JP2004322630A - Phase change type information recording medium and sputtering target - Google Patents

Phase change type information recording medium and sputtering target Download PDF

Info

Publication number
JP2004322630A
JP2004322630A JP2004029923A JP2004029923A JP2004322630A JP 2004322630 A JP2004322630 A JP 2004322630A JP 2004029923 A JP2004029923 A JP 2004029923A JP 2004029923 A JP2004029923 A JP 2004029923A JP 2004322630 A JP2004322630 A JP 2004322630A
Authority
JP
Japan
Prior art keywords
phase change
recording
layer
recording medium
information recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004029923A
Other languages
Japanese (ja)
Other versions
JP4271051B2 (en
Inventor
Hiroko Tashiro
浩子 田代
Kazunori Ito
和典 伊藤
Koji Deguchi
浩司 出口
Masanori Kato
将紀 加藤
Mikiko Abe
美樹子 安部
Hiroyoshi Sekiguchi
洋義 関口
Masato Harigai
眞人 針谷
Masaru Magai
勝 真貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004029923A priority Critical patent/JP4271051B2/en
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to EP04771189A priority patent/EP1712367B1/en
Priority to CNB2004800091946A priority patent/CN100513193C/en
Priority to KR1020057018955A priority patent/KR100730978B1/en
Priority to PCT/JP2004/011148 priority patent/WO2005075212A1/en
Priority to DE602004031775T priority patent/DE602004031775D1/en
Priority to TW093123518A priority patent/TW200527421A/en
Publication of JP2004322630A publication Critical patent/JP2004322630A/en
Priority to US11/244,346 priority patent/US7438965B2/en
Application granted granted Critical
Publication of JP4271051B2 publication Critical patent/JP4271051B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phase change type information recording medium in which initial crystallization is easy, recording sensitivity is excellent at a high line speed with the same capacity as that of for DVD-ROM and with the recording line speed of ten times or more, overwrite recording can be executed, and which has excellent storage reliability. <P>SOLUTION: At least a first protective layer, a phase change recording layer, a second protective layer, and a reflective layer are formed on a transparent substrate in this order in the phase change type information recording medium. The recording of the information is executed by the reversible phase changes of a crystalline state and a noncrystalline state of the phase change recording layer by the irradiation with a laser beam. The alloy, which is the main component of a material constituting the phase change recording layer, has the composition formulas of Sn<SB>α</SB>Sb<SB>β</SB>Ga<SB>γ</SB>Ge<SB>δ</SB>[wherein α, β, γ, and δ satisfy α+β+γ+δ=100 and represent a composition ratio (atom%) of each element], and 5≤α≤25, 40≤β≤91, 2≤γ≤20, and 2≤δ≤20 are satisfied. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、レーザー光を照射することにより記録層を構成する材料に光学的な変化を生じさせて情報の記録、再生を行い、かつ書換えが可能な相変化型情報記録媒体及びその製造のためのスパッタリングターゲットに関するものである。   The present invention relates to a phase-change information recording medium capable of recording and reproducing information by causing an optical change in a material constituting a recording layer by irradiating a laser beam, and rewritable, and a method for manufacturing the same. Of the sputtering target.

現在、DVD系の記録層材料に関しては、2.5倍速(約8.5m/s)のスピード記録ができるシステムが開発され、更に、高速記録の要求が高まっている。また、DVD+RWに使用されている相変化記録材料は、CD−RWに採用されているAgInSbTe系高速記録材料を改良し、高線速まで記録消去を可能にしたものである。この材料系は、高線速記録領域の記録スピードに対応するためSbの含有量をCD−RW対応の記録材料よりも多くしたものが用いられているが、高Sb組成比の材料は結晶化スピードが速くなるものの、結晶化温度が低下するという問題がある。結晶化温度の低下は、保存信頼性の悪化につながることが実験により確認されている。情報記録媒体の保存信頼性の問題は、記録材料中のAgの増加、或いはGeなどの第5元素の添加により、DVD4倍速媒体までは実用上問題にならない程度に抑えられているが、更なる高線速記録を達成するためにSb量を増加させると、結晶化温度が急激に下がりアモルファスマークの安定性が非常に悪くなる。このことから、AgInSbTe系を用いた高速記録媒体の実用化はDVD4倍速が限界と推定される。   At present, with regard to DVD-based recording layer materials, a system capable of 2.5-speed (about 8.5 m / s) speed recording has been developed, and the demand for high-speed recording is increasing. The phase change recording material used for DVD + RW is an improved version of the AgInSbTe-based high-speed recording material used for CD-RW, and enables recording and erasing up to a high linear velocity. In this material system, a material having a higher Sb content than that of a recording material compatible with CD-RW is used in order to correspond to the recording speed of a high linear velocity recording region. However, a material having a high Sb composition ratio is crystallized. Although the speed is increased, there is a problem that the crystallization temperature is lowered. It has been experimentally confirmed that a decrease in the crystallization temperature leads to deterioration in storage reliability. The problem of the storage reliability of the information recording medium has been suppressed to a level that does not pose a practical problem up to a DVD quadruple speed medium by increasing Ag in the recording material or adding a fifth element such as Ge. When the amount of Sb is increased to achieve high linear velocity recording, the crystallization temperature sharply drops, and the stability of the amorphous mark becomes extremely poor. From this, it is presumed that the practical use of a high-speed recording medium using the AgInSbTe system is limited to DVD quadruple speed.

4倍速以上の高速記録用材料としてGaSb材料系も検討されている。GaSb材料系は高速記録が可能であり同時に保存信頼性にも優れているが、融点が600℃と高いため記録感度が低く、高速で記録するには高パワーを必要とするのが欠点である。また、GaSb系で高速化を進めるには、Sb量を増やすことにより結晶化速度を速くする必要があるが、Sb量が90原子%以上になると、Sbが分相してしまうため、初期結晶化を均一に行なうことができなくなってしまうという問題が生じる。初期結晶化が均一に行えないと、初回記録から繰返し10回位までの初期記録特性が著しく悪くなるため実用化できない。
なお、AgInSbTe系高速記録材料については特許文献1に、GeGaSbTe系材料については特許文献2に、GeInSbTe系材料については特許文献3に、InSbSn系材料については特許文献4及び5にそれぞれ記載されている。
A GaSb material is also being studied as a material for high-speed recording at 4 × speed or higher. The GaSb material system is capable of high-speed recording and at the same time has excellent storage reliability, but has a disadvantage in that the melting point is as high as 600 ° C., so that the recording sensitivity is low, and that high-speed recording requires high power. . In order to increase the speed of the GaSb system, it is necessary to increase the crystallization speed by increasing the amount of Sb. However, if the amount of Sb exceeds 90 atomic%, the phase of Sb is separated. A problem arises in that it becomes impossible to perform the formation uniformly. If the initial crystallization cannot be performed uniformly, the initial recording characteristics from the initial recording to about 10 repetitions will be significantly deteriorated, so that it cannot be put to practical use.
The AgInSbTe-based high-speed recording material is described in Patent Document 1, the GeGaSbTe-based material is described in Patent Document 2, the GeInSbTe-based material is described in Patent Document 3, and the InSbSn-based material is described in Patent Documents 4 and 5, respectively. .

特開2000−339751号公報JP-A-2000-339751 特開2002−225437号公報JP-A-2002-225437 特開2002−264515号公報JP-A-2002-264515 特開平9−286174号公報JP-A-9-286174 特開平9−286175号公報JP-A-9-286175

本発明は、初期結晶化が容易であり、DVD−ROMと同容量で記録線速が10倍速以上の高線速度においても記録感度が良好であり、繰返し記録が可能であると共に保存信頼性にも優れた相変化型情報記録媒体及びその製造のためのスパッタリングターゲットの提供を目的とする。
また、CAV(回転速度一定方式)で記録媒体に情報を記録したい場合、記録線速が半径位置により異なるため、幅広い記録線速領域で繰返し記録特性に優れた記録媒体が必要となる。そこで本発明では、DVD−ROMと同容量で幅広い記録線速領域で繰返し記録特性が良好である情報記録媒体及びその製造のためのスパッタリングターゲットの提供も目的とする。
INDUSTRIAL APPLICABILITY The present invention facilitates initial crystallization, has good recording sensitivity even at the same linear capacity as DVD-ROM, and has a recording linear velocity of 10 times or more. Another object of the present invention is to provide an excellent phase change type information recording medium and a sputtering target for manufacturing the same.
When information is to be recorded on a recording medium by CAV (constant rotation speed method), a recording medium having excellent repetitive recording characteristics in a wide recording linear velocity region is required because the recording linear velocity differs depending on the radial position. Accordingly, an object of the present invention is to provide an information recording medium having the same capacity as a DVD-ROM and having good repetitive recording characteristics in a wide recording linear velocity region, and a sputtering target for manufacturing the same.

