JP2004324441A - Intake valve for internal combustion engine - Google Patents
Intake valve for internal combustion engine Download PDFInfo
- Publication number
- JP2004324441A JP2004324441A JP2003116564A JP2003116564A JP2004324441A JP 2004324441 A JP2004324441 A JP 2004324441A JP 2003116564 A JP2003116564 A JP 2003116564A JP 2003116564 A JP2003116564 A JP 2003116564A JP 2004324441 A JP2004324441 A JP 2004324441A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- internal combustion
- combustion engine
- ratio
- flange portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、内燃機関の吸気バルブに関する。
【0002】
【従来の技術】
内燃機関、特に直噴式ディーゼルエンジンの燃費改善を図る手段の一つとして、吸排気ポートの流量係数向上によるポンピングロスの低減が挙げられる(例えば、非特許文献1参照。)。
【非特許文献1】
「自動車技術」 社団法人自動車技術会発行 1999年4月1日発行
第42頁−第46頁
【0003】
【発明が解決しようとする課題】
しかし、吸気ポートの場合、スワールの問題があり、その性能を特徴づけるのは流量係数とスワール比であるため、単に流量係数を上げればよいとは限らず、直噴式ディーゼルエンジンではとりわけスワール比の性能への影響が大きい。
【0004】
吸気ポートによって生成されたスワール流は、圧縮,燃焼行程を通してシリンダ,燃焼室内の支配的な流れであって、燃料噴霧と空気のミキシング,燃焼後期の火炎中への空気導入等、スワール流は燃焼状態に影響を与え、排気ガス,燃費性能に大きな影響を与える。
【0005】
而して、従来、吸気ポートのポート形状でスワール比を上げようとすると、ポート形状が抵抗となって空気流量が下がる傾向にあり、スワール比を上げ、且つ空気流量の改善によりポンピングロスの低減を図って燃費を改善する方法として、吸気ポートのポート形状を操作することは難しいのが実情であった。
本発明は斯かる実情に鑑み案出されたもので、スワール比を上げつつ、空気の充填効率を高めて燃費と燃焼の改善を可能とした内燃機関の吸気バルブを提供することを目的とする。
【0006】
【課題を解決するための手段】
斯かる目的を達成するため、請求項1に係る内燃機関の吸気バルブは、バルブステム部から傘部のバルブシート面に至るバルブフランジ部のRの値(Rb)を、内燃機関の仕様に応じた設定値よりも小さく変更したことを特徴とする。
斯かる構成によれば、バルブフランジ部のRの値(Rb)を内燃機関の仕様に応じた設定値よりも小さく変更、言い換えればバルブフランジ部のR形状を従来に比し小さく変更することで、吸気の通路面積が増加する。
【0007】
また、斯様にバルブフランジ部のRの値(Rb)を変更することでスワール比(S/R)も変化する。
そして、請求項2に係る発明は、請求項1記載の内燃機関の吸気バルブに於て、傘部の外径寸法(a)と、バルブステム部から傘部のバルブシート面に至るバルブフランジ部のRの値(Rb)との比(a/Rb)を、3.5〜4.5としたことを特徴とする。
【0008】
而して、斯かる構成によれば、比(a/Rb)を、3.5〜4.5とすることで、従来に比しスワール比(S/R)と空気流量が共に向上して、燃費と燃焼の改善が図られることとなる。
【0009】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
【0010】
図1は請求項1及び請求項2の一実施形態に係る内燃機関の吸気バルブを示し、従来と同様、本実施形態に係る吸気バルブ1は、傘部(バルブヘッド)3と、バルブフランジ部5,バルブステム部7、そして、図示しないバルブステム部7上端のステム端部とからなるポペット弁で、バルブシート面9のシート角は30°に設定され、また、傘部3の外径寸法(a)は47mmに設定されている。
【0011】
