gas-turbine power-generation method, and modification method of gas-turbine equipment
Lunghi et al. Efficiency upgrading of an ambient pressure MCFC plant through the introduction of an indirect heated gas turbine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704