本発明者らは上記課題を解決するために鋭意研究を重ねた結果、記録層を構成する材料として、Sn、Sb、Ga及びGeを主成分とする合金を用いることにより、良好な感度が得られ(GaSb系よりも融点が低い)、例えば波長660nm、レンズNA=0.65のDVD系の記録システムを用いた場合、約35m/s以上の記録スピードにおいて充分な記録感度、良好なオーバーライト特性及び保存信頼性を獲得でき、またDVD−ROMと同容量で幅広い記録線速領域で繰返し記録特性が良好な情報記録媒体を提供できることを見出した。
即ち、上記課題は、次の1)〜12)の発明(以下、本発明1〜12という)によって解決される。
1) 透明基板上に、少なくとも第1保護層、相変化記録層、第2保護層及び反射層がこの順に形成され、情報の記録が、レーザー光の照射により相変化記録層の結晶状態及び非晶質状態の可逆的な相変化によりなされるものであると共に、相変化記録層を構成する材料の主成分である合金が、組成式をSnαSbβGaγGeδ〔但し、α、β、γ、δはそれぞれの元素の組成比(原子%)、α+β+γ+δ=100〕として、α、β、γ、δが以下の関係を満たすことを特徴とする相変化型情報記録媒体。
5≦α≦25
40≦β≦91
2≦γ≦20
2≦δ≦20
2) 5≦α≦20、40≦β≦85、5≦γ≦20、5≦δ≦20であることを特徴とする1)記載の相変化型情報記録媒体。
3) 10≦α≦20、50≦β≦80、5≦γ≦15、5≦δ≦15であることを特徴とする2)の相変化型情報記録媒体。
4) 相変化記録層が、Ag、Zn、In及びCuからなる群から選択された少なくとも1つの元素を、前記合金に対して1〜10原子%含むことを特徴とする1)〜3)の何れかに記載の相変化型情報記録媒体。
5) 相変化記録層が、Teを、前記合金に対して1〜10原子%含むことを特徴とする1)〜4)記載の相変化型情報記録媒体。
6) 第1保護層、相変化記録層、第2保護層、反射層の各膜厚をt1〜t4(nm)とし、レーザー光の波長をλ(nm)としたとき、以下の関係を満たすことを特徴とする1)〜5)の何れかに記載の相変化型情報記録媒体。
t1 : 0.070≦t1/λ≦0.160
t2 : 0.015≦t2/λ≦0.032
t3 : 0.005≦t3/λ≦0.040
t4 : 0.100≦t4/λ
7) 相変化記録層と第1保護層との間に、厚さが2〜10nmのSiOからなる界面層を有することを特徴とする1)〜6)の何れかに記載の相変化型情報記録媒体。
8) 各層を積層した相変化型情報記録媒体を10〜21m/sの範囲内の一定線速度で回転させ、パワー密度15〜40mW/μmで初期結晶化を行なうことにより得られたものであることを特徴とする1)〜7)の何れかに記載の相変化型情報記録媒体。
9) SnαSbβGaγGeδ(但し、5≦α≦25、40≦β≦91、2≦γ≦20、2≦δ≦20、α、β、γ、δは原子%、α+β+γ+δ=100)で示される組成の合金からなる相変化型情報記録媒体製造用スパッタリングターゲット。
10) 5≦α≦20、40≦β≦85、5≦γ≦20、5≦δ≦20である9)記載のスパッタリングターゲット。
11) 10≦α≦20、50≦β≦80、5≦γ≦15、5≦δ≦15である10)記載のスパッタリングターゲット。
12) 前記合金を主成分とし、Ag、Zn、In、Cu、Teから選ばれる少なくとも1種の元素を前記合金に対して1〜10原子%含有することを特徴とする9)〜11)の何れかに記載の相変化型情報記録媒体製造用スパッタリングターゲット。
The inventors of the present invention have conducted intensive studies to solve the above problems, and as a result, good sensitivity was obtained by using an alloy mainly composed of Sn, Sb, Ga and Ge as a material for forming a recording layer. For example, when a DVD-based recording system having a wavelength of 660 nm and a lens NA of 0.65 is used, sufficient recording sensitivity and good overwriting are performed at a recording speed of about 35 m / s or more. It has been found that it is possible to obtain an information recording medium that can obtain characteristics and storage reliability, and that has the same capacity as a DVD-ROM and excellent repetitive recording characteristics in a wide recording linear velocity region.
That is, the above problems are solved by the following inventions 1) to 12) (hereinafter referred to as inventions 1 to 12).
1) At least a first protective layer, a phase change recording layer, a second protective layer, and a reflective layer are formed in this order on a transparent substrate, and information recording is performed by irradiating a laser beam with the crystalline state and non-crystalline state of the phase change recording layer. The alloy, which is formed by a reversible phase change in a crystalline state and is a main component of a material constituting the phase change recording layer, has a composition formula of Sn α Sb β Ga γ Ge δ [α, β , Γ, and δ are composition ratios (atomic%) of the respective elements, and α + β + γ + δ = 100], and α, β, γ, and δ satisfy the following relationship.
5 ≦ α ≦ 25
40 ≦ β ≦ 91
2 ≦ γ ≦ 20
2 ≦ δ ≦ 20
2) The phase-change information recording medium according to 1), wherein 5 ≦ α ≦ 20, 40 ≦ β ≦ 85, 5 ≦ γ ≦ 20, and 5 ≦ δ ≦ 20.
3) The phase change type information recording medium according to 2), wherein 10 ≦ α ≦ 20, 50 ≦ β ≦ 80, 5 ≦ γ ≦ 15, and 5 ≦ δ ≦ 15.
4) The phase change recording layer according to 1) to 3), wherein the phase change recording layer contains at least one element selected from the group consisting of Ag, Zn, In, and Cu in an amount of 1 to 10 atomic% with respect to the alloy. The phase change type information recording medium according to any one of the above.
5) The phase change type information recording medium according to 1) to 4), wherein the phase change recording layer contains Te in an amount of 1 to 10 atomic% with respect to the alloy.
6) When the thicknesses of the first protective layer, the phase change recording layer, the second protective layer, and the reflective layer are t1 to t4 (nm) and the wavelength of the laser beam is λ (nm), the following relationship is satisfied. The phase change type information recording medium according to any one of 1) to 5), characterized in that:
t1: 0.070 ≦ t1 / λ ≦ 0.160
t2: 0.015 ≦ t2 / λ ≦ 0.032
t3: 0.005 ≦ t3 / λ ≦ 0.040
t4: 0.100 ≦ t4 / λ
7) The phase change type according to any one of 1) to 6), wherein an interface layer made of SiO 2 having a thickness of 2 to 10 nm is provided between the phase change recording layer and the first protective layer. Information recording medium.
8) A layer obtained by rotating a phase-change information recording medium having a stack of layers at a constant linear velocity in the range of 10 to 21 m / s and performing initial crystallization at a power density of 15 to 40 mW / μm 2. The phase change type information recording medium according to any one of 1) to 7), wherein
9) Sn α Sb β Ga γ Ge δ (provided that 5 ≦ α ≦ 25, 40 ≦ β ≦ 91, 2 ≦ γ ≦ 20, 2 ≦ δ ≦ 20, α, β, γ, and δ are atomic%, α + β + γ + δ = 100) A sputtering target for producing a phase change type information recording medium comprising an alloy having a composition represented by 100).
10) The sputtering target according to 9), wherein 5 ≦ α ≦ 20, 40 ≦ β ≦ 85, 5 ≦ γ ≦ 20, and 5 ≦ δ ≦ 20.
11) The sputtering target according to 10), wherein 10 ≦ α ≦ 20, 50 ≦ β ≦ 80, 5 ≦ γ ≦ 15, and 5 ≦ δ ≦ 15.
12) The alloy according to any one of 9) to 11), wherein the alloy is a main component and at least one element selected from Ag, Zn, In, Cu, and Te is contained in the alloy at 1 to 10 atomic%. The sputtering target for producing a phase change type information recording medium according to any one of the above.