ところで、従来、この種の吸気バルブは強度,信頼性が優先され、傘部の傘裏形状、即ち、バルブステム部を基点として傘部のバルブシート面に至るバルブフランジ部の形状は何ら考慮されておらず、一般にバルブフランジ部のR形状のRの値(Rb)は、表1,表2に示すRb=17の設定値に設定されていた。
【表1】
【表2】
そして、既述したように燃費改善を図る手段の一つとして、吸排気系の流量改善によるポンピングロスの低減が挙げられるが、本実施形態は、吸気ポートのポート形状に代えてバルブフランジ部5に着目し、従来、Rb=17であったバルブフランジ部5をRb=13に変えてそのR形状を小さくすることで、吸気の通路面積を拡大したものである。
【0012】
尚、吸気バルブ1の傘部3の外径寸法(a)は、従来と同様、47mmに設定してある。
而して、表1は上述の如くバルブフランジ部5のR形状をRb=17からRb=13に変えて通路面積を拡大したことにより、スワール比(S/R)がどのように変化したかを示すもので、表中、「a/Rb」は傘部3の外径寸法(a)とバルブフランジ部5のRの値(Rb)との比をいう。
【0013】
また、表2は斯様にバルブフランジ部5のR形状をRb=17からRb=13に変えて通路面積を拡大したことで、トータルエアフロー(T.A.F;一分間に流れた空気の重量流量)がどのように変化したかを示すもので、表中、「a/Rb」は同じく傘部3の外径寸法(a)とバルブフランジ部5のRの値(Rb)との比をいう。
【0014】
更にまた、本実施形態は、バルブフランジ部5のR形状をRb=17からRb=8に変えた場合のスワール比(S/R)とトータルエアフロー(T.A.F)を計測して表1,2に示し、また、傘部3の外径寸法(a)とバルブフランジ部5のRの値(Rb)との比(a/Rb)を求めて表1,2に示している。
そして、図2は表1の計測値をグラフ化し、また、図3は表2の計測値をグラフ化したもので、図2,図3の横軸に既述した比(a/Rb)をとり、図2の縦軸はスワール比(S/R)、そして、図3の縦軸はトータルエアフロー(T.A.F)をとっている。
【0015】
このように本実施形態は、傘部3の外径寸法(a)を、従来と同様、47mmに設定した上で、バルブフランジ部5のR形状をRb=17からRb=13,Rb=8に変えて、傘部3の外径寸法(a)とバルブフランジ部5のRの値(Rb)との比(a/Rb)を変えたことを特徴としている。
そして、表1の計測値から明らかなように、バルブフランジ部5のR形状をRb=17からRb=13に変えて、比(a/Rb)を「2.76」から「3.62」に変えることで、スワール比(S/R)が「1.295」から「1.37」に向上している。
【0016】
また、バルブフランジ部5のR形状をRb=17からRb=8に変えて、比(a/Rb)を「2.76」から「5.87」に変えることで、スワール比(S/R)が「1.295」から「1.32」に向上している。
同様に、表2の計測値から明らかなように、バルブフランジ部5のR形状をRb=17からRb=13に変えて、比(a/Rb)を「2.76」から「3.62」に変えることで、トータルエアフロー(T.A.F)が「0.0284」から「0.0294」に向上し、また、バルブフランジ部5のR形状をRb=17からRb=8に変えて、比(a/Rb)を「2.76」から「5.87」に変えることで、トータルエアフロー(T.A.F)が「0.0284」から「0.0292」に向上している。
【0017】
この表2の計測値から窺えることは、バルブフランジ部5のR形状をRb=13よりRb=8にすることで、より広い通路面積が確保できるために空気流量が増加するかに思われるが、バルブフランジ部5のR形状が小さすぎると、バルブフランジ部5の形状自体が流路抵抗となって空気流量の増加を妨げることが導かれる。
【0018】
従って、本実施形態の如く吸気バルブ1のバルブフランジ部5に着目して、スワール比(S/R)とトータルエアフロー(T.A.F)を向上させるに当たっては、内燃機関の仕様に応じ傘部3の外径寸法(a)とバルブフランジ部5のRの値(Rb)を適宜設定して、比(a/Rb)を最適値に調整することが必要で、本実施形態では、表1,表2から比(a/Rb)=3.5〜4.5とすることがスワール比(S/R)とトータルエアフロー(T.A.F)を向上させるに当たって好適である。
【0019】
そして、図4は比(a/Rb)が「2.76」,「3.62」,「5.87」である前記吸気バルブをエンジンに装着した場合の燃費を確認したもので、既述したように比(a/Rb)=5.87は従来の吸気バルブ、そして、比(a/Rb)=3.62はRb=13の吸気バルブ1、比(a/Rb)=2.76はRb=8の吸気バルブである。
【0020】