以下、上記本発明について詳しく説明する。
本発明は、10倍速までの高線速記録を達成するため、相変化記録層を構成する材料の主成分として上記本発明1で規定する組成式の合金を用いる。ここで主成分とは、記録層材料全体の90原子%以上を占めることを意味する。
Sn50Sb50化合物は融点が425℃と低く、かつ結晶化速度が非常に速いため、記録感度が良好な高速記録媒体を実現する可能性を持っていると考えられる。しかし、Sn50Sb50化合物は室温で結晶化するほど結晶化速度が速く、現在のDVD+RW用評価装置ではアモルファス化させることができないので、Sn50Sb50単独ではDVD+RWの相変化記録層として使用することはできない。そこで、Sn50Sb50を母相として組成を改良することにより、繰返し記録が可能でありかつ保存安定性に優れた材料を探索した。
その結果、結晶化を容易にしアモルファス化し易くする効果があるGa及び保存安定性に効果があるGeの2種類を同時に添加することにより、繰返し記録が可能でありかつ保存安定性の優れた光記録媒体が提供できることを見出した。Gaのみを添加した場合には、長期保存後に結晶相の反射率低下が起こり、保存安定性の評価項目の一つであるシェルフ特性(長期間放置した後の記録再生特性)が悪化してしまう。Geのみを添加した場合には、アモルファスマーク長にばらつきが生じ、ジッタ特性が良くならない。
Hereinafter, the present invention will be described in detail.
In the present invention, in order to achieve high linear velocity recording up to 10 times speed, the alloy of the composition formula defined in the present invention 1 is used as a main component of the material constituting the phase change recording layer. Here, the main component means that it accounts for 90 atomic% or more of the entire recording layer material.
Since the Sn 50 Sb 50 compound has a low melting point of 425 ° C. and a very high crystallization rate, it is considered that it has a possibility of realizing a high-speed recording medium with good recording sensitivity. However, the crystallization speed of the Sn 50 Sb 50 compound is higher as it crystallizes at room temperature, and cannot be made amorphous by the current DVD + RW evaluation apparatus. Therefore, the Sn 50 Sb 50 alone is used as the phase change recording layer of the DVD + RW. It is not possible. Therefore, by improving the composition using Sn 50 Sb 50 as a matrix, a material capable of repeating recording and having excellent storage stability was searched.
As a result, by simultaneously adding two kinds of Ga, which have an effect of facilitating crystallization and making it amorphous, and Ge, which has an effect of storage stability, optical recording which can be repeatedly recorded and has excellent storage stability. We found that a medium could be provided. When only Ga is added, the reflectance of the crystal phase decreases after long-term storage, and shelf characteristics (recording / reproduction characteristics after long-term storage), which is one of the evaluation items of storage stability, deteriorates. . When only Ge is added, the amorphous mark length varies, and the jitter characteristics are not improved.

また、Ga及びGeはSn50Sb50の結晶化速度を遅くする効果があるので、Ga+Ge原子%を調整することにより結晶化速度を変えることができる。例えば、Ga+Ge=20原子%以上では、低速での記録特性が特に良好なのに対し、Ga+Ge=10〜15原子%の範囲では、8倍速以上の高速記録特性が特に良好である。
前記本発明1の組成式において、Snが5原子%未満では融点が高くなってしまい感度が悪くなり、Snが25原子%超では結晶化速度が速くなりすぎて、アモルファス化させることができず好ましくない。また、Sbが40原子%未満では融点が高くなってしまい感度が悪くなり、Sbが91原子%超ではアモルファスマークの保存信頼性が悪くなり好ましくない。Ga及びGeが2原子%未満では保存信頼性が悪くなり、Ga及びGeが20原子%超では結晶化温度が高くなりすぎて初期結晶化が困難になり好ましくない。上記関係式を全て満たしたとき、保存安定性に優れ、DVD−ROMと同容量で記録線速がDVDの3倍速以上の記録線速で繰返し記録が可能な情報記録媒体が得られる。
Since Ga and Ge have the effect of reducing the crystallization speed of Sn 50 Sb 50 , the crystallization speed can be changed by adjusting Ga + Ge atomic%. For example, when Ga + Ge = 20 at% or more, the recording characteristics at low speeds are particularly good, and when Ga + Ge = 10 to 15 at%, the high-speed recording characteristics at 8 × speed or more are particularly good.
In the composition formula of the present invention 1, if Sn is less than 5 atomic%, the melting point becomes high and the sensitivity is deteriorated. If Sn is more than 25 atomic%, the crystallization speed becomes too fast to make the film amorphous. Not preferred. On the other hand, if Sb is less than 40 at%, the melting point becomes high and the sensitivity is deteriorated. If Sb exceeds 91 at%, the storage reliability of the amorphous mark is deteriorated, which is not preferable. If the content of Ga and Ge is less than 2 atomic%, the storage reliability deteriorates, and if the content of Ga and Ge exceeds 20 atomic%, the crystallization temperature becomes too high, and the initial crystallization becomes difficult, which is not preferable. When all of the above relational expressions are satisfied, it is possible to obtain an information recording medium which is excellent in storage stability and capable of repeating recording at a recording linear velocity equal to or higher than that of DVD with a recording linear velocity equal to or higher than that of DVD-ROM.

更に、前記本発明2で規定する組成の合金を用いれば、DVD−ROMと同容量で記録線速がDVDの10倍速以上の記録線速で繰返し記録が良好な情報記録媒体が得られる。
更に、前記本発明3で規定する組成の合金を用いれば、DVDの3倍速から8倍速の間の線速で繰返し記録が良好な情報記録媒体が得られる。本発明3では、幅広い記録線速領域で繰返し記録が良好であるので半径位置で記録線速が異なるCAV(回転速度一定方式)で記録媒体に情報を記録することができる。
更に、前記合金に対して、Ag、Zn、In及びCuからなる群から選択された少なくとも1つの元素を添加することもできる。これにより、更に保存信頼性を良好にすることができる。これらの元素の添加量は、前記合金に対して、1原子%未満では効果がなく、10原子%を超えると結晶化温度が高くなりすぎて初期結晶化が困難になる。
更に、前記合金に対して、Teを添加することもできる。Teを1〜10原子%添加することにより、初期結晶化が容易になり均一な結晶状態を得やすくなる。その結果、初回から10回程度までの繰返し記録によるジッタの上昇を低減できる。
更に、本発明6は、第1保護層、相変化記録層、第2保護層及び反射層の適切な膜厚範囲をレーザー波長λ(nm)との関係で規定したものである。相変化型情報記録媒体の記録再生に用いるレーザー光波長が決まれば、これらの式に従って適切な膜厚範囲を選定し媒体設計を行うことができる。好ましい波長範囲はλ=660±10nmである。詳しくは後述する。
更に、本発明9〜12は、上記相変化記録層の製造に用いるスパッタリングターゲットである。
Further, by using the alloy having the composition specified in the second aspect of the present invention, it is possible to obtain an information recording medium which has the same capacity as a DVD-ROM and has a good recording performance at a recording linear velocity of 10 times or more that of a DVD.
Further, by using the alloy having the composition specified in the third aspect of the present invention, it is possible to obtain an information recording medium having good repetitive recording at a linear speed between 3 × and 8 × of DVD. According to the third aspect of the present invention, since repetitive recording is good in a wide recording linear velocity region, information can be recorded on a recording medium by CAV (constant rotation speed method) in which the recording linear velocity differs at a radial position.
Further, at least one element selected from the group consisting of Ag, Zn, In and Cu can be added to the alloy. Thereby, the storage reliability can be further improved. If the addition amount of these elements is less than 1 atomic% with respect to the alloy, there is no effect, and if it exceeds 10 atomic%, the crystallization temperature becomes too high and initial crystallization becomes difficult.
Further, Te can be added to the alloy. By adding 1 to 10 atomic% of Te, initial crystallization is facilitated and a uniform crystal state is easily obtained. As a result, an increase in jitter due to repeated recording from the first time to about 10 times can be reduced.
Furthermore, in the present invention 6, an appropriate thickness range of the first protective layer, the phase change recording layer, the second protective layer and the reflective layer is defined in relation to the laser wavelength λ (nm). Once the wavelength of the laser beam used for recording / reproducing on the phase-change type information recording medium is determined, the medium can be designed by selecting an appropriate film thickness range according to these equations. A preferred wavelength range is λ = 660 ± 10 nm. Details will be described later.
Further, the present inventions 9 to 12 are sputtering targets used for manufacturing the phase change recording layer.

次に、本発明の相変化型情報記録媒体の各層構成について説明する。
図1は、本発明の相変化型情報記録媒体の一実施形態を説明するための断面図であり、透明基板上に例えばスパッタ法により第1保護層、相変化記録層、第2保護層及び反射層がこの順に形成され、更に反射層上にスピンコートにより紫外線(UV)硬化樹脂からなる保護層が形成されている。なお、必要に応じて保護層上に、記録媒体の更なる補強或いは保護のために、別の基板を貼り合わせてもよい。
透明基板としては、例えば表面にトラッキング用の案内溝を有し、直径12cm、厚さ0.6mmのディスク状で、加工性、光学特性に優れたポリカーボネート基板が好適である。トラッキング用の案内溝は、ピッチ0.74±0.03μm、溝深さ22〜40nm、溝幅0.2〜0.4μm範囲内の蛇行溝であることが好ましい。特に溝を深くすることにより、記録媒体の反射率が下がり変調度を大きくすることができる。
Next, each layer configuration of the phase change type information recording medium of the present invention will be described.
FIG. 1 is a cross-sectional view for explaining one embodiment of the phase change type information recording medium of the present invention. The first protection layer, the phase change recording layer, the second protection layer, and the like are formed on a transparent substrate by, for example, a sputtering method. A reflective layer is formed in this order, and a protective layer made of an ultraviolet (UV) curable resin is formed on the reflective layer by spin coating. If necessary, another substrate may be attached on the protective layer for further reinforcement or protection of the recording medium.
As the transparent substrate, for example, a polycarbonate substrate having a guide groove for tracking on the surface and having a diameter of 12 cm and a thickness of 0.6 mm and having excellent workability and optical characteristics is preferable. The guide groove for tracking is preferably a meandering groove having a pitch of 0.74 ± 0.03 μm, a groove depth of 22 to 40 nm, and a groove width of 0.2 to 0.4 μm. In particular, by increasing the depth of the groove, the reflectance of the recording medium decreases, and the degree of modulation can be increased.

第1保護層としては、透明基板及び相変化記録層との密着性が良いこと、耐熱性が高いことなどが要求される。また、第1保護層は、相変化記録層の効果的な光吸収を可能にする光干渉層としての役割も担うことから、高線速での繰り返し記録に適した光学特性を有することが望ましい。好ましい材料としては(ZnS)80(SiO20が挙げられる。
第1保護層の膜厚t1(nm)は、レーザー光の波長λ(nm)として、0.070≦t1/λ≦0.160が適しており、この範囲より薄いと耐熱保護層としての機能が失われ、厚いと界面剥離が生じ易くなる。スパッタ条件は、投入電力3kW、Arガス圧力(製膜室気圧)2E−3Torr(2×10―3Torr)が例示される。
The first protective layer is required to have good adhesion to the transparent substrate and the phase change recording layer, high heat resistance, and the like. Further, since the first protective layer also serves as a light interference layer that enables effective light absorption of the phase change recording layer, it is preferable that the first protective layer have optical characteristics suitable for repeated recording at a high linear velocity. . A preferred material is (ZnS) 80 (SiO 2 ) 20 .
The film thickness t1 (nm) of the first protective layer is suitably 0.070 ≦ t1 / λ ≦ 0.160 as the wavelength λ (nm) of the laser beam. Is lost, and when the thickness is large, interfacial separation easily occurs. As the sputtering conditions, an input power of 3 kW and an Ar gas pressure (atmospheric pressure of the film forming chamber) of 2E-3 Torr (2 × 10 −3 Torr) are exemplified.

相変化記録層の膜厚t2(nm)はレーザー光の波長をλ(nm)として、0.015≦t2/λ≦0.032が適しており、この範囲より薄いと光吸収能が低下し記録層としての機能を失うことがある。また、厚いと記録感度が悪くなる。
記録層の形成は、スパッタリング法により行なうのが好ましい。スパッタリングターゲットの作製方法の一例を挙げると、予め仕込み量を秤量し、ガラスアンプル中で加熱溶融し、その後これを取り出して粉砕機により粉砕し、得られた粉末を加熱焼結することによって円盤状のターゲットを得ることができる。スパッタ条件は、投入電力1kW、Arガス圧力(製膜室気圧)2E−3Torrが例示される。
The film thickness t2 (nm) of the phase-change recording layer is suitably 0.015 ≦ t2 / λ ≦ 0.032, where λ (nm) is the wavelength of the laser beam. The function as a recording layer may be lost. On the other hand, if the recording layer is thick, the recording sensitivity is deteriorated.
The formation of the recording layer is preferably performed by a sputtering method. As an example of a method for producing a sputtering target, the charged amount is weighed in advance, heated and melted in a glass ampule, then taken out and crushed by a crusher, and the obtained powder is sintered by heating and sintering. Target can be obtained. Examples of the sputtering conditions include an input power of 1 kW and an Ar gas pressure (atmospheric pressure of a film forming chamber) of 2E-3 Torr.

第2保護層としては、相変化記録層及び反射層との密着性が良いこと、耐熱性が高いことなどが要求される。また、相変化記録層の効果的な光吸収を可能にする光干渉層としての役割も担うことから、高線速での繰り返し記録に適した光学特性を有することが望ましい。好ましい材料としては、(ZnS)80(SiO20が挙げられる。第2保護層の膜厚t3(nm)は波長をλ(nm)として、0.005≦t3/λ≦0.040が適しており、この範囲より薄いと記録感度が悪くなり、厚いと熱が篭りすぎてしまう。スパッタ条件は、投入電力3kW、Arガス圧力(製膜室気圧)2E−3Torrが例示される。
反射層は、熱伝導率が高いAg或いはAg−Cu、Ag−Pd、Ag−Ti等が適している。反射層の膜厚t4(nm)は波長をλとして、0.100≦t4/λが適しており、この範囲より薄いと放熱効果が得られない。スパッタ条件は、投入電力5kW、Arガス圧力(製膜室気圧)2E−3Torrが例示される。
The second protective layer is required to have good adhesion to the phase change recording layer and the reflective layer, high heat resistance, and the like. Further, since the phase change recording layer also plays a role as a light interference layer that enables effective light absorption, it is desirable that the phase change recording layer has optical characteristics suitable for repeated recording at a high linear velocity. Preferred materials include (ZnS) 80 (SiO 2 ) 20 . The film thickness t3 (nm) of the second protective layer is suitably 0.005 ≦ t3 / λ ≦ 0.040, where λ (nm) is the wavelength. If the thickness is smaller than this range, the recording sensitivity is deteriorated. Is too crowded. As the sputtering conditions, an input power of 3 kW and an Ar gas pressure (pressure in a film forming chamber) of 2E-3 Torr are exemplified.
Ag or Ag-Cu, Ag-Pd, Ag-Ti, or the like having a high thermal conductivity is suitable for the reflective layer. The film thickness t4 (nm) of the reflective layer is suitably 0.100 ≦ t4 / λ, where λ is the wavelength. If the thickness is smaller than this range, the heat radiation effect cannot be obtained. As the sputtering conditions, an input power of 5 kW and an Ar gas pressure (pressure in a film forming chamber) of 2E-3 Torr are exemplified.

また、第2保護層と反射層との間に第3保護層を設けてもよい。この層は第2保護層材料がS(硫黄)を含む場合に、このSと反射層に含まれているAgの反応によるAgSの生成を防ぐ機能を備えている。好ましい材料としては、SiC、TiC、TiO、TiC−TiO、NbC、NbO、NbC−NbO、SiO、Ta、Al、ITO等が挙げられる。
また、第1保護層と相変化記録層との間にSiOからなる界面層を設けることが好ましい。SiOを界面層として厚さ2〜10nm設けることにより、高パワーで記録したときに基板が受けるダメージを減らすことができるため、高パワー記録での繰返し記録特性が良好となり、記録パワーマージンを広くすることができる。2nm未満では均一なSiO膜を形成することが困難であり、10nmを超えると、膜剥離が生じ易くなる。
Further, a third protective layer may be provided between the second protective layer and the reflective layer. When the second protective layer material contains S (sulfur), this layer has a function of preventing the generation of Ag 2 S by the reaction between S and Ag contained in the reflective layer. Preferred materials, SiC, TiC, TiO 2, TiC-TiO 2, NbC, include NbO 2, NbC-NbO 2, SiO 2, Ta 2 O 5, Al 2 O 3, ITO or the like.
Further, it is preferable to provide an interface layer made of SiO 2 between the first protective layer and the phase change recording layer. By providing SiO 2 as an interface layer with a thickness of 2 to 10 nm, damage to the substrate when recording with high power can be reduced, so that the repetitive recording characteristics in high power recording become good and the recording power margin is widened. can do. If it is less than 2 nm, it is difficult to form a uniform SiO 2 film, and if it exceeds 10 nm, film peeling is likely to occur.

初期結晶化は、相変化型情報記録媒体を10〜21m/s範囲内の一定線速度で回転させ、パワー密度が15〜40mW/μmで行うのが好ましい。初期結晶化の条件により繰返し記録初期特性が決まるが、高速結晶化の材料ほど、初期結晶化も高速で行なうのが良い。10m/s未満の線速で初期結晶化を行うと、大きな結晶粒が成長してしまうため、アモルファスマークエッジが不均一になり易くジッタ特性が悪化する。また、21m/sを超えると、ディスクの追従性が悪化するため、反射率に分布が生じ易い。また、パワー密度15mW/μm未満では、パワー不足により均一な結晶が得られず、40mW/μmを超えると、パワーが強すぎて繰返し記録特性が悪化する。 The initial crystallization is preferably performed at a power density of 15 to 40 mW / μm 2 by rotating the phase change type information recording medium at a constant linear velocity in the range of 10 to 21 m / s. The initial characteristics of the repetitive recording are determined by the conditions of the initial crystallization, but the faster the material is, the faster the initial crystallization is preferably performed. When initial crystallization is performed at a linear velocity of less than 10 m / s, large crystal grains grow, so that the amorphous mark edges are likely to be non-uniform and the jitter characteristics are deteriorated. On the other hand, if the speed exceeds 21 m / s, the followability of the disc deteriorates, and the distribution tends to occur in the reflectance. If the power density is less than 15 mW / μm 2 , a uniform crystal cannot be obtained due to insufficient power. If the power density exceeds 40 mW / μm 2 , the power is too strong and the repetitive recording characteristics deteriorate.