而して、この図4から明らかなように、3つの吸気バルブの中では、スワール比(S/R)とトータルエアフロー(T.A.F)の値が最も高い比(a/Rb)=3.62の吸気バルブ1を用いた場合に、最も燃費の改善が図られている。以上述べたように、吸気ポートのポート形状でスワール比を上げようとすると空気流量は下がる傾向にあったが、本実施形態によれば、バルブフランジ部5のR形状の調整によって、空気流量と共にスワール比(S/R)を上げることが可能で、この結果、ポンピングロスの低減によって燃費が改善されると共に、空気流量の増加とスワール比(S/R)の向上によって燃焼の改善が図られることとなった。
【0021】
そして、既述したように吸気バルブのバルブフランジ部に着目して、スワール比(S/R)とトータルエアフロー(T.A.F)を向上させるに当たり、内燃機関の仕様に応じ傘部の外径寸法(a)とバルブフランジ部のRの値(Rb)を最適な値に設定して比(a/Rb)を適宜変化させることで、総ての内燃機関の燃費,燃焼の改善が図れることとなる。
【0022】
【発明の効果】
以上述べたように、各請求項に係る発明によれば、バルブフランジ部のR形状の調整によって、空気流量と共にスワール比を上げることができ、この結果、ポンピングロスの低減によって燃費が改善されると共に、空気流量の増加とスワール比の向上によって燃焼の改善が図れる利点を有する。
【図面の簡単な説明】
【図1】請求項1及び請求項2の一実施形態に係る吸気バルブの要部正面図である。
【図2】比(a/Rb)とスワール比(S/R)の関係を示す説明図である。
【図3】比(a/Rb)とトータルエアフロー(T.A.F)の関係を示す説明図である。
【図4】比(a/Rb)と燃費の関係を示す説明図である。
【符号の説明】
1 吸気バルブ
3 傘部
5 バルブフランジ部
7 バルブステム部
9 バルブシート面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an intake valve for an internal combustion engine.
[0002]
[Prior art]
One of the means for improving the fuel efficiency of an internal combustion engine, particularly a direct injection diesel engine, is to reduce pumping loss by improving the flow coefficient of intake and exhaust ports (for example, see Non-Patent Document 1).
[Non-patent document 1]
"Automotive Technology" Published by the Society of Automotive Engineers of Japan Published April 1, 1999 Pages 42-46 [0003]
[Problems to be solved by the invention]
However, in the case of the intake port, there is a problem of swirl, and its performance is characterized by the flow coefficient and the swirl ratio, so it is not always necessary to simply increase the flow coefficient. Large impact on performance.
[0004]
The swirl flow generated by the intake port is the dominant flow in the cylinder and the combustion chamber through the compression and combustion processes. The swirl flow is the combustion such as fuel spray and air mixing, and air introduction into the flame at the latter stage of combustion. Affects the condition, and greatly affects exhaust gas and fuel efficiency.