本発明によれば、初期結晶化が容易であり、DVD−ROMと同容量で記録線速が10倍速以上の高線速度においても記録感度が良好であり、繰返し記録が可能であると共に保存信頼性にも優れた相変化型情報記録媒体及びその製造のためのスパッタリングターゲットを提供できる。
また、DVD−ROMと同容量で幅広い記録線速領域で繰返し記録特性が良好な情報記録媒体及びその製造のためのスパッタリングターゲットを提供できる。
According to the present invention, the initial crystallization is easy, the recording sensitivity is good even at the same linear capacity as DVD-ROM, and the recording linear velocity is 10 times or more. A phase change type information recording medium having excellent properties and a sputtering target for manufacturing the same can be provided.
Further, it is possible to provide an information recording medium having the same capacity as that of a DVD-ROM and excellent repetitive recording characteristics in a wide recording linear velocity region, and a sputtering target for manufacturing the same.

以下、実施例及び比較例により本発明を更に具体的に説明するが、本発明は、これらの実施例によって限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

(実施例1〜8)
情報記録媒体(ディスク)を次のようにして作製した。
トラックピッチ0.74μm、溝深さ27nm、直径12cm、厚さ0.6mmのポリカーボネート基板上に、スパッタリング法により、第1保護層、相変化記録層、第2保護層、第3保護層、反射層を順に製膜した。
第1保護層は、(ZnS)80(SiO20をターゲットに用い、膜厚を80nmとした。
相変化記録層は、下記表1に示す材料組成に対応する組成(原子%)のスパッタリングターゲットを用い、膜厚は20nmとした。
第2保護層は(ZnS)80(SiO20をターゲットに用い、膜厚を14nmとした。
第3保護層はSiCターゲットを用い、膜厚を4nmとした。
反射層はAgターゲットを用い、膜厚を180nmとした。
更に反射層上に、スピナーによってアクリル系硬化樹脂を厚さ5〜10μm塗布した後、紫外線硬化させて有機保護膜を形成した。
更にその上に、直径12cm、厚さ0.6mmのポリカーボネート基板を接着剤を用いて貼り合せ、波長810nmの半導体レーザを用いて初期結晶化を行なった。
記録再生の評価は、波長660nm、NA0.65のピックアップヘッドを用いて行なった。記録線速は10.5m/s(DVD3倍速相当)、28m/s(DVD8倍速相当)として、記録パワーは線速に応じて変えた。バイアスパワーは0.2mW、消去パワーは2〜15mWで、それぞれ最適化した。
これらの情報媒体に対して、3Tを10回繰返し記録したときのC/N比の測定結果[スペクトルアナライザを用いてノイズ(N)レベルと信号強度(C:キャリア)との比を測定]を表3に示す。書換え型の光ディスクシステムを実現する場合、そのC/N比は、少なくとも45dB必要である。実施例1〜8の記録媒体では、DVD3倍速相当である10.5m/sで繰返し記録したときも、DVD8倍速相当である28m/sで繰返し記録したときも全て45dB以上のC/N比を得ることができた。
(Examples 1 to 8)
An information recording medium (disk) was produced as follows.
On a polycarbonate substrate having a track pitch of 0.74 μm, a groove depth of 27 nm, a diameter of 12 cm and a thickness of 0.6 mm, a first protective layer, a phase-change recording layer, a second protective layer, a third protective layer, and a reflection layer were formed by sputtering. The layers were formed sequentially.
The first protective layer was made of (ZnS) 80 (SiO 2 ) 20 as a target and had a thickness of 80 nm.
For the phase change recording layer, a sputtering target having a composition (atomic%) corresponding to the material composition shown in Table 1 below was used, and the film thickness was 20 nm.
The thickness of the second protective layer was 14 nm using (ZnS) 80 (SiO 2 ) 20 as a target.
The third protective layer used a SiC target and had a thickness of 4 nm.
The reflective layer used an Ag target and had a thickness of 180 nm.
Further, an acrylic-based cured resin having a thickness of 5 to 10 μm was applied on the reflective layer by a spinner, and then cured by ultraviolet rays to form an organic protective film.
Further, a polycarbonate substrate having a diameter of 12 cm and a thickness of 0.6 mm was bonded thereon using an adhesive, and initial crystallization was performed using a semiconductor laser having a wavelength of 810 nm.
The recording / reproduction was evaluated using a pickup head having a wavelength of 660 nm and an NA of 0.65. The recording linear velocity was 10.5 m / s (corresponding to DVD 3 × speed) and 28 m / s (corresponding to DVD 8 × velocity), and the recording power was changed according to the linear velocity. The bias power was 0.2 mW, and the erase power was 2 to 15 mW, and each was optimized.
For these information media, the measurement result of the C / N ratio when 3T was repeatedly recorded 10 times [measurement of the ratio between the noise (N) level and the signal intensity (C: carrier) using a spectrum analyzer] was performed. It is shown in Table 3. When realizing a rewritable optical disk system, its C / N ratio needs to be at least 45 dB. In the recording media of Examples 1 to 8, the C / N ratio of 45 dB or more was obtained regardless of whether the recording was repeatedly performed at 10.5 m / s, which is equivalent to DVD triple speed, or when the recording was repeatedly performed at 28 m / s, which was equivalent to DVD 8 × speed. I got it.

(比較例1〜7)
相変化記録層を、下記表2に示す材料組成に対応する組成(原子%)のスパッタリングターゲットを用いて製膜した点以外は、実施例1と同様にして情報記録媒体(ディスク)を作製し、実施例1と同様にして評価を行なった。
結果を表4に示すが、10.5m/s及び28m/sで繰返し記録したときのC/N比は、比較例1の10.5m/sの場合を除き、45dB以下であった。
(Comparative Examples 1 to 7)
An information recording medium (disk) was prepared in the same manner as in Example 1 except that the phase change recording layer was formed using a sputtering target having a composition (atomic%) corresponding to the material composition shown in Table 2 below. Evaluation was performed in the same manner as in Example 1.
The results are shown in Table 4. The C / N ratio when recording was repeatedly performed at 10.5 m / s and 28 m / s was 45 dB or less except for the case of 10.5 m / s in Comparative Example 1.

Figure 2004322630
Figure 2004322630
Figure 2004322630
Figure 2004322630
Figure 2004322630
Figure 2004322630
Figure 2004322630
Figure 2004322630

(実施例9〜15)
情報記録媒体(ディスク)を次のようにして作製した。
トラックピッチ0.74μm、溝深さ27nm、直径12cm、厚さ0.6mmのポリカーボネート基板上に、スパッタリング法により、第1保護層、相変化記録層、第2保護層、第3保護層、反射層を順に製膜した。
第1保護層は、(ZnS)80(SiO20をターゲットに用い、膜厚を70nmとした。
相変化記録層は、下記表5に示す材料組成に対応する組成(原子%)のスパッタリングターゲットを用い、膜厚は18nmとした。
第2保護層は(ZnS)80(SiO20をターゲットに用い、膜厚を10nmとした。
第3保護層はSiCターゲットを用い、膜厚を4nmとした。
反射層はAgターゲットを用い、膜厚を140nmとした。
更に反射層上に、スピナーによってアクリル系硬化樹脂を厚さ5〜10μm塗布した後、紫外線硬化させて有機保護膜を形成した。
更にその上に、直径12cm、厚さ0.6mmのポリカーボネート基板を、接着シートを用いて貼り合せ、波長810nmの半導体レーザを用いて初期結晶化を行なった。
記録再生の評価は、波長660nm、NA0.65のピックアップヘッドを用いて行なった。記録線速は17.5、24.5、35.0m/sとし、記録パワーは線速に応じて変えた。バイアスパワーは0.2mW、消去パワーは2〜15mWで、それぞれ最適化した。記録ストラテジはそれぞれ最適化した。再生は全て線速3.5m/s、パワー0.7mWで行った。
それぞれの評価結果を表6に示す。
ジッターは、data to clock jitter σを検出窓幅Twで規格化した値である。
保存安定性は、サンプルに記録マークを書き込み、80℃85%RHの恒温槽に300時間保持した後、ジッターの上昇が1%未満の場合を○、1%以上3%未満の場合を△、3%以上の場合を×とした。
再生光安定性は、サンプルに記録マークを書き込み、線速3.5m/s、パワー1.0mWで10分間、再生光を照射した後、ジッターの上昇が1%未満の場合を○、1%以上3%未満の場合を△、3%以上の場合を×とした。
実施例9〜15の相変化型情報記録媒体の初期結晶化は容易に行なうことができ、反射率は周内で均一であった。融点は400〜600℃の間にあり、記録線速が17.5、24.5、35.0m/sのそれぞれにおいて、オーバーライト1000回後もジッターが10%以下を示し、記録感度が良好で保存安定性が良好な媒体を得ることができた。また、それぞれのサンプルの変調度はオーバーライト1000回後も60%以上を示し、保存安定性試験後も殆ど変化が無かった。特に実施例12、13の記録媒体は80℃85%RHの恒温槽に600時間保持した後でも変化は無かった。反射率はオーバーライト1000回後も20%以上を示し、保存安定性試験後も殆ど変化が無かった。
(Examples 9 to 15)
An information recording medium (disk) was produced as follows.
On a polycarbonate substrate having a track pitch of 0.74 μm, a groove depth of 27 nm, a diameter of 12 cm and a thickness of 0.6 mm, a first protective layer, a phase-change recording layer, a second protective layer, a third protective layer, and a reflection layer were formed by sputtering. The layers were formed sequentially.
The first protective layer used was (ZnS) 80 (SiO 2 ) 20 as a target, and had a thickness of 70 nm.
For the phase change recording layer, a sputtering target having a composition (atomic%) corresponding to the material composition shown in Table 5 below was used, and the film thickness was 18 nm.
The second protective layer used was (ZnS) 80 (SiO 2 ) 20 as a target, and had a thickness of 10 nm.
The third protective layer used a SiC target and had a thickness of 4 nm.
The reflective layer used an Ag target and had a thickness of 140 nm.
Further, an acrylic-based cured resin having a thickness of 5 to 10 μm was applied on the reflective layer by a spinner, and then cured by ultraviolet rays to form an organic protective film.
Further, a polycarbonate substrate having a diameter of 12 cm and a thickness of 0.6 mm was bonded thereon using an adhesive sheet, and the initial crystallization was performed using a semiconductor laser having a wavelength of 810 nm.
The recording / reproduction was evaluated using a pickup head having a wavelength of 660 nm and an NA of 0.65. The recording linear velocity was 17.5, 24.5, 35.0 m / s, and the recording power was changed according to the linear velocity. The bias power was 0.2 mW, and the erase power was 2 to 15 mW, and each was optimized. Each recording strategy was optimized. All reproduction was performed at a linear velocity of 3.5 m / s and a power of 0.7 mW.
Table 6 shows the results of each evaluation.
Jitter is a value obtained by normalizing data to clock jitter σ with the detection window width Tw.
The storage stability was determined by writing a recording mark on the sample and holding the sample in a thermostat at 80 ° C. and 85% RH for 300 hours. A case of 3% or more was evaluated as x.
The stability of the reproduction light was evaluated by writing a recording mark on the sample and irradiating the sample with the reproduction light at a linear velocity of 3.5 m / s and a power of 1.0 mW for 10 minutes. A case of not less than 3% and a case of 3% or more were evaluated as x.
Initial crystallization of the phase change type information recording media of Examples 9 to 15 could be easily performed, and the reflectance was uniform in the circumference. The melting point is between 400 and 600 ° C., and at recording linear velocities of 17.5, 24.5, and 35.0 m / s, the jitter shows 10% or less even after 1000 overwrites, and the recording sensitivity is good. As a result, a medium having good storage stability was obtained. Further, the modulation degree of each sample showed 60% or more even after 1000 times of overwriting, and there was almost no change even after the storage stability test. In particular, the recording media of Examples 12 and 13 showed no change even after being kept in a thermostat at 80 ° C. and 85% RH for 600 hours. The reflectance showed 20% or more after 1000 overwrites, and there was almost no change after the storage stability test.

(比較例8)
相変化記録層材料をAgInSb75Te18に変えた点以外は、実施例9と同様にして情報記録媒体(ディスク)を作製し、実施例9と同様にして評価を行なった。
記録層材料の組成を表5に、評価結果を表6にそれぞれ示すが、それぞれの記録線速において、実施例9〜15の場合よりも高い記録パワーを必要とした。線速35.0m/sのときは、使用したLDの限界である38mWで書きこみを行なっても、初回のジッターが13.4%と高く、モジュレーションも50%と低かった。線速が17.5、24.5m/sのときは保存安定性は良好であるが、35.0m/sのときは、十分にアモルファスマークが形成されなかったので、劣化が速かったと考えられる。
(Comparative Example 8)
An information recording medium (disk) was produced in the same manner as in Example 9, except that the phase change recording layer material was changed to Ag 3 In 4 Sb 75 Te 18 , and evaluation was conducted in the same manner as in Example 9.
The composition of the recording layer material is shown in Table 5, and the evaluation results are shown in Table 6. At each recording linear velocity, higher recording power was required than in Examples 9 to 15. At a linear velocity of 35.0 m / s, the initial jitter was as high as 13.4% and the modulation was as low as 50% even when writing was performed at 38 mW which is the limit of the LD used. When the linear velocities were 17.5 and 24.5 m / s, the storage stability was good, but when the linear velocity was 35.0 m / s, the amorphous marks were not sufficiently formed, so that the deterioration was considered to be fast. .

(比較例9)
相変化記録層材料をGeGaSb80Te11に変えた点以外は、実施例9と同様にして情報記録媒体(ディスク)を作製し、実施例9と同様にして評価を行なった。
記録層材料の組成を表5に、評価結果を表6にそれぞれ示すが、記録線速17.5m/sの場合、オーバーライト100回まではジッターが10%以下であるが、1000回で15.3%に上昇した。保存安定性は、ジッターの上昇が3%未満であった。反射率は保存試験前に23%であったのが、保存試験後は16%まで低下しており、保存安定性に問題がある。再生光安定性は良好であった。記録線速が35.0m/sのときは、初回ジッターが18.8%と高いが、これは結晶化スピードが遅いので、この線速では十分なマーク書き込みが行なえなかったと考えられる。
(Comparative Example 9)
An information recording medium (disk) was prepared in the same manner as in Example 9 except that the phase change recording layer material was changed to Ge 5 Ga 4 Sb 80 Te 11 , and evaluation was performed in the same manner as in Example 9.
The composition of the recording layer material is shown in Table 5, and the evaluation results are shown in Table 6. When the recording linear velocity is 17.5 m / s, the jitter is 10% or less up to 100 times of overwriting. .3%. As for the storage stability, the rise in jitter was less than 3%. The reflectance was 23% before the storage test, but decreased to 16% after the storage test, and there was a problem in storage stability. The reproduction light stability was good. When the recording linear velocity is 35.0 m / s, the initial jitter is as high as 18.8%. However, since the crystallization speed is low, it is considered that sufficient mark writing could not be performed at this linear velocity.

Figure 2004322630
Figure 2004322630

Figure 2004322630
Figure 2004322630

(実施例16)
トラックピッチ0.74μm、溝深さ27nm、直径12cm、厚さ0.6mmのポリカーボネート基板上に、スパッタリング法により、第1保護層、相変化記録層、第2保護層、第3保護層、反射層を順に製膜した。
第1保護層は、(ZnS)80(SiO20をターゲットに用い、膜厚を60nmとした。
相変化記録層は、Sn18Sb69GaGeのスパッタリングターゲットを用い、膜厚は16nmとした。
第2保護層は(ZnS)80(SiO20をターゲットに用い、膜厚を8nmとした。
第3保護層はSiCターゲットを用い、膜厚を4nmとした。
反射層はAgターゲットを用い、膜厚を140nmとした。
更に反射層上に、スピナーによってアクリル系硬化樹脂を厚さ5〜10μm塗布した後、紫外線硬化させて有機保護膜を形成した。
更にその上に、直径12cm、厚さ0.6mmのポリカーボネート基板を接着剤を用いて貼り合せた。
この記録媒体を一定線速20m/sで回転させ、ビーム幅75μmの光ヘッドを用い、パワー密度が25mW/μmのレーザー光を半径方向に送り50μm/rで移動させながら照射することにより初期結晶化を行なった。
記録再生の評価は、波長660nm、NA0.65のピックアップヘッドを用いて行なった。記録線速は10.5m/s(3倍速)、14m/s(4倍速)、21m/s(6倍速),28m/s(8倍速)とし、記録パワーは線速に応じて変えた。バイアスパワーは0.2mW、消去パワーは5〜10mWで、それぞれ最適化した。
初回から繰返し記録1000回までのジッターを図2に示すが、全ての記録線速でジッター10%以下であった。書換え型の光ディスクシステムを実現するには、少なくともジッター10%以下を必要とする。
(Example 16)
On a polycarbonate substrate having a track pitch of 0.74 μm, a groove depth of 27 nm, a diameter of 12 cm and a thickness of 0.6 mm, a first protective layer, a phase-change recording layer, a second protective layer, a third protective layer, and a reflection layer were formed by sputtering. The layers were formed sequentially.
The first protective layer was made of (ZnS) 80 (SiO 2 ) 20 as a target and had a thickness of 60 nm.
For the phase change recording layer, a sputtering target of Sn 18 Sb 69 Ga 6 Ge 7 was used, and the film thickness was 16 nm.
The thickness of the second protective layer was 8 nm using (ZnS) 80 (SiO 2 ) 20 as a target.
The third protective layer used a SiC target and had a thickness of 4 nm.
The reflective layer used an Ag target and had a thickness of 140 nm.
Further, an acrylic-based cured resin having a thickness of 5 to 10 μm was applied on the reflective layer by a spinner, and then cured by ultraviolet rays to form an organic protective film.
Further, a polycarbonate substrate having a diameter of 12 cm and a thickness of 0.6 mm was bonded thereon using an adhesive.
The recording medium is rotated at a constant linear velocity of 20 m / s and irradiated with a laser beam having a power density of 25 mW / μm 2 in the radial direction while moving at a rate of 50 μm / r using an optical head having a beam width of 75 μm. Crystallization was performed.
The recording / reproduction was evaluated using a pickup head having a wavelength of 660 nm and an NA of 0.65. The recording linear speed was 10.5 m / s (3 times speed), 14 m / s (4 times speed), 21 m / s (6 times speed), and 28 m / s (8 times speed), and the recording power was changed according to the linear speed. The bias power was 0.2 mW, and the erase power was 5 to 10 mW, and each was optimized.
FIG. 2 shows the jitter from the first time to 1000 repetitive recordings. The jitter was 10% or less at all recording linear velocities. In order to realize a rewritable optical disk system, at least a jitter of 10% or less is required.