[0005]
Conventionally, when trying to increase the swirl ratio with the port shape of the intake port, the port shape tends to reduce the air flow rate due to the resistance, and the swirl ratio is increased and the pumping loss is reduced by improving the air flow rate. As a method of improving fuel efficiency by taking measures, it has been difficult to operate the shape of the intake port.
The present invention has been devised in view of such circumstances, and it is an object of the present invention to provide an intake valve for an internal combustion engine that can improve the fuel efficiency and combustion by increasing the air filling efficiency while increasing the swirl ratio. .
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the intake valve of the internal combustion engine according to claim 1 sets the value (Rb) of the valve flange portion from the valve stem portion to the valve seat surface of the umbrella portion according to the specification of the internal combustion engine. It is characterized in that it has been changed to be smaller than the set value.
According to such a configuration, the R value (Rb) of the valve flange portion is changed to be smaller than a set value according to the specification of the internal combustion engine, in other words, the R shape of the valve flange portion is changed to be smaller than before. Thus, the intake passage area increases.
[0007]
Further, the swirl ratio (S / R) also changes by changing the R value (Rb) of the valve flange portion.
According to a second aspect of the present invention, in the intake valve of the internal combustion engine according to the first aspect, an outer diameter of the umbrella portion (a) and a valve flange portion extending from the valve stem portion to the valve seat surface of the umbrella portion. The ratio (a / Rb) to the value of R (Rb) is set to 3.5 to 4.5.
[0008]
Thus, according to such a configuration, by setting the ratio (a / Rb) to 3.5 to 4.5, both the swirl ratio (S / R) and the air flow rate are improved as compared with the related art. Thus, the fuel efficiency and the combustion can be improved.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0010]
FIG. 1 shows an intake valve of an internal combustion engine according to an embodiment of the first and second aspects of the present invention. As in the prior art, the intake valve 1 according to the present embodiment includes an umbrella (valve head) 3 and a valve flange. 5, a poppet valve comprising a
[0011]
Conventionally, the strength and reliability of this type of intake valve are prioritized, and the shape of the back of the umbrella, that is, the shape of the valve flange portion extending from the valve stem to the valve seat surface of the umbrella is considered at all. In general, the R value (Rb) of the R shape of the valve flange portion was set to the set value of Rb = 17 shown in Tables 1 and 2.
[Table 1]
[Table 2]
As described above, one of the means for improving the fuel efficiency is to reduce the pumping loss by improving the flow rate of the intake / exhaust system. However, in the present embodiment, the
[0012]
The outer diameter (a) of the
Table 1 shows how the swirl ratio (S / R) changes by changing the R shape of the
[0013]
Also, Table 2 shows that the total airflow (TAF; the air flowing in one minute) was obtained by increasing the passage area by changing the R shape of the
[0014]
Furthermore, in the present embodiment, the swirl ratio (S / R) and the total airflow (TAF) when the R shape of the
2 is a graph of the measured values in Table 1, and FIG. 3 is a graph of the measured values in Table 2. The ratio (a / Rb) described above is plotted on the horizontal axis in FIGS. The vertical axis in FIG. 2 indicates the swirl ratio (S / R), and the vertical axis in FIG. 3 indicates the total airflow (TAF).
[0015]
As described above, in the present embodiment, the outer diameter dimension (a) of the
As is clear from the measured values in Table 1, the R shape of the
[0016]
The swirl ratio (S / R) is changed by changing the R shape of the
Similarly, as is clear from the measurement values in Table 2, the R shape of the
[0017]
It can be seen from the measured values in Table 2 that, by setting the R shape of the
[0018]
Therefore, focusing on the
[0019]
FIG. 4 shows the fuel efficiency when the intake valves having the ratios (a / Rb) of “2.76”, “3.62”, and “5.87” are mounted on the engine. As described above, the ratio (a / Rb) = 5.87 is the conventional intake valve, the ratio (a / Rb) = 3.62 is the intake valve 1 with Rb = 13, and the ratio (a / Rb) = 2.76. Is an intake valve of Rb = 8.
[0020]
Thus, as is apparent from FIG. 4, among the three intake valves, the ratio (a / Rb) = the highest value of the swirl ratio (S / R) and the value of the total airflow (TAF) = The fuel efficiency is most improved when the intake valve 1 of 3.62 is used. As described above, the air flow rate tends to decrease when the swirl ratio is increased in the port shape of the intake port. However, according to the present embodiment, the air flow rate is adjusted by adjusting the R shape of the
[0021]
As described above, focusing on the valve flange portion of the intake valve, the swirl ratio (S / R) and the total airflow (TAF) are improved in accordance with the specifications of the internal combustion engine. By setting the diameter (a) and the value (Rb) of R of the valve flange portion to optimal values and appropriately changing the ratio (a / Rb), the fuel efficiency and combustion of all internal combustion engines can be improved. It will be.
[0022]
【The invention's effect】
As described above, according to the invention of each claim, the swirl ratio can be increased together with the air flow rate by adjusting the R shape of the valve flange portion, and as a result, fuel efficiency is improved by reducing pumping loss. In addition, there is an advantage that the combustion can be improved by increasing the air flow rate and the swirl ratio.
[Brief description of the drawings]
FIG. 1 is a front view of a main part of an intake valve according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a relationship between a ratio (a / Rb) and a swirl ratio (S / R).
FIG. 3 is an explanatory diagram showing a relationship between a ratio (a / Rb) and a total airflow (TAF).
FIG. 4 is an explanatory diagram showing a relationship between a ratio (a / Rb) and fuel efficiency.
[Explanation of symbols]
1
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003116564A JP2004324441A (en) | 2003-04-22 | 2003-04-22 | Intake valve for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003116564A JP2004324441A (en) | 2003-04-22 | 2003-04-22 | Intake valve for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004324441A true JP2004324441A (en) | 2004-11-18 |
Family
ID=33496730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003116564A Pending JP2004324441A (en) | 2003-04-22 | 2003-04-22 | Intake valve for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004324441A (en) |
-
2003
- 2003-04-22 JP JP2003116564A patent/JP2004324441A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3147475A1 (en) | Combustion chamber structure for diesel engine | |
JP6035987B2 (en) | Venturi for exhaust gas recirculation | |
JP3676967B2 (en) | cylinder head | |
JP2010112178A (en) | Ventilation system for engine | |
JP2007113482A (en) | Resin intake manifold | |
JP2013087720A (en) | Venturi for egr | |
CN110388278A (en) | The cylinder cover of internal combustion engine | |
US6213090B1 (en) | Engine cylinder head | |
EP1167700A2 (en) | A valve device of an internal combustion engine | |
JP4867811B2 (en) | Internal combustion engine having a variable valve mechanism | |
JP2007315345A (en) | Intake structure for internal combustion chamber | |
JPH048606B2 (en) | ||
JP2004324441A (en) | Intake valve for internal combustion engine | |
US6394056B1 (en) | Internal combustion engine | |
JP2008088900A (en) | Intake port shape for internal combustion engine | |
JP6304022B2 (en) | Internal combustion engine | |
JP4158578B2 (en) | Intake device for internal combustion engine | |
JP2001173513A (en) | Intake system of engine and its valve seat | |
US9885293B2 (en) | Control apparatus of engine | |
JP2000179417A (en) | Intake device for engine | |
JP4207812B2 (en) | cylinder head | |
JPH0348334B2 (en) | ||
JP4683024B2 (en) | Internal combustion engine | |
JP2006161584A (en) | Internal combustion engine | |
CN109973206B (en) | Internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20060330 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080304 |
|
A131 | Notification of reasons for refusal |
Effective date: 20080624 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20080811 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20080909 Free format text: JAPANESE INTERMEDIATE CODE: A02 |