(実施例17)
相変化記録層材料をGaSb67Sn18GeTeに変えた点以外は、実施例16と同様にして情報記録媒体(ディスク)を作製した。
この情報記録媒体を一定線速15m/sで回転させ、ビーム幅75μmの光ヘッドを用い、パワー密度が20mW/μmのレーザー光を半径方向に送り50μm/rで移動させながら照射することにより初期結晶化を行なった。実施例16と同様の評価を行なったところ、図3に示すように、特に初回から繰返し記録10回までのジッタが良好になり、DVDの規格値であるジッタ9%以内になった。
(Example 17)
An information recording medium (disk) was produced in the same manner as in Example 16 except that the material of the phase change recording layer was changed to Ga 6 Sb 67 Sn 18 Ge 6 Te 3 .
The information recording medium is rotated at a constant linear velocity of 15 m / s, and irradiated with a laser beam having a power density of 20 mW / μm 2 in a radial direction while moving at 50 μm / r using an optical head having a beam width of 75 μm. Initial crystallization was performed. When the same evaluation as in Example 16 was performed, as shown in FIG. 3, the jitter particularly from the first time to the tenth repetitive recording was good, and was within 9%, which is the standard value of DVD.

(実施例18)
実施例16の情報記録媒体の第1保護層と相変化記録層の間にSiOからなる界面層を2nm設けたものを作製した。この情報記録媒体と実施例16の情報記録媒体を一定線速20m/sで回転させ、ビーム幅75μmの光ヘッドを用い、パワー密度が25mW/μmのレーザー光を半径方向に送り50μm/rで移動させながら照射することにより初期結晶化を行なった。記録線速28m/s(8倍速相当)で、記録パワーが28、30、32、34、36、38mWのときの繰返し記録特性を評価した。
実施例16の場合の結果を図4、実施例18の場合の結果を図5に示す。実施例16、18共に最適パワーではジッタ9%以内であった。特に実施例18は、36mW以上の高パワーでも繰返し記録1000回目のジッタが9%以内であった。SiO界面層を設けることにより高パワー記録での繰返し記録特性が良好となり、記録パワーマージンを広くすることができた。
(Example 18)
The information recording medium of Example 16 was manufactured by providing an interface layer made of SiO 2 at a thickness of 2 nm between the first protective layer and the phase change recording layer. This information recording medium and the information recording medium of Example 16 were rotated at a constant linear velocity of 20 m / s, and a laser beam having a power density of 25 mW / μm 2 was fed in the radial direction using an optical head having a beam width of 75 μm to 50 μm / r. Initial crystallization was performed by irradiating while moving. The repetitive recording characteristics when the recording linear velocity was 28 m / s (corresponding to 8 times speed) and the recording power was 28, 30, 32, 34, 36 and 38 mW were evaluated.
The result in the case of Example 16 is shown in FIG. 4, and the result in the case of Example 18 is shown in FIG. In both Examples 16 and 18, the jitter was within 9% at the optimum power. In particular, in Example 18, the jitter at the 1000th repetitive recording was within 9% even at a high power of 36 mW or more. By providing the SiO 2 interface layer, the repetitive recording characteristics in high power recording were improved, and the recording power margin could be widened.

本発明の相変化型情報記録媒体の一実施形態を説明するための断面図。FIG. 1 is a cross-sectional view illustrating one embodiment of a phase change type information recording medium of the present invention. 実施例16の情報記録媒体の、初回から繰返し記録1000回までのジッターを示す図。FIG. 21 is a diagram showing jitter from the first time to 1000 times of repetitive recording of the information recording medium of Example 16. 実施例17の情報記録媒体の、初回から繰返し記録1000回までのジッターを示す図。FIG. 21 is a diagram showing jitter from the first time to 1000 times of repetitive recording of the information recording medium of Example 17; 実施例16の情報記録媒体の繰り返し記録特性を示す図。FIG. 22 is a diagram showing repetitive recording characteristics of the information recording medium of Example 16. 実施例18の情報記録媒体の繰り返し記録特性を示す図。28 is a diagram showing the repetitive recording characteristics of the information recording medium of Example 18. FIG.

Claims (12)

透明基板上に、少なくとも第1保護層、相変化記録層、第2保護層及び反射層がこの順に形成され、情報の記録が、レーザー光の照射により相変化記録層の結晶状態及び非晶質状態の可逆的な相変化によりなされるものであると共に、相変化記録層を構成する材料の主成分である合金が、組成式をSnαSbβGaγGeδ〔但し、α、β、γ、δはそれぞれの元素の組成比(原子%)、α+β+γ+δ=100〕として、α、β、γ、δが以下の関係を満たすことを特徴とする相変化型情報記録媒体。
5≦α≦25
40≦β≦91
2≦γ≦20
2≦δ≦20
On a transparent substrate, at least a first protective layer, a phase change recording layer, a second protective layer, and a reflective layer are formed in this order, and information recording is performed by irradiating a laser beam with a crystalline state and an amorphous state of the phase change recording layer. The alloy, which is formed by the reversible phase change of the state and is the main component of the material constituting the phase change recording layer, has a composition formula of Sn α Sb β Ga γ Ge δ [α, β, γ , Δ is the composition ratio (atomic%) of each element, α + β + γ + δ = 100], and α, β, γ, and δ satisfy the following relationship.
5 ≦ α ≦ 25
40 ≦ β ≦ 91
2 ≦ γ ≦ 20
2 ≦ δ ≦ 20
5≦α≦20、40≦β≦85、5≦γ≦20、5≦δ≦20であることを特徴とする請求項1記載の相変化型情報記録媒体。   2. The phase change type information recording medium according to claim 1, wherein 5 ≦ α ≦ 20, 40 ≦ β ≦ 85, 5 ≦ γ ≦ 20, 5 ≦ δ ≦ 20. 10≦α≦20、50≦β≦80、5≦γ≦15、5≦δ≦15であることを特徴とする請求項2記載の相変化型情報記録媒体。   3. The phase change type information recording medium according to claim 2, wherein 10 ≦ α ≦ 20, 50 ≦ β ≦ 80, 5 ≦ γ ≦ 15, 5 ≦ δ ≦ 15. 相変化記録層が、Ag、Zn、In及びCuからなる群から選択された少なくとも1つの元素を、前記合金に対して1〜10原子%含むことを特徴とする請求項1〜3の何れかに記載の相変化型情報記録媒体。   The phase change recording layer contains at least one element selected from the group consisting of Ag, Zn, In and Cu in an amount of 1 to 10 atomic% with respect to the alloy. 3. The phase-change information recording medium according to claim 1. 相変化記録層が、Teを、前記合金に対して1〜10原子%含むことを特徴とする請求項1〜4記載の相変化型情報記録媒体。   The phase change type information recording medium according to claim 1, wherein the phase change recording layer contains Te in an amount of 1 to 10 atomic% with respect to the alloy. 第1保護層、相変化記録層、第2保護層、反射層の各膜厚をt1〜t4(nm)とし、レーザー光の波長をλ(nm)としたとき、以下の関係を満たすことを特徴とする請求項1〜5の何れかに記載の相変化型情報記録媒体。
t1 : 0.070≦t1/λ≦0.160
t2 : 0.015≦t2/λ≦0.032
t3 : 0.005≦t3/λ≦0.040
t4 : 0.100≦t4/λ
When the thicknesses of the first protective layer, the phase change recording layer, the second protective layer, and the reflective layer are t1 to t4 (nm) and the wavelength of the laser beam is λ (nm), the following relationship is satisfied. The phase change type information recording medium according to any one of claims 1 to 5, wherein
t1: 0.070 ≦ t1 / λ ≦ 0.160
t2: 0.015 ≦ t2 / λ ≦ 0.032
t3: 0.005 ≦ t3 / λ ≦ 0.040
t4: 0.100 ≦ t4 / λ
相変化記録層と第1保護層との間に、厚さが2〜10nmのSiOからなる界面層を有することを特徴とする請求項1〜6の何れかに記載の相変化型情報記録媒体。 7. The phase change type information recording according to claim 1, further comprising an interface layer made of SiO2 having a thickness of 2 to 10 nm between the phase change recording layer and the first protective layer. Medium. 各層を積層した相変化型情報記録媒体を10〜21m/sの範囲内の一定線速度で回転させ、パワー密度15〜40mW/μmで初期結晶化を行なうことにより得られたものであることを特徴とする請求項1〜7の何れかに記載の相変化型情報記録媒体。 It is obtained by rotating a phase-change information recording medium in which each layer is laminated at a constant linear velocity in a range of 10 to 21 m / s and performing initial crystallization at a power density of 15 to 40 mW / μm 2. The phase change type information recording medium according to claim 1, wherein: SnαSbβGaγGeδ(但し、5≦α≦25、40≦β≦91、2≦γ≦20、2≦δ≦20、α、β、γ、δは原子%、α+β+γ+δ=100)で示される組成の合金からなる相変化型情報記録媒体製造用スパッタリングターゲット。 Sn α Sb β Ga γ Ge δ (provided that 5 ≦ α ≦ 25, 40 ≦ β ≦ 91, 2 ≦ γ ≦ 20, 2 ≦ δ ≦ 20, α, β, γ and δ are atomic%, α + β + γ + δ = 100) A sputtering target for producing a phase change type information recording medium comprising an alloy having a composition represented by the formula: 5≦α≦20、40≦β≦85、5≦γ≦20、5≦δ≦20である請求項9記載のスパッタリングターゲット。   The sputtering target according to claim 9, wherein 5 ≦ α ≦ 20, 40 ≦ β ≦ 85, 5 ≦ γ ≦ 20, and 5 ≦ δ ≦ 20. 10≦α≦20、50≦β≦80、5≦γ≦15、5≦δ≦15である請求項10記載のスパッタリングターゲット。   The sputtering target according to claim 10, wherein 10 ≦ α ≦ 20, 50 ≦ β ≦ 80, 5 ≦ γ ≦ 15, and 5 ≦ δ ≦ 15. 前記合金を主成分とし、Ag、Zn、In、Cu、Teから選ばれる少なくとも1種の元素を前記合金に対して1〜10原子%含有することを特徴とする請求項9〜11の何れかに記載の相変化型情報記録媒体製造用スパッタリングターゲット。
The alloy according to claim 9, wherein at least one element selected from Ag, Zn, In, Cu, and Te is contained in the alloy in an amount of 1 to 10 atomic%. The sputtering target for producing a phase change type information recording medium according to the above item.
JP2004029923A 2003-02-06 2004-02-05 Phase change information recording medium and sputtering target Expired - Fee Related JP4271051B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004029923A JP4271051B2 (en) 2003-02-06 2004-02-05 Phase change information recording medium and sputtering target
CNB2004800091946A CN100513193C (en) 2004-02-05 2004-08-04 Phase-change information recording medium, manufacturing method for the same, sputtering target, method for using the phase-change information recording medium and optical recording apparatus
KR1020057018955A KR100730978B1 (en) 2004-02-05 2004-08-04 Phase-change information recording medium and process for producing the same, sputtering target, method for record reproducing phase-change information recording medium and optical recorder
PCT/JP2004/011148 WO2005075212A1 (en) 2004-02-05 2004-08-04 Phase-change information recording medium and process for producing the same, sputtering target, method for using phase-change information recording medium and optical recorder
EP04771189A EP1712367B1 (en) 2004-02-05 2004-08-04 Phase-change information recording medium, process for producing the same and sputtering target.
DE602004031775T DE602004031775D1 (en) 2004-02-05 2004-08-04 PHASE MODIFYING INFORMATION CERTIFICATE, METHOD OF ITS MANUFACTURE AND SPUTTER TARGET.
TW093123518A TW200527421A (en) 2004-02-05 2004-08-05 Phase-change information recording medium and process for producing the same, sputtering target, method for using phase-change information recording medium and optical recorder
US11/244,346 US7438965B2 (en) 2004-02-05 2005-10-04 Phase-change information recording medium, manufacturing method for the same, sputtering target, method for using the phase-change information recording medium and optical recording apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003029119 2003-02-06
JP2004029923A JP4271051B2 (en) 2003-02-06 2004-02-05 Phase change information recording medium and sputtering target

Publications (2)

Publication Number Publication Date
JP2004322630A true JP2004322630A (en) 2004-11-18
JP4271051B2 JP4271051B2 (en) 2009-06-03

Family

ID=33512830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004029923A Expired - Fee Related JP4271051B2 (en) 2003-02-06 2004-02-05 Phase change information recording medium and sputtering target

Country Status (1)

Country Link
JP (1) JP4271051B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1672622A1 (en) * 2004-12-15 2006-06-21 Ricoh Company, Ltd. Phase-change optical recording medium and reproducing method thereof
JP2006212880A (en) * 2005-02-02 2006-08-17 Ricoh Co Ltd Phase change type optical recording medium
JP2006228378A (en) * 2005-02-21 2006-08-31 Ricoh Co Ltd Information recording method and optical recording medium
JP2007045106A (en) * 2005-08-12 2007-02-22 Ricoh Co Ltd Two-layered phase-change type information recording medium
JP2007196523A (en) * 2006-01-26 2007-08-09 Sony Corp Optical recording medium and its manufacturing method
US8124315B2 (en) 2004-09-09 2012-02-28 Ricoh Company, Ltd. Optical recording medium
CN109904311A (en) * 2017-12-08 2019-06-18 江苏理工学院 A kind of Sb-Se-Ti serial nano composite phase-change film and preparation method thereof for phase transition storage

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124315B2 (en) 2004-09-09 2012-02-28 Ricoh Company, Ltd. Optical recording medium
EP1672622A1 (en) * 2004-12-15 2006-06-21 Ricoh Company, Ltd. Phase-change optical recording medium and reproducing method thereof
US7626915B2 (en) 2004-12-15 2009-12-01 Ricoh Company, Ltd. Phase-change optical recording medium and recording and reproducing method thereof
JP2006212880A (en) * 2005-02-02 2006-08-17 Ricoh Co Ltd Phase change type optical recording medium
JP2006228378A (en) * 2005-02-21 2006-08-31 Ricoh Co Ltd Information recording method and optical recording medium
JP4546851B2 (en) * 2005-02-21 2010-09-22 株式会社リコー Information recording method and optical recording medium
JP2007045106A (en) * 2005-08-12 2007-02-22 Ricoh Co Ltd Two-layered phase-change type information recording medium
JP4533276B2 (en) * 2005-08-12 2010-09-01 株式会社リコー Two-layer phase change information recording medium
JP2007196523A (en) * 2006-01-26 2007-08-09 Sony Corp Optical recording medium and its manufacturing method
CN109904311A (en) * 2017-12-08 2019-06-18 江苏理工学院 A kind of Sb-Se-Ti serial nano composite phase-change film and preparation method thereof for phase transition storage

Also Published As

Publication number Publication date
JP4271051B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
KR100730978B1 (en) Phase-change information recording medium and process for producing the same, sputtering target, method for record reproducing phase-change information recording medium and optical recorder
JP4271051B2 (en) Phase change information recording medium and sputtering target
JP4093846B2 (en) Phase change optical recording medium
JP3885051B2 (en) Phase change optical recording medium
JP2006095821A (en) Photorecording medium
KR20050059098A (en) Rewritable optical data storage medium and use of such a medium
JP2003211849A (en) Optical recoding medium
JP2006212880A (en) Phase change type optical recording medium
JP3664403B2 (en) Phase change optical recording medium
JP3891471B2 (en) Phase change recording medium
JP2004181742A (en) Phase changing optical recording medium
JP2005193663A (en) Optical recording medium
JP2004206866A (en) Optical recording method
JP3955007B2 (en) Phase change optical recording medium
JP2007220269A (en) Optical recording medium
JP2007062319A (en) Optical recording medium
JP2004050763A (en) Phase change optical recording medium
JP2004013926A (en) Optical information recording medium and its manufacturing method
JP2002260274A (en) Phase changing optical recording medium
JP2003154754A (en) Optical recording medium
JP2005161730A (en) Phase change type optical recording medium
JP2005178372A (en) Optical recording medium
EP1690691A1 (en) Optical recording medium, process for producing the same, sputtering target, method of using optical recording medium and optical recording apparatus
JP2006341470A (en) Phase change type optical recording medium
JP2003285558A (en) Phase-changing optical recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees